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To meet the growing global demand for food, increasing yields through het-
erosis in agriculture is crucial. A deep understanding of the genetic basis of

heterosis has led to the development of a quantitative genetic framework that
incorporates both dominance and epistatic effects. However, incorporating all
pairwise epistatic interactions is computationally challenging due to the large
sequencing depth and population sizes needed to uncover the genes behind
complex traits. In this study, we develop hQTL-ODS, a one-dimensional scan-
ning method that directly assesses the net contribution of each quantitative

trait locus to heterosis. Simulations show that hQTL-ODS reduces computa-

tional time while offering higher power and lower false-positive rate. We apply

this method to a population of 5243 wheat hybrids with whole-genome
sequenced profile, revealing key epistatic hubs that play a critical role in
determining heterosis.

Heterosis, the enhanced performance of offspring compared to their
parents, is a phenomenon whose exploitation contributes significantly
to food security* It is systematically leveraged in both livestock®™ and
crop plants®® through hybrid breeding. Heterosis can be explained
genetically either by the overdominant effect of individual genes’™, by
the complementary combination of several genes with (partially)
dominant gene action>** or by specific epistatic interactions between
genes™ . The explanatory hypotheses are not mutually exclusive.
Interestingly, the causes of heterosis in most crop and livestock spe-
cies are poorly understood, but a proper theoretical framework and
declining sequencing costs pave the way to fill these gaps through
genetic association studies.

The heterotic effect of a gene or quantitative trait locus (QTL) can
be attributed to its dominance effect and its epistatic interaction
effects with other loci'®'. Based on the quantitative genetic descrip-
tion of the heterotic effect, a multi-step scanning procedure’ was
developed to detect heterotic QTL (hQTL) in a hybrid population
created by crossing different parents: QTL scans are performed for
individual components, i.e., dominance effects of all markers and di-
genic epistatic (additive-by-additive, additive-by-dominance, and
dominance-by-dominance) effects of all marker pairs, followed by a

test that integrates all significant components of a given putative
heterotic hQTL (hQTL-MSS). This is the only existing method that
considers both dominance and epistatic effects to detect hQTL in a
diverse hybrid population. However, the challenge with this approach
is that as the number of markers increases to for instance a million, the
computational burden becomes prohibitive with trillions of digenetic
epistatic interactions to be tested. This is particularly challenging in
large populations which are needed to ensure high power for QTL
detection. One solution to this problem is to avoid screening all indi-
vidual components and test directly for the net heterotic effect of a
locus, reducing the number of tests to the number of markers.

In our study, we develop a novel one-dimensional scanning
(hQTL-ODS) method to test the net contribution of individual loci to
heterosis (Fig. 1). This allows us to substantially reduce the computa-
tional time of genome-wide searches for heterosis loci in large popu-
lations. In simulation studies, we show that the method has higher
statistical power with fewer false positives. Capitalizing on large hybrid
wheat populations genotyped with whole-genome resequencing
(WGS) data, we test the strategy and show the importance of the
contribution of cumulative small epistatic interactions to heterosis
in wheat.
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Fig. 1| An overview of hQTL-ODS in comparison to the existing approach hQTL-MSS".
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where yypy is the vector of mid-parent heterosis (MPH) values for all
hybrids. Model (1) is the null model containing covariate effects (Xa),
multiple genetic background effects (gp, 8aa, 8ap, Epp) and the
residuals (g), but excluding any marker effects. The alternative model
(2) includes the heterotic effect (h;) of the tested marker in addition to
all effects in the null model. The heterotic effect h; is defined as a
complex linear combination of (4p-3) effects, i.e. the dominance effect
d; and the epistatic effects aay, ady, day, dd;; (j=1, ..., p and j#i, where
p is the number of markers)®. In the model, h; is treated as a random
vector following a multi-variate normal distribution: h; ~ N(0, H;0?),
where H; is a covariance matrix and 0,? is a variance component. A key
step to implement the model is to derive an alternative expression of h;
which is less complex than (but equivalent to) the original definition. It
is also crucial to find an efficient method of calculating H; (see Methods
for more details). After solving the model by the restricted maximum
likelihood (REML) method, the significance of h; is assessed by testing
the null hypothesis ¢? = 0 using the likelihood ratio test. Namely, the
test statistic is of the form LR; = — 2In(L,/L,), where L, is the maximum
likelihood of the null model, and L, is the maximum likelihood of the
alternative model. Under the null hypothesis, this test statistic follows
approximately a mixture of x3 and x? distributions with equal
weights®®?, where x3 and x? refer to chi-squared distributions with
zero and one degree of freedom.

hQTL-ODS is computationally more efficient than hQTL-MSS
The new model hQTL-ODS has a clear advantage in computational time
complexity, compared with hQTL-MSS. In hQTL-MSS, GWAS has to be
performed for dominance effects of all markers and for digenic epi-
static effects of all marker pairs based on an LMM similar to model (2),
replacing h; by these component effects. Thanks to the P3D
approximation? it is sufficient to solve the null model (1) once. Since
the model contains multiple random vectors (8p, s, 8ap, Epp) iN
addition to the residuals, the computational load cannot be reduced
by applying eigen-decomposition to the covariance matrices, a com-
monly implemented technique for LMMs with a single random vector.
Thus, the time complexity of this step is O(tn®), where n is the number
of individuals and ¢ is the number of iterations, which depends on the
numerical method used to solve the model and is less than 10 in many
cases. Computing the test statistics for dominance and epistatic effects
takes O(n?p) and O(n?p?) time, respectively. In case of WGS data, it is
expected that p>tn. Thus, n?p*>n?p>tn3, indicating that the time
complexity of hQTL-MSS is dominated by the procedure of testing
digenic epistatic effects, namely O(n?p?). In hQTL-ODS, it is necessary
to solve p +1 LMMs (the null model once and the alternative model for
each marker), resulting in O(tn®p) time. The time for producing the
likelihood ratio test statistics is merely O(p), which is negligible.
Additional time is needed for hQTL-ODS to calculate the covariance
matrix H; for each marker. By implementing an efficient algorithm for
calculating genomic epistatic relationship matrices”, the time
required for calculating H; for all markers can be reduced from O(n?p?)
to O(n?p) (see “Methods” for details). Hence, the time complexity of
hQTL-ODS is dominated by solving p +1 LMMs, namely O(¢n3p). Con-
sidering p>tn, we have n?p*»>tn®p. Therefore, the hQTL-ODS model is
computationally much more efficient than hQTL-MSS. More precisely,
the time required by hQTL-MSS is approximately % = £ times as long
as that required by hQTL-ODS. For example, if t ~ 10, hQTL-ODS is
about 100 times faster than hQTL-MSS for a data set with 1000 indi-
viduals and one million markers.

The theoretical advantage of hQTL-ODS mentioned above was
validated by using a wheat data set consisting of 1557 hybrids with 1.2
million single-nucleotide polymorphisms (SNPs). The data set was
termed Exp | (Supplementary Data 1, see “Methods” for details). From
this data set, we sampled subsets with four marker numbers (5000,
10,000, 20,000 and 50,000) in combination with four sample sizes
(200, 500, 1000, and 1557). hQTL-ODS and hQTL-MSS were performed

for each subset on a computing platform with 50 CPU cores (Intel(R)
Xeon(R) Gold 6130 CPU @ 2.10 GHz) and 24 GB memory size per
CPU. We observed that the running time of hQTL-ODS (t,ps) was
substantially shorter than that of hQTL-MSS (¢,ss), and the relative
advantage measured as the ratio p=tys/tops depended on
the population size and the number of markers (Fig. 2a). When the
population size is fixed, the ratio linearly increased relative to the
number of markers, which is well in accordance with the theory that p
approximately equals p/tn (Fig. 2b-e). In the entire population with
1557 genotypes, the observed trend of p values almost completely
overlapped with the theoretical line of t=>5 (Fig. 2e). This means that
hQTL-ODS would be about 154 times faster than hQTL-MSS for the full
data set (1557 genotypes with all 1.2 million markers). While it took
180 h for hQTL-ODS to finish the analysis on the full data set, it would
take more than three years for hQTL-MSS to complete the task.

Statistical power and false-positive rate

hQTL-ODS is also theoretically superior to hQTL-MSS in terms of
properly modeling heterotic effects. In hQTL-ODS, the heterotic
effects were modeled unbiasedly according to the original definition,
i.e., the dominance effect of a locus and its epistatic interaction effect
with all other loci were considered, independent of their effect sizes. In
contrast, hQTL-MSS filtered the component effects by testing them
and applying a threshold, hence only modeled large effects. When
many small component effects cumulatively make a large contribu-
tion, the heterotic effect estimated by hQTL-MSS is likely to be biased.

To verify the above hypothesis, we compared the performance of
hQTL-ODS and hQTL-MSS in a simulation study. MPH values were
simulated following model (2) based on the genomic data of a subset
of Exp I, consisting of 1000 hybrids with 5000 SNPs. Five scenarios
were considered in order to take different patterns of component
genetic effects composing hQTL into account (Supplementary Data 2,
see “Methods” for details). In all scenarios, only one hQTL was simu-
lated and the proportion of phenotypic variance explained (PVE) by
the hQTL was fixed at 2.5%. Despite the small PVE, the simulated hQTL
in all scenarios were adequately captured by hQTL-ODS, with a
detection power ranging from 45 to 63%, and a false positive rate (FPR)
of less than 0.07% (Fig. 2f, g). When a few epistatic effects cumulatively
contributed to the effect of the simulated hQTL, no matter whether the
dominance effect contributed (Scenarios 3 and 4) or not (Scenarios 1
and 2), hQTL-ODS consistently outperformed hQTL-MSS, with higher
power and lower FPR (Fig. 2f, g). Only in Scenario 5, where the hQTL
effect consisted of the dominance effect of the QTL alone, the power
of both methods was the same. These results clearly validated the
theoretical superiority of hQTL-ODS over hQTL-MSS.

We also investigated the association between the hQTL detection
power and heterozygosity (Supplementary Data 3). A positive asso-
ciation was observed in all scenarios in which dominance effects
played a role (Scenarios 3, 4, and 5), however, it was only significant
when epistatic effects did not contribute at all (Scenario 5). The asso-
ciation was weaker still when only a few epistatic effects shaped out the
hQTL (Scenario 2). It became negative and non-significant when many
epistatic effects contributed to the hQTL effect (Scenario 1). These
results are in line with expectations. When the dominance effect is the
main component of the hQTL effect, the detection power is naturally
associated with heterozygosity. However, if cumulative epistatic
effects play an important role, the picture becomes much more com-
plex because many factors, such as the type of epistasis (additive-by-
additive, additive-by-dominance, or dominance-by-dominance), the
number of loci interacting with the hQTL and the sizes of epistatic
effects, could affect the detection power.

A large resequenced hybrid wheat panel
In order to test the performance of hQTL-ODS on experimental data,
three hybrid wheat populations, each from independent experimental
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Fig. 2 | Comparison of running time, power, and false-positive rate between
hQTL-ODS and hQTL-MSS on experimental and simulated data sets. a The
running time of hQTL-ODS (t,ps) and hQTL-MSS (t,,ss) on experimental data sets
with different sample sizes and marker numbers. The numbers in parentheses
represent the ratio p = ty,ss/tops- b—€ The relative advantage of hQTL-ODS over
hQTL-MSS. Theoretically, hQTL-ODS is approximately p/tn times faster than hQTL-
MSS, where p is the number of markers, n is the sample size, and ¢ is the average

number of iterations for solving the linear mixed model. The lines depicted the

Scenario

expected values p/tn and the blue dots indicated the observed ratio p=t,ss/tops
on experimental data sets. f The statistical power and g The false-positive rate of
hQTL-ODS and hQTL-MSS evaluated on simulated data sets for five different sce-
narios (s1-s5). The simulated hQTL effect was contributed by epistatic effects (sl
and s2), by both dominance and epistatic effects (s3 and s4), or by dominance
effects (s5). More details on the simulation scenarios were described in “Methods”
and Supplementary Data 2).
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series (Exp I, II, and IlI)**, were assembled into an integrated panel
consisting of 5243 hybrids derived from 597 parental lines represent-
ing a comprehensive selection of the Central European elite bread-
wheat breeding pool. In each Exp, hybrids and parental lines were
evaluated in field trials for grain yield and heading date in at least 10
year-by-location combinations (Supplementary Data 1, 4).

The parental lines were resequenced using WGS technology, and
sufficient read coverage was established for 588 genotypes (Supple-
mentary Data 5). Read mapping and SNP calling against the reference
genome assembly of cv. Chinese Spring v2.1 (RefSeq CSv2.1)* provided
7,835,467 SNPs with minor allele frequency (MAF) larger than or equal
to 0.05 and with an average density of 0.54 SNPs per kb. SNPs whose
pairwise linkage disequilibrium (LD, estimated by r*) was higher than
0.9 were pruned within 50 kb sliding window and 907,534 high-quality
SNPs remained for subsequent analysis. The genotypes of the hybrids
were inferred from the corresponding parental lines. Combining the
genomic and phenotypic data resulted in 4,885 hybrids derived from
545 parental lines.

A principal coordinate analysis (PCoA) revealed that neither the
parental lines from each population nor across populations grouped
into clusters (Supplementary Fig. 1a). Different Exps were linked by up
to 26 common genotypes showing high trait correlations between
different Exps (Supplementary Data 6), suggesting that integration of
the data did not introduce a systematic bias. Analysis in the integrated
panel showed that the LD decayed on average to at least half of its
maximum value at a distance of 10 Mb (Supplementary Fig. 1b). High
broad-sense heritability estimates were observed for grain yield and
heading date performance of hybrids (0.77, 0.94) and parents (0.88,
0.98) (Supplementary Fig. 1c, d, Supplementary Data 4). The MPH of
grain yield varied widely from -0.86 to 2.02 Mg/ha and had a mean
value of 0.81 Mg/ha, whereas for heading date the MPH ranged
between —3.90 and 3.05 days with a mean value of —0.93 days (Sup-
plementary Fig. 1e, f, Supplementary Data 4). The heritability estimates
of MPH were 0.68 and 0.78 for grain yield and heading date, respec-
tively (Supplementary Fig. 1c, d, Supplementary Data 7). Thus, the data
provide a reliable foundation to dissect the genetic architecture of
heterosis for the traits of interest.

Resequencing data uncover the advantages of hQTL-ODS
Before exploring hQTL in the integrated data set, we compared the
performance of hQTL-ODS with hQTL-MSS in Exp I using a low-
density marker panel. In a previous study, hQTL-MSS had been
applied to Exp I genotyped by a 90k Illumina Infinium SNP chip to
study the MPH of grain yield"”. Thus, we directly adopted the results
therein (Fig. 3a) and applied hQTL-ODS to the same data set (Fig. 3b).
hQTL-MSS and hQTL-ODS detected 37 and 19 hQTL, respectively, of
which only nine and eight colocalized with each other (Fig. 3d). A
certain degree of inconsistency was not unexpected, as it has been
shown both in theory and in simulation that hQTL-MSS might result
in a biased estimation of the heterotic effect due to ignoring small
genetic component effects.

As mentioned in the previous subsection, the population was also
genotyped by WGS. A comparison of the SNPs obtained via WGS with
those of the 90k SNP chip revealed an average SNP concordance rate
of 95.6%, indicating that results of subsequent analyses based on the
two marker panels can be reliably compared. Then, hQTL-ODS was
applied to this population with WGS data and 165 hQTL were identi-
fied, 124 of which mapped to known chromosomes (Fig. 3c). Com-
paring with the results obtained using the SNP chip, we found that 105
hQTL were only detected with the WGS data (Fig. 3d), which demon-
strated the superiority of high-density marker panels. Notably, 15 of
the 105 hQTL (13.9%) showed neither significant dominance nor epi-
static interactions effects with other loci, indicating that cumulative
small epistatic effects composed these hQTL. They can only be
detected using hQTL-ODS as it does not ignore small component

effects contributing to the heterotic effect. Interestingly, we observed
that nine hQTL identified by hQTL-ODS using the SNP chip were not
detected by the same model with WGS data. Furthermore, six hQTL
detected by hQTL-MSS using the SNP chip colocalized with 11 hQTL
detected by hQTL-ODS when adopting WGS, but missed by hQTL-ODS
using the SNP chip (Fig. 3d). Thus, using a low-density marker panel,
the estimation of heterotic effect by hQTL-ODS may be biased because
not all genetic variants are considered. The most reliable results are
consequently expected by applying hQTL-ODS with a high-density
marker panel, such as WGS.

hQTL-ODS revealed pervasive cumulative epistatic effects

We applied hQTL-ODS to the integrated panel as well as to the three
individual populations (Exp I, Il and III) using WGS data to dissect the
genetic architecture of heterosis for grain yield and heading date.
Thus, results were obtained in four different populations (Fig. 4a-d,
Supplementary Fig. 2a-d). For convenience, hQTL detected in at least
two populations were called common hQTL, and those identified in
only one population were termed unique hQTL. For grain yield,
3174 significant SNPs (including those without assigned chromosome
information) merged into 188 hQTL were detected in the integrated
population (Supplementary Data 8), with a high proportion (74.5%)
being common hQTL (Fig. 4f). In contrast, proportions of common
hQTL identified in the three individual populations only amounted to
37.6% (Exp 1), 39.7% (Exp II) and 25% (Exp IlI). Similar results were
obtained for the trait heading date (Supplementary Fig. 2a-d, f). Thus,
the reliability of hQTL detection was clearly enhanced in the integrated
population because of its large sample size.

From now on, we focused exclusively on the results obtained with
the integrated panel. The PVE of the 188 hQTL for grain yield ranged
from 1.67 to 13.59%. The hQTL with the highest PVE was detected on
chromosome 6B (Integrated_GY_hQTL139), spanning a large region
from 47.65Mb to 124.41 Mb and encompassing 595 significant SNPs.
The two most significant hQTL (i.e., containing SNPs with lowest p
values) were detected on chromosome 7B (Integrated_GY_hQTL163)
and 4A (Integrated GY_hQTLI128), with 11.18% and 12.62% PVE,
respectively. GWAS for dominance effects contributing to heterosis
revealed only two dominance QTL (dQTL) on chromosomes 5B and 7B
(Fig. 4e, Supplementary Data 9), both colocalized with hQTL. On the
other hand, many significant epistatic interactions between hQTL
and other loci in the genetic background were detected (Fig. 4g-j).
For heading date, 71 hQTL were found with PVE ranging from
242 to 17.22% (Supplementary Data 10). Notably, Ppd-DI
(TraesCS2D03G0156800)%, which colocalized with a dQTL, repre-
sents a candidate gene for an hQTL with 8.86% PVE. In total, five dQTL
contributing to heterosis were found and three colocalized with hQTL
(Supplementary Fig. 2e, Supplementary Data 11). Thus, for both traits, a
large number of hQTL contrasted with few QTL for dominance effects,
demonstrating the overriding importance of epistatic interactions for
hQTL in wheat.

Next, we exemplarily investigated the peak SNPs of three hQTL for
grain yield which did not colocalize with any dQTL in more detail to
disentangle the composition of component effects contributing to
these hQTL effects. Indeed, the dominance effects of their peak SNPs
were not significant (Fig. 5a—c). Thus, the hQTL effects must be com-
prised of epistatic effects, as shown in the distribution of phenotypic
values for two-locus genotype classes consisting of the peak SNP and
the SNP which has the strongest interaction with it (Fig. 5d-f). Inter-
estingly, the peak SNPs of the three hQTL had distinct patterns of
cumulative epistatic effects with other SNPs. SNP_4A 748345003 in
Integrated_GY_hQTL128 had many significant (P<0.05 after Bonfer-
roni correction) epistatic interactions with other SNPs (Fig. 5g),
whereas only several significant epistatic effects were identified for
SNP_6B_653527460 in Integrated_GY_hQTL142 (Fig. 5h). Importantly,
SNP_6B_180998007 in Integrated GY_hQTL149 had no significant
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results of (a) hQTL-MSS using 90k SNP chip data (17,372 SNPs), which were adopted  lapping. Note that it is possible that different numbers of hQTL detected in two or
from Jiang et al. %, b hQTL-ODS using the same 90k SNP chip, and (c) hQTL-ODS three data sets colocalized, since significant SNPs were merged into hQTL in each of
using whole-genome sequencing data (about 1.2 million SNPs). In (a-c), significance  the three data sets separately. To be consistent with the results from Jiang et al. *°,
was assessed by the likelihood ratio test, and the thresholds (P < 0.05 after we only considered hQTL located on known chromosomes.

Bonferroni-Holm correction for multiple testing) were indicated as red dashed
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Fig. 4 | Genetic architecture of midparent heterosis (MPH) for grain yield

in wheat. Results of hQTL-ODS revealed genomic regions harboring loci associated
with grain yield MPH based on whole-genome sequencing data in the experimental
series I (a), I (b), Il (c), and the integrated population (d). e Results of a genome-
wide scan for dominance effects of grain yield MPH in the integrated population. In
(a-e), significance was assessed by the likelihood ratio test, and the thresholds
(P<0.05 after Bonferroni-Holm correction for multiple testing) were indicated as
red dashed horizontal lines. f Venn diagram showing the number of hQTL detected
in (a), (b), (c) and (d) (indicated in blue, purple, orange, and black, respectively).
Note that since the procedure of merging significant SNPs into hQTL was
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performed in each of the four data sets separately, an hQTL detected in one data set
may colocalize with multiple hQTL detected in another data set. Therefore, the
number of overlapping hQTL was separately indicated for each data set. The sig-
nificant digenic epistatic interactions between hQTL and all other SNPs were shown
by the colored links in the centers of the circles for additive-by-additive (g),
additive-by-dominance (h), dominance-by-additive (i), and dominance-by-
dominance interactions (j). In (g-j), significance was assessed by the Wald test, and
the thresholds were determined as P < 0.01 after Bonferroni-Holm correction for
multiple testing.
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Chr6B_180998007

interactions with any other SNP (Fig. 5i). These latter results indicated
that significant epistatic effects are not necessary for a marker showing
a significant heterotic effect. Instead, small epistatic effects can
cumulatively compose an hQTL. SNP_6B_180998007 is a representa-
tive for 66 out of 188 hQTL (35.1%) that can only be detected using
hQTL-ODS as it does not ignore small component effects contributing
to the heterotic effect.

Chr6B_180998007 vs Chr5D_397468403

Testing hQTL-ODS with a large maize dataset

To further test the applicability and potential of our hQTL-ODS model,
we analyzed a published maize dataset®. The population consists of
6210 single-cross hybrids from 207 maternal lines and 30 paternal
testers. All parental lines were genotyped via whole-genome rese-
quencing, and 699,441 SNPs were retained for subsequent analysis.
Phenotypic data are available for three traits: days to tasseling (DTT),
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Fig. 5 | Distinct patterns of cumulative epistatic effects highlighted by three
heterotic QTL (hQTL). The three hQTL were detected for grain yield MPH in the
integrated data set: Integrated_GY_hQTL128 (a, d, g), Integrated_GY_hQTL149 (b, e,
h), and Integrated_GY_hQTL142 (c, f, i). a-c The phenotypic distribution of grain
yield MPH for hybrids harboring different alleles for the peak SNP within hQTL. d-f
The phenotypic distribution of grain yield MPH for hybrids with distinct genotype
combinations of the peak SNP within hQTL and the SNP showing the most sig-
nificant epistatic interaction effect with the peak SNP. In each group, the mean MPH
value was indicated by red dots and the number of hybrids was shown below the
boxplot. Boxes indicated the interquartile range (IQR, the difference between the
75th and the 25th percentile) with the median line, whiskers extend to the most

extreme values within 1.5 x IQR. Different letters above the boxes indicated sig-
nificant differences among groups as determined by the Least Significant Differ-
ence (LSD) test (P < 0.05), while groups sharing the same letter are not significantly
different. g-i Circled Manhattan plot of epistatic effects between the peak SNP of
hQTL and all other SNPs in which the 10 SNPs with most significant epistatic effect
was highlighted by red circles and linking lines in the center. Different colors were
used to indicate the types of epistatic effects: orange (additive-by-additive), blue
(additive-by-dominance), green (dominance-by-additive) and purple (dominance-
by-dominance). Significance was assessed by the Wald test, and the thresholds
(P<0.05 after Bonferroni-Holm correction for multiple testing) were indicated as
red dashed lines.

plant height (PH), and ear weight (EW). We focused on EW. Using
hQTL-ODS, we identified one hQTL on chromosome 3 (Supplementary
Fig. 3a) with the peak SNP chr3.s_ 157746554 (P=2.56 x 10°®). This SNP
maps within a distance of 1.28 Mb to ZmMADS69. ZmMADS69 functions
as a flowering activator but due to pleiotropy also affects other traits of
agronomic importance such as ear size”. Xiao et al. ® had identified
QTL for the trait DTT spanning ZmMADS69 and also detected QTL for
EW at positions near ZmMADS69 using a different GWAS approach but
with a mild significance threshold. In addition, merged QTL very close
to ZmMADS69 were listed for EW with comparatively large epistatic
effects. Thus, our results are consistent with the original study’s find-
ings. Notably, no significant dominance effects were detected (Sup-
plementary Fig. 3b), which again demonstrated the importance of
considering cumulative epistatic effects when detecting hQTL.

Discussion

In this study, we developed hQTL-ODS, a reliable and time-efficient
association analysis tool that comprehensively incorporates both
dominance and epistatic effects to unravel the genetic architecture of
heterosis, making it feasible to conduct GWAS for heterotic effects
using large-scale diverse hybrid populations with WGS data. Previous
studies on heterosis in various species (e.g., Arabidopsis**?’, rice’’*°
and maize®) were based on WGS data with diverse hybrid populations.
However, epistatic effects were either not considered or restricted to
the interaction between dominance QTL in these studies, possibly due
to the high computational burden. It was shown that considering
epistasis is important for studying heterosis in wheat'**, maize** and
pigeonpea®. These studies applied the hQTL-MSS approach to test
epistatic effects between all marker pairs, either based on a low-
density marker panel or based on WGS in a relatively small population.
As demonstrated in Results, it would be infeasible to apply hQTL-MSS
to large populations with WGS. Our new model hQTL-ODS successfully
removed the computational bottleneck by modeling the heterotic
effect as a whole, hence avoiding the two-dimensional scan for digenic
epistatic effects between all pairs of markers. Importantly, the com-
putational efficiency is not the only advantage of hQTL-ODS over
existing approaches. Treating a heterotic effect in its entirety averts
the possible bias of focusing only on large component effects, as the
heterotic effect of a locus can be significant due to the cumulation of
small interaction effects between this locus and many other loci
(Fig. 5i). Thus, even if the computational load of hQTL-MSS could
possibly be reduced by integrating more efficient GWAS algorithms for
the two-dimensional epistasis scan (e.g. REMMAX**, NGG*), hQTL-ODS
would still be superior because of higher power and fewer false posi-
tives (Fig. 2f, g).

It is important to note that the heterotic effect h; was treated as a
random vector with a zero mean in hQTL-ODS. Consequently, the
mean heterosis in the model is zero. However, this seems mis-specified
for traits with non-zero mean heterosis, such as grain yield in our wheat
datasets. While it is common to assume that all genetic background
effects have a zero mean®®, the effect under test in a GWAS model is
usually treated as a fixed covariate”. If we keep this setting, the mean
heterosis will not be zero. However, h; is a combination of (4p-3)

genetic component effects and the number of components exceeds
the number of observations, rendering it difficult to perform a proper
statistical test. Therefore, we changed the assumption to make the
likelihood ratio test feasible. The results of our simulation study in
which a non-zero dominance effect was simulated (Scenarios 3, 4 and
5, Fig. 2f, g) indicated that hQTL-ODS is robust for data sets with non-
zero mean heterosis values. An interesting alternative approach would
be to use a directional dominance model, in which the dominance
effects have non-zero mean values. This is equivalent to including a
covariate for the overall heterozygosity*®. Similarly, it may be possible
to consider epistatic effects with non-zero means. This could be
incorporated into the further development of the hQTL-ODS model.

From the general viewpoint of statistical genetics, the framework
of hQTL-ODS is a kernel-based association test for a set of genetic
variants**°, Thus, although the model presented here is specific to the
study of MPH, its framework can be easily expanded to various other
applications. For instance, it can be used to study the better-parent
heterosis (BPH) instead of MPH, provided that the matrix which
transforms the vector of original trait values to MPH is appropriately
modified. It can also be applied to study original traits, for which one
only needs to omit the step of applying the transformation matrix
(see Supplementary Notes for details). In this regard, our model is
similar to the so-called marginal epistasis test implemented in MAPIT*
and FAME®. The difference is that in these two models only the
cumulative additive-by-additive effects were considered, whereas all
three types of digenic epistatic effects were integrated in hQTL-ODS.
Since the model transformation from the original trait to MPH is only
implemented in hQTL-ODS but not in the marginal epistasis tests, only
the former model can be applied to study heterosis.

Although hQTL-ODS delivers a substantial improvement com-
pared with existing approaches in detecting heterotic QTL, there are
still limitations in its computational efficiency if one considers the
ever-growing data size. The theoretical time complexity of hQTL-ODS
is about O(tn®p), indicating that the computing time will increase by a
factor of 27 if the sample size triples. As a result, it took about 30 days
to complete the analysis for the integrated panel with 4885 hybrids
and 907,534 SNPs, while it only took hours for the three individual
populations (each with about 1600 hybrids). Thus, in future, it is
necessary to explore possibilities to further increase the computa-
tional efficiency. One option might be to switch from the LR test to the
score test, possibly at the cost of decreasing power*’. An even more
important direction is to increase the efficiency of solving LMMs,
which is the most time-consuming step in hQTL-ODS. Currently, we
utilized a fast REML approach implemented in the R package gaston*.
Note that the model involves multiple random vectors of genetic
effects with dense covariance matrices. For this type of LMM, only a
few fast algorithms are available: the Min-Max algorithm implemented
in MM4LMM*, the Method-of-Moments approach in GEMMA* and
RHE-mc*®, the Monte Carlo REML method in BOLT-REML", and a
recently developed fast REML algorithm called MPH*. It would be
worthwhile to investigate whether the computational efficiency of
hQTL-ODS can be further improved by exploiting and/or combining
some of the techniques implemented in these algorithms, or whether it
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may even be necessary to develop new efficient algorithms for the
future.

Methods

MPH and the heterotic effect

In this study, we consider a population consisting of n hybrids derived
from crossing r diverse parental lines. For a trait in consideration, the
MPH of a hybrid is defined as the difference between the trait values of
the hybrid and the average of its parents. Let y,; be the
(n+r)-dimensional vector of the observed original trait values of all
hybrids and parents, and y,;py be the n-dimensional vector of the MPH
values of all hybrids. Then, it is clear from the definition that
Ymrn = TYori» Where T is an n x (n +r) matrix of linear transformation.

The heterotic effect of a marker is the net contribution of this
particular marker to MPH, taking its dominance effect and its digenic
epistatic interaction with the entire genetic background into con-
sideration. In particular, it depends not only on the genotype of the
hybrid, but also on the genotype combinations of the parental lines. In
the following, we briefly recall its precise definition™.

Assume that all markers are biallelic and let p be the number of all
markers. The genotype of an individual at a marker is coded as O, 1, or
2, depending on the number of reference alleles. Let F be a hybrid
individual, P; and P, be its parental lines. Let d; be the dominance
effect of the i-th marker, aa;;, adj;, da; (or equivalently, ad;;) and dd;;
be the additive-by-additive, additive-by-dominance, dominance-by-
additive and dominance-by-dominance epistatic effect between the
i-th and the j-th marker, respectively. Let R;; (k, =0 or 2) be the subset
of markers for which P; has genotype code k and P, has code [. Then,
for any i (1<i<p), the heterotic effect of the i-th marker for this par-
ticular hybrid individual F, denoted by h; (, is defined as follows:

1 1 1 1 1 ifi
di—3 Y aay+ 3y aaz+ 3y ady—3 3 adp+y 3 ddy ifieRy
JeRao R ey JeRoo JeRao Rz
-3
e

agg+ 1Y agy+ 1Y ady—1 Y ady+} Y ddy ifie Ry
JeRy JeRy JeRoo J€Ry YRy, (3)

ifie Ry

-1
iT72

J
. > ady
J€Ry URoy
1 .
-1 adij ifieRyo
J€Ry0 YRy,

NI

With the above definition, the MPH value of the individual F is the sum
of the heterotic effects of all markers, i.e., Yypy, r = > b A -

Let h; be the n-dimensional vector consisting of the heterotic
effects h;  for all hybrids. Let M, be the (n+r) x p matrix of markers
coded as 1 (homozygous for the reference allele), O (heterozygous) or
-1 (homozygous for the alternative allele), and M, be the (n+r)xp
matrix of markers coded as O (homozygous) or 1 (heterozygous). Then,
h; can be written as follows:

h=T l,-d,-+%/2:1((m,-omj)aa,-j-+(m,-olj)ad,-j+(l,—omj)adj,-+(l,-olj)dd,-j) ,
J*i
“)

where m; and m; are the i-th and the j-th columns of the matrix M, I;
and |; are the i-th and the j-th columns of Mp, and “o” denotes entry-
wise product of two vectors. Let y; be the (4p — 3)-dimensional vector
consisting of d;, aay, ady, ad; and dd;, and Z; be the nx(4p - 3)
matrix whose columns consist of TI, 3T(m;om,), 1T(m;ol),
3T;om)) and 3 T(I; o I;), for all 1<j<p and j#i. Then, Eq. (4) can be
rewritten in a compact form as h; =Zy;.

Note that it is not straightforward to obtain Eq. (4) from Eq. (3), as
the expression of h; ¢ in terms of the genetic component effects (d;,
aay, ad, ad;; and dd;;) depends on the combination of parental gen-
otypes (i.e., whether i € R,y, Rgy, Ry, Or Ryg). A proof is provided in
the Supplementary Notes.

The hQTL-ODS model

Since MPH is a derived trait, it is necessary to model the genetic effects
in a way that they are consistent to those contributing to the original
trait. Thus, the baseline model is the following model for the original
trait, taking the additive and dominance effects of all markers, and
digenic epistatic effects of all marker pairs into account:

Yori = In+ i+ X @+ Mya+Mpd +Mysaa+Mypad +Mppdd +e,  (5)

wherey,;, M, and M, were defined in the previous subsection (recall
that the columns of M, and My, are denoted by m; and I; (1<i<p),
respectively), 1., is the (n+r)-dimensional vector of ones, y is the
common intercept term, a is a k-dimensional vector of covariate
effects (e.g., subpopulation effects), X, is the corresponding (n+r) x k
design matrix, a and d are p-dimensional vector of coded genotypic
effects* for all markers, aa, ad and dd are vectors of epistatic inter-
action effects between a and d for all marker pairs, aa and dd are
p(p — 1)/2-dimensional, ad is p(p —1)-dimensional. M,, is an
(n+r)xp(p —1)/2 matrix whose columns consist of m; o m; for all i,j
such that 1<i<j<p. M,y is an (n+r) X p(p — 1) matrix whose columns
consist of m;ol; for all i,j such that 1<i,j<p and i#. Mpp is an
(n+r)xp(p —1)/2 matrix whose columns consist of I;0l; for all i,/
such that 1<i<j<p, e is an (n +r)-dimensional vector of residuals.

Since yypy = TYri, the model for MPH is naturally obtained by left-
multiplying the matrix T to both sides of Eq. (5):

Ywen = T, -+ TX @+ TMya+ TMpd + TM, ,aa + TMypad + TMdd + Te.
(6)

The definition of T implies that T1,,,,=0,. For each hybrid, the
marker coding of M, is exactly the average of the coding of its parents,
implying TM,=0,,,,. Let X=TX, gp=TMpd, g,,=TM,,aa,
gap = TMypad, g5, =TMppdd and £=Te. Then, Eq. (6) can be written
as the following:

Ympr = X+ 8p + Zaa t 8ap t 8pp T €, (7)

which is the same as Eq. (1) in the main text. In the model, a is
assumed to be fixed effects, gy ~ N(0,Kp03), Ban ~ N(O,Kpp03,),
8 ~ N0, Kyp02p), 8op ~ N(O,Kppodp), and € ~ N(O, TT' 02). Note
that the covariance matrix for £ is TT' instead of an identity matrix,
because the residuals e of the original trait are usually assumed to be
independent (i.e., e ~ N(0,1,,,,02)) and £=Te.

To calculate the covariance matrices K. (* denotes D, AA, AD or
DD), it would be natural to deduce them from Eq. (6) as
K. =TM.M:T/c.,c. = Ltr(TM.M.T). In our case, a slightly different form
was used such that the estimated variance components match the
classical concept of dominance and epistatic variance®, i.e., the var-
iance of dominance and epistatic deviation from the breeding value®".
More precisely, K. =TU.U.T/c., ¢. = 1 tr(TU.U.T), where U. are matri-
ces with the same size as M.. For the i-th genotype and the k-th marker,
the (i, k)-entry in U, and Uy, are defined as follows:

0-2p,, if(M,),,=0
(UA)i,k =¢1-2p,, if:(MA)i,k =1
2-2p,, if(My), =2
~2p;, if(MA)i,k:
(Up), = 2P = Po), if(My), =1
—2(1-pp?,  if(My), (=2
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where p, is the frequency of the reference allele, and Uy, , Uy, Upp, are
constructed by multiplying columns of U, and Uy, in the same way as
deriving M., M,p, Mpp from M, and M.

Equation (7) is the null model of hQTL-ODS, the role of random
genetic effects gp, gaa,8ap and gpp is for controlling the genetic
relatedness in the population. If there is strong population structure,
additional covariates can be included in Xa. To test the heterotic effect
of a marker, the heterotic effect h; is added into the model, resulting in
the following alternative model:

Yumpn =Xa@ +h;+ 8 + a0+ 8ap t8pp T E, (8)

where h; has been defined in Eq. (4).

Recall that h;=Z;y;, where y; is the (4p — 3)-dimensional vector
consisting of d;, aay, ady, ad;; and ddj; for all 1<j<p and j#i. The
component effects in y; were lmplicitly assumed to have different
variance component in Eq. (7), as they are involved in the genetic
background effects gp, gaa, 84p and gpp. Here, in order to apply the
likelihood ratio test and to avoid over-parametrization, we make an
additional assumption that the component effects in y; are identically
distributed. More speCIﬁcaIly, yi~N@©, L1 oh ), where I, is the nxn
identity matrix, ¢;= 1tr(Z;Z;). Then, we have h;N(0, Hoh) where
H;=Z,Z;/c;. As mdlcated by the results of the simulation study, it is
unllkely that this additional assumption has a large influence on the
effectiveness of our model (Fig. 2f, g).

With the above consideration, a classical likelihood ratio test is
used to assess the significance of h;. Namely, the null model (Eq.(7))
and the alternative model (Eq.(8)) are solved by the REML approach,
and the null hypothesis H : 0%11 =0 is tested by the following test
statistic:

Mr=—2[In(Ly) —In(Ly)], )
where L, and L, are the maximum values of the likelihood function of
the null and the alternative model, respectively. Under the null
hypothesis, 1, follows approximately an equal-weighted mixture of
two chi-squared distributions with zero (y3) and one (x?) degrees of
freedom™?, i.e, A g ~ 3x3+ 1x2.

The models (7) and (8) are implemented by using the R package
gaston®. Other details on the implementation are provided in
the Supplementary Note. Here, we just mention three important
points: (1) Unlike the model of GWAS for the original traits, the residual
term of hQTL-ODS model has a non-trivial covariance matrix (TT’).
Thus, a further transformation of the model has to be made before
applying standard algorithms to solve the LMM. (2) Calculating the
matrices K,, Kup, Kpp and H; is time-consuming if they are directly
calculated from definition. Taking H;=Z,Z; as an example, it takes
O(n?p) time because the dimension of Z; is n x (4p — 3). Thus, the total
time complexity is O(n?p?) for calculating H; for all p markers. How-
ever, using the techniques similar to an efficient algorithm for calcu-
lating epistatic genomic relationship matrices®, the time complexity
was eventually reduced to O(n?p). (3) The computational efficiency is
further improved by fixing the ratio of the variance components
0% /02, 0%,/02, 03,/0% and 03,/0?, i.e., estimating these ratios only
once in the null model and assuming that they are invariant in the
alternative model for each marker. This approach is similar to the so-
called P3D approximation in GWAS>.

The model for testing genetic component effects

The hQTL-ODS model provides a direct test for the heterotic effect of a
marker without testing any component effect (i.e., the dominance
effect of the marker and the digenic epistatic interaction effects
between the marker and the entire genetic background). However, if a
marker has significant heterotic effect h;, it would be interesting to

investigate whether these component effects, namely d;, aa;, ad;;, ad;;

and dd;; for all j=i, 1< < p, are significant or not. The following models
are used for testing these effects.

Ympen =Xa& +Thd; +8p +8ap + 8ap +8pp + &, (10)

Ympn = Xa +T<mi o mj> aa;+gp+8ant8ap t8pp 1n
Ympn = Xa + Thid; + T(mi ° Ij>adij tgpt8mt8at8ptE (12
Yupn =Xa +Tld; +T (Ii o mj> ad; +gp+8an*+8ap+8op t€  (13)

Ywvpn = Xa +Tlid; + Tl d; +T(li ° lj>ddij 8 t8aat8ap T 8pD TE
(14)

where all notations have been defined in the previous two subsections.
In these models, the effects d;, d;, aay, ady;, ad;, and dd;; are assumed
to be fixed instead of random. Note that a; and a; are not included in
models (11), (12), and (13), which seems to be a violation to the principle
that the corresponding main effects should be included in the model
when an interaction effect is tested. But actually, TM, =0, , (see the
previous subsection) implies Tm;q; = Tm;a; = 0,,.. Therefore, it makes
no difference whether to include these effects or not.

Letx be any of the effects d;, aay, adj;, ad; and dd;;. A Wald test is
used to assess its significance, and the test statlstlc has the following
form:

)A(Z

W= var(x)’

as)

where X is the estimated value of x and var (x) is the estimated variance
of x. It is known that W follows asymptotically a chi-squared
distribution with one degree of freedom (W ~ x?).

Hybrid wheat populations and field trials

In this study, we integrated experimental data of three large hybrid
wheat populations (Exp I, II, and 11I)** into a large panel. In total, there
were 597 elite parental lines and 5243 F; hybrid progenies. The par-
ental lines were chosen to reflect a wide range of diversity in Central
Europe. A factorial or partial factorial design was used to generate
single-cross hybrids in each population. Exp I was composed by 135
parental lines (120 females and 15 males) and their 1604 hybrid
progenies evaluated for grain yield (Mg ha™) in 11 environments (five
locations in 2012 and six in 2013) and heading date (days from Jan-
uary 1*) in 10 environments (six locations in 2012 and four in 2013) in
Germany. Exp Il was comprised of 226 parental lines (185 females and
41 males) and their 1815 hybrid progenies evaluated for grain yield in
12 environments (six locations each in 2016 and 2017) and heading
date in 20 environments (11 locations in 2016 and nine in 2017) in
Germany. Exp IlI consisted of 236 parental (196 female and 40 male)
lines and their 1824 hybrid progenies evaluated for grain yield in 12
environments (six sites each in 2018 and 2019) and heading date in 18
environments (10 sites in 2018 and eight in 2019) in Germany. In each
environment, the experimental design consisted of three trials, in
which a partially replicated (Exp I) or un-replicated (Exp Il and III)
alpha lattice design was used. Different genotypes were evaluated in
different trials linked by 10 (Exp I) or 11 (Exp II and Ill) common
checks within the environment. For all genotypes, harvesting was
performed mechanically, and the grain yield was adjusted to a
moisture content of 140 g H,0 kg™ A summary of the three popu-
lations was provided in Supplementary Data 1. Details of the field
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trials and part of the phenotypic data for grain yield (Exp I, Exp II, and
the 2018 data of Exp Ill) have been described in previous studies®.

DNA Isolation and genome sequencing

For DNA extraction and sequencing, the seeds of all parental lines in
the three populations were collected and grown in the greenhouse and
a single leaf per genotype was harvested from a 10-day-old seedling.
Genomic DNA was isolated from young leaf tissue of each genotype
using a silica-membrane technology (NucleoSpin 96 Plant II) as
described by the manufacturer (Macherey-Nagel), which were used as
input for sequencing library generation. Subsequently, the WGS
libraries were prepared using the Nextera DNA Flex Library
Prep according to the manufacturer’s (Illumina) instructions. Libraries
were pooled in an equimolar manner. The multiplexed pool was
quantified by quantitative PCR and sequenced (paired-end, 2 x151
cycles and 10 bp for the index reads) on NovaSeq 6000 at threefold
coverage.

WGS read processing and SNP calling

To avoid bias resulting from base-calling duplicates and adapter con-
tamination, raw read sequences were processed to remove adaptors
and low-quality reads with a minimum read quality (q) cutoff of 20.
High-quality data with an average of about 17 Gb per sample were
retained for subsequent analysis. The paired-end reads (172.8 billion)
of all genotypes were aligned against the wheat reference genome
(Chinese Spring, RefSeq v2.1) using the MEM algorithm of BWA with
default parameters. The output was converted to binary alignment
map (BAM) format file using SAMtools (v.1.9) and further sorted with
NovoSort (v.3.06.05). After merging BAM files for samples sequenced
on the same flowcell with Picard (v.2.21.9), variant calling was done
using the mpileup and call functions from SAMtools with parameter
-DV'. Subsequently, a raw population genotype VCF file was generated,
including 181,421,099 SNPs with an average density of 12.45 SNPs per
kb. Bi-allelic SNPs with a minimum QUAL (i.e., mapping quality) score
of 40, read depth for homozygous >1 and heterozygous calls >2 were
recalled based on read depth ratios calculated from the DP (total read
depth) and DV (depth of the alternative allele) fields in VCF file using a
custom AWK script. The SNPs with missing rate <30%, heterozygosity
<1% and counts of both homozygous genotypes >10 were kept. Then,
the missing values were imputed by Beagle (v 5.2). Consequently, a
total of 7,835,467 SNPs with MAF > 5% were retained for the integrated
panel (including all parental lines from Exp I, II, and IlI). Pairs of SNPs
with squared correlation greater than 0.90 were greedily pruned
within 50 kb sliding window using plink (v 1.90b6.9) with steps=5
SNPs until no such pairs remained. The same data cleaning and filtering
process was performed separately within each population (Supple-
mentary Fig. 4). The genotypes of the hybrids were inferred from the
parental genotypes.

Population structure, LD decay and duplicate genotypes
Principal coordinate analysis (PCoA) was performed based on pairwise
Rogers’ distances among genotypes®’ to investigate the population
structure. The decay of pairwise LD between SNPs (measured as r*) was
analyzed by PopLDdecay*® with parameters “-MaxDist 50000 -Out-
Type 2”. The average physical distance at which the LD between SNPs
decayed to half maximum value was about 10 Mb.

Duplicate genotypes might occur when different labels were used
for the same genotype in different populations. Thus, we investigated
whether duplicate parental lines existed across populations by apply-
ing a principle of genetic distance*. Groups of genotypes with pairwise
Rogers’s distances below 0.03 were defined as duplicates and were
considered as the same genotype in subsequent analysis. As a result,
60 parental lines were merged into 28 groups, and 330 hybrids were
accordingly merged into 162 groups.

Curation of phenotypic data
Firstly, all data were screened for data-entry errors and outliers
by using the Bonferroni-Holm test to judge the residuals standardized
by rescaled median absolute deviation®*. Then, a two-step approach
was used to analyze the phenotypic data for the integrated panel. In
the first step, the phenotypic data within each environment was ana-
lyzed by fitting a linear mixed model including the effect of genotypes,
trials, replications nested within trials, and blocks nested within trials
and replications. Best linear unbiased estimations (BLUEs) of the
genotypes in each environment were obtained and served as the input
of the second step, in which the following linear mixed model
was fitted:

Vi =i+ G) + (1= 6) (i + Gy o) +5+ Ex +eg, (16)
where yj;; is the BLUE of the i-th genotype in the j-th population (Exp I,
Il or Il) evaluated in the k-th environment, ¢; is a dummy variable which
equals 1if the genotype is a parental line, and O if it is a hybrid, g, is the
mean of all lines, y,, is the mean of all hybrids, the effect of the i-th
genotype is denoted by G, ; (if itis a line) or G, ; (if it is a hybrid), s; is
the effect of the j-th population, E; is the effect of the k-th environ-
ment, and ey is the residual term. All effects except y1,, p1y; and s; were
assumed to be random. For any i and j, we assume that G, ; ~ N(0, 6?),
Gy,; ~ N(O,0), E; ~ N(0,0¢), and ey ~ N(O, 07 ), where o7, o} and
o are the variance components of the lines, hybrids and residuals,
respectively, and ogl « is the residual variance in the k-th environment
(i.e., we assume variance heterogeneity for the residuals in different
environments). Covariance between each pair of these variables was
assumed to be zero.

The significance of each variance component was tested
by the likelihood ratio test. The broad-sense heritability for the
lines and hybrids was calculated separately using the following for-
mulas:

2 2
2 oy 2 (9]

e = G2 52 /Ng Hiybria = o2+ 02 /Ne ' 17)
where 02 is the average residual variance across all environments, N |
and N¢  are the average numbers of environments in which the lines
and hybrids were evaluated, respectively.

Then, model (16) was fitted once again with slightly different
assumptions, namely G, ; and Gy ; were assumed to be fixed effects
instead of random, to obtain the cross-environment BLUEs of the
genotypic values for all hybrids and parental lines.

Similar analysis was performed separately within each population.
In this case, the model (16) was fitted without the effect s;.

Estimating the heritability of MPH
For the integrated panel, we first calculated the MPH value for each
hybrid within each environment based on the within-environment
BLUEs of all hybrids and parental lines. Then, the following linear
mixed model was fitted:

Ynpn, ik = Hwpr t Gwipn, i Swpnj + Even, & T € 18)
where yypyy, i is the MPH value of the i-th hybrid of the j-th population
in the k-th environment, uy,py is the mean across populations,
Gypn,; is the genotypic effect of the i-th hybrid, sypy ; is the effect of
the j-th population, Eypy 4 is the effect of the k-th environment, and
& is the residual. In the model, pypy and sypy ; are assumed to be
fixed and the other effects are random: Gypy; ~ N(O,0% yipy)
Eyipu,k ~ N(O, 0% \ipy), and g ~ N(0, 0% ), where 02 \py; and 0 oy
are the variance components of genotypes and environments, o7 is
the residual variance in the k-th environment.
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Then, the broad-sense heritability of MPH was estimated using the
following formula:

2
0G,MPH

2o
MPH= 5 5
0, mpn t0Z/Neu

19)

where o2 is the average residual variance across all environments and
Ng 1 is the average number of environments in which the hybrids were
evaluated, as in Eq. (17).

Similar analysis was performed separately within each population.
In this case, the model (18) was fitted without the effect sypy ; to
estimate the within-population heritability of MPH.

All linear mixed models in this and the previous subsection were
implemented using the package ASRemI-R 4.1%°,

Applying hQTL-ODS to the hybrid wheat data set

For each population (Exp I, II, and IlI) as well as the integrated panel,
the genomic and phenotypic data were combined for detecting hQTL
by using the hQTL-ODS model. The final number of parental lines,
hybrids and markers are shown in Supplementary Fig. 4. In particular,
there were 4885 hybrids and 545 parental lines with 907,534 high-
quality SNPs in the integrated panel. Since no clear population strati-
fication was observed (Supplementary Fig. 1), we didn’t include any
covariate in the model (i.e., setting Xa = 0 in Eqs.(7) and (8). P values
obtained in the LR test for heterotic effects were corrected for multiple
testing with the Bonferroni-Holm method®*. The genome-wide
threshold was determined to be P<0.05 after correction. Manhattan
plots were generated using the R package CMplot*’ (version 4.5.1), and
circular plots were generated using the R package circlize®® (ver-
sion 0.4.13).

After the genome-wide scan of heterotic effects, the following
approach was used to merge significant SNPs into hQTL. First, an
interval was determined for each significant SNP by investigating the
LD between the significant SNP and the flanking SNPs. On each side of
the significant SNP, the nearest genomic position where the LD drop-
ped below 0.3 was defined as the boundary of the interval. Next, the
defined intervals were merged into independent hQTL based on the
following criteria: (1) Two intervals were merged if they overlapped
with each other; (2) Two non-overlapping intervals were merged if the
distance between the two peak SNPs in the intervals was less than
10 Mb (determined by the average decay of LD across genome) and the
average LD between all SNPs in the two intervals was higher than 0.3.
The procedure was repeated until no more intervals could be merged,
and the resulting intervals were treated as independent hQTL. In each
hQTL, the most significant SNP was referred as the lead SNP.

The PVE of each hQTL was estimated by the following formula:

2
Aoy,

PVE, = (20)

3 2 2 2 3 2
DO, + ApOp + Apa0iyy + AppOiap + AppOpp *+ 0

where the variance components were estimated by fitting the lead SNP
of the hQTL in model (8), A. = mean(diag(K.)) — mean(K.) (* denotes
D, AA, AD or DD) and A;=mean(diag(H;)) — mean(H,). Note that
multiplying the variance components with the parameter A yields the
variance explained by the corresponding genetic values®.

In additional to the test for heterotic effects, the dominance
effects of all markers were tested using model (10) in the integrated
panel. The same procedure as described above was used to merge
significant SNPs into dQTL. Moreover, for each hQTL in the integrated
panel, the digenic epistatic interaction effects between the SNPs in the
hQTL and all SNPs across genome were tested using models (11)-(14).

Simulation study

A simulation study was performed to compare the performance of
hQTL-ODS and hQTL-MSS in terms of statistical power and FPR. The
simulation was based on the genomic data of Exp 1. To reduce the
computational load, we randomly sampled a subset of individuals and
markers. As a result, the data used for simulation consisted of 90
parental lines (75 females and 15 males) and their 1000 hybrid pro-
genies with 5000 SNPs.

Five different scenarios were considered (Supplementary Data 2).
In each scenario, one marker was randomly sampled as hQTL and its
PVE was fixed as 2.5%. The heritability was fixed as 0.5. In Scenario 1, the
heterotic effect was contributed by cumulative small epistatic effects.
One marker from each of the remaining 20 chromosomes (excluding
the one on which the hQTL was located) was randomly sampled. The
20 markers interacted with the hQTL, and the pattern of interaction
(additive-by-additive, additive-by-dominance, dominance-by-additive,
and dominance-by-dominance) was randomly assigned. The PVE for
each of the 20 epistatic interaction effects was fixed as 0.5%. Scenario 2
is similar to Scenario 1, but only five markers interacted with the hQTL
and the PVE for each of the five epistatic effects was 2%. In Scenario 3,
the significant heterotic effect was due to cumulative small dominance
and epistatic effects. Thus, the only difference between Scenario 3 and
1is that one epistatic effect was replaced by the dominance effect of
the hQTL itself. Thus, the PVE for the dominance effect of the hQTL
and for each of the 19 epistatic interaction effects was 0.5%. Scenario 4
is similar to Scenario 3, but only four markers interacted with the
hQTL. The PVE for the dominance effect of the hQTL and for each of
the four epistatic effects was 2%. In Scenario 5, the significant heterotic
effect was solely due to the dominance effect of the hQTL with 2.5%
PVE. Therefore, no epistatic interaction effect was simulated in this
scenario.

The simulated phenotypic data (MPH values of 1000 hybrids)
were produced by the following steps:

1) Slmulatmg the genetic background effect. Assuming that
OZD oAA Opp = oDD 1, we randomly sampled vectors
g ~ N(O, KDoD)2 g ~ NO, KAAOAA) g ~ N, KADOAD) and
g ~ N(0,Kppopp), where Kp, Kaa, Kyp and Kpp were defined pre-
viously (after Eq. 7). Then, the vector of genetic background effects
was U=gp +8xs +8ap *+ 8pp- Since the heritability was fixed as 0.5 and
the PVE of hQTL was 2.5%, we knew that the PVE of the genetic back-
ground effects should be 47.5%. Thus, the total phenotypic variance V,
was calculated as V,=5(u)/0.475, where S(-) denote the sample
variance.

2) Simulating the hQTL effect h; using the following formula
(reformulated from Eq. 4):

h; Tlsd+— ZT( )aa+ZT( )ad+ZT(

j€Qua JeQug JeQu

m;)day +j;2; T(I; o)) dd,
@n

where s, =0 for scenarios1and 2, and s, =1for scenarios 3,4 and 5; Q,,,
Q.4 Q4 and Qgq are the subsets of markers that were sampled to
interact with the hQTL with the assigned pattern. Note that each of
them could be the empty set, depending on the scenario and the result
of random assignment. For example, all of them were empty sets in
scenario 5 because no epistatic effects were simulated. To simplify the
description, we denote by x a component effect (i.e., x is d;, aay, adj;,
day or ddy), its coefficient in Eq. (21) by ¢, (e.g., ¢, =1T(m; 0 my;) for
X= aa i) and its PVE by P,. Thus, P, =0.5% in scenarios 1 and 3, P, =2%
in scenarlos 2 and 4, and P,=2.5% in scenario 5. Then, the variance
explained by x is var(c,x) =var(cx)x2, which should be V, - P,. Thus,

the effect size x was calculated as x=,/V,-P,/var(c,). After all

component effects were computed, they were summed up to produce
h; by Eq. (21). Then, the PVE of h; is S(h;)/V,, but this value is not
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guaranteed to be the predetermined value (i.e., 2.5%), nor is it neces-
sarily equal to the sum of all P,, because there exists covariance
between the coefficients c,. Practically, we changed the covariance
structure by repeating the random sampling of the markers that
interact with the hQTL until S(h;)/V, equaled 2.5%.

3) Simulating the residual effect. Since the heritability was fixed as
0.5, the residual variance is &.=0.5V,. Thus, we randomly sam-
pled & ~ N(O,TT'G2).

4) Generating the simulated MPH values y according to Eq. (8),
i.e., y=h;+u+&. Note that for simplicity, we didn’t simulate any cov-
ariate effects.

We applied hQTL-ODS and hQTL-MSS to each simulated data
set and compared the results. Since only one hQTL was simulated
in each data set, the statistical power in each scenario was
estimated as the proportion of data sets in which the marker simulated
as hQTL was successfully detected. The FPR was estimated as the
average proportion of null markers (i.e., 4999 markers that were
not simulated as hQTL) that were incorrectly identified as
significant across 100 simulations. Note that we used simple criteria
based on markers instead of regions, as LD between markers was in
most cases not high, given that only 5000 markers were used for
simulation.

We investigated the association between the power of detecting
hQTL and the heterozygosity. In each scenario, the 100 simulated
hQTL were classified into two categories according to whether the
heterozygosity was above 0.5 or not. In each category, they were fur-
ther divided into two classes, depending on whether they were
detected by hQTL-ODS or not. Then, Fisher’s exact test was performed
to assess the significance of association.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw sequence data collected in this study have been deposited at the
European Nucleotide Archive under Project PRIEB48738 (https://www.
ebi.ac.uk/ena/browser/view/PRJEB48738, parental lines from Exp I,
released in a previous study®®) and PRJEB82869 (https://www.ebi.ac.
uk/ena/browser/view/PRJEB82869, parental lines from Exp II and III).
VCF files for whole WGS data are available from European Variation
Archive under project PRJEB87554. The phenotypic data of all parents
and hybrids, as well as the simulated data sets are provided in GitHub
(https://github.com/Ligl0226/hQTL-ODS/). The genotypic and phe-
notypic data of the published maize dataset® used in this study were
accessed via the CNGBdb FTP public repository (https://ftp.cngb.org/
pub/CNSA/data3/CNP0001565/zeamap/99_MaizegoResources/01_
CUBIC related/). Source data are provided with this paper (https://doi.
org/10.6084/m9.figshare.30258319).

Code availability

The hQTL-ODS model was implemented as easy-to-use R functions®
available at https://github.com/Ligl0226/hQTL-ODS/ and https://doi.
org/10.5281/zenodo.17243742.
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