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Widespread naturally variable human exons
aid genetic interpretation

Hannah N. Jacobs1,2, Bram L. Gorissen 3,4, Jeremy Guez 2,3,4,
Masahiro Kanai 2,4, Kavi Gupta5, Hilary K. Finucane 2,4,
Konrad J. Karczewski 2,3,4 & Christopher B. Burge 1

Most mammalian genes undergo alternative splicing. The splicing of some
exons has been acquired or lost in specific mammalian lineages, but differ-
ences in splicing within the human population are poorly understood. Using
GTEx tissue transcriptomes from 838 individuals, we identified 57,271 “natu-
rally variable exons” (NVEs) – exons which are included in mRNAs in some
individuals but entirely excluded from others (or vice versa). NVEs impact
three quarters of protein-coding genes, occur at all population frequencies,
and are often absent from reference annotations. NVEs are more abundant in
genes depleted of genetic loss-of-function mutations and aid in the inter-
pretation of causal genetic variants. Genetic variants modulate the splicing of
many NVEs, and 5’ untranslated region and coding-region NVEs are often
associated with increased and decreased gene expression, respectively.
Together, our findings characterize abundant splicing variation in the human
population, with implications for a range of human genetic analyses.

Nearly all human genes undergo alternative splicing, in which distinct
mRNAs derived from different combinations of exons and splice sites
are produced from the same gene1. Small changes in mRNA sequence
can exert large effects, including the addition/deletion of protein
domains2,3, or productionof functional versus nonfunctional isoforms,
and dysregulation of splicing contributes to human disease4,5. Under-
standing variation in alternative splicing is therefore important in
understanding physiological and disease mechanisms.

Evolutionarily conserved alternative exons tend to preserve
protein reading frame6, and often exhibit tissue-specific regulation7.
In addition, comparison across mammalian species has identified
thousands of cases of complete loss or gain of the splicing of exons8,
with more recently evolved exons more likely to occur in 5’ UTRs,
where they are often associated with increased gene expression8.
Gain or loss of the splicing of an exon in the coding sequence (CDS)
may also influence expression by changing the reading frame, often
triggering nonsense-mediated mRNA decay (NMD)9,10. However, the

evolution of alternative splicing within the human species remains
poorly understood.

Most alternative exons are generally assumed to be spliced in all
individuals, perhaps with different inclusion levels, a pattern which we
call ‘canonical’ alternative splicing. Some such splicing differences are
driven by genetic variation. Large-scale genetic association studies
have associated changes in the usage of many alternatively spliced
exons with single-nucleotide polymorphisms (SNPs), designated spli-
cing quantitative trait loci (sQTLs)11,12. However, these variants typically
have modest effect sizes, and their molecular mechanisms are often
unclear. Ultra-rare genetic variants can sometimes lead to inclusion of
previously unseen, “cryptic” exons or splice sites13. Some recent stu-
dies suggest that many exons are missing from transcriptome refer-
ence annotations, occurring only in a subset of transcriptomic
datasets11,14,15. The availability of tissue transcriptomes from nearly
1000 individuals in the Genotype-Tissue Expression (GTEx) project
presents an opportunity to characterize human variation at the exon
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level, asking how often the presence/absence of individual exons or
splice sites varies between the transcriptomes of different individuals.

One key challenge in the study of unannotated transcripts is
assessing which reflect technical artifacts or other types of
noise16,17, which are reproducible, and which have phenotypic
effects18. A cross-species analysis has suggested that many unan-
notated splicing events in longer-lived organisms may represent
“transcript drift”, and are often nonfunctional until they begin to
splice in at higher levels19. However, another recent study found
that lowly used exons that trigger NMD broadly impact gene
expression in human lymphoblastoid cell lines, and can help
interpret complex trait loci10.

Here, we define “naturally variable exons” (NVEs) as exons whose
splicing is variable within the human population (i.e., not present in
every individual), focusing on alternative “skipped” or “cassette”
exons, and alternative splice sites, which extend or truncate exons.
We introduce a statistical approach that estimates the population
frequency with which NVEs are meaningfully included (at levels
above 5%) in a human cohort, generating a quantitative atlas of
splicing variation across tissues. Using data from GTEx, we find that
NVEs impact most human genes, are sometimes associated with
changes in gene expression, and can aid in the interpretation of non-
coding genetic variants.

Results
Generating a catalog of human NVEs
In order to generate a catalog of high-quality NVEs, we obtained
mapped RNA-seq reads from 14,000 GTEx samples representing 49
tissues from 838 individuals11. To perform quality control and ensure
accurate estimates ofNVEs in the dataset, wedevised a straightforward
Bayesian approach. Themethod de-noises estimates by sharing signals
across samples and enables estimation of the uncertainty in exon
usage of each NVE.

To illustrate themethod, consider anNVE of the alternative splice
site variety, used in some individuals as an alternative to a canonical or
“cognate” splice site, used in all people. The proportional use of the
NVE within an individual – the “percent spliced in” (PSI orΨ) – can be
estimated from theproportionofRNA-seq reads that span theNVE and
cognate exon junctions (EJs) (Supplementary Fig. 1A)20. NVEs tend to
have fewer total junction reads per sample, making some estimates of
Ψ less certain (Supplementary Fig. 1B). We therefore de-noised these
estimates using a beta-binomial model, employing a mixture of 3 beta
distributions for reasons discussed below. The workflow is described
in Supplementary Fig. 1C, Methods and Supplementary Note Sections
A-D. The method fits a smooth function representing the NVE’s
underlying Ψ distribution across the population from the observed
splice junction reads for anNVEacross individuals in a tissue.We chose
a mixture of 3 betas model because of its flexibility to model many
different distributions and because many NVEs are associated with
sQTLs (see below), which have 3 possible genotypes that may each
generate distinct levels of splicing. The mixture of betas model can be
used to assess uncertainty inΨ values, and to estimate the proportion
of individuals that splice the NVE at any given level. Here, we defined
NVEs as alternative exons or splice sites that have estimated Ψ values
of at least 5% in between 1% and 99% of the population in a particular
tissue (see “Methods”); exons with Ψ ≥ 5% in over 99% of individuals
are considered canonical alternative exons, and exons that don’t meet
either of these criteria may be considered rare or cryptic exons. Using
this definition, we identified 414,141 NVE-tissue pairs across all 49 tis-
sues in the GTEx dataset (Supplementary Data 1), representing 57,271
unique NVEs. Like canonical alternative exons, NVEs are roughly
balanced between the alternative splice site and skipped exon types
(Supplementary Data 2).

Using these data, we define an interpretable summary statistic,
exon frequency (EF), that describes the frequency of splicing of anNVE

in a population, somewhat analogous to allele frequency (AF). The EF
of an NVE in a tissue is the estimated proportion of individuals that
splice theNVE at a thresholdΨ level or above.We typically employa 5%
Ψ threshold here because previous studies have suggested that this
level of inclusion is near the lowest level where sequence conservation
is commonly observed19. Distributions of EF values using different Ψ
cutoffs are shown in Supplementary Fig. 1D, E: thresholds of 5, 10 and
20% yield generally similar results. The steps in data processing to
estimate EF for an NVE are described in Fig. 1A. EF is in some ways
analogous to AF, but because estimation of EF depends on the avail-
ability of RNA-seq datasets from relevant tissues, the precise value is
probably less important than the utility in stratifying NVEs into rarer
and more common subsets.

To illustrate, we provide an example of a fairly typical NVE, which
occurs in the FBXO6mitotic regulator nucleolar GTPase gene and has
an EF of 0.07 (Fig. 1B). This exon is very lowly or not included in most
individuals, but has moderate inclusion of up to ~ 20% in a handful of
individuals, with mean ± standard deviation ofΨ well separated from
zero in a small portion of the population. This splicing variation
occurs against a background of fairly uniform gene expression
(Supplementary Fig. 2A). The underlying factors that drive splicing
differences between individuals might include genetic variation act-
ing in cis or in trans, or environmental factors, and are not clear in this
particular case. Examples of NVEs across the spectrum of EFs
observed (which range from 1% to 99%) are shown in Supplementary
Fig. 2A–D. The splice site motifs of NVEs match consensus motifs to a
similar degree as the splice sites of cognate exons (Supplementary
Fig. 2E, F), similar to observations for alternative exons overall21. We
provide various summary statistics describing the splicing of NVEs,
such as median and maximum Ψ across the spectrum (Supplemen-
tary Figs. 3 and 4), observing positive relationships between most
measures of exon inclusion and EF (Supplementary Fig. 4C, D). NVEs
can even be constitutively spliced in some people, and absent from
others, as shown by a second example, occurring in the calpastatin
gene CAST (Fig. 1C). These examples highlight diversity in the splicing
patterns of exons across individuals and flexibility provided by our
three-component mixture model.

We next sought to understand the distribution of NVEs across
genes and individuals. Since many NVEs are detected in multiple tis-
sues, we focused on the tissue where the exon achieves its highest EF,
which we call “top EF” and use as the default EF value for an NVE.
(Similar results were obtained when using other criteria, such as the
90th percentile of EF across tissues.) Using this approach, we identified
28,694 alternative splice site NVEs (NVEalt ss) and 28,577 skipped exon
NVEs (NVEse) in all of GTEx. We find that NVEs are widespread,
occurring in 75% of protein-coding genes, with a median of 3 NVEs per
gene (Fig. 2A). Across all 49 tissues, some variability was observed in
the number of NVEs, with a median of ~ 3500 NVEs per tissue (Sup-
plementary Fig. 5A). We estimated the average number of NVEs
expressed per individual as ~ 13,100, using a conservative approach
that sums top-EFs calculated from the ten best-sampled tissues.
Although low-EF NVEs are numerous, those with higher EFs are more
commonly observed, so the EF distribution of the set of NVEs that
occur in any given individual will be skewed toward higher EF values
(Supplementary Fig. 5B). As a result, the fraction ofNVEs shared by any
two unrelated individuals – calculated as the sum of the squares of EF
values over all NVEs – is estimated at 28%.

Most low EF NVEs occur in coding regions and many high EF
in 5’UTRs
We found that the distribution of EF values of NVEs is U-shaped, with
many NVEs being either rare or frequent in the population (Fig. 2B). We
estimate that themeanψ of an NVE in individuals that splice above our
threshold level (5%) ranges from near 5% for low-EF NVEs (top EF 0.1 or
below) to just over 25% for high-EF NVEs (top EF 0.9 or above) (Fig. 2C).
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The RNA-seq read depths available in GTEx are more than adequate to
distinguish these moderate ψ values from the absence of splicing, and
NVEs possess splice site motifs very similar to those of other exons
(Supplementary Fig. 2D), even for low-EFNVEs (Supplementary Fig. 2E).

We explored features associated with NVEs having different
EF values. As noted above, more highly included exons (higher

median ψ) tended to have higher EF values (Supplementary
Fig. 4C, D). For NVEalt ss, their 5’ and 3’ splice site (SS) motif scores
(using MaxEnt22) tend to be slightly weaker than their associated
cognate SS, with the difference shrinking at higher EF values
(Supplementary Fig. 5C). These observations suggest that the SS
strength of NVEs is a contributor to their inclusion and EF values.
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Notably, 61% of NVEs present in GTEx are absent from compre-
hensive reference annotations (GENCODE 45). NVEs with low EF are
predominantly (73%) unannotated, while around one third of high-EF
NVEs are unannotated (Fig. 2B). Low-EF NVEs that are absent from
reference annotations have more tissue-restricted splicing than those
that are present in reference annotations (Supplementary Fig. 5D).
Different NVEs were restricted to different subsets of tissues, with no
prominent outlying tissues (Supplementary Fig. 5E). In total, NVEs
expand the sequence space covered by the transcriptome by ~ 4MB
(Supplementary Fig. 5F). The number of NVEs detected in an individual
was not strongly related with the depth of sequencing (Supplemen-
tary Fig. 5G).

In general, alternative exons occur most commonly in coding
regions, but also occur often in 5’ UTRs and rarely in 3’ UTRs of genes
(Fig. 2D). Similarly, most NVEs – termed cdsNVEs – occur within the
region of the gene that contains coding exons, and this class of NVEs
tends to have low EF values. A substantial minority of NVEs occur in 5’
UTRs, and this subset tended to have higher EFs (Fig. 2D). This
observation is consistent with previous work showing that evolutio-
narily more recent alternative exons arisemost commonly in 5’UTRs8.
NVEs rarely occur in 3’ UTRs, likely because this gene region contains
very few introns relative to others (presumably to avoid triggering
NMD). For the most part, the size distributions of NVEs are consistent
across EFs, particularly for the skipped exon type (Supp. Fig. 6A-E).

Fig. 1 | Overview of the method to detect NVEs and examples. A Model figure
describing NVE detection and our summary statistic, exon frequency. To define
NVEs, we first filtered LeafCutter outputs for either alternative splice sites or
skipped exons. For a given NVE observed in the RNA sequencing data, the Ψ of
an individual can be directly estimated using the beta binomial model. The EF
summary statistic is the percentage of individuals whose Ψ exceeds a given
threshold, shown for a 5% Ψ threshold. B An example exon in FBXO6 with
EF5% = 0.07 in heart tissue. Individuals with heart samples (n = 386) are sorted by
their estimated Ψ values for this exon, which is shown as percentiles on the x-
axis. The mean posterior estimate of Ψ is plotted (highlighted in purple if the

estimate is at least 5% Ψ in the individual), along with error bars showing one
standard deviation on Ψ. In the inset, an example of the population distribution
used to calculate the exon frequency (EF) of this exon. Note that the y-axis scales
differ between plots. C An example of an NVE in the CAST gene (with EF5% = 0.5)
that has high variability amongst individuals. Individuals with Esophagus
Mucosa samples (n = 497) are sorted by their estimated Ψ values for this exon,
which is shown as percentiles on the x-axis. Inset: as in B. Below: bar plots of EJ
reads for both NVE and cognate, and overall mRNA levels (TPM). Note that the
y-axis scales differ between plots.

Fig. 2 | The distribution of NVEs across genes, gene regions, and their relative
usage in individuals. AHistogramof the number of NVEs in a given gene, including
those protein-coding genes with no NVEs (gray) at least one NVE (purple). B The top
EF spectrum in GTEx. For each NVE, the tissue with the most usage of the NVE was
taken, indicating the highest possible EF in GTEx. We use this color scheme
throughout the paper, with lower EFs shown in blue and higher EFs shown in red.
Lighter boxes indicate that theNVEs are not inGENCODE reference annotations. Star
indicates significance (p = 10^−255 by performing a simple normal test for propor-
tions (two-sided) of low and high EFs in reference annotations, without multiple

testing correction, andare connectedbygray lines.CAverageψofNVE in individuals
with ψ ≥ 5%. 1000 NVEs were randomly sampled, with 10 bootstraps. We approxi-
mated the conditional expectationofΨ≥ 5%using the empiricalmeanofobservedΨ

values above that value, within each EF bin. Uncertaintywas represented by the 2.5th
and 97.5th percentiles. D Proportion of genes in MANE select/RefSeq transcripts in
different gene regions (right) and Proportion of NVEs in given gene regions, split by
exon frequency (left). Stars indicate to significance (p < 10^-24 and p = 10^-24) by
performing a simple normal test for proportions (two-sided) of CDS proportions
between groups connected by gray lines, without multiple testing correction.
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There are a substantial number of 3 bp alternative 3’ splice sites (3SS),
reflecting the abundance of NAGNAGs21 (Supplementary Fig. 6AC).
Alternative 5’ splice sites (5SS) located in 5’ UTRs are on average twice
as long as non-5’UTR alternative 5SS NVEs (Supplementary Fig. 6E).
This observation may be related to the frequent presence of alter-
native promoters and ‘hybrid exons’ (overlapping first and internal
exons) in the 5’UTRs of many human genes22. In summary, both splice
site strength and location in the gene appear to contribute to the
emergence and/or maintenance of NVEs in the human population.

NVEs impact mutationally-constrained genes
To explore the evolutionary properties of genes with and without
NVEs, we considered gene tolerance to germline loss-of-function (LoF)
mutations in the human population, which is a proxy for both gene
function and natural selection23. This property has been quantified
across nearly all human genes by computing the LoF observed to
expected upper bound fraction (LOEUF) across a population, where
lower scores correspond to more constraint (greater intolerance to
LoF) in the gene23. Surprisingly, we find that the distribution of LOEUF
scores is lower for NVE-containing genes than genes which lack NVEs
(Fig. 3A, significant by KS test: p-value 10−212), even after adjusting for
gene expression (Fig. 3B, Supp. Fig. 6G). We observed a modest
negative correlation (Spearman= –0.13) between LOEUF and the “NVE
rate” of a gene – the number of NVEs divided by the number of
annotated exons (Supplementary Fig. 6F). Furthermore, the distribu-
tion of EFs was shifted toward lower values inmore constrained genes
(Fig. 3C). Such a pattern could occur if NVEs arise more commonly in
more constrained genes. This could bedue to amore favorable nuclear
environment for splicing in subcompartments such as nuclear
speckles24, which have been shown to be involved in coupling splicing
with actively transcribed genes, which is common for unconstrained
genes23. Though constrainedgenesmaybemore likely tobe spliced for
this reason, these genes often experience selection favoring lower ψ
values, driving EFs lower. NVEs in less-constrained genes tend to have
higher EFs, and might more often become canonical alternative exons
over evolutionary time. This suggests the alternative possibility that
NVEs can arise at certain frequencies in all genes, but their EFs may
evolve more rapidly toward 1 (canonical alternative exon) or 0 (ψ
below threshold in all people)–neither ofwhichare consideredNVEs –
in less-constrained genes due to relaxed selection, making NVEs more
evolutionarily transient in this subset of genes. Distinguishing among
these possibilities would be difficult with current data, but might be
enabled by comparing NVEs across human populations to help assess
their evolutionary ages, onceGTEx-style RNA-seqdata are generated in
other populations. Genes containing canonical alternative exons –

which are spliced in all or virtually all people – showed little bias in
LOEUF score relative to all genes (Supplementary Fig. 6H).

NVEs aid interpretation of GWAS variants
To explore whether NVEs could improve disease interpretation, we
focused on variants that occur in the extended splice site motifs of
NVEs not present in GENCODE comprehensive reference annota-
tions. We analyzed the results of statistical fine-mapping of GWAS
for around 1300 traits across three global biobanks: UK BioBank,
FinnGen, and Biobank Japan (UKBB, FG, BBJ, respectively)25. Statis-
tical fine-mapping yields a posterior inclusion probability (PIP) for
each variant, which reflects the probability that the variant causally
drives the association at the locus and enables enrichment analyses
of fine-grained annotations, such as NVEs, that are not powered for
heritability-based analyses.

The observed enrichments of causal variants in NVEs are above
the level of synonymous variants, particularly at high PIP values, but
below those of missense variants (Fig. 3D). To ensure that the enrich-
mentswere notdrivenby existing annotations, the enrichments shown
excludeGWASvariants already annotated asgenetic LoF, splice region,

or missense variants. Performing enrichment analyses separately for
each biobank reduced power but yielded similar trends (Supplemen-
tary Fig. 7C). While synonymous variants are typically null or nearly
null in analyses of ultra-rare variants26, some synonymous variants
have been identified as high-confidence causal variants in cross-
biobank fine-mapping25, and may cause changes in splicing, mRNA
stability or translation, for example, so the enrichment for synon-
ymous variants in high-PIP bins is unsurprising.

We next explored the utility of unannotated NVEs for GWAS
interpretation. One example is a pleiotropic synonymous variant
in ASGR1 (rs55714927, MAF 15%) that is both an sQTL and an
expression quantitative trait locus (eQTL) and colocalizes with an
NVE splice site with EF between 0.07 and 0.60 in different tissues.
This common ASGR1 variant is known to increase the inclusion of
this unannotated NVE, and this exon contributes to phenotypes
such as cholesterol and heart function25,27,28. We found that, in
many cases, the alternate allele was associated with increased
splicing of the NVE to between 3 and 10%, while individuals with
the reference allele had Ψ values near 0% (Supplementary Fig. 7
B). We observed a negative correlation between the Ψ of this NVE
and the expression of ASGR1 (Supplementary Fig. 7B, inset),
consistent with the potential of this exon to trigger NMD. This
example illustrates a molecular mechanism for a synonymous
variant and demonstrates that even NVEs with low Ψ and mod-
erate EF values can be relevant to GWAS loci.

Low observed Ψ NVEs can have outsized impacts on gene
expression
To explore the effects of NVEs on coding potential and expression
more broadly, we built a custompipeline to identify cdsNVEs that have
NMD potential, including causing a frameshift or introducing a stop
codon (Methods), which we refer to as nmdNVEs. We find that 55% of
all NVEs and 68% of cdsNVEs are nmdNVEs. nmdNVEs tend to have Ψ
values that are lower on average than cdsNVEs that lack NMDpotential
(Supplementary Fig. 7C).

We considered whether splicing of nmdNVEs tends to reduce
gene expression. In order for an NVE to impact gene expression, it
must be spliced in to a sufficient extent to meaningfully reduce the
level of the cognate isoform. Degradation of the NVE-containing iso-
form by NMD is expected to reduce both theΨ value that is observed
in RNA-seq data (which reflects levels ofmaturemRNAs) for nmdNVEs,
as well as the expression level (Fig. 4A). Because of the impact of NMD,
even a relatively modest observed difference in cytoplasmic PSI value
can be predictive of a fairly large change in gene expression. In the
hypothetical example illustrated, destabilization of the NMD isoform
by 5-fold relative to the canonical isoform29 implies a nuclear PSI of 62%
and a 2-fold reduction in gene expression associated with an NMD-
triggering exon whose observed PSI is just 25%. Under the same
assumptions, a frame-disrupting exon with an observed PSI of 10%
would reduce expression by ~ 29%.

Sufficient read depth is therefore required to both observe any
associated change in expression and to detect the splicing of the
NVE. Because of these considerations, we chose to explore this
question using a subset of NVEs that have large variability in splicing,
occur in genes with variable expression, and have sufficient read
depth for both types of variation to be readily observed. Specifically,
we considered NVEalt ss whose splicing is significantly associated with
a genetic variant that impacts both splicing and gene expression, i.e.,
that is both an sQTL and an eQTL in GTEx. In this set, we observed a
negative relationship between inferred NVE sQTL effect size and
(directional) eQTL effect size for nmdNVEs, with a consistent rela-
tionship observed across nearly all EF thresholds (Fig. 4B). This
observation supports the idea that, even at low observed Ψ values,
nmdNVEs often reduce expression by shifting the mRNA output of a
gene from productive, stable mRNAs to unproductive/unstable

Article https://doi.org/10.1038/s41467-025-65476-7

Nature Communications |        (2025) 16:11345 5

www.nature.com/naturecommunications


mRNAs. By contrast, no significant relationship between sQTL and
eQTL effect size/direction was observed for cdsNVEs that are not
nmdNVEs. Such NVEs presumably yield unique protein isoforms,
though we did not explore this direction further here.

Because many NVEs occur in annotated introns, they may create
non-functionalmRNAandprotein isoforms (whether they triggerNMD
or not), which might often be mildly deleterious, particularly in con-
strained genes. We observed that nmdNVEs tend to have lower Ψ
values in constrained genes than in unconstrained genes (Fig. 4C),
likely reflecting selection against large perturbations of gene expres-
sion in low-LOEUF genes. Notably, for NVEs in 5’UTRs, higherΨ values
were associated with increased gene expression (Supp. Fig. 7D). NVEs

in this gene region may positively impact gene expression via exon-
mediated activation of transcription starts (EMATS)30. Together, the
observations above indicate that the splicing of NVEs can be driven by
genetic variants such as SNPs, that NVEs may impact gene expression
negatively or positively, and that, in general, selection may favor
reading frame-preserving NVEs and NVEs that exert smaller effects on
gene expression over other NVEs.

Common genetic variants impact NVEs when located near
splice sites
Splicing can be impacted by both genetic and environmental
factors11,31. To understand the basis of inter-individual differences

Fig. 3 | NVEs tend to impact more mutationally constrained genes and provide
additional functional interpretations inGWAS.ADistributionof LOEUF scores of
genes with NVEs (purple) and genes that do not have any NVEs (black), in bins of
width 0.1. Significant by the KS test p-value 10−212.B Percentage of geneswith NVEs in
constrained andunconstrained genes,matchedongene expression, inWhole Blood.
For each gene, the median TPM across all individuals was taken to assess average
expression in blood. Genes were separated as either being constrained (bottom
quintile of LOEUF scores in blood) or unconstrained (top quintile of LOEUF scores in
blood). Constrained genes were then filtered for those with median expression of
over 1 TPM, andmatched with unconstrained genes with similar expression, n = 178.
Significant by proportion normal two-sided z-test in scipy, p = 10^−11. C The number

of genes stratifiedbyNVEEFbin, represented in eachLOEUFquintile,with lowvalues
indicating more constraint. Genes that contain low EF NVEs are enriched among the
most constrained genes,whereas geneswith high EFNVEs are largely unconstrained.
Here, the EF represents theNVE that ismost frequent across the gene.DGWAS from
three global biobanks (UKBB, FG release 9, and BBJ) were pooled together. We
included unannotated canonically alternative exons found in the NVE discovery
process to boost power. For the unannotated splice site set, pLOF, annotated splice
region, nonsense, and missense variants were filtered out of this set to ensure
that enrichment was not driven by well-explained variants. The number of variants
being categorizedaswithin anunannotated splice site is shownasnvalues. Estimates
shown as mean +/−95% CIs of a binomial estimate given n.
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underlying differences in NVE splicing, we asked whether common
genetic variants or other factors were associated with the presence of
NVEs. We find that 60% of NVEs are associated with at least one sQTL
(defined as a variant within a credible set in the fine-mapping dataset)
in their top EF tissue, suggesting thatmany NVEs aremodulated by cis-
acting genetic variants. This proportion varied onlymodestly across EF
bins (Fig. 5A).

This pattern is consistent with prior work showing that splicing
variation in GTEx is mostly driven by cis genetic effects32. The

identification of causal variants that impact splicing remains
challenging38. sQTLs directly associate common genetic variants with
splicing measurements, but because of pervasive linkage dis-
equilibrium, they do not directly identify which variant causally
impacts splicing, and so do not inform about the mechanism. Fine-
mapped sQTLs are a gold standard, but because of limited statistical
power, sets of fine-mapped sQTLs are far from complete. For rare
variants (MAF < 1%), sQTLs and fine-mapped sQTLs are even less
powered. We find that high-confidence (90% PIP or above) sQTL
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variants were typically quite proximal to the splice site, with 50%
occurring within 50bp of the nearest splice site (Supplementary
Fig. 8A). Standard sQTL studies perform variant associations across
1MB around the splice site33. These observations suggest that the
power to detect causal variants is decreased by assessing an unne-
cessarily large range. These considerations motivate the potential of
predicting splice-affecting variants using different sources of infor-
mation, such as distance to the splice site, and integrating it into a
variant prediction model to assess the relative importance of each
feature on predicting a variant that impacts splicing.

Using in-sample RNA sequencing improves common variant
interpretation for splicing
Several published methods aim to integrate primary sequence infor-
mation to predict a variant’s impact on splicing, including SpliceAI16,
Pangolin34, MMSplice35, and AbSplice17, among others. SpliceAI, a deep
neural model trained on human GENCODE annotations, is one of the
most widely-used tools for prediction of splice-impacting variants
based on primary sequence16. However, this method, and methods
built on it, such as AbSplice17, have been less successful in predicting
effects of common variants, which often have low effect sizes relative
to rare variants. We therefore attempted to improve the identification
of more common splice-affecting variants.

In the prediction of common splice-affecting variants, we con-
sidered two distinct situations: the case in which in-sample RNA-seq
data is available, and the casewhere only reference transcriptome data
are available. To this end, we developed the Splice Modifier Score
(SMS), analogous to the Expression Modifier Score (EMS) for eQTLs36,
which uses a regression model to estimate the probability that a var-
iant modifies splicing. We trained SMS using fine-mapped sQTL data37,
using very high probability sQTLs (PIP of 90% or above) as positives,
and low-probability sQTLs (0.2% or below to improve class balance) as
negatives. We consider the top association of a variant that is within
5 kb of a given splicing phenotype in a tissue (a tiny fraction of the
original 1MBwindow), andonly consider skippedexons andalternative
splice sites in protein-coding genes.

To train the model, we annotated genetic variants with a set of
molecular features including distance to nearest splice site, known
exonic splicing enhancer38 and silencer39 motifs, splicing-associated
histone marks40, and binding sites of RNA-binding proteins based on
eCLIP data41. We trained SMS on 80% of sQTLs (randomly selected)
and used the remaining data for testing, yielding stable performance
across many trials, described in the Supplementary Fig. 8B, C, with
model coefficients in Supplementary Fig. 9. When given access only
to reference gene annotations, where the distance feature uses
GENCODE splice sites (SMS-GENCODE), the method’s performance
improves moderately over SpliceAI16, Pangolin34, and Adjusted Motif
(AM) architecture models42 (Fig. 5B). When using a distance feature
based on GTEx splice sites, including those belonging to NVEs, our

“SMS-full” model achieves an area under the precision recall curve
(AUPRC) of 0.52, substantially better than SpliceAI or SMS-GENCODE
(Fig. 5B). When training on the top splicing signal (top PIP), i.e., the
strongest splicing association for each unique variant, we obtained
qualitatively similar results and the same ranking of algorithms
(AUC = 0.68 for full SMS model, 0.38 for SMS with GENCODE only,
0.26 for spliceAI).

Examining the performance of models using different combina-
tions of features, we observed that distance to nearest GENCODE
splice site contributes to precision, analogous to studies of eQTLs
where distance to the reference transcription start site (TSS) is highly
predictive43, but thatuseof additional information related to splicing is
needed to achieve a high AUPRC (Supplementary Fig. 8D). Together,
these observations support that the improved accuracy of SMS-full
over the SMS-GENCODE model is driven by inclusion of unannotated
splice junctions, such as those of NVEs, and demonstrates the impor-
tance of in-sample RNA sequencing to better predict the genetic basis
of splicing variation. Overall, we found that ~ 30% of splicing pheno-
types associated with sQTLs are NVEs. We next compared predictions
to the best-performing non-SMS model on our data, which was spli-
ceAI. Comparing SMS-full to SpliceAI predictions for individual var-
iants, we observed substantially different scores for the two methods
in many cases (Fig. 5C), suggesting the potential complementarity of
these models (Supplementary Fig. 8E). One explanation for the large
divergence between predictions could be that SpliceAI performs best
on rare variants that induce large changes in splicing16, while SMS-full is
trained on data including more subtly spliced NVEs, potentially
improving its ability to identify common variants which tend to exert
smaller effects.

An example of a variant with low SpliceAI probability (0.25) but
high probability with SMS (0.88) is rs78444298, located in the EDEM3
gene with MAF 1.5%. This variant is associated with schizophrenia, as
well as metabolic and blood phenotypes44–46. Molecular studies of
this variant have focused on EDEM3 as a LoF phenotype47. Though
this is a predicted missense variant causing a proline to serine
change, whether LOF occurs at the level of RNA abundance or pro-
tein function remains unclear. The variant is associated with an
increase in splicing of a low EF nmdNVE in various tissues, such as
Brain Cerebellar Hemisphere, and is associated with decreased gene
expression in several of those tissues (Fig. 5D). SMS indicates that the
variant is in a region of potential binding by several RBPs (HNRNPK,
PCBP1, SRSF5, TAF15) near the 3SS of the nmdNVE. The variant alters
predicted affinity for two of these RBPs (HNRNPK, PCBP1) by 5-fold
and 4-fold, respectively, highlighting a potential molecular
mechanism for this variant. The cognate exon and nmdNVE have
moderate to high 3SSmotif scores (6.7 and 10.4 bits, respectively). In
summary, the SMS model and NVE information provide molecular
explanations for this variant. SMS scores for all GTEx variants are
provided (Supplementary Table 3).

Fig. 4 | Evidenceofgene expressionchanges ofNVEswithNMD-potential across
the EF spectrum. A Left: NMD-causing NVE (purple, with red bar for stop codon) is
not spliced into transcripts, will have no impact on expression. Right: Inclusion of
the nmdNVE in⅝ths of transcripts in the nucleus implied by the Ψ of 25% in the
cytoplasm, assuming stability of nmdNVE isoforms is reduced 5-fold by NMD,
resulting in a 2-fold reduction in gene expression. In general, if NMD reduces the
stability of nmdNVE isoformsby k-foldof annmdNVEwith cytoplasmicΨ value of x,
gene expression will be reduced by (k–1)x/(1 + (k–1)x). B Effect size (slope of
regression ofQTL) shown for genetic variants nominally significant sQTLs forNVEs,
and also significant eQTLs in the same gene in same tissue. Genetic variants filtered
out if in complex loci (i.e., were eQTLs in other genes in the tissue). Association
between variant and splicing event is with cognate splicing event, and a decrease in
splicing would imply an increase in the overall NVE:cognate ratio (multiplied effect
size by – 1). cdsNVEs further separated into those with NMD potential (purple) and

without (black). Shown are mean and range (2%–98%) of 1000 bootstrapped
Pearson correlations between sQTL and eQTL effect sizes, performed at increasing
EF thresholds. C AverageΨ across individuals for a given NVE estimated in a tissue.
Showing any EF NVE that causes NMD, further separated depending on if NVE was
unconstrained (top 10% percentile of LOEUF) or constrained (bottom 10% of per-
centile LOEUF) gene. ** Indicates significant KS test (10−33) between the two groups.
D NVEs filtered into whether they were coding (CDS) and have potential to cause
NMD (w/ potential for NMD, orange) or no potential (CDS no NMD, gray) or non-
translated regions of the gene (UTR, green). Spearman correlations performed on
1000 sampled NVE per gene region (without replacement), to control for the fact
that total coding region (CDS) NVEs are larger in number than total untranslated
region (UTR) NVEs. The process was repeated for 100 bootstraps, and the range of
estimates are plotted as box plots. Shown is the averagep-value for the correlations
performed in bootstrapping (and the range from min to max).
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Discussion
To better understand the impact of inter-individual variation in gene
and isoform expression, we defined and identified over 50,000 NVEs
and characterized their impacts. Many variants identified in GWAS
studies lie within noncoding regions, some of which impact pre-mRNA
splicing. Here, we found that NVEs tend to occur in more constrained
genes and that NVEs enhance our ability to interpret GWAS variants,

especially in the UK BioBank. As RNA-seq data becomemore available
from GWAS participants, in-sample splicing analysis and NVE identifi-
cation may further improve variant interpretation.

NVEs have the potential to affect gene function or expression,
commonly occurring in coding exons, their intervening introns or
in 5’ UTRs, and less commonly in 3’ UTRs. NVEs that occurred at
higher frequency in the population were particularly enriched in 5’
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UTRs, paralleling the high frequency of evolutionarily more recent
exons observed in this gene region8. NVEs with lower EFs occurred
largely in coding regions, particularly in constrained genes, and
typically had lower Ψ values. Natural selection may more strongly
limit which NVEs can rise to higher PSI and EF values in coding
regions, because of constraints on the expression levels of cano-
nical isoforms in constrained genes. One limitation of our current
study is the modest number of available eQTL- and sQTL-
associated NVEs with NMD potential (Fig. 4). These NVEs, whose
splicing can impact gene expression by producing nonfunctional
isoforms, could be targeted with splice-switching antisense oligo-
nucleotides (ASOs) to therapeutically increase (or decrease) pro-
tein abundance48,49. Inhibiting the splicing of an NVE would only be
useful in people that splice the NVE, of course, but activating the
splicing of an NVE via an ASO might be feasible even in individuals
where the NVE is not normally included.

Recent efforts have begun tomore comprehensively describe the
impacts of inter-individual variationon splicing11,32,50. In principle, NVEs
might arise from cis-actingmutations that create or disrupt splice sites
or splicing regulatory elements, from trans-acting mutations that
impact the activity of splicing factors, or from various physiological or
lifestyle factors such as sex, age, diet, environmental exposures, etc. In
addition, the proportion of cell types present in a tissue samplemight
vary between individuals, for physiological or technical reasons,
potentially contributing to NVE detection. Here, we find strong evi-
dence that a majority of NVEs are impacted by cis-genetic variation
(Fig. 5A). Trans-acting variation is also likely to be important but is
more difficult to detect. Sex-specific differences in splicing are also
known51,52, and widespread splicing differences occur in individuals
with certain disorders, including myotonic dystrophy and autism
spectrum disorders3,53.

All humans are thought to express similar sets of genes, in similar
tissue-specific patterns7. However, we found here that individuals
commonly differ in the use of specific exons, with each person
expressing several hundred NVEs in each well-sampled tissue. Com-
paring twounrelated individuals, just over half of NVEs are expected to
be shared, implying that unrelated people differ in the presence of
hundreds of different mRNA isoforms in each of their tissues. Our
findings using SMS emphasize the importance of using diverse and
population-relevant RNA-seq data for the inference of genetic varia-
tion that modulates splicing. The abundance of lower-EF exons and
their enrichment in constrained genes, which aremore associatedwith
disease, emphasizes the value of increasing population sample sizes
rather than simply increasing read depth for increased detection of
disease-relevant splicing.

Methods
Ethics statement
Noprimarydatawere generated for this study. Person-relateddatawere
obtained through authorized access from primary data controllers.

Statistics and reproducibility
No statistical method was used to predetermine sample size. We did
not use any study design that requires randomization or blinding. In
the GTEx data, no samples were excluded.

Datasets
GTEx release v8. From the GTEx download data portal, we down-
loaded splicing “phenotype” files, which were originally used as inputs
of the original sQTL study in GTEx (v8p hg38).We accessed it using the
GTEx data browser, and you can also use the requester pay google
cloud bucket (gs://gtex-resources/GTEx_Analysis_v8_QTLs). Protected
data, such as genotypes andmetadata,were accessed via dbGaP (study
accession: phs000424.v8.p2).

GTEx fine-mapped sQTLs and eQTLs. Baberia et al. fine-mapped
sQTLs and eQTLS in GTEx using the DAP-G fine-mapping method. We
accessed this dataset using their Zenodo link. Note that fine-mapping
was performed only on European ancestry samples from GTEx.

gnomAD. We accessed LOEUF scores from gnomAD v4.0 using the
gnomAD data browser (linked here), which computed the LOEUF
across nearly all genes in the genome.

GENCODE exon annotations. We accessed comprehensive transcript
annotations from GENCODE v44 using their data browser, for use as
our reference set of exons.

SpliceAI scores. SpliceAI scores have been computed across the
genome (all possible SNP mutations). To compare the differences in
SMS and spliceAI scores, we used a dataset that released all variants
with SpliceAI scores above a nominal threshold ( > 0.1), which are
available in the Illumina data browser (link: https://basespace.illumina.
com/s/otSPW8hnhaZR). All other variants were set to 0.

Fine-mapped BioBank (GWAS) data
UKBB (96 traits): https://github.com/mkanai/finemapping-

insights, including ASGR1 exon 4
Biobank Japan: https://pheweb.jp/downloads
FinnGen: https://www.finngen.fi/en/researchers/data_available

Data preprocessing
GTEx LeafCutter phenotypes. LeafCutter intron clusters were
required to include only 2 or 3 introns, so we could classify them as
alternative 3’ or 5’ splice sites or skipped exons, respectively. We
mapped to genes and strands by scoring every splice site in the cluster,
and picking the strand that had MaxEnt scores > 0 for all splice sites,
excluding any clusters that did not score above zero across all splice
sites on either strand as potential artefacts. Only protein-coding genes
were included. Lastly, exons were required to be ≤ 500 bp in length
and alternative splice sites were required to be within 500 bp of
each other.

Fig. 5 | Splice modifier score (SMS) provides insight into variant induced spli-
cing andhelps interpretGWAS.A FractionofNVEs in each EF bin explained via ≥ 1
cis sQTL in GTEx. Gray dot indicates the average across all NVEs. B Precision recall
curves (PRC) of full logistic regressionmodel trained onGTEx distances, PRCof full
logistic regression trained on GENCODE distances only, and PRC of logistic
regression trained only on SpliceAI score are shown, as well as Pangolin, and the
maximum SAM-FM and SAM-AM scores. C Comparison of SpliceAI and SMS scor-
ing. SMS scored using full model parameters and distance to GTEx splice sites
across all GTEx variants. Variants with SpliceAI that scored > 0 were selected, and
relative SMS and SpliceAI scores were compared in a scatter and kernel density
plot. D Missense variant in EDEM3 protein (rs78444298) associated with GWAS
studies that may cause an NMD-inducing NVE in GTEx. Individuals with colon

sigmoid tissue samples (n = 318) sorted by their estimated Ψ values for this NVE.
Mean posterior estimates ofΨ are plotted (in purple if the estimate is at least 5%Ψ),
with error bars showing one standard deviation onΨ. Below are bar plots of exon
junction (EJ) reads for both NVE and cognate, and overall observed mRNA levels
(TPM). Inset: Details on rs78444298, which induces a proline to serine mutation
(shown in diagram) and occurs near a 3’ splice site. NMD-inducing mechanism
shown: low EF NVE boundaries from an alternative 3’ SS with a maxent score of 10
(purple). Two of four RNA binding sites predicted to bind to the region (from
oRNAment database) are highlighted, showing twoRNAbindingproteinswhere the
variant substantially reduces affinity. Probabilities of variants causing splicing
changes using SpliceAI and SMS predictors shown at right.
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Generating estimates of Ψ values of NVEs
Many NVEs have fairly low inclusion levels, so to estimate their usage
accurately, we built a model to assess their abundance in an RNA-
sequencing sample. We considered a potential NVE in relation to a
more frequently observed “cognate” junction in transcripts from the
same gene.

PSI (Ψ) estimates the fraction of a gene’s transcripts that contain
the exon or splice site of interest and is a widely used statistic to
quantify splicing. It can be estimated from any RNA-seq dataset with
sufficient read coverage of the alternative region:

ψNVE =
EJ readsNVE

EJ readsNVE + EJ readscognate
ð1Þ

Weconsider the exonor splice junctionwith fewer reads across all
individuals a candidate NVE, and the exon or splice junction withmore
reads as the cognate.

Conditional onΨ, the number of NVE reads in an RNA-seq dataset
can be modeled as a binomial distribution, as defined by LeafCutter
splicing33 clusters:

NVE readsjψNVE � Binomial EJ readsNVE + EJ readscognate,ΨNVE

� �
ð2Þ

Note that we have to frame the exon junction reads slightly dif-
ferently in alternative splice sites as compared to skipped exons to
model the NVE (Supp. Fig. 1A).

Mixture of Betas binomial model
Partial pooling involves using information across samples to estimate
effect sizes of individual samples by fitting a population distribution to
the observed data and letting that inform effect size estimates for
individuals54,55.

For proof of concept, the NVE population distribution can be
modeled with a single beta distribution with parameters α and β:

ψNVE � Beta α,βð Þ ð3Þ

Where α can be described as the pseudocount on the splicing of the
NVE splicing event, and β can be described as the pseudocount on the
splicing of the cognate splicing event, respectively. In other words, in
the absence of read count data, α and β provide an initial estimate of
the splicing of the NVE.

A single beta distribution can capture several common situations
(but not all – see Supplementary Note). One example of a distribution
that a single beta cannot handle is a trimodal distribution, whichwould
be expected for anNVEwhose splicingdiffers between three subsets of
the population. Because trimodal distributions are interesting biolo-
gically, potentially representing cases where a single variant (that may
be absent or present in heterozygous or homozygous form) drives the
inclusion of an NVE, we decided to fit a three-component mixture of
betas model to all exons in the dataset. We compare this result to a
single beta model in the Supplementary Note Sections E-F, and find
that the summary statistic, EF, is fairly robust in both three- and one-
component models.

For a three-component beta distribution, with parameters α and
β, the NVE population distribution can be modeled with nine para-
meters:

ψNVE �
X3
i = 1

γiBeta αi,βi

� � ð4Þ

Where γ i are weights that represent the fraction of the distribution
coming from each individual beta distribution, requiring that all γ i ≥0,

and that they sum to 1. Note that the triple-beta distribution canmodel
a two-beta or single beta distribution by setting one or two of the γ
parameters to zero. We can then estimate the population distribution
of a given tissue sample:

PDFNVE =
X3
i = 1

γi � PDF Beta αi,βi

� �� � ð5Þ

The task is to predict the population distribution of a splicing
event in a given tissue sample. We employ maximum likelihood esti-
mation with the expectationmaximization algorithm. The algorithm is
initialized with uniform weights, α = (1,2,3), and β = (3,2,1) as an
unbiased starting point able to capture symmetric and asymmetric
distributions. It then iteratively performs the E-step to analytically find
optimal weights γ, and the M-step to determine the α, β using the L-
BFGS-B optimization algorithm. The method is represented graphi-
cally in Fig. 1A.
Alternative splice site NVEs

We searched for the optimal α, β, and γ parameters that best fit
the data, using the expectation maximization framework (see Supple-
mentary Note Sections B-C).

Skipped exon NVEs
Skipped exons are represented by three intron clusters: two introns
supporting the inclusion of the exon, and one longer intron excluding
the exon. We include events where both inclusion introns have num-
bers of reads that are not drastically different (see Supplementary
Fig. 11), keeping one of the two inclusion introns to simplify the ana-
lysis.We then followed the sameapproachas for alternative splice sites
to find the optimal parameters.

Calculation of exon frequency (EF) at a given Ψ threshold
We estimated the Ψ of all NVEs of length ≤500 (for skipped exons) or
inter-splice site distance ≤500 bp (see Supp. Fig. 16), as this size cap-
tures the vastmajority ( >99%) of known internal exons and alternative
splice sites in thehuman transcriptome. After obtaining thepopulation
parameters for all splicing events, we calculated the EF for a tissue at
particular Ψ thresholds by using the population distribution of junc-
tion reads across individuals in the tissue. For eachof four cutoff values
c = 1%, 5%, 10%, or 20%, we computed EF as the percentage of indivi-
duals with Ψ ≥ c from the CDF of the population distribution that was
generated from the fitted model, and provide this value in a summary
table (Supplementary Table 1). For a tissue with n individuals (almost
always > 100), we included events where the EF 5%was between 1% and
99%, excluding poorly spliced exons with EF below 1% and “canonical
alternative” exons with EF > 99%.

Following ref. 56, to obtain an estimated Ψ value for an NVE in a
single individual, we computed the mean posterior onΨ and standard
deviation of the estimate in each individual in the tissue by using the α
and β parameters estimated from the 3-beta mixture binomial fit
described above. To obtain a posterior mean onΨ, a posterior onΨ is
computed using component priors is first estimated, and updated
weights using the posterior estimates of α and β parameters are esti-
mated. The weighted sum of these parameters for all components is
the posterior mean on Ψ. That is, let:

x = EJNVE

n= EJNVE + EJcognate

αi = EJNVE +αi
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βi = EJcognate +βi

And we use the following formula to find the updated weight, Cj for
each component of the mixture:

Ci =
Z 1

0

Γ ai +bi

� �
Γ ai

� �
Γ bi

� � n
x

� �
θai + x�1 1� θð Þbi +n�x�1d ð7Þ

Then, we have

Ψ dposterior

 !
i

=
ai

ai + bi

Ψ dposterior

 !
nve

=
1P3

i = 1γiCi

X3
i = 1

Ciγi
ai

ai +bi
ð8Þ

The variance of each of the components is given by

σ2
i =

aibi

ai + bi

� �2 ai +bi + 1
� � ð9Þ

Then, we use the law of total variance to get

Var Ψposterior

� �
nve

� �
=

1P3
i = 1γiCi

X3
i = 1

Ciγi

σ2
i + Ψ dposterior

 !
i

� Ψ dposterior

 !
nve

 !2
24 35

ð10Þ
Standard deviations were calculated as the square root of the

variances estimated in this manner.

Estimation of total NVEs per individual and number of shared
NVEs between individuals
Because EF values estimated from better-sampled tissues are likely
more accurate than those estimated from lowly-sampled tissues, we
calculated top EF values using only the top 10 most sampled tissues
fromGTEx in estimating the expected number of NVEs expressed in an
individual. In this calculation, and the estimation of the number of
NVEs shared between unrelated individuals, we assumed that NVEs
occur independently of each other with probability estimated by their
EF. Becauseother NVEs occur exclusively in tissues outside of these 10,
these estimates are likely quite conservative. Overall, 23% of the data is
included in the top 10 tissues. These tissues are:Whole Blood, Thyroid,
Adipose Subcutaneous, Skin (Sun Exposed Lower leg), Nerve (Tibial),
Artery (Tibial), Skin (Not Sun Exposed Suprapubic), Esophagus
Mucosa, Lung, and Cells (Cultured fibroblasts).

Variant analyses
Fine-mapped sQTLs. As above, we filtered for intron clusters con-
taining two introns (with one shared endpoint), which represent
alternative splice sites, and clusters containing three introns in a pat-
tern consistent with presence of a skipped exon. In these cases, any
sQTL (i.e., any variant present in the fine-mapping dataset) associated
with the intron cluster is considered to be associated with the NVE.

Top sQTL PIP file
We created pan-tissue clusters bymerging the locations of each intron
in a cluster, assigning pan-tissue cluster IDs. We then sorted by PIP in
descending order, and dropped duplicates based on pan-tissue cluster
IDs and variant pairs, keeping the highest PIP value. This ensured that

we were considering the top variant-phenotype pair for all splicing
events. We performed the analogous analysis with eQTLs, filtering by
top gene instead of cluster ID. To compute the percentage of NVEs
with cis effects, we constructed the sQTL high-confidence set: sQTLs
that had a fine-mapped PIP > 90%, and further filtered for variants
within 5 kb of the splicing site to obtain, sincemost splicing regulation
is thought to occur within a moderate distance from the splice site57.

SMS algorithm
We use fine-mapped GTEx sQTLs and filters for LeafCutter splicing
phenotypes that can be categorized as exon skipping or alternative 5’
or 3’ splice sites, as above (see partial pooling section). For training, we
separated out high-PIP sQTLs (90% or above) as a positive class and
low-PIP sQTLs (0.2% or below) as a negative class. The sample size is 1.5
million sQTLs across all PIPs, and 250,000 sQTLs after separating out
high-PIP and low-PIP sQTLs for training/testing, of which about 4000
are high-PIP.

For features to train the model, we used PhyloP conservation,
both 5SS and 3SS MaxEnt splice site scores (by scanning around the
variant and looking for the maximum score of each splice site type),
change in MaxEnt score due to variant, location within an exonic
splicing enhancer38 or exonic splicing silencer39 motif, splicing-
associated histone marks40, location within the binding site of an
RNA-binding protein, based either on eCLIP peak data41, or based on a
mapping of in vitro-derived bindingmotifs in the transcriptome58, and
the log of the distance to the nearest splice site.

We trained a logistic regression to predict feature weights using
an annotated featurematrixM.We found that featureweights changed
depending on where the variant was located within the gene. For
example, exonic splicing enhancers have stronger weights in anno-
tated exons than in introns. The gene annotations considered are
splice sites (including either GENCODE splice sites or GTEx SS in SMS-
full), GENCODE annotated exon, orGENCODEannotated intron. So, we
also include a gene annotation vector A. The vector contains the
location of the exon within the gene. For a given variant i,

log
pi

1� pi

� �
=β0 + MAð Þ ð11Þ

where pi is the probability that the variant i modifies the splicing out-
come. The gene annotation vector contains the following labels: not
splice site, in any exon, both GTEx and reference splice region, just
GTEx splice region, just reference splice region, reference exon, and
reference intron.

Any features related to splice site strength, such as maxent score,
were assigned separate weights based on being outside or inside the
splice site (“not splice site” gene annotation). Any features using dis-
tance based on being outside or inside an exon (“in any exon” gene
annotation). Feature weights across different gene annotations are
shown for SMS-full in Supplementary Fig. 9C, D.

We trained this logistic regression model on 80% of randomly
selected sQTLs to determine the relative importance of each feature in
predicting causal sQTL variants. We trained on both the fullmodel and
on subsets of the features, and computed statistics such as AUPRC of
these sets of models using held-out test sets, which is reported in the
text. The GitHub repository includes all annotations for GTEx variants
and a tutorial for rerunning many combinations of features for
this model.

Comparison of other methods with SMS
To compare SMS with spliceAI, we also trained a logistic regression
model using SpliceAI scores downloaded from basespace. (Note that
onbasespace, all SpliceAI scores below0.1 are listed as 0.) For Pangolin
models, the model range included the entire context window, and for
SAM models we include 5400 nt of context around each location. For
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SAM-FMand -AMmodelswe took 20%of all sQTLs in the datasetwhich
had PIP values of <0.2% or >90%, then located them in the hg38 gen-
ome.We then collected a context around themofmodel contextwidth
+ 201. We then ran the models on these sequences (both before and
after the mutation), keeping the 201 middle predictions (those where
themodels had the full context).We then compute the largest absolute
value of the difference inprediction in this range,which is the reported
result.

Distribution of loss-of-function intolerant genes
The loss-of-function observed/expected upper bound fraction
(LOEUF) scores, which was first described in ref. 23, were obtained
from the gnomAD browser. We used the most recent release (v4).

Enrichment of GWAS variants in splice sites across biobanks
First, associations of variants across all traits were concatenated into a
file of trait-variant pairs.We filtered for single variant-trait pairs, taking
the top PIP across all traits (so as to not repeat variants that had high
PIP associations across many traits). Then for each variant, we com-
puted the maximum PIP across traits in BBJ, FinnGen, and UKBB, and
pooled these variants together. We estimated functional enrichment
for each category as a relative risk (RR, i.e., a ratio of proportion of
variants) between being in an annotation and fine-mapped. That is,
RR = (proportion of variants in annotation with PIP within a specific
bin) / (proportion of variants in annotation with PIP ≤0.01). We used
PIP bins with the following boundaries: [0, 0.01, 0.01, 0.25, 0.5, 0.75,
1.0], where all of the intermediate values are open brackets.

To obtain enrichments of GWAS variants for unannotated GTEx
splice sites, we filtered out any splice sites in GENCODE, and variants in
pLoF, splice region, or missense variants. Enrichment is calculated
using a fraction of variants observed in the lowest PIP bin (see range on
plot) relative to the bin in question. Enrichment for missense and
synonymous changeswerealsocomputed, keepingpLoF andmissense
variants in that set. We provide the locations of all unannotated GTEx
splice site locations in Supplementary Data 4. Because unannotated
GTEx splice sites comprise a very small fraction of the genome and
tend to occur close to existing coding regions, we did not use linkage
disequilibrium score regression (LDSC)59 to assess whether unan-
notated GTEx contributed to SNP-heritability of traits.

Detection of unannotated splice sites impacting NMD
We devised a script that called unannotated splice sites with NMD
potential in GTEx LeafCutter splicing phenotypes. The script: (1)
intersects LeafCutter introns with annotated UTRs, excluding those
that overlap; (2) maps remaining LeafCutter introns to corre-
sponding exons in annotated coding regions; (3) Assesses putative
NMD potential, if either (a) the NVE alters the frame of an annotated
CDS, e.g., adding an exon whose length is not a multiple of three, or
(b) the NVE contains an in-frame stop codon; (4) Excludes any NVE
that impacts the last exon within the CDS; and (5) Excludes any NVE
that represents the second-to-last exon of a CDS whose only stop
codon(s) are within 50 bp from the NVE 5’SS. This script is intended
to cover common NMD-triggering splicing changes, but does not
capture some special cases. For example, if a pair of adjacent NVEs in
the same gene each individually preserve frame they will be con-
sidered frame-preserving, even if when spliced together they gen-
erate a stop codon at the exon-exon junction. Conversely, if two
NVEs each alter the reading frame, they will be considered as having
NMD potential even if when they are spliced together the reading
frame is restored.

sQTLs that were also eQTLs
First, GTEx variants were filtered for those that were both nominally
significant sQTLs (.v8.sqtl_signifpairs.txt) and nominally significant
eQTLs (.v8.egenes.txt) in the same tissue (GTEx browser). The sQTL

phenotypes considered only included splicing events that were alter-
native splice sites, where one of the sites was an NVE. The exact
sQTL phenotypewas the cognate intron, and not the NVE, because not
many variants were nominally significant in the other direction
(impacting the NVE levels), likely due to lowerΨ values of NVEs, so we
transformed the effect size by – 1 for all sQTLs, in order to more
directly compare the impact of the NVE inclusion on expression of
the gene.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data generated in this study have been deposited in the zenodo
database under accession code https://zenodo.org/records/15790343.
The individual level GTEx data is available under restricted access for
privacy reasons, access can be obtained by obtained permission via
dbGAP: accession number phs000424.v8.p2. The raw data used to fit
generate EF estimates are available atGTEx data browser: https://www.
gtexportal.org/home/downloads/adult-gtex/qtl. The pre-processed
fine-mapped sQTLs of GTEx samples are available in the zenodo
database https://zenodo.org/records/3517189. The gencode annota-
tions are available at Gencode, https://www.gencodegenes.org/
releases/44.html. Source data are provided in this paper.

Code availability
All code is available under MIT License. Code for running the mixture
of betas is on Github: url: https://github.com/atgu/mixture_betas
zenodo release: 10.5281/zenodo.16790816 including some test data
from GTEx. The rest of the data to run all other files and generate the
EFs for all tissues can be accessed in the GTEx data browser. Code used
to post-process these events is on GitHub. https://github.com/jacobs-
hannah-mit/post_process_POVS (10.5281/zenodo.16790828)60 and can
be used to generate the EFs of NVEs reported in Supplementary Data 1
& 2. Code for logistic regression is also available on GitHub, called
splice modifier score (called SMS) url: https://github.com/jacobs-
hannah-mit/SMS, zenodo release https://doi.org/10.5281/zenodo.
16790834, including a Jupyter notebook which can be used to retrain
the model using different features, or regenerating SMS full model
predictions (Supplementary Data 3).
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