

Optimized protein-water interactions and torsional refinements yield balanced atomistic protein force fields

Received: 31 January 2025

Tien Minh Phan ¹✉, Priyesh Mohanty ¹ & Jeetain Mittal ^{1,2,3}✉

Accepted: 20 October 2025

Published online: 26 November 2025

 Check for updates

All-atom molecular dynamics (MD) simulations based on physics-based force fields serve as an essential complement to experiments for investigating protein structure, dynamics, and interactions. Despite significant advances in force field parameterization, achieving a consistent balance of molecular interactions that stabilize folded proteins while accurately capturing the conformational dynamics of intrinsically disordered polypeptides in solution remains challenging. In this work, we introduce two refined force fields which incorporate either a selective upscaling of protein-water interactions or targeted improvements to backbone torsional sampling: (i) amber ff03w-sc, and (ii) amber ff99SBws-STQ'. Extensive validation against small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy observables revealed that both force fields accurately reproduced the chain dimensions and secondary structure propensities of IDPs. Importantly, both force fields also maintained the stability of single-chain folded proteins and protein-protein complexes over microsecond-timescale simulations. Overall, our refinement strategies result in transferable force fields with improved accuracy for simulating diverse protein systems, ranging from folded domains to IDPs and protein-protein complexes.

Atomistic molecular dynamics (MD) simulations based on physics-based energy functions referred to as “force fields” are now an invaluable and complementary tool to experiments in the investigation of protein structure, dynamics, and interactions associated with cellular processes^{1,2}. With significant advances in simulation hardware and the widespread availability of conformational sampling algorithms, accessing functionally relevant biomolecular dynamics and interactions that occur on the multi-microsecond to sub-millisecond timescale are now routinely feasible³. Importantly, these advances have also enabled a rigorous evaluation of force field accuracy against experimental measurements with regard to their propensity to populate various secondary structure classes and the strength of non-bonded interactions between various chemical groups⁴.

After nearly two decades of force field parameterization against crystallography, spectroscopic, and ab initio calculations, modern force fields belonging to the four major families—AMBER, CHARMM, OPLS, and GROMOS—succeeded in providing a reasonable description of the structure and dynamics of folded proteins but performed poorly for short peptide ensembles in solution^{5,6}. At present, a major emphasis and goal of modern atomistic force field development is the parameterization of transferable models which can simultaneously describe the structural stability of folded domains while capturing the transient secondary structure and global chain dimensions of intrinsically disordered polypeptides^{7–11}. A major step towards arriving at these goals involved the extensive comparison of simulation ensembles against nuclear magnetic resonance (NMR) spectroscopy observables (chemical shifts and scalar couplings) for weakly structured

¹Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA. ²Department of Chemistry, Texas A&M University, College Station, TX, USA. ³Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.

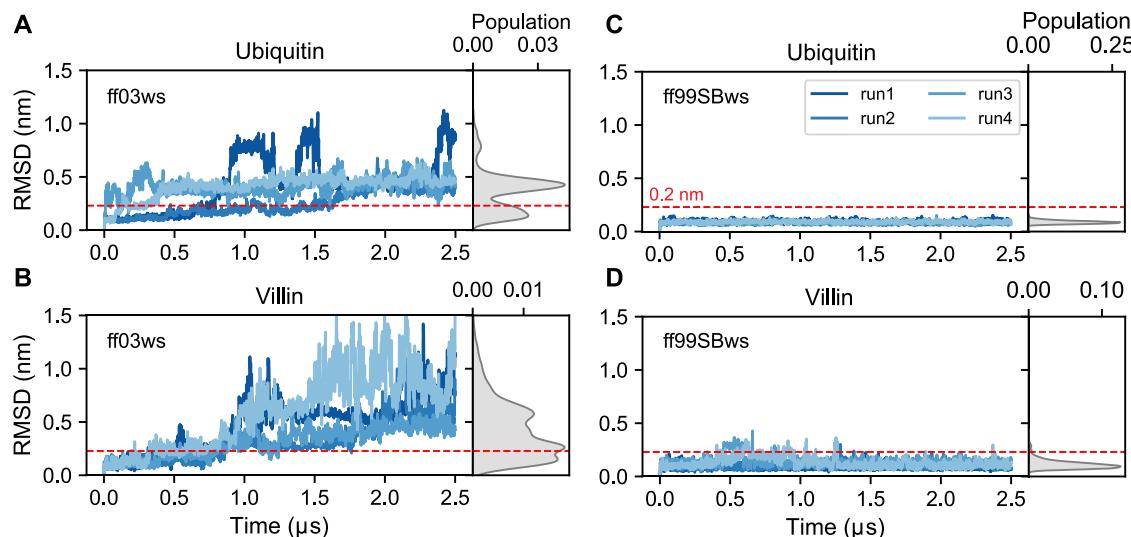
✉ e-mail: tienminhphan@tamu.edu; jeetain@tamu.edu

peptides in solution, first carried out by Best and Hummer¹². Based on these observations, global empirical corrections were applied to either ϕ or ψ backbone torsional potential for non-glycine/proline residues to adjust the helix-coil or PPII- β conformational equilibria, which led to amber ff99SB*/ff03*/ff99SB ϕ ^{13,14} and charmm22*/36^{15,16} force fields, which achieved an improved balance between the secondary structure classes and successfully folded both α -helical and β -sheet proteins. Notably, a similar strategy based on comparison with scalar couplings resulted in accurate sampling of side chain rotamers for isoleucine (I), leucine (L), aspartate (D), and asparagine (N) residues in ff99SB, giving rise to ff99SB*-ILDN^{5,15}.

Despite extensive reparameterization of backbone and side chain torsion parameters, the widespread use of primitive three-site water models (e.g., TIP3P, SPC/E) consistently led to weak temperature-dependent cooperativity for protein folding¹⁷, overly collapsed structural ensembles for IDPs^{6,18,19}, and excessive protein–protein association across the major force field families²⁰. To remedy issues arising from weak protein–water interactions, subsequent efforts involved pairing protein force fields with accurate four-site (rigid) water models^{21–24}. The adoption of these improved water models was a key step toward rebalancing protein–water interactions and led to improved modeling of IDP ensembles. Among these efforts, the ff99SB*/ff03* force fields were combined with the TIP4P2005 water model, along with additional upscaling (10%) of protein–water interactions and a readjustment of the global correction for ψ backbone torsion angle applied to maintain the helix-coil equilibrium for model peptides²⁵. These modifications resulted in the ff99SBws/ff03ws force fields, which showed considerable improvements in global and structural properties computed for disordered polypeptides (from smFRET and SAXS) and reduced excessive protein–protein association^{25–27}. These efforts were soon followed by a reparameterization of charmm36 (charmm36m) to alleviate its tendency to form left-handed α -helices, including the adoption of a modified TIP3P water with additional LJ parameters on its hydrogen atoms to enhance protein–water interactions and improve the conformational description of IDPs²⁸. Robustelli et al. paired ff99SB-ILDN with a modified TIP4P-D water model and a Lennard-Jones (LJ) parameter modification to increase the strength of backbone hydrogen bonding, resulting in ff99SB-disp, which exhibited state-of-the-performance for both folded proteins and IDP ensembles across a wide range of test systems chosen in the study²⁹. Along similar lines, a version of ff99SB optimized to reproduce the residue-specific torsional angle distributions observed for the PDB coil library, RSFF2³⁰, yielded highly accurate thermodynamics of protein folding when coupled with TIP4P-D water (RSFF2+)³¹. Other popular variants of ff99SB, such as ff14SB/19SB^{32,33}, also alleviate excessive protein–protein association and yield more accurate IDP conformational ensembles when paired with four-site water models such as TIP4P2005³⁴ and OPC³⁵. As an alternative to the adoption of computationally expensive four-site water models, Yoo and Aksementiev performed a reparameterization of atom pair-specific LJ parameters in charmm/amber force fields against osmotic pressure data to mitigate the over-stabilization of salt bridges and hydrophobic interactions in TIP3P water^{36–38}.

Despite steady progress towards the development of “balanced” force fields over the last decade, numerous independent investigations reported discrepancies pertaining to certain IDP sequences, folded protein stability, and protein–protein association. For instance, ff03ws significantly overestimated (>16%) the chain dimensions of the RS peptide compared to experiment¹⁸. Further, replica-exchange simulations of WW domains indicated that ff03ws strongly destabilized the folded state³⁷. Recent all-atom MD studies of Fused in Sarcoma (FUS), a multidomain RNA-binding protein (526 residues) with long disordered regions, also captured the structural instability of its folded RNA recognition motif (RRM) domain over the microsecond simulations with ff03ws^{39,40}. Two independent studies that investigated the

suitability of charmm36m, ff19SB-OPC, and ff99SB-disp revealed discrepancies pertaining to the solubility of $\text{A}\beta_{16-22}$ peptides⁴¹ and ubiquitin self-association⁴², for all three force fields. These studies revealed that ff99SB-disp overestimates the strength of protein–water interactions, failing to predict β -aggregation for $\text{A}\beta_{16-22}$ and weak dimerization (millimolar affinity) of ubiquitin. In contrast, charmm36m correctly predicted the aggregation behavior of $\text{A}\beta_{16-22}$ wild type and two mutants, while ubiquitin self-association was found to be too strong. ff19SB-OPC exhibited intermediate behavior, giving rise to only a small population of β -aggregates for $\text{A}\beta_{16-22}$ but successfully predicted weak dimerization of ubiquitin through the known interacting surfaces. To address issues related to weak protein–protein association for ff99SB-disp, Piana et al. recently proposed a reparameterization of both dihedral parameters and non-bonded interactions against osmotic pressure data⁴³. While the reparameterized force field, referred to as DES-amber, increased the stability of protein complexes, the association free energies were still underestimated compared to experiment for some systems. Collectively, the above findings indicate that the optimal balance between protein–protein and protein–solvent interactions among modern classical force fields is yet to be fully realized.


In this work, we re-evaluate the accuracy and transferability of two Amber force fields, ff03ws and ff99SBws²⁵, in describing the structural dynamics of both folded proteins and IDPs. We introduce two refined variants: ff03w-sc, which applies selective –water scaling to improve folded protein stability while maintaining accurate IDP ensembles, and ff99SBws-STQ', which incorporates targeted torsional refinements of glutamine (Q) to correct overestimated helicity in polyglutamine tracts. Extensive validation against NMR and SAXS data shows that both force fields accurately reproduce IDP dimensions and secondary structure propensities, while also maintaining the stability of folded proteins and protein–protein complexes. Together, these refinements yield balanced, transferable force fields for simulating diverse protein systems.

Results

Stability of folded proteins

Recent efforts to develop “balanced” force fields—achieved by modifying protein–water van der Waals interactions or re-parameterizing water models to incorporate stronger dispersion forces—have significantly improved the prediction of global chain properties for many intrinsically disordered proteins, while maintaining essential local structural features^{9,23,25,26,29}. However, these advancements come with a potential drawback: the strengthened protein–water interactions to better represent the IDP ensemble may inadvertently compromise the conformational stability of folded proteins^{23,25,29,44}. To evaluate this potential issue with amber ff03ws and ff99SBws force fields, we investigated the stability of two model folded proteins: Ubiquitin (PDB ID: 1D3Z)⁴⁵, a highly conserved and stable protein with well-characterized conformational dynamics across the picosecond–millisecond timescale^{46,47}, and the Nle-double mutant of the Villin headpiece (HP35) (PDB ID: 2F4K)⁴⁸, an ultrafast-folding protein^{48,49}.

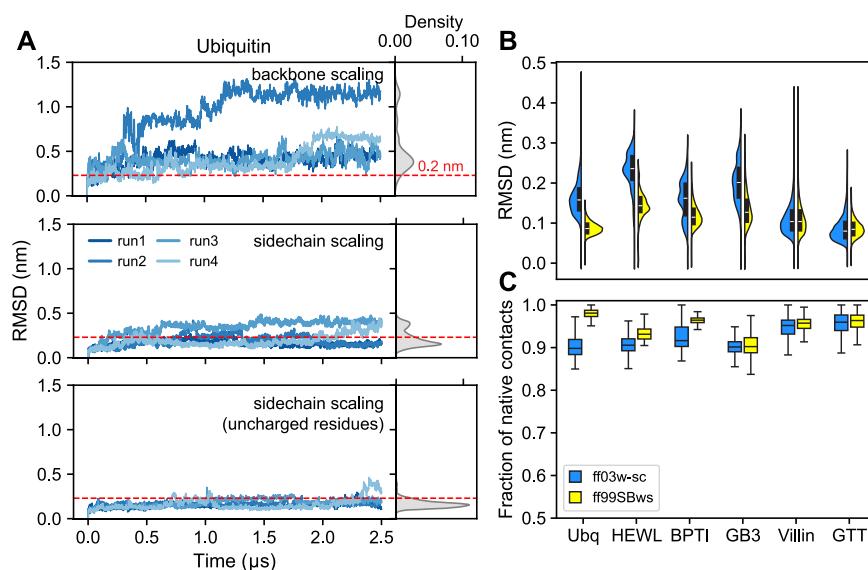
Four independent simulations (2.5 μ s each) performed using ff03ws revealed significant instability for both proteins. For Ubiquitin, the most populated state deviated by approximately 0.4 nm in backbone root mean square deviation (RMSD) from the X-ray crystal structure (excluding the flexible C-terminal tail, residues 71–76), with local unfolding of the α -helix observed in one replica as indicated by per-residue root mean square fluctuation (RMSF) analysis (Supplementary Fig. 1A) and visualized over the trajectory movie (Supplementary Movie 1). Similarly, simulations of Villin HP35 exhibited pronounced structural deviations from the native state with unfolding events observed after 1 μ s (Fig. 1B, Supplementary Fig. 1B, Supplementary Movie 1). In contrast, the ff99SBws force field effectively maintained the structural integrity of both Ubiquitin and Villin HP35

Fig. 1 | Stability of folded proteins. Analysis of backbone RMSD for Ubiquitin and Villin headpiece (HP35) simulated with the Amber ff03ws (A, B) and ff99SBws (C, D) across four independent simulations. The red dashed line indicates an RMSD of

0.2 nm, serving as the upper reference limit for conformational stability. Source data are provided as a Source data file.

over the simulation timescale (Figs. 1C, D and S1). For Ubiquitin, RMSD and RMSF values remained consistently low (<0.2 nm) across all four independent simulations (Fig. 1C, Supplementary Fig. 1A, Supplementary Movie 2). Villin HP35 exhibited slightly larger structural fluctuations, with minor conformational rearrangements in the C-terminus (residues 30–35); however, the overall RMSD and RMSF remained predominantly below 0.2 nm (Figs. 1D and S1B, Supplementary Movie 2). This comparative analysis reveals that the ff99SBws force field effectively maintains native conformational states of both Ubiquitin and Villin HP35, whereas ff03ws exhibits notable destabilization with significant conformational rearrangements, indicating its potential limitations for microsecond-timescale MD simulations of folded proteins.

Modifications to the protein–water scaling scheme in Amber ff03ws


In folded proteins, structural stability is maintained through a combination of hydrogen bonding involving primarily the polypeptide backbone, and hydrophobic/electrostatic interactions mediated by side chain atoms. To investigate the relative contributions of the backbone and side chains to Ubiquitin’s stability, we initially tested two modified variants of the ff03ws force field. These variants selectively scaled protein–water LJ interactions by 10% (as described by Best et al.²⁵) for either backbone heavy atoms (backbone scaling) or side chain atoms (side-chain scaling, excluding glycine). Similar to the original ff03ws, backbone scaling resulted in increased structural deviations (Fig. 2A, Supplementary Fig. 2C, Supplementary Movie 3), indicating a decrease in conformational stability. In contrast, side-chain scaling significantly improved the overall structural integrity of the simulation ensemble with respect to the initial structure, with RMSD fluctuations between 0.2 and 0.5 nm (Fig. 2A, Supplementary Movie 3), and RMSF values remained largely below 0.2 nm except for the disordered C-terminal region.

Charged residues are crucial for the regulation of protein stability, as they can engage in electrostatic interactions with both solvent and other residues through intra-protein salt bridges⁵⁰. We therefore strategically excluded all charged residues (Lys, Arg, Asp, and Glu) from our side-chain scaling approach for several reasons. First, the parent ff03 already demonstrates robust performance in modeling salt-bridge interactions, with equilibrium association constants in good agreement with experiment, irrespective of the water model⁵¹.

Second, the ff03w force field, derived from ff03* paired with the optimized TIP4P/2005 water model, yields charged side-chain hydration free energies that closely approximate experimental measurements⁵². Third, within our side-chain scaling framework, charged residues—which comprise approximately 30% of ubiquitin—exhibited notable deviations in solvent-accessible surface area (SASA) relative to the experimental structure (Supplementary Fig. 2). Excluding charged residues from the side-chain scaling scheme led to substantially enhanced ubiquitin stability, characterized by RMSD values consistently below 0.2 nm and reduced the solvent accessibility of charged residues (Fig. 2A, Supplementary Fig. 2C, D, Supplementary Movie 3). These improvements indicate a more stable folded conformation. This final variant, which selectively scales only uncharged side chains, is referred to as ff03w-sc and results in substantially enhanced stability for Ubiquitin.

To assess the robustness of this modified force field, we applied it to the folded state of Villin HP35, which had previously unfolded in simulations using the original ff03ws. With ff03w-sc, Villin HP35 exhibited substantially reduced structural fluctuations, with backbone RMSD and RMSF values consistently remaining below 0.2 nm (Supplementary Fig. 3A, Supplementary Movie 4), indicating improved structural stability. We further tested ff03w-sc on four additional folded proteins—GB3 (PDB ID: 1P7E)⁵³, BPTI (PDB ID: 5PTI)⁵⁴, HEWL (PDB ID: 6LYZ)⁵⁵, and GTT variant of the WW domain (PDB ID: 2F21, a small β -sheet)⁵⁶—known to be destabilized by ff03ws²⁹. While the backbone RMSD distributions for these proteins were relatively broad, they remained centered around 0.2–0.3 nm (Fig. 2B), suggesting a moderate degree of flexibility with higher RMSF values primarily localized to loop regions (Supplementary Fig. 3B–F). Overall, the proteins retained native-like conformations throughout the μ s-long simulations.

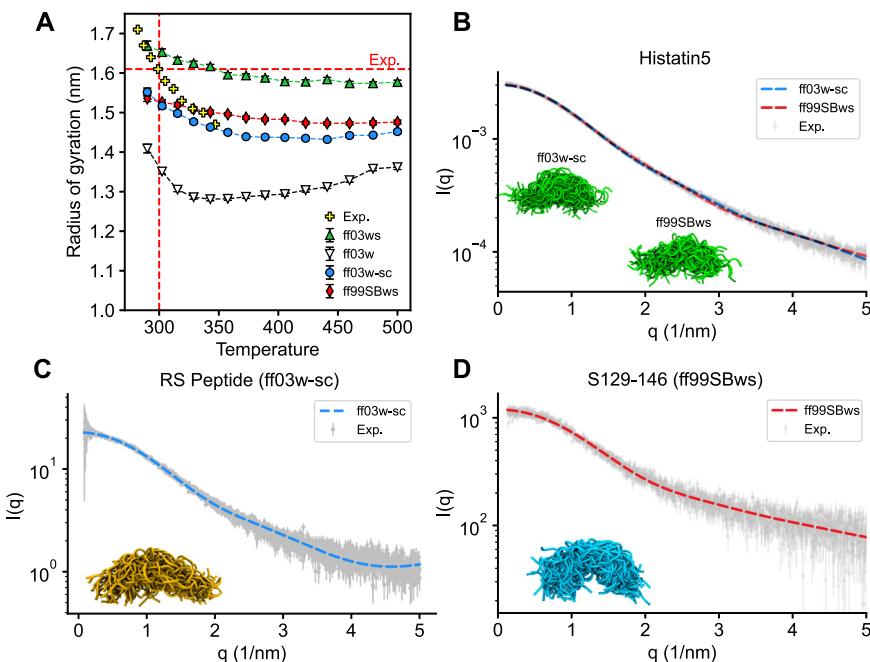
To provide a more rigorous assessment of structural stability, we analyzed the fraction of native inter-residue contacts, following the approach by Best et al.⁵⁷, for all six proteins using both ff03w-sc and ff99SBws. As shown in Fig. 2C and Supplementary Fig. 4, both force fields maintained high native contact fractions (>90%) across all systems. Interestingly, simulations using the ff99SBws force field consistently exhibited not only lower RMSD values (<0.2 nm) but also higher median fractions of native contacts with tighter distributions (Fig. 2B, C), indicating greater stability and closer adherence to native structures. Notably, ff99SBws also employs a 10% increase in

Fig. 2 | Stability of folded proteins using ff03w-sc and ff99SBws force fields.

A Time-dependent backbone RMSD of ubiquitin using three test scaling schemes derived from ff03ws: backbone scaling, side chain scaling for all non-glycine residues, and the final ff03w-sc scheme with side chain scaling for uncharged residues only. B Violin plots showing the distribution of backbone RMSD values for six folded proteins—Ubiquitin (Ubq), HEWL, BPTI, GB3, Villin HP35, and GTT variant of WW domain—simulated using ff03w-sc and ff99SBws. Each distribution combines

framewise RMSD values from $n = 4$ independent simulations per system; the inner box marks the median and interquartile range (IQR). C Box plots of the fraction of native contacts retained over the course of simulations, calculated using the method of Best et al.⁵⁷. Each box spans the IQR (25th–75th percentile), the center line indicates the median, and whiskers extend to $1.5 \times$ IQR; minima and maxima within this range are shown, and outliers were omitted. Each system includes $n = 4$ independent simulations. Source data are provided as a Source data file.

protein–water interaction strength for all protein atoms, similar to the approach used in the original ff03ws²⁵. Secondary structure analysis further confirmed that both α -helical and β -sheet content remained stable with minimal temporal variation throughout the simulations for all proteins (Supplementary Figs. 5 and 6). These findings demonstrate that ff03w-sc substantially improves protein structural integrity over microsecond timescales compared to the original ff03ws, while ff99SBws shows more robust performance in maintaining folded protein stability across a diverse set of test systems.


To further assess force field performance on folded proteins, we investigated their ability to capture backbone dynamics on the ps-ns timescale by calculating the amide order parameters (S^2) for ubiquitin and compared them to the NMR-derived values (Supplementary Fig. 7). While the refined ff03w-sc force field successfully stabilized the overall structure of ubiquitin, it exhibited the known tendency of ff03-based force fields to overestimate backbone flexibility, particularly in loop regions where simulated S^2 values were consistently lower than experimental measurements (Supplementary Fig. 7A). Similar challenges have also been observed for polarizable models, where explicit inclusion of electronic polarization improves local electrostatics but does not necessarily enhance the accuracy of flexible loop dynamics, underscoring the importance of balancing bonded and non-bonded interactions⁵⁸. In contrast, ff99SB-based force fields demonstrated better performance, yielding S^2 order parameters in excellent agreement with NMR across the entire protein and indicating more accurate descriptions of both rigid and flexible regions (Supplementary Fig. 7B). These results highlight the differential performance of the two force field families in capturing local backbone dynamics.

Chain dimensions of IDPs

To evaluate the suitability of the force fields in simulating IDPs, we determined the temperature-dependent radius of gyration (R_g) for a 34-residue fragment of Cold-shock protein (CspM34) using parallel tempering in a well-tempered ensemble (PT-WTE) to enhance conformational sampling^{59,60}. Fig. 3A presents the R_g of CspM34 as a

function of temperature for ff03w-sc and ff99SBws, compared to two reference force fields, ff03w and ff03ws. The experimental R_g estimate for CspM34 at 300 K, derived from FRET measurements using a Gaussian chain model^{61,62}, is approximately 1.6 nm. Across the temperature range, ff03ws consistently maintained extended conformations, yielding an R_g value of 1.65 ± 0.01 nm at 300 K, which is marginally closer to the experimental measurement (~1.6 nm) than the other force fields. In contrast, ff03w produced more compact structures, with an R_g of 1.35 ± 0.1 nm at 300 K and decreasing further at elevated temperatures. Both ff03w-sc and ff99SBws yielded intermediate chain dimensions, with R_g values of 1.52 ± 0.01 nm and 1.53 ± 0.01 nm at 300 K, respectively.

We further investigated the influence of side-chain scaling on the conformational dimensions of CspM34. Variants using 10% increase in side-chain scaling, both with and without charged residues, produced comparable R_g values (1.51 ± 0.01 nm and 1.52 ± 0.01 nm at 300 K, respectively), although excluding charged residues led to slightly more collapsed conformations at higher temperatures (Supplementary Fig. 7A). These results suggest that the side-chain scaling of uncharged residues does not substantially alter the chain dimensions of CspM34. We note that 10% increase in protein side chain–water interactions used in ff03w-sc represents a near-optimal balance between maintaining folded protein structural stability and preventing over-collapse of disordered proteins. To further illustrate this trade-off, we also tested a stronger 15% scaling factor. While this higher affinity can yield more realistic chain dimensions for some disordered proteins, it also leads to the destabilization of folded proteins (Supplementary Fig. 8A–C). Therefore, although 10% scaling may not always yield the closest agreement with experimental data for every individual system, it provides reliable transferability across diverse protein systems. Based on this analysis, we adopted 10% scaling as the final choice for ff03w-sc throughout this study. Notably, this optimal scaling is specific to the base force field, as applying the same 10% side-chain adjustment to ff99SBws resulted in overly collapsed conformations of CspM34 (Supplementary Fig. 8D).

Fig. 3 | Chain dimensions of IDPs. **A** Radius of gyration of CspM34 as a function of temperature. Results are shown for ff03ws, ff03w-sc, ff99SBws, and ff03w, respectively. Yellow plus signs indicate values estimated from FRET measurements⁶². The experimental value at 300 K is indicated by the red dashed line. **B–D** SAXS profiles of Histatin5, RS Peptide, and S(129–146) peptide. The

experimental data (gray), taken from Saga et al.⁶³ for Histatin5, Rauscher et al.¹⁸ for RS peptide, and Koren et al.⁶⁴ for S(129–146), are overlaid with the simulated scattering profiles. The structure inset displays the conformational ensembles. Source data are provided as a Source data file.

To further assess the accuracy of CspM34 ensembles generated by ff03w-sc and ff99SBws, we compared their SAXS profiles to experimental data. As an initial validation system, we selected Histatin5, a 25-residue peptide enriched in hydrophilic amino acids (Supplementary Tables 1 and 2), which are known to promote conformational disorder compared to hydrophobic residues that are typically found in stable protein cores. Using PT-WTE simulations, we computed the SAXS profiles from the 302 K replica. Figure 3B illustrates the comparison between experimental and simulated SAXS scattering curves for Histatin5. Both force fields demonstrated excellent agreement with experimental data, within error margins. Notably, the R_g values derived from the experimental SAXS profile⁶³ ($13.9 \pm 0.1 \text{ \AA}$) closely matched the predictions from both ff03w-sc and ff99SBws ensembles (13.8 \AA).

Further validation was performed using the RS peptide and the fragment S(129–146) of the NFLt sequence (Supplementary Tables 1 and 2). Previous studies reported that ff03ws overestimated the R_g of RS peptide by ~16%¹⁸. In contrast, ff03w-sc produced SAXS profiles in excellent agreement with experimental measurements (Fig. 3C), yielding a theoretical R_g value of $12.7 \pm 0.1 \text{ \AA}$ compared to the experimental value of $12.6 \pm 0.1 \text{ \AA}$. For the S(129–146) fragment⁶⁴, which features alternating charged blocks that potentially facilitate salt-bridge interactions, the ff99SBws ensemble predicted a SAXS profile that aligned well with experimental data (Fig. 3D). The predicted R_g value of $12.8 \pm 0.1 \text{ \AA}$ agrees closely with the experimental measurement of $12.9 \pm 0.1 \text{ \AA}$. Although ff99SB-based force fields were previously reported to overestimate salt-bridge strength⁵¹, this effect appears negligible for the S(129–146) fragment. Its moderate net negative charge (−4) and the alternating pattern of acidic (E/D) and basic (K) blocks likely promote transient rather than persistent salt bridges, while the fragment's inherent conformational flexibility potentially further prevents their over-stabilization.

Collectively, these results demonstrate that both ff03w-sc and ff99SBws achieve robust agreement with experimental R_g values and

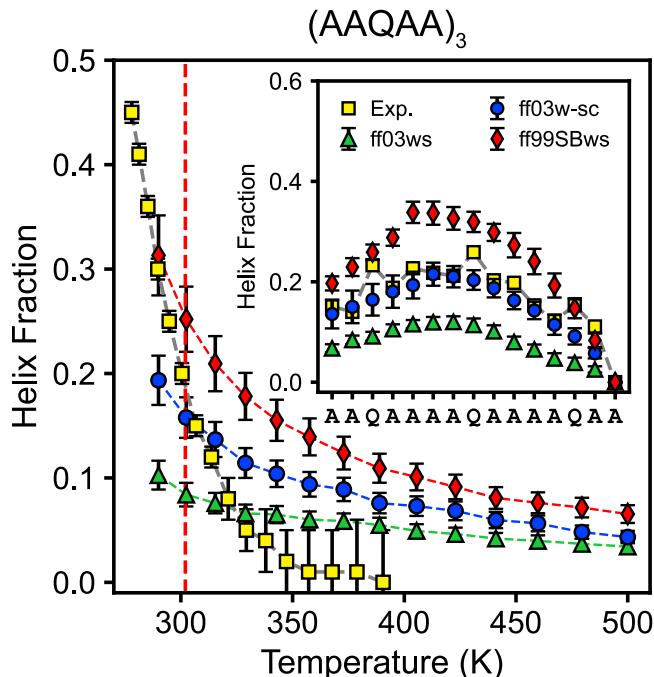
SAXS profiles, thereby establishing their reliability in modeling the chain dimensions of small IDPs.

α-helix formation in Ace-(AAQAA)₃-NH₂

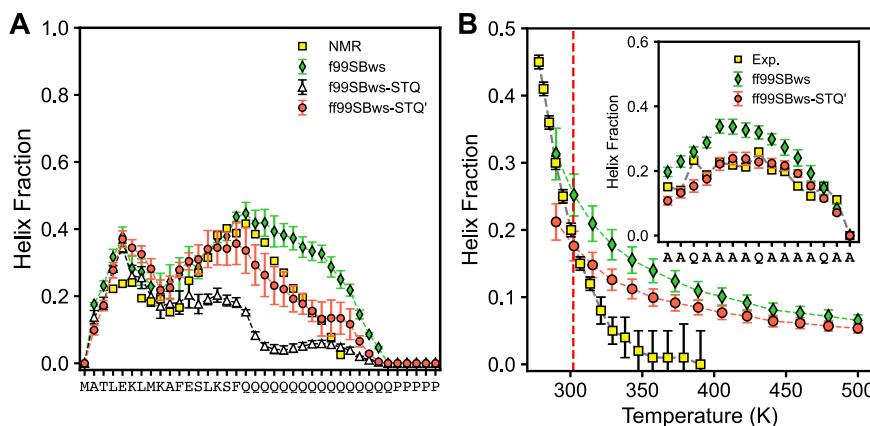
While accurately sampling chain dimensions in disordered peptides is crucial, it is equally important to ensure that modifications to protein–water interactions do not compromise the stability of folded motifs, such as α-helices, which may be transiently populated in unfolded states and IDPs such as the TDP-43 low-complexity domain⁶⁵. To assess this balance, we investigated a 15-residue helix-forming peptide–Ace-(AAQAA)₃-NH₂, which exhibits approximately 30% helix content at 300 K and has a well-characterized temperature-dependent helix propensity from previous NMR studies and has become an established reference system for force field validation⁶⁶. Fig. 4 illustrates the temperature-dependent helix propensity computed using ff03ws, ff03w-sc, and ff99SBws force fields. ff03w-sc, incorporating scaled side chain–water interactions, demonstrated enhanced helix stability compared to ff03ws and accurately reproduced a residual helix fraction closely aligned with NMR data at 300 K. In contrast, ff99SBws consistently overestimated the α-helical content across the temperature range and predicted elevated helicity for most residues (Fig. 4, inset). The results highlight the significant improvement achieved by ff03w-sc in stabilizing α-helix formation of the (AAQAA)₃ peptide, while highlighting the need for further refinements to ff99SBws in order to accurately model the residual helicity in disordered states.

Refinement of glutamine backbone torsion parameters in ff99SBws-STQ

Recognizing the limitations of existing force fields in accurately capturing amino acid-specific conformational preferences across diverse sequence contexts, we previously introduced targeted corrections to ff99SBws, which lowered the backbone torsion potential parameter (k_ϕ) for serine (S), threonine (T), and glutamine (Q) from 2.0 kJ/mol to 1.0 kJ/mol, thereby decreasing the bias toward helical structures⁶⁷. This


refined force field—ff99SBws-STQ, substantially improved the prediction of residue-level α -helical populations in all-atom simulations of low-complexity domain (LCD) fragments derived from TAR DNA-binding protein 43 (TDP-43), FUS, and the C-terminal heptad repeat domain of RNA Polymerase II (RNA Pol II)⁶⁷. However, simulations of the N-terminal fragment of Httex1, comprising N17 (17 amino acids), Q16 (polyglutamine), and a minimal stretch of five prolines (P5), revealed persistent discrepancies with regard to residue-level helicity in the polyQ region: ff99SBws exhibited substantial overestimation, while ff99SBws-STQ showed significant underestimation (Fig. 5A). To

address this issue, we revisited the torsion correction for glutamine and tested intermediate k_ψ values (between 1.0 and 2.0 kJ/mol). We found that $k_\psi = 1.50$ kJ/mol effectively corrected the bias, accurately reproducing experimental helicity in the polyQ region, with a root mean square error (RMSE) of 5.1% between simulated and experimental helix fractions (Supplementary Table 3). The revised force field, designated ff99SBws-STQ', not only resolved the helicity discrepancies in the polyQ region but also reproduced the experimental helix fraction of the (AAQAA)₃ peptide across a wide temperature range, showing excellent agreement with NMR measurements at 300 K (Fig. 5B).


To further establish the reliability of ff99SBws-STQ', we performed a comprehensive set of validation simulations on a diverse set of both folded and disordered proteins. First, we assessed its ability to maintain the stability of folded states using the same set of six well-characterized proteins tested for ff03w-sc and ff99SBws in this study (Fig. 2B, C). These simulations yielded stable structural ensembles with RMSD values typically below 0.2 nm and a high preservation of native inter-residue contacts (>90%), comparable to those obtained with ff99SBws (Supplementary Fig. 9A, B). We then benchmarked ff99SBws-STQ' against experimental SAXS data for the three disordered sequences: Histatin5, RS peptide, and the S(129–146) fragment. The simulated SAXS profiles closely matched experimental scattering curves (Supplementary Fig. 9C–E), with predicted R_g values in excellent agreement with experimental measurements (Supplementary Table 4). Additionally, we evaluated $^3J_{\text{HN-HA}}$ scalar couplings for the RS peptide using multiple Karplus parameter sets (original Karplus⁶⁸, Vogeli et al.⁶⁹, DFT1⁷⁰, DFT2⁷⁰, and Larson et al.⁷¹; Supplementary Fig. 9F, Supplementary Table 5). ff99SBws-STQ' shows the closest overall agreement with experimental values, with most residues falling within experimental uncertainty (especially with DFT1/DFT2), whereas ff99SBws slightly underestimates couplings for some central serine residues. In contrast, ff03w-sc systematically underestimates couplings across most sequence positions, consistent with prior observations for ff03-based models¹⁸. Together with global-dimension benchmarks, these results demonstrate that ff99SBws-STQ' accurately captures global dimensions across tested systems and improves local backbone sampling for the RS peptide. However, a broader assessment of local structure across additional sequences remains an important direction for future work.

Secondary structure predictions for IDPs

To assess the applicability of ff03w-sc and ff99SBws-STQ' for capturing transient α -helix formation in IDPs, we examined prion-like LCDs,

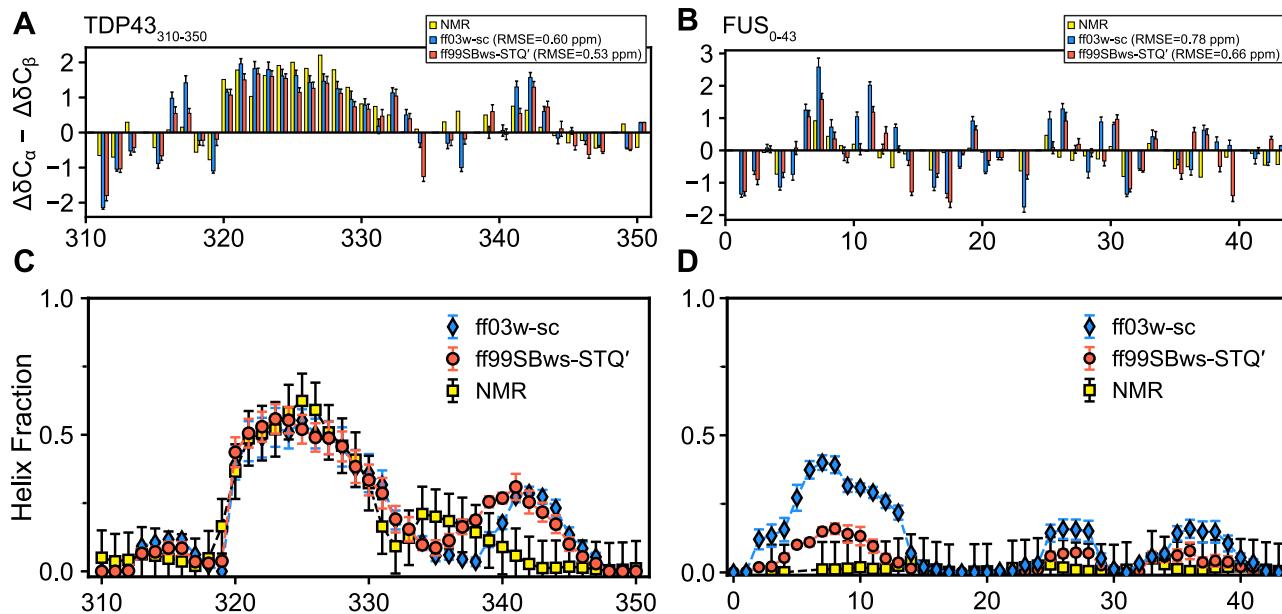


Fig. 4 | Temperature dependence of structural properties of (AAQAA)₃ model peptide. Helix fraction of (AAQAA)₃ as a function of temperature simulated in ff03ws, ff03w-sc, and ff99SBws, respectively. Experimental data (Exp.) were calculated from the carbonyl chemical shifts reported by Shalongo and Stellwagen⁶⁶. The inset shows the residual helix fraction at 300 K. Mean helix fractions and associated standard errors were estimated by block averaging over five equal-length blocks of the trajectory. Source data are provided as a Source data file.

Fig. 5 | Fine-tuning torsion parameters of Glutamine in amber ff99SBws-STQ'. A Residual helix fraction of H16, simulated with three amber ff99SBws-based force fields: ff99SBws, ff99SBws-STQ, and ff99SBws-STQ' ($k_\psi(Q) = 1.5$ kJ/mol). NMR-derived results are taken from Urbanek et al.^{114,115}. B Residual helix fraction of

(AAQAA)₃ as a function of temperature simulated with ff99SBws and ff99SBws-STQ'. The inset shows the temperature-dependent helix fraction. Mean helix fractions and associated standard errors were estimated by block averaging over five equal-length blocks of the trajectory. Source data are provided as a Source data file.

Fig. 6 | Secondary structure prediction for TDP-43 and FUS fragments simulated in AMBER ff03w-sc and ff99SBws-STQ'. **A, B** Secondary chemical shift deviations ($\Delta\delta C_\alpha - \Delta\delta C_\beta$) for TDP-43₃₁₀₋₃₅₀ and FUS₀₋₄₃ as a function of residue index, respectively. Mean values and error bars for secondary chemical shift deviations were estimated by block averaging over five equal-length blocks.

C, D Residual helix fraction of TDP-43₃₁₀₋₃₅₀ and FUS₀₋₄₃, respectively. Mean helix fractions and associated standard errors were estimated by block averaging over five equal-length blocks of the trajectory. Error bars for NMR-derived δ 2D population per residue are 0.1 (10%). Source data are provided as a Source data file.

including FUS₀₋₄₃, FUS₁₂₀₋₁₆₃, TDP-43₃₁₀₋₃₅₀, and RNA Pol II₁₉₂₇₋₁₉₇₀⁷²⁻⁷⁴. We strategically selected 44-residue fragments of these proteins to optimize computational efficiency while maintaining biologically relevant regions for which detailed NMR chemical shifts and secondary structure data are readily available, allowing direct validation of our simulation results. For these fragments, we employed PT-WTE simulations to ensure converged sampling of their equilibrium properties, as demonstrated by our convergence analysis (see “Methods” and Supplementary Fig. 10). All subsequent analyses were performed using the replica at 302 K. C_α and C_β chemical shifts were predicted using SPARTA+ for all IDP ensembles, and their conformational preferences were quantitatively assessed through secondary chemical shift difference ($\Delta\delta C_\alpha - \Delta\delta C_\beta$), a metric that discriminates between helical (positive values) and β -sheet (negative values) regions by comparing the observed chemical shifts against random coil reference values. Figure 6A shows that both force fields successfully captured the experimentally observed helix propensity within the core helix-forming region (residues 321–330) in TDP-43₃₁₀₋₃₅₀, while deviations are present in other regions of the sequence. Both force fields predicted the correct helical propensities across the chosen LCD fragments, with the exception of the N-terminal region (residue 6–13) in FUS₀₋₄₃, which was overly helical (Fig. 6), a discrepancy also reported for other force fields⁶⁷. The RMSE values of simulated chemical shifts ($\Delta\delta C_\alpha - \Delta\delta C_\beta$) relative to experimental values for both force fields were consistently below 1 ppm (Fig. 6 and Supplementary Fig. 11), which is within the prediction error of SPARTA+⁷⁵, implying the reasonable accuracy of both force fields in modeling IDP structural ensembles.

In addition, we calculated secondary structure propensities from the simulation trajectories based on the DSSP algorithm⁷⁶ for each frame and averaged the helical assignments per residue over time. These propensities were compared to those predicted from experimental NMR chemical shifts using the δ 2D web server⁷⁷, which converts chemical shifts into residue-level secondary structure populations (Fig. 6C, D). For TDP-43, both force fields showed excellent correlation with experimental observations, accurately capturing partial helicity in the alanine-rich segment. In contrast, FUS₀₋₄₃ simulations revealed

distinct behaviors: ff03w-sc exhibited elevated helical populations (~40%) in the N-terminal region (residue 6–13), while ff99SBws-STQ' simulations predicted more transient helical conformations (<15%), closely aligning with NMR observations (Fig. 5C, D, and Supplementary Fig. 12). Analysis of additional polar-rich LCDs, including FUS₁₂₀₋₁₆₃ and RNA Pol II₁₉₂₇₋₁₉₇₀, demonstrated that both ff03w-sc and ff99SBws-STQ' predicted low helical populations (<20%), consistent with experimental measurements (Supplementary Fig. 11). For reference, a comparative analysis between ff99SBws-STQ' and ff99SB-disp (Supplementary Fig. 13) revealed that ff99SB-disp overestimated the helicity in the polyQ tract of Httex1 (residue 28–32) and the N-terminal region of FUS₀₋₄₃ (residue 6–16), while underestimating helix propensity in the helix-forming region of TDP-43₃₁₀₋₃₅₀ (residue 321–330).

To further evaluate the force fields for systematic, residue-specific biases, we analyzed the chemical shift deviations averaged by amino acid type across all four low-complexity fragments (Supplementary Fig. 14). This analysis shows that for most residue types, both force fields yield average deviations close to zero, indicating good overall accuracy. However, some differences emerge for polar residues. The ff03w-sc force field shows notable positive deviations for serine and threonine (similar to ff03ws⁶⁷), suggesting a persistent bias toward helical conformations for these residue types. These deviations are substantially reduced in the ff99SBws-STQ' force field, which demonstrates the success of its targeted torsional refinements for serine, threonine, and glutamine and highlights its improved accuracy for modeling polar-rich disordered sequences.

Ala₅ 3 J couplings

To evaluate the accuracy of backbone torsional sampling for the refined force fields, we performed 1- μ s MD simulations of the alanine pentapeptide (Ala₅) and computed scalar (3 J) couplings from the simulation trajectories based on the Karplus equation with different parameter sets (Table 1). The predicted values compared to the experiment were estimated using the total χ^2 metric (excluding 3 J_{CC}), following the procedure described by Best et al.²⁵. A χ^2 value of 1.0 indicates that prediction errors match the magnitude of experimental uncertainties (σ_i).

Similar to ff03ws²⁵, ff03w-sc consistently yielded χ^2 values below 1.0 (ranging from 0.48 to 0.80) across all tested Karplus parameter sets. These favorable χ^2 results (see “Methods”) suggest that side-chain-specific scaling implemented in ff03w-sc does not adversely affect backbone dihedral angle sampling, at least in small peptides. In contrast, ff99SBws-STQ' showed slightly elevated χ^2 values (ranging from 1.47 to 2.09) for most Karplus parameter sets except for DFT1 ($\chi^2 = 0.99$), indicating a modest overestimation of scalar couplings compared to experimental data. Collectively, these Ala₅ simulations provide additional quantitative assessment for both force fields. Despite their differing refinement strategies, both force fields exhibit reasonable agreement with experimental scalar coupling data, thereby supporting their ability to achieve a reliable sampling of the conformational landscape for small peptides.

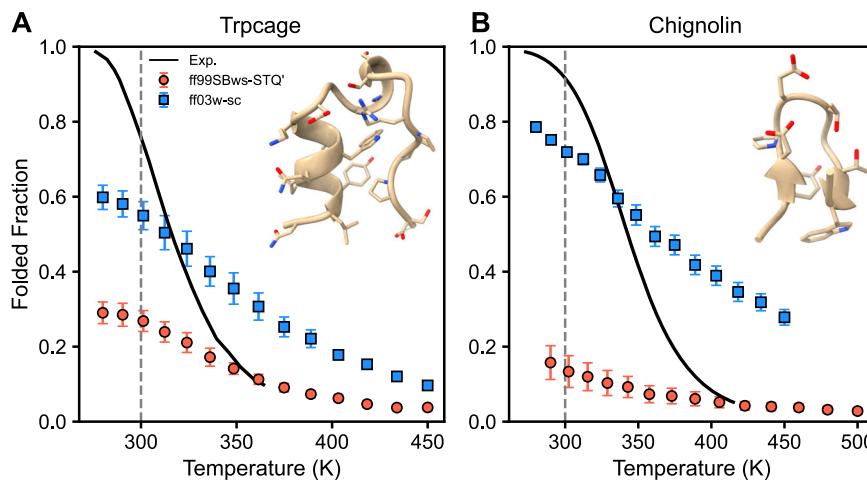
Folding mini proteins

To benchmark the transferability of the refined force fields, we evaluated their ability to reproduce the folding thermodynamics of two well-studied mini-proteins: (i) Trp-cage, a 20-residue protein containing α -helical and 3₁₀-helical elements, and (ii) chignolin, a 10-residue β -hairpin. PT-WTE folding simulations (see “Methods”) were performed across a wide temperature range using both ff03w-sc and ff99SBws-STQ' (Supplementary Movies 5 and 6). The fraction of folded structures was calculated using a distance RMSD (dRMS) threshold of 0.2 nm from the experimental structure, as defined previously²⁵.

As shown in Fig. 7 and Supplementary Fig. 15, ff03w-sc captures the qualitative cooperative melting behavior for both mini-proteins, consistent with previous observations reported for ff03ws²⁵, while

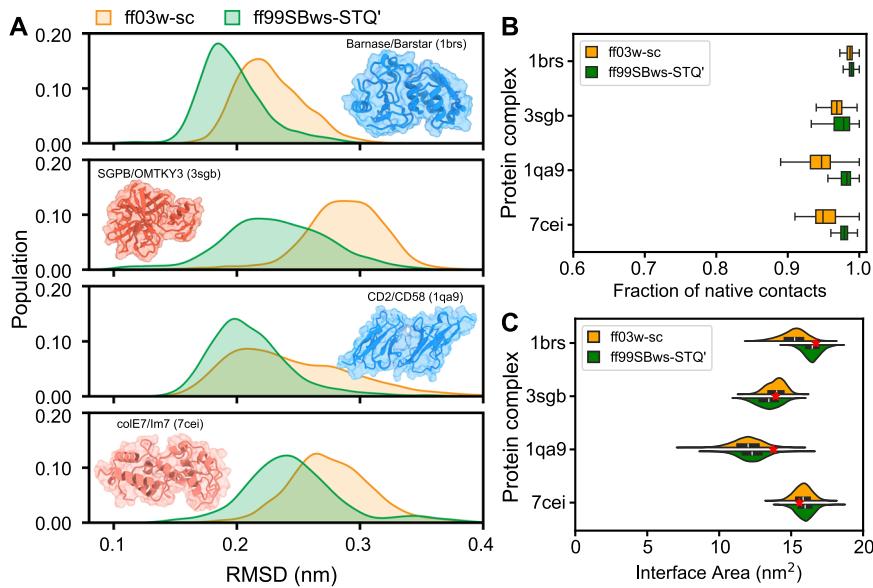
quantitative deviations from experiment are evident across the range. In contrast, ff99SBws-STQ' significantly underestimates the folded populations of both systems, particularly near physiological temperatures, indicating destabilization of native conformations. These results reveal that while ff99SBws-STQ' offers improved sampling of disordered peptide ensembles, ff03w-sc maintains better thermodynamic stability for small, folded proteins. This comparison highlights the complementary strengths and inherent trade-offs of the two force fields, emphasizing the importance of selecting an appropriate force field based on the system's structural properties.

Protein–protein complexes


Modeling protein–protein interactions within molecular complexes remains a significant challenge for most current force fields, as the multifaceted balance of water–protein, intra-protein, and water–water interactions has been primarily optimized for isolated folded or disordered proteins. Previous simulations using state-of-the-art force fields (e.g., ff99SB-disp, charmm36m, and RSFF2+) have reported instability and dissociation of many protein complexes on microsecond timescales⁴³. To evaluate the performance of our refined force fields, we assessed the ability of ff03w-sc and ff99SBws-STQ' to maintain stable protein–protein interfaces, focusing on four diverse complexes. Along with Barnase/Barstar (PDB ID: 1BRS)⁷⁸ and SGPB/OMTKY3 (PDB ID: 3SGB)⁷⁹—two systems previously identified as challenging for maintaining stability of protein–protein interactions⁴³, we included two additional systems: CD2/CD58 (PDB ID: 1QA9)⁸⁰—a β -sheet–mediated interface, and cole7/lm7 (PDB ID: 7CEI)⁸¹—a primarily α -helical complex. Each system was subjected to four independent 5- μ s simulations per force field, starting from the experimentally determined structure (Supplementary Movies 7–10).

As shown in Fig. 8A, both force fields maintained the structural integrity of the complexes, with backbone RMSD values generally below 0.3 nm across all systems. ff99SBws-STQ' consistently yielded higher populations of low-RMSD states, particularly for Barnase/Barstar and CD2/CD58, indicating enhanced structural stability. Time-evolution RMSDs of individual proteins within each complex followed similar trends (Fig. S16). To further evaluate interfacial stability, we analyzed two additional metrics: (i) the fraction of native contacts at the interface (Fig. 8B, Supplementary Fig. 17), and (ii) the interfacial surface area (Fig. 8C, Supplementary Fig. 18). Both force fields preserved high fractions of native interfacial contacts, with median

Table 1 | Total χ^2 values^a of 3J couplings (excluding $^3J_{CC}$) of Ala₅


Parameter set	ff03w-sc	ff99SBws-STQ'
Original ⁶⁸	0.73	1.68
Vogeli et al. ⁶⁹	0.54	2.09
DFT1 ⁷⁰	0.80	0.99
DFT2 ⁷⁰	0.48	1.47
Larson et al. ⁷¹	0.77	1.72

^aA full list of 3J couplings for each residue is given in Supplementary Table 6.

Fig. 7 | Calculated melting curves of mini-proteins simulated with ff03w-sc and ff99SBws-STQ'. A Temperature-dependent folded fraction of Trp-cage and B chignolin, computed from replica-exchange simulations using ff03w-sc (blue squares) and ff99SBws-STQ' (red circles). A structure is classified as folded if its distance RMSD (dRMS) from the experimental structure is less than 0.2 nm, as

defined in a previous study²⁵. Mean folded fractions and associated standard errors were estimated by block averaging over five equal-length blocks of the trajectory. The experimental melting curves (black lines) are included for comparison. The representative folded structures of Trp-cage (PDB ID: 1L2Y)¹¹⁶ and chignolin (PDB ID: 1UAO)¹¹⁷. Source data are provided as a Source data file.

Fig. 8 | Protein complex stability. Analyses of four protein complexes simulated using ff03w-sc and ff99SBws-STQ' force fields. The insets present the experimental structures of the complexes. **A** Distributions of the backbone RMSD of the full complexes. **B** Box plots showing the fraction of native contacts at the protein–protein interface from $n = 4$ independent simulations per system. Each box spans the interquartile range (IQR; 25th–75th percentile), the center line

indicates the median, and whiskers extend to $1.5 \times$ IQR; minima and maxima within this range are shown, and outliers were omitted. **C** Violin plots of interfacial surface area; each violin pools framewise values from $n = 4$ independent simulations per system. The inner box marks the median and interquartile range, and red stars indicate values from the experimental crystal structures. Source data are provided as a Source data file.

stability values near 95% across the simulations. The interfacial surface areas remained tightly clustered around experimental reference values (red stars in Fig. 8C), with minimal deviations and no systematic drift over the simulation timescales.

Together, these results demonstrate that ff03w-sc and ff99SBws-STQ' successfully maintain stable protein–protein interfaces across diverse topologies. While ff99SBws-STQ' showed slightly improved interfacial stability, both force fields exhibited robust performance in capturing the key features of protein complex stability over extended simulation times.

Discussion

In this study, we systematically re-evaluated two state-of-the-art amber force fields, ff03ws and ff99SBws, to address their limitations in stabilizing folded proteins and accurately modeling IDPs. By selectively scaling -water interactions, the modified ff03w-sc force field substantially improved the structural stability of folded proteins that were prone to destabilization with the original ff03ws. This improvement was consistently observed across a diverse set of six folded proteins, characterized by low backbone RMSD, high native contact retention, and preserved secondary structures. Notably, ff99SBws maintained native state stability without requiring additional rescaling.

We further revisited ff99SBws-STQ⁶⁷, which incorporates residue-specific backbone torsional modifications to the ff99SBws base model, previously validated for accurate conformational sampling of LCD fragments. By fine-tuning the backbone torsional sampling for glutamine, the updated ff99SBws-STQ' force field effectively mitigated the over-predicted helicity for the polyQ tract of Huntington Exon1, bringing simulated residual helicity in line with experimental data. This targeted approach demonstrates the value of optimizing force field parameters to resolve system-specific inaccuracies while maintaining overall transferability. Validation against experimental SAXS profiles for Histatin5, RS peptide, and the S(129–146) fragment, along with NMR-derived secondary structure for prion-like domains and scalar coupling analysis for RS peptide and Ala₅, supports the robustness and transferability of the proposed force field refinements.

An additional critical test of the refined force fields involved evaluating their ability to maintain protein–protein complex stability, which has been recognized challenge for many existing models due to the delicate balance required between protein–water and protein–protein interactions. Using the Barnase/Barstar and SGPB/OMTKY3 complexes as model systems, we demonstrated that both ff03w-sc and ff99SBws-STQ' reliably maintained the native stability of these complexes over microsecond simulations. To further validate these results across diverse interface types, we expanded the test set to include two additional complexes, CD2/CD58 and coIE7/Im7, representing β -sheet and α -helical interfaces, respectively. In all four systems, both force fields preserved interfacial integrity, maintaining >95% of native contacts and interfacial surface areas in close agreement with experimental values. This robust performance stands in contrast with previous reports of instability and premature dissociation observed in similar complexes using other state-of-the-art force fields, such as ff99SB-disp and charmm36m⁴³. The complementary performance of ff03w-sc and ff99SBws-STQ' in these systems underscores their ability to model complex intermolecular interaction networks beyond monomeric proteins. These findings substantially extend the applicability of the refined force fields to the investigation of biomolecular complexes, providing a reliable computational framework for studying protein–protein interfaces, molecular recognition mechanisms, and the hierarchical assembly of functional protein complexes.

A persistent challenge with ff03-based force fields is their tendency to overestimate backbone flexibility, particularly in disordered loop regions of Ubiquitin. While these force fields accurately reproduced the conformational rigidity of well-structured regions, such as α -helices and β -sheets (with S^2 values > 0.8), significant deviations from experimental S^2 values were observed in loop regions (Supplementary Fig. 7A). For example, simulations of Ubiquitin using ff03*/TIP3P maintained global structural stability, yet residues within loops, notably glycine residues (G47, G53) and charged residues (K48, R54, E64), exhibited greater flexibility relative to experimental S^2 values (Supplementary Fig. 7A). Among ff03-based force fields paired with

TIP4P/2005 water model, ff03w-sc achieved an improved balance between rigid and flexible regions but still showed discrepancies in the latter compared to experiment, highlighting the difficulty in accurately capturing flexible loop dynamics. The correction maps (CMAP)-optimized ff03CMAP and ff99SB nmr2 force fields employ residue-specific optimization of backbone dihedral potentials to address these imbalances, but they favor either folded or disordered systems depending on the water model (e.g., TIP3P, TIP4P-Ew, TIP4P-D), rather than offering a unified solution^{82,83}. In contrast, ff99SB-based force fields—such as ff99SBw, ff99SBws, and ff99SB-disp—consistently exhibited higher order parameters and aligned more closely with experimental data, particularly in loop regions (Supplementary Fig. 7B), reflecting their ability to capture backbone dynamics across both folded and disordered regions.

The refinements introduced in this study have addressed many challenges, including the over-predicted helicity in specific regions of LCDs. Both force fields demonstrate consistently small secondary chemical shift deviations $\Delta(\Delta C_\alpha - \Delta C_\beta)$ (<1 ppm) across many residue types (Supplementary Fig. 14), highlighting their improved accuracy. Notably, ff99SBws-STQ' successfully reduced the helical bias in the polyQ tract of Huntington Exon1 that was observed in the parent force field—ff99SBws. However, some discrepancies remain, particularly for polar residues such as Ser and Thr in ff03w-sc, which exhibit significant deviations in secondary chemical shifts (Supplementary Fig. 14). While both ff03w-sc and ff99SBws-STQ' effectively captured the secondary structure propensities for several polar-rich sequences (TDP-43, FUS, and RNA Pol II fragments), the helicity in the N-terminal region of FUS₀₋₄₃ remained overestimated relative to experimental data. Additionally, the $^3J_{\text{HN}-\text{HA}}$ scalar couplings offer further insight into sequence-specific biases. For the RS peptide, ff03w-sc consistently underestimates the scalar couplings, a trend also observed in the original ff03w and ff03ws force fields. This underestimation may arise from backbone φ angle preferences that remain overly flexible or helical in polar-rich contexts. In contrast, ff03w-sc achieves good agreement with experiment for the short alanine-based peptide Ala₅, with total χ^2 values consistently below 1.0 across multiple Karplus parameter sets. This suggests that ff03w-sc can reasonably capture φ angle distributions in small model systems, while its accuracy may degrade for more complex polar sequences. These observations indicate persistent sequence-specific biases, particularly in polar residue clustering and repetitive sequence motifs, highlighting the need for further parameterization and broader testing across diverse LCD and IDP sequences.

Choosing an appropriate force field for MD simulations requires careful consideration for specific systems, as no single force field is universally optimal. A preliminary literature review of studies involving similar systems is essential for identifying force fields with recognized strengths and weaknesses. For example, ff99SBws-STQ' represents as a robust choice for simulating both folded proteins and IDPs due to its ability to appropriately model both structured and disordered regions. This force field demonstrates strong agreement with experimental observations of full-length multidomain proteins such as HP1 α and TPD-43⁸⁴⁻⁸⁷, reliably reproduces the experimental ps-ns dynamics, as indicated by its accurate modeling of spin relaxation data (e.g., R_1 , R_2 , and hetNOE), thereby reflecting the disordered nature of the EWS LCD and its regional variations in relaxation behavior⁸⁸. Although ff03ws tends to overestimate backbone flexibility in folded protein loops, it demonstrates strong agreement with R_1 , R_2 , and hetNOE data for disordered and partially disordered proteins, effectively modeling extended conformations and rotational dynamics under experimental ionic strengths⁸⁹. For systems characterized by a high density of charged residues—such as DNA-binding proteins, their complexes, or highly charged IDPs—ff03w-sc offers advantages, as it effectively mitigates the over-stabilization of salt bridges, a common artifact observed in many force fields⁵¹. Furthermore, folding simulations of

mini-proteins revealed that ff03w-sc yields higher folded populations and captures the qualitative melting transition for both Trp-cage and chignolin, despite quantitative deviations from experiment, while ff99SBws-STQ' significantly underestimated folded fractions across temperature ranges, a behavior that was observed in other force fields, e.g., ff99SB-disp and charmm36m²⁹. This suggests that accurately balancing local backbone propensities with global folding cooperativity remains a central challenge for developing widely applicable force fields.

In conclusion, this study advances the ongoing efforts to refine protein force fields, enhancing their utility in biomolecular simulations. The proposed force fields—ff03w-sc and ff99SBws-STQ'—achieve a balanced description of both folded and disordered ensembles and are well-suited for studying diverse systems, including folded proteins, disordered regions, and multiprotein complexes. These refinements help narrow the gap between theoretical predictions and experimental observations, enabling more predictive simulations of protein behavior. However, it is important to recognize that no single force field can perfectly capture the complexity of all protein systems—each model inevitably has distinct strengths and limitations depending on the specific structural and dynamic properties being investigated. Given this fundamental challenge, future work should focus on developing strategies to further refine these force fields to better balance local structural propensities with global folding cooperativity. Understanding the inherent trade-offs in force field design will be crucial for guiding these improvements and determining optimal applications for each model. Such efforts will pave the way for extending these improvements to larger, multidomain proteins and exploring their applicability under biologically relevant conditions, such as crowded intracellular environments and systems with post-translational modifications.

Methods

Simulations of folded proteins

All-atom MD simulations of Ubiquitin, GB3, BPTI, HEWL, Villin HP35 (with double nor-leucine substitutions at residues 24 and 29), protein complexes (Barnase/Barstar and SGPB/OMTKY3) were initiated in their folded states obtained from Protein Data Bank (PDB IDs: 1D3Z, 1P7E, 5PTI, 6LYZ, 2F4K, 1BRS, and 3SGB, respectively). Systems were prepared in Gromacs 2021.5⁹⁰ using truncated octahedron boxes with a length of 5.5 nm, except for HEWL and protein complexes, which required a larger box of 7.0 nm and 8.0 nm, respectively. After initial energy minimization in vacuum and solvation with TIP4P/2005 water²², Na⁺ and Cl⁻ ions were added to achieve 150 mM salt concentration, using improved salt parameters from Lou and Roux⁹¹. Systems were equilibrated in a canonical ensemble (NVT) using a Nose-Hoover thermostat⁹² with a coupling constant of 1.0 ps at 300 K, followed by an isothermal-isobaric ensemble (NPT) equilibration using a Berendsen barostat⁹³ with an isotropic coupling constant of 5.0 ps at 1 bar. The Gromacs topologies and coordinates were then converted to Amber formats using ParmEd⁹⁴, with hydrogen mass repartitioning⁹⁵ to 1.5 amu to enable a 4 fs timestep. Subsequent simulations were carried out using the Amber22 MD simulation package. The initial minimization was performed using the steepest descent and conjugate gradient algorithms, with non-hydrogen atoms restrained by a 5 kcal/mol/Å² force constant. This was followed by two 5 ns NVT equilibration phases at 300 K: the first with reduced restraints (1 kcal/mol/Å²) and the second with all restraints removed. A subsequent 10 ns NPT equilibration employed a Monte Carlo barostat (with an isotropic coupling constant of 1.0 ps and a pressure of 1.0 bar) and Langevin dynamics for temperature regulation (with a friction coefficient of 1.0 ps⁻¹). Bonds involving hydrogen atoms were constrained using the SHAKE algorithm⁹⁶. Short-range interactions were truncated at 0.9 nm, and long-range electrostatics were treated using the Particle Mesh Ewald (PME) method^{97,98}. Finally, four independent NPT production replicas

were conducted for each protein, using the same parameters as those used for equilibration.

Simulations of disordered proteins

Conformational sampling of disordered proteins was performed using PT-WTE^{59,60}, a variant of temperature replica-exchange molecular dynamics (T-REMD)⁹⁹. Simulations were conducted using Gromacs 2021.5 with the Plumed 2.8 plugin^{100,101}. For each disordered protein sequence (Supplementary Table 1), an initial random coil conformation was generated and solvated in a truncated octahedron box containing 150 mM NaCl (using parameters from Lou and Roux) and counterions to neutralize the system. Fourteen temperature replicas, spanning 293–500 K, were employed. Long-range electrostatics were treated with the PME method with a 0.9 nm cutoff. To enhance computational efficiency, hydrogen mass repartitioning was employed, enabling a timestep of 5 fs. Bond constraints were applied using the LINCS algorithm¹⁰². Following temperature equilibration, production runs were conducted in the NVT ensemble with biasing potentials (bias factor = 48) deposited every 4 ps. These potentials enhanced fluctuations in the system's potential energy, resulting in a well-tempered ensemble and improved conformational exchange between replicas. The initial Gaussian potential height and width were 1.5 and 195.0 kJ/mol, respectively, with exchange probabilities between adjacent replicas ranging from 30–45%. The residue helix fraction for Httex1-Q16 was taken from Mohanty et al.¹⁰³, with an aggregate trajectory of ~45 μs.

Convergence of secondary structure propensities was assessed by analyzing the residual helicity at 302 K for each protein fragment. Consistent helix propensities were observed regardless of whether the entire trajectory, or trajectories excluding the initial 50 or 100 ns, were analyzed (Supplementary Fig. 11). Time-series plots of DSSP secondary structure assignments revealed transient structural behaviors, including periodic formation and melting of secondary structures throughout the trajectories (Fig. 5, Supplementary Fig. 6). These dynamic transitions facilitated convergence in estimated secondary structure propensities, underscoring the robustness of the PT-WTE approach for modeling disordered proteins.

Trajectory analyses

Structural properties were analyzed using Gromacs tools to calculate backbone RMSD, RMSF, and radius of gyration (R_g). SAXS curves were generated using the CRYSTAL¹⁰⁴, and R_g values were determined from these curves using Guinier analysis in ATLAS Primus¹⁰⁵. Chemical shift deviations were calculated using SPARTA+⁷⁵ and compared to random coil reference values obtained from the Poulsen IDP server¹⁰⁶. Secondary structure assignments from simulations were determined using gmx do_dssp¹⁰⁷, which implements the DSSP algorithm⁷⁶. The propensity for a given structure (e.g., helix fraction) for each residue was determined by averaging the per-frame secondary structure assignments over the entire trajectory. These propensities were then compared to experimental propensities derived from NMR secondary chemical shifts using 82d software⁷⁷. SASA were calculated using the gmx sasa utility, based on the algorithm of Eisenhaber et al.¹⁰⁸. Backbone amide S^2 order parameters for ubiquitin were computed using the iRED method^{109,110} within the Python package pyDR^{111,112}, with the trajectories divided into 1 μs blocks for analysis as recommended by Gu et al.¹¹⁰. Agreement between simulated and experimental observables was quantified by calculating the RMSE using $((x_{\text{sim}} - x_{\text{exp}})^2 / N)^{1/2}$, where N is the number of residues sampled, and x_{sim} and x_{exp} represent the simulated and experimental values, respectively. The χ^2 metric used to quantify agreement between simulated and experimental ^3J couplings for Ala5 was defined as described previously²⁵:

$$\chi^2 = \frac{1}{N} \sum_{i=1}^N \frac{(J_{\text{expt},i} - J_{\text{calc},i})}{\sigma_i} \quad (1)$$

where $J_{\text{expt},i}$ and $J_{\text{calc},i}$ are the experimental and computed scalar couplings, respectively, and σ_i is the estimated uncertainty associated with the predictions from the Karplus equation.

Three-dimensional structures and MD trajectories were visualized and animated using the VMD software¹¹³.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

Raw simulation trajectory data used to generate the source data are available from the corresponding authors upon request. Initial and final protein structures used in the atomistic simulations, the refined force fields in GROMACS format with conversion scripts to AMBER, and input files for PT-WTE production simulations are available in the Zenodo repository (<https://doi.org/10.5281/zenodo.17314994>). The following experimentally determined structures were used in this study: 1D3Z, 2F4K, 5PTI, 6LYZ, 2F21, 1L2Y, 1UAO, 1BRS, 3SGB, 1QA9, 1P7E, and 7CEI. The SAXS dataset for Histatin5 is available in SASBDB under accession: **SASDHF8**. Source data for all figures are provided with this paper. Source data are provided with this paper.

Code availability

The scripts used to perform atomistic production simulations have been deposited in the Zenodo repository (<https://doi.org/10.5281/zenodo.17314994>). All simulations and analyses were carried out using publicly available software packages, including AMBER, GROMACS, and MDAnalysis (<https://www.mdanalysis.org/>). Detailed analysis procedures and algorithms are described in the “Methods” section.

References

1. Huggins, D. J. et al. Biomolecular simulations: from dynamics and mechanisms to computational assays of biological activity. *WIREs Comput. Mol. Sci.* **9**, e1393 (2019).
2. Wereszczynski, J. & McCammon, J. A. Statistical mechanics and molecular dynamics in evaluating thermodynamic properties of biomolecular recognition. *Q. Rev. Biophys.* **45**, 1–25 (2012).
3. Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. & Shaw, D. E. Biomolecular simulation: a computational microscope for molecular biology. *Annu. Rev. Biophys.* **41**, 429–452 (2012).
4. Bottaro, S. & Lindorff-Larsen, K. Biophysical experiments and biomolecular simulations: a perfect match? *Science* **361**, 355–360 (2018).
5. Lindorff-Larsen, K. et al. Systematic validation of protein force fields against experimental data. *PLoS ONE* **7**, e32131 (2012).
6. Henriques, J., Cagnell, C. & Skepö, M. Molecular dynamics simulations of intrinsically disordered proteins: force field evaluation and comparison with experiment. *J. Chem. Theory Comput.* **11**, 3420–3431 (2015).
7. Thomasen, F. E. & Lindorff-Larsen, K. Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins. *Biochem. Soc. Trans.* **50**, 541–554 (2022).
8. Kang, W., Jiang, F. & Wu, Y.-D. How to strike a conformational balance in protein force fields for molecular dynamics simulations? *WIREs Comput. Mol. Sci.* **12**, e1578 (2022).
9. Huang, J. & MacKerell, A. D. Force field development and simulations of intrinsically disordered proteins. *Curr. Opin. Struct. Biol.* **48**, 40–48 (2018).
10. Sawle, L., Huihui, J. & Ghosh, K. All-atom simulations reveal protein charge decoration in the folded and unfolded ensemble is key in thermophilic adaptation. *J. Chem. Theory Comput.* **13**, 5065–5075 (2017).

11. Gaalswyk, K., Haider, A. & Ghosh, K. Critical assessment of self-consistency checks in the all-atom molecular dynamics simulation of intrinsically disordered proteins. *J. Chem. Theory Comput.* **17**, 2011–2021 (2023). <https://doi.org/10.1021/acs.jctc.2c01140> (2023).

12. Best, R. B., Buchete, N.-V. & Hummer, G. Are current molecular dynamics force fields too helical? *Biophys. J.* **95**, L07–L09 (2008).

13. Best, R. B. & Hummer, G. Optimized molecular dynamics force fields applied to the helix–coil transition of polypeptides. *J. Phys. Chem. B* **113**, 9004–9015 (2009).

14. Nerenberg, P. S. & Head-Gordon, T. Optimizing protein–solvent force fields to reproduce intrinsic conformational preferences of model peptides. *J. Chem. Theory Comput.* **7**, 1220–1230 (2011).

15. Piana, S., Lindorff-Larsen, K. & Shaw, D. E. How robust are protein folding simulations with respect to force field parameterization? *Biophys. J.* **100**, L47–L49 (2011).

16. Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ , ψ and side-chain X1 and X2 dihedral angles. *J. Chem. Theory Comput.* **8**, 3257–3273 (2012).

17. Best, R. B. & Mittal, J. Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse. *J. Phys. Chem. B* **114**, 14916–14923 (2010).

18. Rauscher, S. et al. Structural ensembles of intrinsically disordered proteins depend strongly on force field: a comparison to experiment. *J. Chem. Theory Comput.* **11**, 5513–5524 (2015).

19. Mercadante, D. et al. Kirkwood–Buff approach rescues over-collapse of a disordered protein in canonical protein force fields. *J. Phys. Chem. B* **119**, 7975–7984 (2015).

20. Petrov, D. & Zagrovic, B. Are current atomistic force fields accurate enough to study proteins in crowded environments?. *PLOS Comput. Biol.* **10**, e1003638 (2014).

21. Horn, H. W. et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. *J. Chem. Phys.* **120**, 9665–9678 (2004).

22. Abascal, J. L. F. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. *J. Chem. Phys.* **123**, 234505 (2005).

23. Piana, S., Donchev, A. G., Robustelli, P. & Shaw, D. E. Water dispersion interactions strongly influence simulated structural properties of disordered protein states. *J. Phys. Chem. B* **119**, 5113–5123 (2015).

24. Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building water models: a different approach. *J. Phys. Chem. Lett.* **5**, 3863–3871 (2014).

25. Best, R. B., Zheng, W. & Mittal, J. Balanced protein–water interactions improve properties of disordered proteins and non-specific protein association. *J. Chem. Theory Comput.* **10**, 5113–5124 (2014).

26. Zerze, G. H., Zheng, W., Best, R. B. & Mittal, J. Evolution of all-atom protein force fields to improve local and global properties. *J. Phys. Chem. Lett.* **10**, 2227–2234 (2019).

27. Dewing, S. M., Phan, T. M., Kraft, E. J., Mittal, J. & Showalter, S. A. Acetylation-dependent compaction of the histone H4 tail ensemble. *J. Phys. Chem. B* **128**, 10636–10649 (2024).

28. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. *Nat. Methods* **14**, 71–73 (2017).

29. Robustelli, P., Piana, S. & Shaw, D. E. Developing a molecular dynamics force field for both folded and disordered protein states. *Proc. Natl. Acad. Sci. USA* **115**, E4758–E4766 (2018).

30. Zhou, C.-Y., Jiang, F. & Wu, Y.-D. Residue-specific force field based on protein coil library. RSFF2: modification of AMBER ff99SB. *J. Phys. Chem. B* **119**, 1035–1047 (2015).

31. Wu, H.-N., Jiang, F. & Wu, Y.-D. Significantly improved protein folding thermodynamics using a dispersion-corrected water model and a new residue-specific force field. *J. Phys. Chem. Lett.* **8**, 3199–3205 (2017).

32. Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. *J. Chem. Theory Comput.* **11**, 3696–3713 (2015).

33. Tian, C. et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. *J. Chem. Theory Comput.* **16**, 528–552 (2020).

34. Andrews, B., Long, K. & Urbanc, B. Soluble state of villin headpiece protein as a tool in the assessment of MD force fields. *J. Phys. Chem. B* **125**, 6897–6911 (2021).

35. Shabane, P. S., Izadi, S. & Onufriev, A. V. General purpose water model can improve atomistic simulations of intrinsically disordered proteins. *J. Chem. Theory Comput.* **15**, 2620–2634 (2019).

36. Yoo, J. & Aksimentiev, A. Improved parameterization of amine–carboxylate and amine–phosphate interactions for molecular dynamics simulations using the CHARMM and AMBER force fields. *J. Chem. Theory Comput.* **12**, 430–443 (2016).

37. Yoo, J. & Aksimentiev, A. Refined parameterization of nonbonded interactions improves conformational sampling and kinetics of protein folding simulations. *J. Phys. Chem. Lett.* **7**, 3812–3818 (2016).

38. Yoo, J. & Aksimentiev, A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. *Phys. Chem. Chem. Phys.* **20**, 8432–8449 (2018).

39. Sarthak, K., Winogradoff, D., Ge, Y., Myong, S. & Aksimentiev, A. Benchmarking molecular dynamics force fields for all-atom simulations of biological condensates. *J. Chem. Theory Comput.* <https://doi.org/10.1021/acs.jctc.3c00148> (2023).

40. Weng, S.-L., Mohanty, P. & Mittal, J. Elucidation of the molecular interaction network underlying full-length FUS conformational transitions and its phase separation using atomistic simulations. *J. Phys. Chem. B* **129**, 8843–8857 (2025).

41. Samantray, S., Yin, F., Kav, B. & Strodel, B. Different force fields give rise to different amyloid aggregation pathways in molecular dynamics simulations. *J. Chem. Inf. Model.* **60**, 6462–6475 (2020).

42. Abriata, L. A. & Dal Peraro, M. Assessment of transferable force-fields for protein simulations attests improved description of disordered states and secondary structure propensities, and hints at multi-protein systems as the next challenge for optimization. *Comput. Struct. Biotechnol. J.* **19**, 2626–2636 (2021).

43. Piana, S., Robustelli, P., Tan, D., Chen, S. & Shaw, D. E. Development of a force field for the simulation of single-chain proteins and protein–protein complexes. *J. Chem. Theory Comput.* **16**, 2494–2507 (2020).

44. Nerenberg, P. S., Jo, B., So, C., Tripathy, A. & Head-Gordon, T. Optimizing solute–water van Der Waals interactions to reproduce solvation free energies. *J. Phys. Chem. B* **116**, 4524–4534 (2012).

45. Cornilescu, G., Marquardt, J. L., Ottiger, M. & Bax, A. Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. *J. Am. Chem. Soc.* **120**, 6836–6837 (1998).

46. Piana, S., Lindorff-Larsen, K. & Shaw, D. E. Atomic-level description of ubiquitin folding. *Proc. Natl. Acad. Sci. USA* **110**, 5915–5920 (2013).

47. Lindorff-Larsen, K., Maragakis, P., Piana, S. & Shaw, D. E. Picosecond to millisecond structural dynamics in human ubiquitin. *J. Phys. Chem. B* **120**, 8313–8320 (2016).

48. Kubelka, J., Chiu, T. K., Davies, D. R., Eaton, W. A. & Hofrichter, J. Sub-microsecond protein folding. *J. Mol. Biol.* **359**, 546–553 (2006).

49. Kubelka, J., Henry, E. R., Cellmer, T., Hofrichter, J. & Eaton, W. A. Chemical, physical, and theoretical kinetics of an ultrafast folding protein. *Proc. Natl. Acad. Sci. USA* **105**, 18655–18662 (2008).

50. Zhou, H.-X. & Pang, X. Electrostatic interactions in protein structure, folding, binding, and condensation. *Chem. Rev.* **118**, 1691–1741 (2018).

51. Debiec, K. T., Gronenborn, A. M. & Chong, L. T. Evaluating the strength of salt bridges: a comparison of current biomolecular force fields. *J. Phys. Chem. B* **118**, 6561–6569 (2014).

52. Zhang, H., Yin, C., Jiang, Y. & van der Spoel, D. Force field benchmark of amino acids: I. Hydration and diffusion in different water models. *J. Chem. Inf. Model.* **58**, 1037–1052 (2018).

53. Ulmer, T. S., Ramirez, B. E., Delaglio, F. & Bax, A. Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy. *J. Am. Chem. Soc.* **125**, 9179–9191 (2003).

54. Wlodawer, A., Walter, J., Huber, R. & Sjölin, L. Structure of bovine pancreatic trypsin inhibitor: results of joint neutron and X-ray refinement of crystal form II. *J. Mol. Biol.* **180**, 301–329 (1984).

55. Diamond, R. Real-space refinement of the structure of hen egg-white lysozyme. *J. Mol. Biol.* **82**, 371–391 (1974).

56. Jäger, M. et al. Structure–function–folding relationship in a WW domain. *Proc. Natl. Acad. Sci. USA* **103**, 10648–10653 (2006).

57. Best, R. B., Hummer, G. & Eaton, W. A. Native contacts determine protein folding mechanisms in atomistic simulations. *Proc. Natl. Acad. Sci. USA* **110**, 17874–17879 (2013).

58. Prusty, S., Brüschweiler, R. & Cui, Q. Comparative analysis of polarizable and nonpolarizable CHARMM family force fields for proteins with flexible loops and high charge density. *J. Chem. Inf. Model.* **65**, 8304–8321 (2025).

59. Bonomi, M. & Parrinello, M. Enhanced sampling in the well-tempered ensemble. *Phys. Rev. Lett.* **104**, 190601 (2010).

60. Deighan, M., Bonomi, M. & Pfaendtner, J. Efficient simulation of explicitly solvated proteins in the well-tempered ensemble. *J. Chem. Theory Comput.* **8**, 2189–2192 (2012).

61. Soranno, A. et al. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy. *Proc. Natl. Acad. Sci. USA* **109**, 17800–17806 (2012).

62. Wuttke, R. et al. Temperature-dependent solvation modulates the dimensions of disordered proteins. *Proc. Natl. Acad. Sci. USA* **111**, 5213–5218 (2014).

63. Sagar, A., Jeffries, C. M., Petoukhov, M. V., Svergun, D. I. & Bernadó, P. Comment on the optimal parameters to derive intrinsically disordered protein conformational ensembles from small-angle X-ray scattering data using the ensemble optimization method. *J. Chem. Theory Comput.* **17**, 2014–2021 (2021).

64. Koren, G. et al. Intramolecular structural heterogeneity altered by long-range contacts in an intrinsically disordered protein. *Proc. Natl. Acad. Sci. USA* **120**, e2220180120 (2023).

65. Mohanty, P. et al. A synergy between site-specific and transient interactions drives the phase separation of a disordered, low-complexity domain. *Proc. Natl. Acad. Sci. USA* **120**, e2305625120 (2023).

66. Shalongo, W., Dugad, L. & Stellwagen, E. Distribution of helicity within the model peptide acetyl(AAQAA)3amide. *J. Am. Chem. Soc.* **116**, 8288–8293 (1994).

67. Tang, W. S., Fawzi, N. L. & Mittal, J. Refining all-atom protein force fields for polar-rich, prion-like, low-complexity intrinsically disordered proteins. *J. Phys. Chem. B* **124**, 9505–9512 (2020).

68. Graf, J., Nguyen, P. H., Stock, G. & Schwalbe, H. Structure and dynamics of the homologous series of alanine peptides: a joint molecular dynamics/NMR study. *J. Am. Chem. Soc.* **129**, 1179–1189 (2007).

69. Vögeli, B., Ying, J., Grishaev, A. & Bax, A. Limits on variations in protein backbone dynamics from precise measurements of scalar couplings. *J. Am. Chem. Soc.* **129**, 9377–9385 (2007).

70. Case, D. A., Scheurer, C. & Brüschweiler, R. Static and dynamic effects on vicinal scalar J couplings in proteins and peptides: a MD/DFT analysis. *J. Am. Chem. Soc.* **122**, 10390–10397 (2000).

71. Lindorff-Larsen, K., Best, R. B. & Vendruscolo, M. Interpreting dynamically-averaged scalar couplings in proteins. *J. Biomol. NMR* **32**, 273–280 (2005).

72. Conicella, A. E. et al. TDP-43 α -helical structure tunes liquid–liquid phase separation and function. *Proc. Natl. Acad. Sci. USA* **117**, 5883–5894 (2020).

73. Monahan, Z. et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. *EMBO J.* **36**, 2951–2967 (2017).

74. Janke, A. M. et al. Lysines in the RNA polymerase II C-terminal domain contribute to TAF15 fibril recruitment. *Biochemistry* **57**, 2549–2563 (2018).

75. Shen, Y. & Bax, A. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. *J. Biomol. NMR* **48**, 13–22 (2010).

76. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. *Biopolymers* **22**, 2577–2637 (1983).

77. Camilloni, C., De Simone, A., Vranken, W. F. & Vendruscolo, M. Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. *Biochemistry* **51**, 2224–2231 (2012).

78. Buckle, A. M., Schreiber, G. & Fersht, A. R. Protein–protein recognition: crystal structural analysis of a barnase–barstar Complex at 2.0-ANG. resolution. *Biochemistry* **33**, 8878–8889 (1994).

79. Read, R. J., Fujinaga, M., Sielecki, A. R. & James, M. N. G. Structure of the complex of Streptomyces Griseus protease B and the third domain of the Turkey ovomucoid inhibitor at 1.8-ANG. resolution. *Biochemistry* **22**, 4420–4433 (1983).

80. Wang, J. et al. Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. *Cell* **97**, 791–803 (1999).

81. Ko, T.-P., Liao, C.-C., Ku, W.-Y., Chak, K.-F. & Yuan, H. S. The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. *Structure* **7**, 91–102 (1999).

82. Zhang, Y., Liu, H., Yang, S., Luo, R. & Chen, H.-F. Well-balanced force field ff03CMAP for folded and disordered proteins. *J. Chem. Theory Comput.* **15**, 6769–6780 (2019).

83. Yu, L., Li, D.-W. & Brüschweiler, R. Balanced amino-acid-specific molecular dynamics force field for the realistic simulation of both folded and disordered proteins. *J. Chem. Theory Comput.* **16**, 1311–1318 (2020).

84. Her, C. et al. Molecular interactions underlying the phase separation of HP1 α : role of phosphorylation, ligand and nucleic acid binding. *Nucleic Acids Res.* **50**, 12702–12722 (2022).

85. Phan, T. M., Kim, Y. C., Debelouchina, G. T. & Mittal, J. Interplay between charge distribution and DNA in shaping HP1 paralog phase separation and localization. *eLife* **12**, <https://doi.org/10.7554/eLife.90820> (2023).

86. Mohanty, P., Rizuan, A., Kim, Y. C., Fawzi, N. L. & Mittal, J. A complex network of interdomain interactions underlies the conformational ensemble of monomeric TDP-43 and modulates its phase behavior. *Protein Sci.* **33**, e4891 (2024).

87. Mohanty, P. et al. Principles governing the phase separation of multidomain proteins. *Biochemistry* **61**, 2443–2455 (2022).

88. Johnson, C. N. et al. Insights into molecular diversity within the FUS/EWS/TAF15 protein family: unraveling phase separation of

the N-terminal low-complexity domain from RNA-binding protein EWS. *J. Am. Chem. Soc.* **146**, 8071–8085 (2024).

89. Virtanen, I. et al. Heterogeneous Dynamics in Partially Disordered Proteins. *Phys. Chem. Chem. Phys.* **22**, 21185–21196 (2020).

90. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. *SoftwareX* **1–2**, 19–25 (2015).

91. Luo, Y. & Roux, B. Simulation of osmotic pressure in concentrated aqueous salt solutions. *J. Phys. Chem. Lett.* **1**, 183–189 (2010).

92. Evans, D. J. & Holian, B. L. The Nose–Hoover thermostat. *J. Chem. Phys.* **83**, 4069–4074 (1985).

93. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. *J. Chem. Phys.* **81**, 3684–3690 (1984).

94. Shirts, M. R. et al. Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset. *J. Comput. Aided Mol. Des.* **31**, 147–161 (2017).

95. Hopkins, C. W., Le Grand, S., Walker, R. C. & Roitberg, A. E. Long-time-step molecular dynamics through hydrogen mass repartitioning. *J. Chem. Theory Comput.* **11**, 1864–1874 (2015).

96. Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of *n*-alkanes. *J. Comput. Phys.* **23**, 327–341 (1977).

97. Darden, T., York, D. & Pedersen, L. Particle Mesh Ewald: an N·log(N) method for Ewald sums in large systems. *J. Chem. Phys.* **98**, 10089–10092 (1993).

98. Essmann, U. et al. A smooth particle mesh Ewald method. *J. Chem. Phys.* **103**, 8577–8593 (1995).

99. Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. *Chem. Phys. Lett.* **314**, 141–151 (1999).

100. Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. *Comput. Phys. Commun.* **185**, 604–613 (2014).

101. Bonomi, M. et al. The PLUMED consortium. Promoting transparency and reproducibility in enhanced molecular simulations. *Nat. Methods* **16**, 670–673 (2019).

102. Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. *J. Chem. Theory Comput.* **4**, 116–122 (2008).

103. Mohanty, P., Phan, T. M. & Mittal, J. Transient interdomain interactions modulate the monomeric structural ensemble and self-assembly of huntingtin exon 1. *Adv. Sci.* **12**, 2501462 (2025).

104. Franke, D. et al. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. *J. Appl. Crystallogr.* **50**, 1212–1225 (2017).

105. Manalastas-Cantos, K. et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. *J. Appl. Crystallogr.* **54**, 343–355 (2021).

106. Kjaergaard, M., Brander, S. & Poulsen, F. M. Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. *J. Biomol. NMR* **49**, 139–149 (2011).

107. Gorelov, S., Titov, A., Tolicheva, O., Konevega, A. & Shvetsov, A. DSSP in GROMACS: tool for defining secondary structures of proteins in trajectories. *J. Chem. Inf. Model.* **64**, 3593–3598 (2024).

108. Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C. & Scharf, M. The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. *J. Comput. Chem.* **16**, 273–284 (1995).

109. Prompers, J. J. & Brüschweiler, R. General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation. *J. Am. Chem. Soc.* **124**, 4522–4534 (2002).

110. Gu, Y., Li, D.-W. & Brüschweiler, R. NMR order parameter determination from long molecular dynamics trajectories for objective comparison with experiment. *J. Chem. Theory Comput.* **10**, 2599–2607 (2014).

111. Smith, A. A. Interpreting NMR dynamic parameters via the separation of reorientational motion in MD simulation. *J. Magn. Reson. Open* **10–11**, 100045 (2022).

112. Champion, C. et al. Unraveling motion in proteins by combining NMR relaxometry and molecular dynamics simulations: a case study on ubiquitin. *J. Chem. Phys.* **160**, 104105 (2024).

113. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. *J. Mol. Graph.* **14**, 33–38 (1996).

114. Urbanek, A. et al. A general strategy to access structural information at atomic resolution in polyglutamine homorepeats. *Angew. Chem.* **130**, 3660–3663 (2018).

115. Urbanek, A. et al. Flanking regions determine the structure of the poly-glutamine in huntingtin through mechanisms common among glutamine-rich human proteins. *Structure* **28**, 733–746.e5 (2020).

116. Neidigh, J. W., Fesinmeyer, R. M. & Andersen, N. H. Designing a 20-residue protein. *Nat. Struct. Biol.* **9**, 425–430 (2002).

117. Honda, S., Yamasaki, K., Sawada, Y. & Morii, H. 10 residue folded peptide designed by segment statistics. *Structure* **12**, 1507–1518 (2004).

Acknowledgements

This work was supported by NIH grant R35GM153388. The work on TDP-43 was supported by the National Institutes of Health (NIH), National Institute for Neurological Disorders and Stroke (NINDS), and National Institute on Aging (NIA) R01NS116176. The authors are grateful for the computational resources provided by Texas A&M High Performance Research Computing (HPRC).

Author contributions

T.M.P., P.M., and J.M. conceived the research. T.M.P. performed simulations, analyses, visualizations, and prepared the figures. T.M.P., P.M., and J.M. wrote and reviewed the manuscript. J.M. acquired funding and supervised the project.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41467-025-65603-4>.

Correspondence and requests for materials should be addressed to Tien Minh Phan or Jeetain Mittal.

Peer review information *Nature Communications* thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at <http://www.nature.com/reprints>

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025