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A hyperconformal dual-modal metaskin for
well-defined and high-precision contextual
interactions

Shifan Yu1, Zhenzhou Ji1, Lei Liu1, Zijian Huang1, Yanhao Luo1, Huasen Wang1,
Ruize Wangyuan1, Ziquan Guo1, Zhong Chen 1, Qingliang Liao2,3,
Yuanjin Zheng4 & Xinqin Liao 1

Proprioception and touch serve as complementary sensory modalities to
coordinate hand kinematics and recognize users’ intent for precise interac-
tions. However, current motion-tracking electronics remain bulky and insuf-
ficiently precise. Accurately decoding both is also challenging owing to the
mechanical crosstalk of endogenous and exogenous deformations. Here, we
report a hyperconformal dual-modal (HDM) metaskin for interactive hand
motion interpretation. Themetaskin integrates a strongly coupled hydrophilic
interface with a two-step transfer strategy to minimize interfacial mechanical
losses. The 10-μm-scale hyperconformalfilm is highly sensitive to intricate skin
stretches while minimizing signal distortion. It accurately tracks skin stretches
as well as touch locations and translates them into polar signals, which are
individually salient. This approach enables a differentiable signaling topology
within one single data channel without burdening structural complexity to the
metaskin. When combined with temporal differential calculations and time-
seriesmachine learning network, themetaskin extracts interactive context and
action cues from the low-dimensional data. This phenomenon is further
exemplified through demonstrations in contextual navigation, typing and
control integration, and multi-scenario object interaction. We demonstrate
this fundamental approach in advanced skin-integrated electronics, high-
lighting its potential for instinctive interaction paradigms and paving the way
for augmented somatosensation recognition.

The human somatosensory system encompasses a dynamic interplay
between proprioception and touch, which underpins individual
proximal cognition1,2. Proprioception allows for humans to track our
limb posture and movements, and the sense of touch, as an exter-
oception, provides percept into the attributes of the objects we
contact3,4. The integration of these two complementary sensations

enables the human body to go beyond mere reflexive reactions,
empowering humans with the essential capacity to adaptively modify
their behaviors in response to ever changing environments5. For
example, preschool children learn to stack building blocks of different
shapes and orientations by modulating their hand posture and
applying appropriate force. These two sensory modalities are not
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discrete within the continuous temporal framework, as one modality
serving as a prior context influences the decision-making and experi-
ence of the other6. To temporally integrate both perceptual modes, a
concept named “bodily context” is introduced, which associates pro-
prioceptive hand states with touch patterns. This approach not only
decouples touch stimuli from hand motions but also contextualizes
them: identical tactile inputs yield distinct perceptual results under
different postures, and vice versa. By resolving these multimodal
relationships, the same touch action can express divergent intentions
on the basis of its context, enabling natural motion-chain interpreta-
tion. The motion coupling based on the bodily context will revolutio-
nize the interactive model, enabling cognition and judgment
depending on the context in which it occurs.

Wearabledevices capture and interpret handmotion and touch to
convey the interactive intentions of humans, such as object manip-
ulation or gesture recognition7–11. Gesture recognition complements
perception beyond vision, playing an indispensable role in immersive
virtual reality and communication assistance. Recent advances in
markerless gesture measurement have aimed to achieve a natural
description of hand movements12–14. However, touch information is
often overlooked in gesture recognition frameworks, resulting in sys-
tems that still deviate from the natural kinematic chain of hand actions.
By integrating contextual awareness withmotion cognition, the hand’s
proprioceptive state, i.e., the bodily context, directly influences touch
perception, and vice versa. This integration breaks the traditional
occlusion between proprioceptive motion and tactile modalities.

Most wearable devices proposed for data collection require bulky
portable carriers, such as haptic gloves, which cause intrinsic
mechanical losses and poor precision15. Thus, imperceptible soft
e-skins that capture high-precision contact information are gaining
attention, driven by a strong desire to produce devices that can be
integrated into everyday actions without constraining the users16.
Recent advances in the in-situ printing of nanomesh e-skin have
achieved biomimetic sensing and imperceptible implementation,
directly mapping microscale skin stretches to proprioception17. How-
ever, these devices often present discrete or single modal haptic cues.
They are tailored to predefinedprocedure settings, and lack a focus on
cross-scenario generalization capabilities and adaptive performance.
Therefore, exploring the dependence between proprioception and
touch helps to offer new insight into the adjustment of interaction
feedback and manipulation mode switching on the basis of the bodily
context. This is especially important when trying to replicate or
enhancehuman-like actions inmachines or interfaces.However, owing
to the similarity between skin stretch and touch deformation signals,
artificial proprioceptors and touch sensing arrays suffer mechanical
crosstalk18. This explains why touch sensing arrays employ serpentine
interconnects to counteract interference from stretching signals19, or
why artificial proprioceptors target negligible pressure sensitivity20,21.
Additionally, they typically require multichannel data acquisition to
isolate multiple joints and sites, ultimately resulting in higher-than-
expected complexity and spatiotemporal misalignment22. To address
the existing research gap, particularly the challenge of effectively
translating and separating complementary somatosensory informa-
tion, it is essential to develop a well-defined signaling strategy and
ensure its accessible implementation.

In this article, we report a hyperconformal dual-modal (HDM)
metaskin. The metaskin leverages the integration of the hydrophilic
thin substrate (8–10μm) and highly compatible water-based Ag
nanocomposite sensitive path, minimizing impediments to hand
movements. A two-step transfer strategy exploits tunablemaintenance
and separation of hydrophilic films on hydrophobic interfaces, facil-
itating seamless, strain-free integration onto any part of the skin.
Benefiting from the nanocomposite conductive network of sensitive
paths, metaskin demonstrates high strain sensitivity (gauge factor:
32.45 from 0 to 20%) and robust electromechanical stability, while

remaining insensitive to humidity and temperature. It can capture and
interpret subtle resistance changes caused by skin stretching, while
also pinpointing relative locations of electrical contact. Even under
stretched conditions, touch positions can be precisely localized
through decoupling computations. The HDM metaskin can differ-
entiate proprioceptive and touch actions into well-defined signals
from single-channel data. This capability is attributed to the polarity
difference between strain signals and touch signals, that is, stretch-
induced resistance changes representing proprioceptive strain con-
sistently increase, whereas resistance changes associated with touch
positioning proportionally decrease. On the basis of a dual inter-
pretation of somatic motions, different hand movements can be
regarded as combinations of bodily contextual signals and event‒
action signals. By seamlessly integrating proprioceptive and exter-
oceptive data, this approach enhances the coupling of contextual and
kinematic information, enabling more precise intention recognition
and task adaptation. These features facilitate temporal differentiation
to focus on polarity detection, time intervals, and amplitude quantifi-
cation within sequential signals, achieving feasible in-sensor calcula-
tions. We demonstrate that the metaskin exhibits exceptional
adaptivity in extensive contextual applications, such as switching
postures while navigation, and operation integration of virtual typing
and mouse control. Additionally, touch addressing can be used to
describe object contact postures, providing a high-fidelity interpreta-
tion of the body context in object interaction applications, thereby
enhancing scene generalization and interaction intent correction in
time-series machine learning models. We believe these demonstra-
tions will inspire broader domains, including soft robotics and
embodied interactions, paving the way for future advancements in
somatosensory-based systems.

Results
Mechanism of somatosensory proprioception and
exteroception
Proprioceptive and tactile sensing rely on mechanotransduction, the
process of encoding endogenous and exogenous mechanical defor-
mations of tissues into neural signals1,23. Cutaneous mechan-
oreceptors, located within the skin, generate signals related to contact
distribution through touch receptors; whereas proprioceptors,
embedded in muscles, tendons, and ligaments, convey information
about limbpositions and somaticmotions24. The signals fromdifferent
afferent fiber groups collectively depict a neural representation of the
ambient objects (Fig. 1a). Within the framework of intelligent interac-
tion, these two sensations provide crucial complementary information
reflecting the embodied agent and the environment, and serve as a
foundational prior for adaptation to the unstructured environment.

Artificial devices for proprioception and exteroception typically
employ distributed multilayer structures. However, tactile sensors
typically require densely packed sensing arrays to ensure spatial dis-
crimination, which results in highly localized data generation. Addi-
tionally, joint bending introduces an undesired normal force
component to tactile sensors, resulting in unresolvable signal differ-
entiation issues25,26. Thus, the obstacle to achieving signal duality in
dual-modal sensing systems lies in the isotropy of sensitive variables
and undecipherable signal masking. Furthermore, multilayered sen-
sors lack conformal integration across crinkled skin, causing una-
voidable sensation disturbance to tiny movements27. In contrast, our
fabricated HDM metaskin features an in-plane structure that closely
follows the topography of the skin, enabling the separation of strain
and contact sensing. The metaskin compresses longitudinal defor-
mation and closely conforms to the skin’s natural folds, ensuring high
precision and an imperceptible user experience. Importantly, con-
tinuous and common mode data eliminate delays across multiple
channels during data integration, enabling the subdivision of inter-
active intentions in diverse bodily contexts28.
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Figure 1c shows an overview of our proposed HDM metaskin for
contextual interactions. It consists solely of a film substrate and
strongly bonded nanocomposite conductive paths, conformally
adhering to the skin surface. This configuration can respond to subtle
skin strains and conductive intertouch, achieving synergistic percep-
tion of bodily motions. The complementary nature of stretch and

touch signals, characterized by their opposing modalities, enables
precise differentiation and supports signal superposition, motifs, and
complex combinations. By integrating decoupling algorithms and
temporal learning models, this collaborative bodily cognition can be
applied to interpret diverse forms of hand movements and support
contextual interactions. As a skin-extension technology, the metaskin
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Fig. 1 | The HDMmetaskin analogous to human sensory functions. a Illustration
of somatosensory mechanisms, differentiating between proprioception and
exteroception through nerve pathways. Contains photos by jannoon028 and lit-
tlestocker via Freepik License. b Integration of decoupled perception mechanisms
into a dual-modal, tissue-conformal sensor network, distinguishing between “strain
sensing” and “tactile sensing” for precise command, recognition, and commu-
nication. Contains photos by kwangmoop and tehchesiong via Freepik License.
c Device, mechanism, and data processing methods of HDMmetaskin for multiple

applications. i. HDM meta-skin on skin, featuring ultra-thin, conformal substrate
and exposed interaction path. ii. Signal difference under stretch and touch mod-
alities. iii. Data processing through data fusion andmachine learning algorithms. iv.
Applications include contextual command, virtual control and typing, and object
interaction. Contains icons by macrovector via Freepik License. d Comparative
scale between biological skin and HDM meta-skin. e Demonstration of sensor
properties of the HDM metaskin on skin. Scale bar: 5 mm.
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is engineered to emulate key biological features, such as surface
roughness, spatial resolution, and strain adaptability, ensuring com-
patibility with natural human tactile functions29,30 (Fig. 1d). These
advanced capabilities are realized through robustly bonded soft
functional materials, which allow for in-plane pattern extensibility,
seamless conformal integration with the skin, and exceptional
mechanical durability under dynamic conditions (Fig. 1e).

Preparation and installation of the HDMmetaskin
To construct conformal and stretchable devices on the skin, any
thermal or mechanical predeformation can adversely affect the final
test results. To address this, we implemented the following strategies:
(1) Awater-based Ag nanocomposite paste withmild curing conditions
was adopted, whichwas composed of Ag nanoparticles, Ag nanowires,
and awaterborne polyurethane (WPU) binder (Fig. 2a). Comparedwith
conventional organic silver pastes that require sintering temperatures
as high as 130 °C, water-based pastes cure at a significantly lower
temperature of only 60 °C. Figure S1 shows the thermally induced
deformation of the substrate film. High temperatures can cause severe
distortion of the substrate membrane during the device fabrication
stage. (2) The substrate film employed a hydrophilicmaterial to ensure
strong interfacial interactionswith thewater-basedAgpaste. (3) A two-
step transfer strategy was utilized to ensure robust interfacial
anchoring of the Ag nanocomposite and prevent local distortions
throughout the skin-transfer process.

A dispensing printing technique was employed to achieve custo-
mized pattern adaptation of conductive paths across a range of pro-
files. The Ag nanocomposite paste was printed onto a WPU film
mounted on a release substrate. Owing to the hydrogen bonding
interactions among the water-based binders, the Ag nanocomposite
paths can firmly adhere to the WPU film, outweighing the typical van
der Waals interactions (Fig. 2a, b and Fig. S1). Because the thin-film
substrate was susceptible to distortion without a support film and
because the conductive paths needed to be the outer surface, a
strainless transfer strategy was proposed, which is appropriate for any
irregular target surface. Although direct transfer to the skin could
theoretically be achieved by printing the Ag path first, the printed
patterns interfered with the uniform distribution of the spin-coated
film, leading to poorer interfacial bonding. By exploiting the differ-
ences in surface energy and interfacial roughness, the HDMmetaskin,
initially supported on release paper, can be readily transferred onto a
softer silicone film through a simple, pressure-assisted method. The
second inversion step employed a pressure-sensitive adhesive (PSA) to
affix the HDM metaskin onto the target surface, ensuring stable
bonding (a detailed transfer process is shown in Fig. S2). Themetaskin
can conform seamlessly to intricate leaf veins and skin wrinkles,
demonstrating excellent adaptability to uneven surfaces without dis-
tortion in linear conductive paths (Fig. S3).

We compared the interfacial adhesion strength of composite sil-
ver patterns printed on different substrates by observing the extent of
damage after repeated 3M tape peeling tests (Fig. 2b and Fig. S4). The
water-based silver paste exhibited poor abrasion resistance on
hydrophobic films. However, when printed on the polyurethane sub-
strate, the silver patterns withstood over 100 peeling cycles, and with
further water-based modifications, the silver patterns experienced
only minimal damage even after 200 peeling cycles. Notably, the
resistance of the printed paths should fall within the ideal range of
hundreds of ohms to ensure measurable variations, which could be
achieved by regulating the printing parameters (Fig. S5).

Next, we focused on interface engineering to elucidate the issues
involved in the formation and transfer of thin films. Owing to the
hydrophilic nature of WPU, thin films cannot be successfully spin-
coated from dilute solutions on hydrophobic substrates31. As shown in
Fig. 2c, when a 30 vol%WPU solution was spin-coated at 1000 r·min⁻¹,
the liquid underwent annular contraction driven by the imbalance of

Young–Laplace forces. This phenomenon occurred because dilute
solutions tend to exhibit higher surface tension due to water aggre-
gation, coupled with low viscous resistance, which promotes liquid
redistribution. According to Young’s equation:

cosθ=
γSG � γSL

γLG
ð1Þ

where θ is the contact angle between the liquid and the solid, and
where γSG, γSL, and γLG represent the interfacial energies of the
solid‒gas, solid‒liquid, and liquid‒gas interfaces, respectively.
After spin-coating, the contact angle on the hydrophobic surface
tends to be large. At this point, the liquid surface underwent
spontaneous contraction. In contrast, at 50 vol% and 3000
r·min−1, the film spread evenly because of the reduced surface
tension of the higher concentration solution, combined with a
stronger centrifugal force, overcoming retraction forces. Under
these conditions, the resulting film thickness was 8–10 μm. As the
spin speed increased, the film thickness progressively decreased,
ultimately reaching 4 μm at 4000 r·min−1 (Fig. S6). Mechanical
testing demonstrated that the thin-film substrate exhibited
negligible tensile forces on the skin, minimizing any foreign
body sensation (Fig. S7).

The transfer process involves the interaction and migration of
four key interfaces: the release paper, the WPU, the silicone transfer
film, and the target interface. In this context, each transfer inherently
replaces a low-interaction interface with a high-interaction interface,
placing additional demands on the transfer auxiliary film to establish a
transient adsorption state32. Excessively strong van derWaals forces at
the interface can impede the peeling process of the second transfer,
whereas an uneven distribution of van der Waals forces may lead to
localized strain, compromising the uniformity of the WPU film
(Fig. 2d). Accordingly, three critical requirements for the auxiliary
transfer film arise: it must exhibit low inherent surface energy, form a
sufficiently strong van der Waals interactions with the WPU film, and
ensure uniform van der Waals adsorption. We observed that despite
the silicone film having lower interface energy, its smooth surface
facilitates stable van der Waals adsorption with the WPU. During the
first transfer, this adsorption force is notably stronger than the inter-
action between the slightly rougher release paper and the WPU,
thereby ensuring strain-free peeling. During the second transfer step,
PSA ensured the strong adhesion of the WPU film and easy separation
from the silicone substrate (as shown in Fig. S8 and Supplementary
Movie 1). Notably, this outcome is notmerely a result of surface energy
ranking, even though the silicone film typically has a lower surface
energy than does the release paper. Owing to the strong adhesion
between the nanocomposite paste and theWPU substrate, the transfer
of HDMmetaskin transferred to the skin exhibits exceptional electrical
and mechanical robustness. It maintained stable electrical resistance
under prolonged frictional wear (30m, 2N, 10 cm s−1) and high
humidity (90% RH), while resisting resistance changes under thermal
conditions. Even across the safe temperature range (25–60 °C), the
resistance variation remained below 5% (Fig. 2e and Fig. S9). These
attributes ensure reliable performance in diverse and dynamic
environments.

Combination and decoupling of the HDM metaskin
The integrated design of the HDM metaskin leverages the seamless
integration of mechanical stretch with circuit principles, enabling
independent contributions to proprioception and touch sensing. It is
composed of two functional components, parallel conductive path-
ways and additional electrode triggers, which can be placed on the
fingertip or the interactive object (Fig. 3a). For proprioceptive sensing,
the linear conductive pathways convert uniaxial skin strain into resis-
tance changes, governed by microcrack expansion within the Ag
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nanocomposite network. The scanning electronic microscope (SEM)
images revealed that the Ag nanoparticles (NPs) and Ag nanowires
(NWs) collectively formed interlocking networks, moreover, the WPU
binder facilitated the formation of an interpenetrating interface
(Fig. S10). This delamination-free interface effectively reduces
mechanical transmission losses in the normal direction, thereby

enabling the sensor pathways to stretch in synchrony with the defor-
mation of the skin33. Upon stretching, Ag nanoaggregates form
microcracks, inducing resistance changes proportional to the applied
strain. The embedded Ag NW network, which serves as an anchoring
phase, ensures resistance stability under prolonged strain34–36

(Fig. S11). For touch sensing, the primary sensor works synergistically
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with fingertip-mounted triggers to achieve touch localization. Since
the contact resistance upon contact is negligible (Fig. S12), the overall
resistance was determined solely by the closed circuit between the
contact point and the terminal, which was proportional to the initial
resistance. In other words, we established a dedicated mode for sen-
sing the position of the stimulus, since the system only responded
when contacted with external trigger electrodes. One key benefit of
this approach is that it keeps the triggers easy to install, while still
ensuring specificity in interactive events and ease of integration into
various applications. The dual-modality functionality is further clar-
ified in the detailed circuit diagram (Fig. 3b), which illustrates the
interaction between stretch-induced and contact-induced signals. The
response resistance when stretching and touching can be expressed

as:

Rs =
Xn

i= 1

ðλiRi + λiR
0
iÞðλi ≥ 1Þ ð2Þ

Rt =
Xp

i = 1

ðλiRi + λiR
0
iÞðλi ≥ 1,p<nÞ ð3Þ

where, Ri represents the resistance of the segmental resistor units and
where λi denotes the stretching factor. Rs and Rt correspond to the
resistance upon stretching and touching, respectively. Evidently, Rs

remained consistently higher than the initial resistance as the HDM
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metaskinwas stretched. In contrast,Rtdecreased proportionally to the
total resistance and showed no dependence on the degree of
stretching. Thus, the two-terminal device operated through a single
circuit loop, where the intrinsic resistance increased during stretching,
whereas the electric contact mechanism induced linear reductions on
the basis of the total loop resistance.

The antithetic response tendency generates well-defined signals
without a complex algorithm. To validate this, the relative resistance
changes were measured under two activation modes. A negative
resistance change was observed when contact stimulation was applied
with a conductive stick every 2.5 cm alongside the active path (Fig. 3c).
Here, owing to the direct electrical contact of the conductive pathwith
the trigger, the resistance signal immediately responded without
precompression delay or mechanical fatigue. The consistency of the
signal at the same contact position was also ensured (Fig. 3d). In
contrast, the stretch-induced resistance signal was positive and initi-
ated from the base value. Owing to the interlocking network and
interpenetrating interfaces, the Ag nanocomposite path exhibited a
highly sensitive response, with a gauge factor of 32.45 in the strain
range of 0 to 20%, and demonstrated enhanced sensitivity up to a
strain of 50% (Fig. 3e). Additionally, we compared the cyclic resistance
recoveries of AgNPs,AgNPs/carbonnanotubes (CNTs), andAgNPs/Ag
NWs to highlight the crucial role of the composite network (Fig. 3f).
Without the anchoring effect of Ag NWs, the Ag NP path experienced
pronounced signal fluctuations and drift under a cyclic strain of 5%.
This was probably attributed to the unstable expansion and delayed
recovery of the nanocracks. Introducing CNTs partially reduced these
fluctuations, yet minor variations remained. In contrast, incorporating
Ag NWs resulted in a more robust conductive network, yielding con-
sistently lower and more stable resistance changes.

With the goal of mathematically decoupling overlay response
patterns, a voltage divider module was implemented for signal
acquisition. This module transformed the initial resistance into a
reciprocal voltage output (Fig. 3g), ensuring that the resulting output
voltage was constrained within the range of 0-5 V. By maintaining a
fixed voltage interval, stretch and touch variations could be decoupled
via proportional scaling. The output voltage exhibited baseline-
referenced bipolar variation, in which positive shifts corresponded
to touch events, and negative shifts represented stretching. The final
touch positionwas determined by the output voltagemeasured across
the reference resistor, with the detailed calculation method provided
in Note S1. This design facilitated efficient signal processing, while
maintaining compatibility with the operating standards of portable
measurement systems (limit of 5 V). As shown in Fig. S13, the output
voltage was influenced by both the touch position and the stretch
factor. However, the decoupling algorithm successfully resolved the
relative touch position, demonstrating robust performance under
varying stretch conditions. To validate the decoupling accuracy, a
stretch–touch experiment was performed alongside a corresponding
time-series simulation. Three points on the HDMmetaskin (P1, P2, and
P3 as shown in Fig. 3h) were randomly selected, and subjected to touch
stimulation under both a relaxed state and a stretched state. Thus,
each touch point generated two directly measured voltages. The cor-
responding simulated voltages were derived theoretically from real-
time resistance variations during relaxation, stretching, and touching.
The comparison between the experimental and simulated results
demonstrated ahighdegree of consistency inpredicting relative touch
positions (Fig. 3i), with a maximum prediction error of less than 2.6%.
This outcome highlights that touch positions could be readily calcu-
lated without relying on resistance acquisition, even under stretched
conditions. Notably the method achieves a temporal differential in
continuous motions and aligns with the natural routine of hand
movements, rather than splitting individual data frames. By utilizing
limited information from one-dimensional signals, it decouples
bimodal signals while simultaneously accounting for both signal

characteristics and temporal dynamics. Since this approach requires
temporal sequence analysis rather than single-time-point signals, it
does not support static motion benchmarking. Therefore, this study
focused on interpreting handmotionswithin defined timewindows, as
it provided the possibility of coupling skin stretch and touch motions
in continuous temporal framework.

Accessible implementation of the HDMmetaskin on human skin
To pursue versatile sensory extension, skin electronic interfaces need
to adapt to the curvature of the body. The installation of the interfaces
should also minimize the hindrance to inherent sensations and
somatic movements37. Although in-textile photolithography and knit-
ting engineering facilitate the embedded integration of electronic
modules in clothes, foreign disturbances and signal loss due to intri-
cate motions remain challenges because the substrates are fully
covered38,39. The highly conformal adhesion and lightweight config-
uration of the HDMmetaskin provide a feasible scheme. As an action-
intensive body region, the index finger was chosen for HDMmetaskin
attachment for demonstration (Fig. 4a). When interactive movements
and stimulation are performed, the integral signal is transmitted via a
miniature wireless transmitting module attached to the arm. The high
conformability of our metaskin enabled skin-wrinkle-level (10μm)
adhesion on the skin, and contributed to the response to tiny changes.
As illustrated in Fig. 4b, the thickness of the substrate covering the skin
wrinkles was crucial in the intricate detection of themechanical strain.
The simulation results indicate that a 10μm substrate effectively
captures subtle variations in the wrinkle valleys. In contrast, a 40μm-
thick substrate hinderedwrinkle relaxation and tightening, resulting in
concentrated strain around the ridge due to increased interfacial shear
forces. Moreover, the reduction in film thickness significantly decrea-
ses the force required for stretching. This not only minimizes
mechanical discomfort but also enhances the seamless and imper-
ceptible implementation of HDM metaskin on the skin (Fig. S7)40. By
achieving such a lightweight and highly adaptable design, the HDM
metaskin serves as an accessible and versatile manipulation device.

The encoded interpretation of finger flexion is commonly deter-
mined by two active joints—the proximal interphalangeal (PIP) and
metacarpophalangeal (MCP), joints—whose movements can be acti-
vated independently by finger muscles and tendons. To minimize
motion artifact, sensing units in common strain electronics were
installed in isolation on different joints (Fig. 4c). This is because thick
films exhibit greater internal tensile forces, which propagate within
adjacent regions and caused strain disturbances41. In comparison, the
HDM metaskin can take advantage of both concise signal and strain
adaptation to convey multiple -joint motions precisely. During PIP
bending at different angles, the stretching of the conductive path
caused apparent resistance changes (Fig. 4d). Even the swing move-
ment of the MCP could be captured, resulting in discernible signal
patterns (Fig. 4e). The distinct signal features caused by local joint
movements enabled better readability and decoupling for further
demonstrations. The exceptional sensitivity of the HDM metaskin
allowed for it to decipher the intricate flexion details of all five finger
joints from subtle wrist tendonmovements (Fig. S14). This proficiency
can be further leveraged to interpret converging signals from diverse
biomechanical attributes, unlocking new possibilities for advanced
proprioceptive monitoring.

From another perspective, finger flexion caused lateral and nor-
mal strain, which cannot be distinguished from the pressure-induced
strain on the sensor in common layered-structured tactile sensors
(Fig. S15). This phenomenon directly caused the crosstalk between
touch and strain sensing (Fig. 4f). It caused issues encoding obstacles
andpattern similarity, as the normal force introducedpseudo-pressing
signals. In contrast, themeta configuration eliminates the possibility of
bend-induced compression, enabling direct decoupling of the two
types of signals. Owing to the parallel conductive paths being instantly
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saturated, the voltage changes only responded to the touch position
during touch using different forces (Fig. 4g). Moreover, as a con-
ceptual extension, the pressure-sensitive implementation was also
verified using a striped-pattern (Fig. S16).

Signal decoupling and encoding for contextual tasks
Somatic sensation coordination is indispensable for exploring one’s
surroundings and executing bodily actions. Despite the numerous
publications on functional electronics, research on effectively inter-
preting body motions remains scarce, especially those involving mul-
timodality devices42 (Fig. S17). In a typical scenario, a person needs to
adjust their body posture and hand position to align with context
demands for effective object handling (Fig. 5a). This often requires
asynchronous acquisition with multichannel sensors to integrate

motion with bodily contexts, which can lead to spatiotemporal mis-
alignment. The data-fusing pattern of the HDM metaskin effectively
expands the information space, enabling the reconstruction of bodily
motion awareness through temporal differentiation (Fig. S18). Here, a
system bridging intrinsic body awareness and extrinsic contextual
interaction was constructed, enabling instinctive and adaptive control
of robotic behaviors.Owing to its customizedprinting ability, theHDM
metaskin achieved programmable shapes to conform to different
body regions and tasks. For the wrist, we choose a U-shaped config-
uration to both increase the number of interaction points and enhance
the visual demonstration effectiveness.When attached to thewrist, the
U-shaped HDMmetaskin simultaneously monitored the hand posture
and touch stimuli, serving as the context and motor command inputs,
respectively. These merging signals were then processed by filtering
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and encoding, providing dynamic and contextual cues for task
refinement (Fig. 5b). For example, a motor robot requires to adjust its
moving posture and moving speed under variable terrain conditions.
As shown in Fig. 5c, the system interpreted the touch positions to
navigate the walking directions of a hexapod robot, and the wrist
bending states mapped to the walking postures—wrist flexion causing
lifting of the machine body. The robust decoupling of bimodal signals
allowed for us to relocate the command index position even in dif-
ferent wrist bending states. By harnessing the information abundance
in a single device, we elaborated the adaptive interaction in a live
navigation task (Fig. 5d and Supplementary Movie 2). The walking
profile of the robot is correlated with the hand bending state, and
under different command contexts, the robot moves with an appro-
priate stride to align with the real environment. In another example,
precise navigation of the hexapod robot was demonstrated using a
linear meta-skin, highlighting the expanded capabilities in both form
and function of meta-skins (Fig. S19 and Supplementary Movie 3). As
shown previously, the decoupling calculation of the touch position
was not affected by the stretching state, allowing for accurate posi-
tioning of the relative touch position even when the context changed.
Therefore, the HDM metaskin exhibited an extended ability to reac-
tively and anticipatorily recognize the interactive intentions of
humans, as naturally as a skin extension.

Interpretation of body motions enables the expression of beha-
vioral information such as body signs and hand gesture language43,44.
Handmotion encodingwas used for effective intention representation
in the case of speech disorders, requiring a balance between high
informational density, ease of interpretation, and semantic
alignment45. The bimodal signal of the HDM metaskin enabled easy
triggering through subtle finger flicking when it was installed on the
finger. This eliminates the need for an extensive motion corpus, as is
required in conventional hand gesture encoding, and addresses the
limited information capacity and adaptability of methods such as
Morse code46 (Fig. 5e). Specifically, owing to the continuity of the fin-
ger flick and the touch positions, the signal format exhibited both
binary characteristics and continuous differentiability. By combining
the signal sequence and amplitude, the fingermotions can be encoded
into two-dimensional digital information. We achieved adaptive tasks
by equipping the finger encoding system, to simultaneously simulate
virtual typing and mouse control (Fig. 5f-h). Notably, the bi-coding
scheme requires the coordination of only two index fingers with
minimal motion range, making it suitable for individuals with devel-
opmentalmotor disorders (Fig. 5g). The typing encodingwas amarked
improvement from Morse code, which relies on time allocation to
encode additional informational dimensions. In the single-channel
signal sequence, bi-coding uses bidirectional signaling to replace time-
incorporating binary encoding. The signal amplitude was divided into
three segments to express the input number of the binary index. This
means that a light finger flick corresponds to one symbol of “—”, a
medium flexion corresponds to “— —”, whereas a large finger flexion
output corresponds to “— — —”. For example, a light flick along with
touching the bottom of the finger collectively represented the
sequence “—…”, which consequently indicated the letter B. The bi-
coding approach combines high information density with optimal
timing efficiency. Herein, we showcased the signal format and Morse
code interpretation of the word “BICODE” (SupplementaryMovie 4) to
highlight its capabilities and timing efficiency. The complete mapping
list of all 26 English letters is provided in Fig. S20. Additionally, our
method was able to encode the mouse operation through logically
defining movement and holding commands (Fig. 5h). Specific com-
mands are executed as motifs, which are determined by the combi-
nation of motion patterns (proprioception or exteroception), and
signal amplitude levels, which correspond to the movement direction
and distance. In the live demonstration, we successfully manipulated
the pointer to grab and move a virtual ball (Supplementary Movie 5).

The above applications demonstrated that our encoding mechanism
can effectively integrate bidirectional signaling with minimal motion
requirements, enabling multiple tasks and seamless switches. This
inspired a low-cost and imperceptible skin interface designed for
individuals requiring precise yet low-effort interaction methods.

Contextual hand‒object interaction taskswithmachine learning
Machine learning helps to expand the application of electronic devices
to various scenarios beyond simple motion encoding, including more
complex tasks suchasobject recognitionand interaction47,48. However,
this advancement faces significant challenges in terms of robustness,
especially when dealing with ambiguous and similar motion classifi-
cation, making it more difficult to achieve consistent performance
across diverse conditions. Moreover, owing to the continuous gen-
eration of motion frames, proprioceptive sensors struggle to filter out
unintendedmotions and artifact effectively49. In the context of gesture
classification, unintended or unconscious hand movements can often
trigger predefined labels, despite not reflecting the user’s intent. This
poses a significant challenge in generalization, where the model
struggled to differentiate unintentional movements and body con-
texts. To address the above issues, we demonstrated a general hand‒
object interaction framework based on contact context and proprio-
ception movement. The perception network consisted of the HDM
metaskin attached to the palmar side and dorsal side of the finger, and
the wrist (Fig. 6a). They were used to monitor object-holding states
and hand motions, with data collected through separate signal chan-
nels for each. Since object interaction events are decomposed into
combinations of contact states (such as no contact with the object and
different postures of contact) and joint actions (e.g., action direction
and amplitude), most object interaction events can be accurately
described through the combination of proprioceptive signals and
contact signals. Notably, although contact states, as a necessary con-
dition for interaction context judgment, are difficult to distinguish
through machine learning, they provide a stable boundary that helps
define the domain of machine learning classification. Thus, the pro-
posed framework leveraged the ability to substantially differentiate
hand posture through contact signals, creating a reactive system
characterized by event boundaries. In other words, the exteroceptive
touch state offered the precondition of body context, and the pro-
prioceptive signal was applied for classification prediction assisted
with deep learning. Within distinct feature contexts, the requirement
for system generalization was alleviated, rendering it particularly well-
suited for systems operating with few datasets.

In the learning phase, a convolutional neural network (CNN)
assisted long short-termmemory (LSTM)networkwas adopted to train
and classify the hand motions (Fig. 6b). To increase the recognition
accuracy, we introduced mathematical operators (derivative, differ-
ence, Hilbert, and entropy operations) for feature augmentation prior
to training (the detailed calculation process is analysed in Note S3). To
do this, we divided the time sequence data into fixed-length sliding
windows as inputs and tested the above four methods to generate
additional aligned sequences (Fig. S21 shows the model performance
for various time-window sizes). A CNN layer was used in the feature
extraction phase to capture local correlations, offering structured
information that compensates for the limitations of LSTM inmodeling
short-term dependencies. For time sequence learning, the data were
trained in multiple LSTM layers to analyse long-term dependency
features, aiming to achieve better generalization in learning tasks. The
dense layer subsequently transforms the input features into a higher-
dimensional space to learn complex mappings between inputs and
outputs, whereas the dropout layer is applied as a regularization
technique to reduce overfitting.

The HDM metaskin allowed for participants to achieve contour
recognition through continuous probing and rubbing, such as identi-
fying geometric shapes on the basis of variations in hand flexion. Fig 6c
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shows the geometric objects with distinct shapes selected for the
experiment, along with the process of recognizing these shapes
through palm exploration. When the person rubbed the object with
their hand, proprioceptive flexion signals encoded contour-related
features. In the feature space, the characteristics of the five geometric
shapes, represented by different colors, diverged from those of the
resting state in distinct directions, projecting into dedicated regions.
Compared with direct training, differential and gradient-based com-
putations involving local variation rates significantly improved classi-
ficationoutcomes, with derivative feature enhancement increasing the
recognition rate from 66% to 81% (Fig. 6d). However, enhancement
methods involving Hilbert transformations and entropy calculations,
which involve frequency-related information, adversely affected the
classification results (Fig. S22). Figure 6e shows the exploratory
recognition process for a pyramid. Like how humans explore the
environment, object recognition does not establish confidence at the
initial contact stage but requires an adjustment period, thereby limit-
ing the upper bound of cognitive accuracy to some extent. During the
adaptation phase, the hand’s adherence and rubbing movements lack
stability, leading to confusion between thepyramidand the cone. After
a second adjustment and regrasping, the final recognition result was
corrected to the pyramid. In another example, the HDM metaskin
demonstrated its ability to decipher intricate joint flexion and direc-
tional cues within single-finger movements through time-series learn-
ing, as evidenced by typing on a numpad (Fig. S23). Specifically,
vertical click actionsweredecoded asdifferent combinational patterns
of PIP andMCP joint flexion, discernible from the spike composition in
the sequential signal spectrum. Moreover, lateral click actions corre-
sponded to the lateral sway of the MCP joint, which modulated the
peak amplitudes. These motion patterns are reflected in the signals
and ultimately enable precise and reliable motion classification.

We aimed to provide a natural interaction mode that adapts to
bodily movements through sensing modality fusion. To this end, a
demonstration of air-drumming was shown, which featured a switch-
able definition boundary for limited training labels, making it possible
to achieve smooth contextual interaction on the basis of biomimetic
action habits. As shown in Fig. 6f, wrist motions in three directions
simulate the air drumming actions, captured by the wrist-mounted
sensors, whereas the finger-mounted sensors monitor the drumstick
grip posture, controlling the switch of the drum type. The drumstick
featured a T-shaped silver composite conductive pattern, serving as a
trigger for theHDMmetaskin to respond to contact positions. The first
grip posture, called the open-grip posture, generates the sound of a
snare drum in the virtual application, whereas the second posture, the
closed-grip posture, corresponds to the sound of a hand drum. As
illustrated in Fig. 6 g, after training on wrist movements (left, center,
right) for both grippostures, themodel exhibited significant confusion
in classifying six distinct actions (labels #1 to #6). This confusion arose
because wrist movement signals do not noticeably change with dif-
ferent grip postures, making the accurate extraction of static features
using machine learning methods nearly impossible. Thus, to coordi-
nate the matching of the interaction posture and dynamics, multi-
dimensional information from both the grip posture and wrist
movements must be considered simultaneously. We addressed this
issue in a parallel processing framework, where contact position sig-
nals were used as conditional triggers to limit the activation space of
the learning model (Fig. S24). As a result, even with training limited to
wrist movements under the open-grip posture, the model effectively
operated for the closed-grip posture, achieving an output accuracy
exceeding 90%. This approach significantly reduced the definition and
learning costs. Details of the demonstration process are shown in
Fig. 6h and Supplementary Movie 6. Initially, no output was produced
when the hand did not make contact with the trigger, conserving
computational resources by filtering out invalid action frames. In the
open-grip posture, the predictive model was activated and responded

solely to three hand drum trigger sound labels. In the closed-grip
posture, the model successfully predicted three snare drum trigger
sounds. Unlike the object shape prediction outputs, the sliding win-
dow count in our model did not overlap, meaning that the output was
not continuous but responded only to individual wrist-triggered
actions. This applicationdemonstrated that ourHDMmetaskin system
could concurrently interpret both interaction postures and dynamics
between the hand and object, aligning with contextual object inter-
actions under natural bodily movements.

Discussion
Based on the understanding of bodily dynamics, we present an
encapsulation-free artificial mechanoreceptor, termed an HDM meta-
skin, which conforms closely to the skin topography and accurately
decodes proprioceptive motion and exteroceptive contact. The two
motion modalities exhibit dual-polarity signal patterns that are indi-
vidually salient, thereby eliminatingmechanical crosstalk. Ourmethod
establishes temporal differential decoupling, compares the temporal
differences in sequential signals, and deciphers the contextual corre-
lations betweenproprioceptive-tactile dual-mode signals. Thismethod
enables the precise positioning of relative touch positions even under
stretching conditions. The strong interfacial coupling between the thin
hydrophilic substrate and the water-based Ag nanocomposite is the
physical basis of the mechanoreceptor, with a two-step transfer
strategy to minimize interfacial losses and uneven strain. The results
revealed that the HDM metaskin exhibitedhigh conformability and
stability, because the scale between the HDM metaskin and the skin
wrinkles (~10μm) was identical. Under experimental conditions, the
intrinsic resistance of the nanocomposite, which was placed on the
fingertip, remained nearly unchanged during continuous friction (2N
for 10min), during exposure to high humidity (90% for 2 h), andwithin
a human-comfortable temperature range (25–60 °C). In addition to
responding to skin stretches, the HDM metaskin provides a perspec-
tive on touch positioning using imperceptible conductive triggers,
thus taking contact dynamics into consideration. Proprioceptive and
exteroceptive components in the time-series signals convey motion
details and behavioral intents through superposition, sequence, and
parallel combinations. The time patterns of dynamic motions can be
compiled into time-efficient logical information, simulating keyboard
and mouse operations to aid individuals with motion impairments.
This implies an application adaptation to bodily contexts, overcoming
the limitations of conventional sensor systems, which often lack flex-
ibility and are restricted to predefined programming. Additionally,
demonstrations revealed that the directionality and angular cues of
finger joint movements could be extracted by deep neural networks,
expanding the physical boundaries formapping explicit intent in hand
movements. Furthermore, the feasibility of soft tissue surface pressure
sensing on the basis of the HDM metaskin was also experimentally
confirmed, which compensates for simplifications of pressing actions,
and guides future research. Future projects lie in deploying the
metaskin across all five fingers and other joints to acquire compre-
hensive motion data, driving applications in soft robotics, embodied
interactions, and intelligent prosthetics.

Methods
Preparation of the water-based Ag NP/Ag NW
nanocomposite paste
First, we dispersed 10mL of an Ag NW solution (10mg/mL; diameter:
90 nm, length: 100μm; Aladdin) using ultrasonic sonication (550W)
for 10min. Themixturewas then centrifuged at 850× g (3000 rpm) for
10min. To obtain a concentrated Ag NW solution, we carefully
removed 9mL of the supernatant with a pipette. The concentrated
solution was sonicated again for 10min. Two grams of premade Ag
nanoparticle paste (50%Ag NPs: 50%PU, Mogan Technology) was
subsequently added to theAgNWsolution and stirreduntil thoroughly
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mixed. The final proportion of AgNPs to AgNWswas 10:1. As a control,
multilayered carbon nanotubes were also mixed with Ag nanoparticle
paste in the same proportion to prepare the Ag NP/CNT paste (CNT,
2mg/mL; Times nano). For all the nanocomposites involved in the
experiment, the major solvent was deionized water.

Preparation of the HDM metaskin
HDMmetaskin was achieved through the fabrication of thin films and
the printing of sensitive Ag paths, followed by a secondary transfer
process. Initially, a high-concentration waterborne polyurethane
(WPU) solution was spin-coated onto transfer paper at a speed of
3000–4000 rpm, producing a film with a thickness of ~4–10μm. The
coated film was then dried on a hot plate at 40 °C for 10min. Sub-
sequently, an Ag nanocomposite paste was precisely deposited onto
the film surface using a dispensing and printing system (DB100,
Shanghai Mifang Electronic Technology Co. Ltd.) at a print pressure
of 60MPa and a speed of 10mm/s. The printed filmwas oven-dried at
60 °C for 2 h.

In the transfer stage, the WPU film was cut to the desired
dimensions and laminated onto a silicone rubber substrate. Themild
tackiness of the WPU film facilitates its adherence to the silicone,
which has a slightly lower surface energy, enabling easy detachment
from the transfer paper. A thin layer of pressure-sensitive adhesive
(PSA) was then spin-coated onto the exposed WPU surface and
subsequently dried on a hot plate at 50 °C for 10min. The adhesive-
coated side of the film was pressed onto the skin, and the silicone
substrate was peeled off, enabling a strain-free transfer of the HDM
metaskin onto the skin. Finally, the conductive Ag nanocomposite
pathways were exposed on the surface.

Characterization and electrical measurement
Scanning electronic microscope (SEM) characterization was con-
ducted with a field emission electron microscope (SUPRA 55 SAP-
PHIRE, Carl Zeiss). Tensile tests of films were performed with a
universal testing machine (ZQ-990B, Dongguan Zhiqu Co., Ltd.) at a
measurement rate of 40mmmin−1. Resistance signals were measured
on an LCRmeter (TH2840, Changzhou Tonghui Electronic Co. Ltd.) at
an AC voltage of 1 V and a sweeping frequency of 1 kHz. Voltage con-
version signalsweremeasured and recorded using a digitalmultimeter
(34465a, Keysight). The thickness of the thin films wasmeasured using
an automatic stylus profiler and stress measurement system (Dektak
XT-A, Bruker) with a vertical scan range of 65.5μm. Power consump-
tionmeasurement was conducted with a direct current power analysis
instrument (PowerScope, Nanjing Sensingsystmes Co. Ltd.).

Mechanical simulation of a film on skin
The strain and stress distributions of the thick and thin-film electronics
were compared through the finite element method (COMSOL Multi-
physic, version 5.6). The width and depth of the skin wrinkles were set
as 160μmand80μm, respectively. AhyperelasticWPUmaterialmodel
was applied above thewrinkle, and the thicknesses of the thickfilm and
thin film were set as 40μm and 10μm, respectively. The Ag nano-
composite conductive path was set at a thickness 10μm. The strain
curve was obtained by extracting the strain data from the top surface
of the Ag conductive path.

Wireless communication module
The wireless measuring module was developed on the Xiao ESP32C3
(Seeed Studio) development board to transmit Wi-Fi signals and relay
data. The whole system consists of an analogue-to-digital converter
(ADC) sensing element, a volage divider element, aWi-Fimodule, and a
lithium-ion battery. The device was configured in station (STA) mode,
in which it gathers analogue signals from connected sensors and
transmitting the data to the computer over Wi-Fi. The analog signals
are converted into digital forms through the analogue-to-digital

converter interface, and the collected data is sent every 30ms. Python
(version 3.13.0) was used to handle incoming data with multithreaded
programming, ensuring real-time updates and enabling further data
processing (Supplementary Movie 7). The wireless communication
module operates in three power states with the following average
power consumption: the unassociated state (0.079W), the associated
idle state (0.160W), and the active data transmission state (0.302W)
(Fig. S25).

Implementation and control of the hexapod robot
A U-shaped HDM metaskin was affixed to the user’s wrist, with a
wireless module connected to its terminal. Single-channel data com-
prising somatic action information were transmitted to a personal
computer (PC) for further differentiation processing. A software
interface developed in Python collected these data and managed the
conversion and transmission of control signals. The communication
system utilized a pair of HC-05 Bluetooth modules configured in
master‒slavemode to establish a reliable wireless connection between
the PC and the hexapod robot. The robot’s locomotion was con-
currently governed by both the contextual and addressing features of
the received signals. With the use of a decoupling algorithm, the
relative touch location on the HDM metaskin remained consistent
despitewristflexion.On this basis, identical touchpositions resulted in
varied moving parameters (e.g., moving distance as demonstrated in
Supplementary Movie 2) depending on the t bodily context (wrist
flexion state).

Neural network learning
For different tasks, interaction actionswerecontinuously collected in a
sequential acquisition mode (ranging from 30 to 100 repetitions) to
obtain training and testing datasets. Specific gesture actions were
labeled with the same action tag to serve as supervisory signals for
classification. We developed a deep learning framework tailored for
time series classification. Feature extraction was performed by calcu-
lating the derivatives of the sensor signals to enrich the dynamic
characteristics. Additionally, to enhance feature selection, we
employed differential operations, Hilbert transforms, and entropy
calculations to supplement features with diverse attributes. All the
data were standardized using z-score normalization to ensure uniform
scaling. A sliding window approach was used to segment the normal-
ized data into continuous, fixed-size sequences. The time series clas-
sification model integrates a one-dimensional convolutional layer
(Conv1D) to extract local temporal patterns, followed by two long
short-termmemory (LSTM) layers to capture temporal dependencies.
The network architecture included fully connected dense layers and
dropout layers to mitigate overfitting. In practical interaction classifi-
cation tests, two methods—continuous prediction mode and frame
judgment mode—were adopted to accommodate different classifica-
tion output requirements. For example, in object recognition tasks
that involve continuously adjusting hand poses to achieve compre-
hensive judgment, prediction results for long-duration actionwindows
were output consecutively. Conversely, for drum action prediction
tasks that require a one-to-one correspondencebetween single actions
and single labels, only individual windows within single action seg-
ments were collected for classification. Importantly, this approach
relies on high prediction accuracy in model training, necessitating
adjustments in dataset quality and model training parameters to
achieve optimal performance.

Statistical analysis
Error bar analysis in this work represent mean± standard deviation
(SD), showing central tendency of the data. Box plots analysis in this
work were used to represent the distribution of the data. The central
line in each box represented themedian, the lower and upper edges of
the box indicated the 25th and 75th percentiles respectively
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(interquartile range, IQR), and the whiskers extended to the minimum
and maximum values within 1.5×IQR from the quartiles. Unless other-
wise specified, all statistical samples in this experiment were derived
from independent material samples or tests. The experimental data
were analyzedwithMatlab (version R2022b) andOrigin (version 2017).

Ethics oversight
All procedures involving human research participants were conducted
in accordance with the experimental protocol approved by the Ethics
Committee of Xiamen University (XDYX202501K02). All participants
were informed with written consent.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data support the findings of this study is available within in the
main text and the Supplementary Information/Source Data file. The
raw training data for machine learning are included in the provided
code. Source data are provided with this paper.

Code availability
The python code (Python 3.9) for the CNN-LSTM model and relative
algorithm are publicly available on Github/Zenodo50 at (https://doi.
org/10.5281/zenodo.17060795) along with the paper.
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