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Integrating axis quantitative trait loci looks
beyond cell types and offers insights into
brain-related traits

Lida Wang 1,8, Shuang Gao1,8, Siyuan Chen1, Havell Markus2,3, Gao Wang 4,5,
Laura Carrel 2,6, Xiang Zhan 7 , Dajiang J. Liu 1,2,6 & Bibo Jiang1

Genome-wide association studies have identifiedmany loci for braindisorders,
but most non-coding variants fail to colocalize with bulk expression quanti-
tative trait loci. Single-cell expression quantitative trait loci studies capture
cell-type-specific regulation but are often underpowered. We developed Bulk
And Single cell expression quantitative trait loci Integration across Cell states
(BASIC) to combine bulk and single-cell expression quantitative trait loci
through “axis-quantitative trait loci,” which decompose bulk-tissue effects
along orthogonal axes of cell-type expression. BASIC better distinguishes
shared versus cell-type-specific effects and increases power. Analyzing single-
cell expression quantitative trait loci with cortex bulk data from MetaBrain
using BASIC identified 5644 additional genewith quantitative trait loci (74.5%),
equivalent to a 76.8% increase in sample size. Integrating axis-quantitative trait
loci with 12 brain-related traits improved colocalization by 53.5% versus single-
cell studies and 111% versus bulk studies, revealing risk genes such asDEDD for
Alzheimer’s disease and drug candidates including cabergoline.

Genome-wide association studies (GWAS) have successfully unveiled
numerous genetic associations with brain-related traits, including
tobacco and alcohol use1, psychiatric disorders2–5, and neurodegen-
erative disease3,6–8. These associations reveal the genetic landscape of
complex diseases and provide a new foundation for therapeutic
development. However, a substantial proportion of identified genetic
variants reside within non-coding regions9,10. Integrating functional
genomics data to decode the molecular mechanism of GWAS loci
would be critical for advancing our understanding of disease
pathology.

Expression quantitative trait loci (eQTL) link regulatory variants to
inter-individual differences in gene expression levels11. This approach
has been effective in deciphering the functional roles of genetic

variants within brain tissues, where the complexity of gene regulation
is most profound12. For instance, de Klein et al. and Sieberts et al.
respectively profiled genetic regulatory variants for gene expression
across seven brain regions with a total of more than 8500 brain
RNASeq samples13,14. These studies provide novel insights into gene
regulation in the brain and pinpoint disease susceptibility genes for
different disorders.

Despite the progress12,15, eQTLs from bulk tissues may miss reg-
ulatory variants that only affect certain cell types, especially for less
common ones. Indeed, even with large sample sizes, many GWAS loci
for brain-related traits failed to be colocalized with bulk(bk)-eQTLs.
Moreover, studies have shown that the same cell types from different
brain tissues tend to share effects,making the study of eQTLs fromcell
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types (sc-eQTLs)more compelling16. Due to the advancement of single-
cell or single-nuclei RNASeq technologies, it is now cost-effective to
sequence hundreds of samples and profile cell type-specific eQTLs
across the brain17. This is particularly important for neurodegenerative
disorders like Alzheimer’s disease (AD)18 and addiction-related traits1,19,
which affect a subset of cell types. Indeed, even though sc-eQTLs
datasets aremuch smaller thanbk-eQTLs, they can already colocalize a
comparable number of GWAS loci. Further improving the power of sc-
eQTL studies and refining eQTL effect sizes can potentially resolve
more GWAS loci and identify risk genes across brain cell types.

To enhance the efficacy of sc-eQTL studies, we propose a novel
method that integrates both bulk13 and single-cell RNA sequencing
data20,21 to improve the detection of cell type-specific eQTLs. This
method leverages two key insights: First, there is growing recognition
that the cell states vary continuously22,23. Clustering cells into discrete
cell types may lose information. Here, we calculate the principal
components of sc-eQTLs effects and use them as a proxy for con-
tinuous cell states. Biologically similar cells tend to have similar PC
coordinates. Importantly, we can project sc-eQTLs onto the PCs and
calculate the “axis-QTLs”. Axis-QTLs decompose sc-eQTLs and bk-
eQTLs in orthogonal directions. They allow us to look beyond cell
types and identify shared and distinct regulatory effects across cell
types. A second idea is to model bulk eQTLs (bk-eQTLs) as weighted
averages of axis-eQTLs to utilize the large sample sizes of bk-eQTLs
studies and improve power. These two ideas employed in BASIC allow
us to greatly improve the power for identifying regulatory variants for
brain gene expression levels. Integrating BASIC-refined sc-eQTLs and
axis-QTLs with GWAS can further link regulatory variants to risk genes
for various diseases, improving the power of colocalization analysis.

Results
Method overview
We introduce the BASIC framework to jointly analyze bk-eQTL and sc-
eQTLs to improve the detection of sc-eQTLs and identify target genes
for GWAS loci. BASIC relies on two key ideas. First, principal compo-
nents of sc-eQTLs effects can help cluster cell types with similar bio-
logical functions. We employ meta-regression to model sc-eQTLs
effects using PCs of sc-eQTLs effects as covariates (Fig. 1 and Supple-
mentary Data 1). It decomposes sc-eQTLs effects in orthogonal direc-
tions. In this case, the model’s intercept represents shared effects
across cell types. At the same time, the coefficients for other PCs
measure distinct effects betweenmajor brain cell clusters, e.g., barrier
cells, glial cells, and neurons. A second idea is to integrate sc-eQTLs

and bk-eQTLs to improve the inference of axis-QTLs. Extending our
previous work, we theoretically prove that bk-eQTLs can be decom-
posed into orthogonal axis-eQTLs. Leveraging this compositional
relationship and jointly modeling bk-eQTLs and axis-eQTLs can
improve the power (Fig. 2).

BASIC substantially improves the power for identifying regulatory
variants for gene expression levels. The improvement is substantial
when the eQTLs effects are shared in biologically similar cell types, but
remains sizable in scenarioswhereeQTL effects arepresent inonlyone
or a few random cell types. The refined sc-eQTLs and axis-QTLs effects
from BASIC can substantially improve all downstream analyses,
including transcriptome-wide association studies (TWAS), co-locali-
zation, and drug repurposing analyses13.

In the following sections, we will first describe the real data
application and compare different methods in real data. We will leave
the details of simulation studies in Supplementary Notes.

Principal component analysis reveals distinct cell type clusters
We first perform fixed effect meta-analysis of sc-eQTLs from Bryois et
al. 20 and Fujita et al. 21 datasets for 7 overlapped cell types, tomaximize
the sample sizes. We name the resulting sc-eQTLs “meta-sc-eQTLs”.
Using the meta-sc-eQTLs dataset, we performed principal component
analysis (PCA) of sc-eQTL effects across cell types (see Methods for
details), and show the plots of top PCs in Fig. 1.

We can view the PCs as weighted combinations of sc-eQTLs
effects from different cell types. The plots of top PCs of sc-eQTLs
effects reveal clusters of cell types with shared biology. For instance,
the first two PCs separate barrier cells (i.e., pericytes and endothelial
cells) from glial and neuronal cells. Endothelial cells carry specialized
functions in blood-brain barrier formation, blood flow regulation, and
brain homeostasis24, while pericytes, cells thatwraparound thewallsof
small blood vessels, play key roles in the blood-brain barrier and blood
vessel formation25. On the other hand, there are close cell-cell inter-
actions between glial and neuronal cells. Forming their own clusters
will help borrow strength from related cell types. PCs 3 to 5 further
separate glial cells from neurons and excitatory neurons from inhibi-
tory neurons. Instead of analyzing associations between cell type gene
expression levels, we propose to project sc-eQTLs effects across cell
types onto the PCs, and name them axis-eQTLs. Axis-QTLs measure
how the regulatory effects vary along the axis of variation of gene
expression levels (i.e., the PCs of sc-eQTL effects, which are also the
PCs of gene expression levels) and can better retrieve shared effects
across cell types. As shown below, BASIC and axis-QTLs can lead to
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Fig. 1 | Principal components of sc-eQTLs separate biologically distinct
cell types. We calculate the principal components (PCs) of significant sc-eQTLs in
the meta-analysis of datasets from Fujita et al. 21 and Bryois et al. 20. Each data point
in the plot represents a distinct cell type. Biologically similar cell types tend to be
clustered together in the plot, e.g., neurons (e.g., inhibitory and excitatory

neurons), and glial cells (e.g., oligodendrocytes, astrocytes, and microglia). Using
PCs as covariates, BASIC will borrow strength from biologically similar cell types
and improve the power of identifying regulatory variants. As we show in Supple-
mentary Notes Section 2, the PCs of the sc-eQTLs effects are concordant with the
PCs of the covariance matrix of cell type gene expression levels.
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more eSNPs and eGenes (genes with at least one eSNP) and colocalize
more GWAS loci.

BASIC substantially improves the number of eQTLs across brain
cell types
Using the dataset from Bryois et al. as input, we first compare the
power of identifying eSNPs associated with gene expression levels
across cell types. A SNP is considered associated if the two-sided
p-values < 1 × 10⁻⁶, which is roughly the lower bound of Bonferroni
threshold, adjusting for the number of SNPs tested for each gene in a
cell type. We compare BASIC, JOBS26 (which shares a similar idea to
IBSEP27, and jointly analyzes sc- and bk-eQTLs), mashr28, and the
method that analyzes sc-eQTLs data from Bryois et al. 20 alone for
detecting regulatory effects across brain cell types. For mashr, we
apply it to analyze sc-eQTLs (mashr-sc) or jointly analyze both single-
cell and bulk eQTLs (mashr-sc+bk). By analyzing axis-QTLs, BASIC can
borrow strength from shared effects across cell types and bk-eQTLs. It
has the highest power. By analyzing axis-QTLs and using the Cauchy
combination test to combine results across different PCs, BASIC
identifies 80,8976 SNPs and 8597 genes associated with at least one
PC, which is 38.19% and 22.22% higher than JOBS-identified eSNPs and
eGenes (Fig. 3A, B). Among the axis-QTLs, 20775/13554 SNPs and 589/
364 genes were associated with the first and second PC, representing
distinct effects between barrier cells and glial/neuronal cell types.
18714/17295/9600 SNPs and 349/338/206 genes were associated with
the 3rd to 5th PCs, representing eQTLs with distinct effects between
glial or neuronal cell types (Fig. 3C, D, Supplementary Data 2).

JOBS integrates sc-eQTLs with bk-eQTLs datasets but does not
model shared effects between cell types. JOBS is not as powerful as
BASIC, but outperforms other methods. Specifically, JOBS increases

the number of eSNPs by 304% to 1085% compared to analyzing sc-
eQTLs alone, 79% to 764% compared to mashr-sc, and 73% to 978%
compared to mashr-sc+bk. The improvement is higher for more
common cell types. For instance, in the most abundant cell type,
excitatory neurons, JOBS identifies 460,329 eSNPs, compared to
69,064 using sc-eQTLs alone (567% increase), to 76,329 usingmashr-sc
(503% increase), and 101,159 using mashr-sc+bk (359% increase). The
improvement remains substantial in less abundant cell types, e.g.,
endothelial cells. In this case, JOBS identifies 49,599 eSNPs compared
to 5900 using sc-eQTL alone (741% increase), 7276 using mashr-sc
(582% increase), and 6035 using mashr-sc+bk (722% increase) (Sup-
plementary Fig. 1, Supplementary Data 3).

We then validated the eSNPs identified by each method in two
independent datasets: Fujita et al. 21 which included seven overlapping
cell types as Bryois et al. 20, and Lopes et al. 29, which includes only
microglia.We first compare the number of eSNPs identified across cell
types and PCs based on Cauchy combined p-values. BASIC replicated
447,952 eSNPs, which led to 196.12%, 406.12%, 336.02% and 18.83%
improvement over using sc-eQTLs data alone, mashr-sc, mashr-sc+bk,
and JOBS, respectively. For axis-QTLs, 323,613, 8547, 5803, 8350, 6986,
3629 and 1285 eSNPs are replicated for PC0 to PC6 (Fig. 3A, C, Sup-
plementary Data 2). When it comes to cell type level eQTLs, the
replication results confirmed a significant increase of power of JOBS.
For instance, in excitatory neurons, JOBS replicated 218,077 eSNPs in
Fujita et al. 21 compared to 56,643 using Bryois et al. 20 alone (285%
increase), 61,703 eSNPs using mashr-sc (253% increase) and 83,412
eSNPs using mashr-sc+bk (161% increase). Moreover, many of these
eSNPs were novel, and not found in Bryois et al. 20 or MetaBrain13,
showing that JOBS does not simply copy results from bk-eQTLs (Sup-
plementary Fig. 1, Supplementary Data 3). BASIC does not identify

Fig. 2 | BASIC workflow. BASIC consists of three key steps, including 1) estimating
cell-type weights from bulk eQTLs and sc-eQTLs; 2) using principal components of
sc-eQTLs effects to cluster biologically similar cell types and cell states; 3) joint
modeling axis-eQTLs and bk-eQTLs using a meta-regression model with principal

components as covariates. The axis-QTLs can improve the discovery of risk genes
for brain-related traits in downstream colocalization and TWAS analyses. This fig-
ure is created in BioRender. W, L. (2025) https://BioRender.com/r75v850.
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eQTLs specific to a given cell type and was not included in this com-
parison. The patterns remain similar when comparing the power of
eGene discovery (Fig. 3B, D, Supplementary Data 2) and replications
(Supplementary Fig. 2, Supplementary Data 4).

Finally, using meta-sc-eQTLs dataset as input, we compared the
number of eGenes identified by BASIC, JOBS, mashr. Meta-sc-eQTLs
data alone identified 7575 eGenes, while mashr-sc+bk and JOBS iden-
tified 9227 and 10,006 eGenes. By analyzing axis-QTLs, BASIC further
increases the number of eGenes to 13,219, representing a 75%
improvement in eGene discovery power compared to meta-sc-eQTLs
alone. We use BASIC and JOBS results based on meta-sc-eQTL for all
downstream analyses (Supplementary Figs. 3–5, Supplementary
Data 5–7).

Simulation studies highlight the improved power of BASIC
Baseline read counts for sc-RNA-Seq data were simulated using a
negative binomial distribution with parameters estimated from Vel-
meshev et al. 30. The baseline read counts for each individual were
further adjusted based on causal eQTLs effect sizes and genotypes.
Bulk RNA-Seq data were simulated by aggregating the reads from
constituent cell types, weightedby cell type proportions sampled from

real data estimates. Notably, the cell type proportions may differ
between individuals. Based on simulated read counts, we calculated
transcript per million (TPM), performed inverse normal transforma-
tion of TPMs, and used them to conduct bk- and sc-eQTL analyses,
following conventional sc-eQTL analysis pipelines31. A genetic variant is
deemed to be associated if the Cauchy-combined p-values from dif-
ferent cell types or different PCs (for BASIC) are smaller than 1 × 10�6,
which is roughly the Bonferroni threshold for testing multiple SNPs in
the cis-region. We consider a bk-eQTLs sample size of 2000 or 3000,
mimicking the sample sizes ofMetaBrain, and sc-eQTLs sample sizes of
300 and 400, mimicking the sample sizes of sc-eQTLs datasets from
brain cell types. We compare the performance of the following
methods: BASIC, JOBS, bulk eQTLs alone, sc-eQTLs alone, mashr using
sc + bulk eQTLs, and mashr using sc-eQTLs alone. To evaluate type I
errors and power, we calculate the fraction of significant eQTLs or
eGenes with two-sided p-values < 1×10⁻⁶ for each method. Detailed
information on the simulation settings is provided in the Supplemen-
tary Notes.

We first verified that the type I error for eQTLs detection was well
controlled (Supplementary Data 8). When no causal SNPs were pre-
sent, all methods had controlled type I error rates. We next compare
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Fig. 3 | Comparisonof significant eGenes identifiedby joint analysis of sc-eQTLs
fromBryois et al and bk-eQTLs fromMetaBrain data. A, B compare the number
of significant eSNPs and eGenes identified by five approaches: (i) using Bryois et al.
only; (ii) mashr-sc (mashr applied to sc-eQTLs data), (iii) mashr-sc+bk (mashr
applied to analyze sc-eQTLs and bk-eQTLs data), (iv) JOBS, and (v) BASIC. To

facilitate the comparisonof differentmethods,we use theCauchy combination test
to combine the p-values of different cell types or PCs. We also replicate significant
eSNPs and eGenes in Fujita et al. C, D show the numbers of discovered and repli-
cated eGenes and eSNPs based on axis-QTLs.
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the power of different methods. We consider scenarios with different
combinations of cell types with eQTLs effects, i.e., eQTLs effects are
present in a) two randomly chosen cell types, b) in two biologically
similar cell types (astrocytes and microglia), c) in four randomly cho-
sen cell types, and d) in all cell types. In all simulation scenarios, BASIC
consistently outperforms alternative approaches, especially when
compared to the use of sc-eQTLs data alone. When eQTLs effects are
present in only a few cell types, bk-eQTLs may fail to identify the
association and the effects in uncommoncell typesmay bemasked. By
analyzing axis-QTLs, BASIC borrows strength between similar cell
types and from bk-eQTLs datasets. For example, in the scenario where
eQTLs effects are present in microglia and astrocytes, two glial cell
types, when analyzing sc-eQTL datasets with N = 400 and bk-eQTLs
dataset with N = 3000, the power for BASIC is 46.2% which is 25%
higher than the power for the second most powerful method JOBS
(36.9%). JOBS and BASIC are bothmuchmore powerful than analyzing
sc-eQTLs alone (31.4%), using mashr to analyze multiple cell types
(23.9%), and using mashr to analyze sc-eQTLs and bk-eQTLs (27.6%).
While mashr-sc+bk increases the power over analyzing sc-eQTLs alone
in many scenarios, it has lower power than BASIC. This is because
mashr was developed to analyze eQTLs from multiple tissues and it
only considers a few scenarioswhere eQTLs are shared or independent
across tissues. Yet, it does not properly model the compositional
relationship between axis-eQTLs and bk-eQTLs, which is key to the
improved power. This pattern is consistent across all scenarios where
BASIC remains the top-performing method (Supplementary Figs. 6–9,
Supplementary Data 9).

Colocalization using axis-QTLs substantially increases the frac-
tion of colocalized GWAS loci
We perform colocalization to dissect GWAS loci and identify target
genes for regulatory variants. For input of eQTLs effects, we use bk-
eQTLs from MetaBrain, meta-sc-eQTL dataset, and also consider
refined sc-eQTLs effects from JOBS,mashr-sc, mashr-sc+bk. Moreover,
we also use axis-QTLs from BASIC as input. Unlike sc-eQTLs, axis-QTLs
are combinations of sc-eQTLs effects across cell types, which can
better capture how regulatory effects change along the axis of
expression variation and allow borrowing strength across cell types.
We employed the COLOC32 method to colocalize GWAS loci with sc-
eQTLs or axis-QTLs effects. A locus is deemed colocalized if the pos-
terior probability of theGWAS locus andeQTLs sharing a causal variant
exceeds 0.9 (i.e., PP4 >0.9).

We first verified that the type I error was well controlled in our
colocalization analysis through extensive simulations (Supplementary
Data 10). Next, we demonstrated that using axis-QTLs as input colo-
calizes the most loci across all simulation settings, when compared to
using meta-sc-eQTLs alone, bk-eQTLs alone, JOBS, mashr-sc, and
mashr-sc+bk. (Supplementary Data 11).

We next perform colocalization analysis using for 12 brain-related
GWAS phenotypes. Our study focuses on tobacco and substance
use1,19, neuropsychiatric disorders (e.g., attention deficit hyperactivity
disorder (ADHD)33, bipolar disorder (BiPo)3, major depressive disorder
(MDD)7, Schizophrenia (SZ)4), and neurodegenerative disease, i.e.,
amyotrophic lateral sclerosis (ALS)5, Alzheimer’s disease (AD)34, and
Parkinson’s Disease (PD)35 (Supplementary Data 12, 13).

Using axis-QTLs from BASIC as input colocalizes the most loci
(287), followed by JOBS (246). In general, using single-cell eQTLs helps
colocalize more loci than using the bk-eQTLs dataset, highlighting the
importanceof resolving cellular heterogeneity of regulatoryeffects. By
borrowing strength from bk-eQTLs datasets, methods such as JOBS
andmashr-sc+bk can refine eQTLs effect estimates and lead to a bigger
number of colocalized loci compared to using meta-sc-eQTLs
dataset alone (Supplementary Figs. 10, 11, Supplementary Data 14, 15).

Colocalization using axis-QTLs from BASIC leads to the discovery
of many interesting risk genes that are missed by other approaches.

One example is CACNA2D2, a gene that encodes the alpha-2/delta
subunit of the voltage-dependent calciumchannel complex. Theworm
ortholog of CACNA2D2, known as tag-180, is involved in nicotine-
motivated behaviors36. Loss-of-function mutations in tag-180 result in
impaired development of nicotine-conditioned cue preference, indi-
cating that the alpha-2/delta subunit of calcium channels is involved in
nicotine-seeking behavior. Together, evidence suggests that CAC-
NA2D2 may influence smoking behavior by modulating neuronal cir-
cuits involved in reward and addiction through its role in calcium
channel function.

BASIC axis-eQTLs also uniquely colocalize with (Death Effector
Domain-Containing DNA-Binding Protein) for AD (Fig. 4). DEDD is a
protein involved in apoptotic processes, which may influence AD
through its role in cell death and inflammation37,38. DEDD functions by
influencing the nuclear factor-kappa B (NF-κB) pathway, which is cru-
cial in the activation of glial cells like microglia39. Dysregulated DEDD
activity might amplify neuroinflammatory responses, contributing to
disease progression. DEDD is also implicated in cellular responses to
oxidative stress40. Dysfunctional regulation of oxidative stress
responses can lead to increased neuronal damage41. DEDD may be
involved in AD etiology through its role in apoptosis and cellular
signaling.

Enhanced detection of disease-associated loci through refined
sc-eQTLs and axis-QTLs in TWAS
Utilizing refined sc-eQTLs and axis-QTLs as input, we can also improve
TWAS34,42,43. Compared to colocalization, TWAS provides a com-
plementary approach to link GWAS hits to regulated target genes.
TWAS can also identify novel gene-level associations.We extended the
framework of summary statistics-based TWAS method EXPRESSO44 to
take axis-QTLs as input and perform axis-TWAS (Method). We also
proposed a novel summary statistics-based procedure to validate
prediction accuracy when external individual-level genotype, gene
expression data, or eQTLs summary statistics are not available.

We define each locus as a 1 MB genomic window centered on the
sentinel gene, extending 500 KB on each side. Genes are ranked by
their TWAS p-values in ascending order, with the initial locus encom-
passing the 1 MB region around the gene with the lowest p-value.
Subsequent loci are similarly defined, using significant genes falling
outside already established loci. Wewill alsomerge overlapping loci to
eliminate redundancies.

First, using JOBS-refined sc-eQTLs as inputs, we identified 7.50%
and 94.55% more significant prediction models compared to results
using meta-sc-eQTLs and MetaBrain2 inputs, respectively (Supple-
mentary Data 16). Based on generated prediction models, the TWAS
analyses have controlled genomic control values and identified 289
loci, representing 17.95% and 52.91% increases compared to results
using meta-sc-eQTLs and MetaBrain2 (Supplementary Data 17, 18).
These findings highlight the enhanced power of using JOBS-refined sc-
eQTLs in TWAS, particularly in identifying loci beyond those reported
in the GWAS catalog.

Next, using axis-QTLs as input, we can perform axis-TWAS, which
allows us to identify a similar number of risk loci (260) as JOBS that are
either shared between cell types or have distinct effects between cell
types. We also identified 282 novel risk genes that JOBS misses. The
largest improvement occurs for the SmkInit trait with 78 novel genes
(Supplementary Data 17, 18). We also apply lassosum45 to build gene
expression prediction models using sc-eQTLs and axis-QTLs as input.
Our results show that the improvement of BASIC remains when alter-
native methods are used to generate prediction models and perform
TWAS (Supplementary Data 16–18).

To differentiate causal genes and the neighboring associated
genes due to linkagedisequilibrium,we focusedongenes confirmedas
targets in TWAS fine mapping (with posterior inclusion probability >
95%). We are most interested in the genes identified uniquely in cell
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type-specific TWAS or axis-TWAS, but missed in MetaBrain TWAS
(Fig. 5, Supplementary Fig. 12, Supplementary Data 19).

Some interesting hits are worth highlighting. First, we identify
USP35 as a risk gene for ALS in inhibitory neurons (p-value = 1:2 × 10�6,
and PIP = 1). Inhibitory neurons are known to be affected in early-stage
ALS46. USP35 encodes a de-ubiquinating enzyme, important for beta-2
adrenergic receptor (β₂-AR) signaling47. In addition to its roles in ske-
letal and heart muscle, β₂-adrenergic receptor signaling activates the
cAMP, PKA, CREB pathway48, which regulates genes essential for neu-
ronal survival49, oxidative stress resistance50, and mitochondrial

function51. These functions are critical for ALS etiology. By stabilizing
these pathways, β₂-AR activity may enhance motor neuron resilience.
β2-AR agonists have been shown as safe and potentially effective
therapies for ALS52.

Interesting risk genes for ALS also include ATF6B (with axis-QTLs
for the third PC being p = 3:7 × 10�8). While direct associations
between ATF6B and ALS have not yet been established, ATF6B is a well-
recognized key regulator of the cellular response to endoplasmic
reticulum (ER) stress through its activation of the unfolded protein
response (UPR) pathway53. Extensive research suggests that ER stress
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Fig. 4 | GWAS and eQTLs locus zoom plot for gene DEDD uniquely colocalized
with axis-QTLs. We present locus zoom plots (negative log10-based two-sided
p-value) of a 1-Mb region surrounding the DEDD gene (chromosome
1:160,722,754–161,717,430 in hg38 genomic positions) across multiple datasets: AD
GWAS,meta-sc-eQTLs (fromsevencell types),MetaBrainbk-eQTLs, andBASIC axis-
QTLs from PC0 to PC6. The darkness of the point reflects its linkage disequilibrium
(LD) coefficient (R2) with the sentinel variant in the locus. The posterior probability

of colocalization (PP4 in coloc) is indicated in each panel. Interestingly, this locus
cannot be colocalized with any sc-eQTLs, shows moderate evidence of colocaliza-
tion with bk-eQTLs, but can be colocalized with axis-QTLs from PC0 and PC1. As
shown in Supplementary Fig. 16, the sc-eQTLs effects for many variants tend to
have opposite effects across cell types and can cancel each other in bk-eQTLs
analysis. This example demonstrates the importance of separating shared and
distinct regulatory effects across cell types using axis-QTLs.
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and UPR activation play a significant role in the pathogenesis of
ALS54,55, highlighting the potential relevance of ATF6B in the disease
mechanism.

Another interesting target gene is CAAP1, the caspase activity and
apoptosis inhibitor 1 gene, with the axis-QTLs of the 6th PC being the
most significant association (p = 3:3 × 10�10). CAAP1 is involved in
inhibiting caspase activity and apoptosis. Apoptotic pathways are
relevant in ALS, which can induce motor neuron death. In transgenic
mSOD1 mice, caspases were shown to play an instrumental role in
neurodegeneration, which suggests that caspase inhibitionmay have a
protective role in ALS56. Intracerebroventricular administration of
zVAD-fmk, a broad caspase inhibitor,was shown to delay disease onset
and mortality for ALS. It also inhibits caspase-1 activity as well as
caspase-1 and caspase-3mRNA up-regulation, providing evidence for a
non-cell-autonomous pathway regulating caspase expression. Toge-
ther, the evidence provides support for the functional roles of CAAP1
in ALS.

JOBS and BASIC refined eQTLs also lead to the discovery of Leu-
cine Zipper and EF-Hand Containing Transmembrane Protein 1
(LETM1) for Parkinson’s disease. LETM1 is a mitochondrial protein
involved in calcium homeostasis and mitochondrial ion transport.
Mitochondrial dysfunction is a central pathological feature of PD57. In
PD, mitochondrial Ca2+ signaling contributes to the death of nigral
dopaminergic neurons, mainly by regulating the production of ade-
nosine triphosphate (ATP) and mitochondrial oxidant stress58. Tar-
geting calcium homeostasis has emerged as a potential therapeutic
approach in Parkinson’s disease59. Therefore, LETM1’s role in mito-
chondrial health makes it an interesting gene for functional follow-up.

Cell type aware drug repurposing and validation pipeline iden-
tifies promising drugs for treating diseases
We developed a cell type-aware computational drug repurposing
pipeline (Method) leveraging BASIC results to identify drugs that can
consistently reverse disease-associated gene expression in disease-
relevant cell types. Using TWAS results as input, CMap web portal
calculates a τ score for each drug x disease pair. A more negative τ
score indicates that the candidate drug can more consistently reverse
gene expression, implicating its potential tobe repurposed for treating

the disease (Fig. 6 and Supplementary Fig. 13). To assess the robust-
nessof the results against the choice of gene sets, we conducted a drug
repurposing sensitivity analysis using alternative gene sets, including
the top 10, 15, or 20 genes from each TWAS. The resulting τ scores
remained highly correlated across these analyses. Notably, over 92%of
the drugs identified using our original approach (based on significant
genes under the Bonferroni threshold) were consistently re-identified
with the alternative gene sets, demonstrating the robustness of our
results (Supplementary Fig. 14).

To validate the drugs identified by BASIC, we further employed
several orthogonal strategies: (1) using enrichment analysis to assess
whether drug target pathways are enriched with TWAS hits following
Chen et al. 60, and (2) utilizing Mendelian Randomization (MR) meth-
ods to determine whether the expression levels or protein abundance
of drug target genes causally impact disease risk61 (Supplementary
Data 20).

First, several drugs show a strong negative τ score for SmkInit,
including zonisamide (τ= −92.89, p = 0.0229) and loxapine (τ= −86.64,
p =0.0424) in oligodendrocyte progenitor cells (OPCs). Both drugs
have been validated by six orthogonal methods, which offer multiple
lines of evidence to support the discovery. Zonisamide is an anti-
seizuremedicationwith amultifacetedmechanismof action, including
inhibiting voltage-gated sodium channels and glutamate-mediated
neurotransmission, and enhancing inhibitory GABAergic and ser-
otonergic pathways62. Additionally, it elevates dopamine levels in the
striatum, which may help mimic the rewarding effects of addictive
substances like nicotine63. Studies have shown that zonisamide could
decrease nicotine withdrawal and craving64. When combined with
bupropion, zonisamide may be an effective way to help smokers quit
smoking63. Conversely, we identified suggestive causal relations
between protein levels of the drug target genes CA2 (p = 0.0302) and
CA7 (p =0.0115), aswell as gene expression levels ofCA3 (p = 0.0436) in
OPCs, and SmkInit.

Loxapine is another interesting target, which is a typical anti-
psychotic medication primarily used to manage conditions such as
schizophrenia and, occasionally, bipolar disorder, particularly in cases
involving acute agitation65,66. Although it may not be the first-line
treatment for smoking disorders, its anxiolytic properties could be
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beneficial since many people smoke as a self-medication to cope with
stress or anxiety67. To our knowledge, at least two other anti-
psychotics, clozapine68,69 and bupropion70 have been shown to reduce
nicotine use. Additionally, we identified a significant causal association
(p = 0.0468) between the protein levels of ADRA1A, a gene targeted by
loxapine, and SmkInit.

We identified memantine as a potential candidate for drinking
addiction. Memantine exhibited a significantly low τ in excitatory
neurons (τ = −98.96, p = 0.0051) and inhibitory neurons (τ = −92.31,
p =0.0178), which is validated by five independent methods. Meman-
tine is a non-competitive antagonist of ionotropic NMDA receptors
and is FDA-approved for the treatment of moderate to severe Alzhei-
mer’s disease71. It has been shown to inhibit ethanol-induced upregu-
lation of NMDA receptors72. Studies in rats indicate that memantine
may reduce alcohol cravings73,74. Recent clinical studies suggest that
memantine can suppress alcohol cravings in moderate drinkers
experiencing deprivation75. In our orthogonal validation, we found a
causal association (p =0.0064) between the expression levels of the
target gene, GRIN1, in inhibitory neurons and the drinks per week
phenotype.

Moreover, we identified cabergoline as a potential candidate for
Alzheimer’s disease (AD). Cabergoline exhibited a significantly low τ in
excitatory neurons (τ = −93.32, p =0.0127, Fig. 6), which is further
validated by five independent methods. Cabergoline, a dopamine D2
receptor agonist, is known for its high affinity for the D2 receptor,
which plays key roles in dopamine replacement therapy for conditions
like Parkinson’s disease76, restless legs syndrome77, and more recently,
Alzheimer’s disease78. Moreover, dopamine D2 receptor agonists have
been reported to exert neuroprotective effects against oxidative
stress79, which play a key role in neurodegenerative diseases, including
AD80. Cabergoline has been shown to enhance cognitive functions,
such as processing speed, working memory, visual learning, and pro-
blem-solving, in patients with hyperprolactinemia81. As validation, we
showed that the expression level in excitatory neurons of the ADRA1A
gene, a drug target gene for cabergoline that encodes the alpha-1A
adrenoceptor, is causative for AD (p =0.0057).

Finally, alfacalcidol markedly reverses disease-associated gene
expression for schizophrenia (SZ) in excitatory neurons (τ = −93.6,
p =0.0220). Notably, the SZ risk genes identified using the axis-TWAS
method, including VDR and CYP27B1, show significant enrichment in
the alfacalcidol-targeted pathway (p =0.0002). Furthermore, a pre-
vious study indicates that VDR is overexpressed in SZ patients com-
pared to healthy controls82. Alfacalcidolmaybe a potential therapeutic
for SZ by reversing disease-associated gene expression levels.

Discussion
In this article, we present BASIC, a novel method that substantially
improves the statistical power to detect eQTLs by integrating sc-eQTLs
and bk-eQTLs datasets from brain. As a conceptual innovation, BASIC
looks beyond cell types and seeks to identify axis-QTLs associatedwith
major axes of gene expression variations, which are linear combina-
tions of gene expressions across cell types. Axis-QTLs can capture
shared and distinct regulatory effects across cell types and sub-
stantially improve the power of identifying regulatory variants.

The improved power of BASIC motivates us to consider a new
paradigm for analyzing eQTLs using sc-RNASeqdata. The conventional
approach is to group cells into cell types and calculate sc-eQTLs
measuring regulatory effects in each cell type. Just as all clustering
methods, grouping cells into distinct cell groups can sometimes be an
arbitrary procedure, especially for cells that are “on the boundary” of
two annotated cell type groups. There is a growing consensus in the
field that the cell states vary in a continuum and should be modeled
that way23. Our axis-QTLs approach shares similarity with those ideas,
yet our approach works directly with sc-eQTLs summary statistics and
jointly analyzes bk-eQTLs to improve power.

Moreover, while different cell types have different gene expres-
sion profiles, it does not necessarily suggest the regulatory effects are
different across these cell types. The axis-QTLs project sc-eQTLs
effects onto the PCs of gene expression levels, so it can better tease
apart shared and distinct effects across cell types. It is particularly
useful for improving the power of detecting eQTLs when the cell type
containing causal variants is rare or lowly expressed. The advantage of
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axis-QTLs can be further revealed by the intersection between axis-
QTLs and sc-eQTLs (Supplementary Fig. 15). We observe that a sub-
stantial proportion of sc-eQTLs from different cell types were identi-
fied by axis-QTLs. Yet, sc-eQTL analyses in rare cell types (e.g.,
microglia and endothelial cells) may fail to detect any axis-QTLs,
including thosewith shared effects across cell types, e.g., the axis-QTLs
from PC0, which shows sc-eQTL analysis can be very underpowered
for rare cell types. The identified sc-eQTLs and axis-QTLs also have
similar patterns of enrichment for functional scores, suggesting axis-
QTLs might similarly regulate gene expression levels as regular
sc-eQTLs.

The performance of BASIC is robust across different genetic
architectures of regulatory effects. BASIC offers the largest improve-
ment when biologically similar cell types share regulatory variants.
This is evident from our simulation studies. This advantage is recapi-
tulated in real data analysis, where analyzing axis-QTLs identifies and
replicates a larger number of regulatory variants. When biologically
similar cell types do not share regulatory variants, BASIC still performs
comparably to JOBS, which do not model the shared effects. We also
applied BASIC to sc-eQTLs from immune cell types in the OneK1K
study and demonstrated that it continues to outperform alternative
methods (e.g., identifying a larger number of eQTLs and eGenes),
highlighting its broad applicability beyond brain cell types (Supple-
mentary Data 21).

The interpretation of axis-QTLs warrants discussion. Unlike stan-
dard sc-eQTLs analysis, which identifies regulatory variants for each
cell type, axis-QTLs seek to identify genetic variants associated with
PCs of cell type gene expression levels. While sc-eQTLs are intuitively
appealing, they have several limitations when we aim to maximize the
power to identify regulatory variants. Sc-eQTL studies are known to be
underpowered for uncommon cell types, since the number of reads
covering rare cell types is lower and the gene expression measure-
ments can be noisier. On the other hand, many variants have shared
regulatory effects across cell types. Axis-QTLs analyze genetic asso-
ciations with PCs of gene expression levels and can naturally borrow
information from shared effects across cell types. There are strong
biological interpretations of axis-QTLs as well. For example, the
intercept from the BASIC model captures shared effects across all cell
types, while PCs 1-3 can capture regulatory effects that are different
between barrier, glial, and neuronal cell types. Importantly, the load-
ings for different cell types canbeof opposite signs, whichwill allowus
to aggregate signals across cell types where the eQTLs effects have
opposite directions (e.g., DEDD gene, Supplementary Fig. 16). This
conceptually novel way to model regulatory effects allows us to
identify regulatoryvariants and risk genes that areotherwisemissedby
standard sc-eQTLs analysis. Furthermore, we calculated the variance
explained by each PC (Supplementary Fig. 17). Interestingly, the var-
iance explained by each PC remains relatively similar, and no single PC
dominates, e.g., the intercept term explains ~25% of the variance, and
the first to fifth PC each explain 10%-15% of the variance. It shows that a
larger fraction of variants has shared effects across cell types, and
variants with distinct effects across cell types tend to be captured
evenly by axis-QTLs from PCs 1-5.

BASIC and axis-QTLs can also be easily modified to work with sc-
eQTLs datasets only without matched bk-eQTLs datasets. In this case,
the meta-regression model can be used to analyze sc-eQTLs only, and
the likelihood term involving thebk-eQTLdata canbedropped. Similar
to the improvement of BASIC over JOBS, we anticipate that axis-QTLs
can identify more regulatory variants and eGenes than sc-eQTLs data
alone, even without matched bk-eQTLs.

Despite these strengths, several limitations warrant further
attention and improvement in future research. First, when integrating
sc-eQTLs and bk-eQTLs datasets, we assume regulatory variants of
each cell type have similar effects between datasets. While this
assumption seems restrictive intuitively, it works well in our

application, leading to replicable eQTL and eGenes. Yet, sources of
heterogeneity may exist due to different disease conditions, age dis-
tribution, or ancestries between datasets, which may become more
apparent as diverse datasets are generated in the near future. One
possible extension in the future is to incorporate a randomeffect in the
model of sc- andbk-eQTLs effects, to accommodate theheterogeneity.
Wehypothesize that the extensionmay further improve the power and
the precision of the eQTLs effect estimates.

Second, due to the lack of non-European functional genomic
datasets from the brain, BASIC and axis-QTLs focus on samples of
European ancestry. We have developed methods such as TESLA60 that
can optimally integrate eQTLs datasets from European ancestry with a
multi-ancestry GWAS. This will ensure our results can yield optimal
power to identify causal variants and genes in samples of European
ancestry. Yet, this does not take away the need to generate functional
genomic datasets from non-European populations, which is necessary
to identify causal genes in those populations. When samples from
diverse populations become available, we can extend our meta-
regression framework to include principal components of genome-
wide allele frequencies to account for the effect size differences
between populations. Similar ideas have been exploited in our TESLA
and MEMO1 methods.

In summary, we present a newmethod to calculate axis-QTLs and
use it to identify regulatory variants and risk genes for various brain-
related traits. By integrating with bk-eQTLs data from the brain, we
substantially augment the sample sizes and improve the power. The
research community has been actively generating single cell or single
nuclei RNASeq datasets. The method will continue to be useful to
combine single cell andbulk eQTLsdatasets fromdifferent tissues, and
contribute to our understanding of the genetic basis of complex traits.

Methods
Below we introduce key ideas of BASIC, which uses meta-regression
models to borrow strength from shared effects across cell types and
then integrates with bk-eQTLs datasets to enlarge sample sizes and
further improve power.We also propose the new concept of axis-QTLs
which captures how the effects of regulatory variants vary along the
PCs for cell type specific gene expression or sc-eQTLs. Axis-QTLs allow
us to look beyond cell types and identify disease risk genes thatmaybe
missed by conventional methods.

Calculation of principal components of sc-eQTLs effects across
cell types
To calculate the PCs of sc-eQTLs, we construct a matrix F of sc-eQTLs
effects across variant sites and cell types, where each row represents a
cell type and each column represents a gene x SNP pair. This calcula-
tion will only use eQTLs commonly measured across all cell types. To
calculate the PCs, we perform singular value decomposition for F , i.e.,

F =CFDFE
0
F ð1Þ

Where CF and EF are orthogonal matrices and DF is a diagonal matrix.
The columns of the matrix FEF are the PCs, whereas the diagonal
entries of DF are the eigenvalues. We arrange the eigenvalues in
decreasing order and arrange the corresponding eigenvectors
accordingly, so that the first PC captures the largest variation. We can
also similarly perform eigenvalue decomposition of the covariance
matrix of F , i.e.,

ΣF / F 0F = EFD
2
FE

0
F ð2Þ

It is clear from Fig. 1 that PCs can cluster biologically similar cell
types together. We denote the lth PC for the kth cell type as the Zkl . For
notational simplicity, we can set Zk0 = 1, so its corresponding coeffi-
cient represents the intercept.
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Given a set of PCs pre-calculated fromone dataset, we can project
sc-eQTLs effects from another dataset onto the pre-calculated PCs.
Specifically, given thematrix of sc-eQTLs effects in another dataset F#,
we can project the effects on each PC by F#EF , where EF is the
orthogonal matrix in the singular value decomposition of F and also
the same orthogonal matrix in the eigenvalue decomposition of the
covariance matrix of F . Similar to the PC of the matrix F , F#EF is
the weighted sum of sc-eQTLs effects across cell types and captures
the major axes of variation of the regulatory effects.

Meta regression model of sc-eQTLs across cell types
Using principal components as covariates in meta-regression models,
we can characterize the heterogeneity between cell types and borrow
strength from shared effects to improve the detection of sc-eQTLs.

Given the sc-eQTLs effects and the PCs, the model takes the fol-
lowing form:

bjk =
XL
l =0

Zlkγjl + ϵjk ð3Þ

ϵjk is the residual and follows a normal distribution.
γj: = ðγj0, γj1, . . . , γjLÞ are the regression coefficients. Inour analyses, we
can vary the number of PCs included in themodel between 1 andK � 1,
whereK is the number of cell types.We further denote the vector of sc-
eQTL effects for variant j as bj = ðbj1, . . . ,bjK Þ. Under themodel, the sc-
eQTL effect follows:

bj � N Zγj�,Vj

� �
ð4Þ

where Z is the matrix of PCs and Vj is the covariance matrix between
sc-eQTLs effects of variant j across cell types,whichmaybe induced by
sample overlaps of different cell types.

As we showed in Supplementary Note section 2, the PCs of the sc-
eQTLs effects approximate the PCs of the gene expression levels and
can separate biologically distinct cell types. The axis-QTLs can be
viewed as the genetic effects on the PCs of cell type gene expression
levels.

Similar to linear mixed models83, we consider the “leave one
chromosomeout (LOCO)” strategy: For each chromosomewe analyze,
we use the PCs of sc-eQTLs from the rest of the chromosomes to avoid
“contaminations” of the signals fromnearby variants. The results using
PCs calculated with LOCO closely resemble those calculated from all
chromosomes, though.

Integrate bulk-eQTLs to improve the power to detect axis-QTLs
We showed theoretically, under very general conditions, bk-eQTLs can
be approximated by aweighted linear combination of sc-eQTLs effects
from constituent cell types26. So, themean values of bk-eQTLs are also
weighted linear combinations of the mean values of axis-QTLs. This
approximation would allow us to borrow strength from the large
sample sizes of bk-eQTLs datasets, such as MetaBrain2 data. Specifi-
cally, we have

E bj*

� �
=
X
k

ŵkE bjk

� �
=
X
k

ŵk

X
l

Zklγlj =
X
l

γlj
X
k

ŵkZkl ð5Þ

where ŵk denotes the cell weights estimated from non-negative least
square method, i.e.,

argmin
X
j

bj* �
XK
k = 1

wkbjk

 !2

ð6Þ

Under the constraint ofwk >0 and
PK

k = 1wk = 1. We focus on SNPs
that are measured in all cell types and bulk tissue to estimate cell type

weights. As we show in Supplementary Fig. 18 and Supplementary
Data 22, the cell type weights closely resemble the average cell type
proportions. The uncertainty of estimated cell type weights can be
quantified using parametric bootstrap (Supplementary Notes 3).

The distribution of bk-eQTL and sc-eQTLs satisfies:

bj* � N E bj*

� �
,Vj*

� �
ð7Þ

bj = bj1, . . . ,bjK

� �T
� N

X
l

Z 1lγlj , . . . ,
X
l

ZKlγlj

 !
,Vj

 !
ð8Þ

The log-likelihood takes the form:

l γj:
� �

= � 1
2

βj � bj

� �0
V�1

j βj � bj

� �
� 1

2V *
b* �

XK
k = 1

ŵk

XL
l =0

Zklγjl

 !2

+C ð9Þ

where C denotes the collection of likelihood terms that do not contain
parameters of interest. As we show in the Supplementary Notes, the
model can be fitted using weighted linear regression in closed form.
Wecall each γjl the l

th axis-QTLs for variant j. To test for association,we
use the score statistic to test whether γjl is equal to 0. The test statistic
follows a chi-square distribution with 1 degree of freedom.

Cauchy combination of p-values from different axis-QTLs
To facilitate the comparison with othermethods that analyze each cell
type separately, we also consider an omnibus test of whether the
association is significant for any axis-QTLs. Here, to properly test for
the omnibus hypothesis and control for multiple comparisons, we
propose using Cauchy combinations84 of p-values from different cell
types or PCs.

For example, to combine different axis-QTLs, we use the following
formula:

TBASIC =
1

L+ 1

XL
l =0

tan 0:5� pl

� �
π

� � ð10Þ

The statisticTBASIC follows a Cauchy distribution, and the p-values
can be evaluated accordingly. Similarly, we can also use the Cauchy
combination test to combine the p-values of sc-eQTLs from different
cell types for methods that analyze each cell type separately.

Colocalization analysis
We utilized the COLOC32 R package, a Bayesian statistical method for
colocalization analysis, to evaluate whether GWAS loci and sc-eQTLs
signals share a common causal variant. To ensure consistency, all
GWAS and eQTLs datasets were lifted over to the GRCh38 reference
genome. For each GWAS locus, we examined the cis-eQTLs within the
same genomic region, testing for colocalization. Loci with the pos-
terior probability PP4 exceeding 0.9 are considered colocalized in our
analyses, indicating that both GWAS and eQTLs signals may share the
same causal SNP.

Generalized TWAS using axis-QTLs
TWAS was developed as a framework to identify the association
between genetically regulated gene expression levels and the trait of
interest. It first creates gene expression prediction models using a
dataset that measures both genotypes and gene expression levels. It
then tests for the association between predicted gene expression
levels and the phenotype of interest (possibly in another dataset).
Recent development of TWAS can also be applied to datasets with only
eQTLs summary statistics or GWAS summary statistics44.

As we show in earlier sections, the PCs of sc-eQTLs across cell
types are concordant with the PCs of gene expression levels, which
captures the major direction of expression variation. Using axis-QTLs
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as input, we will predict the projected gene expression levels to dif-
ferent PCs for each individual, and test their association with disease
outcomes. In our analysis, we use EXPRESSO44 to generate gene
expression prediction models. Our method takes QTL summary sta-
tistics as input and also uses 3D genome and epigenetic information to
prioritize causal variants and improve the prediction accuracy. The
prediction weights for gene g are denoted by wg = ðwg1, . . . ,wgJÞ0: To
further ensure the comparisonofBASIC is not affectedby the choice of
gene expression prediction method, we also use lassosum45 to gen-
erate gene expression prediction models and perform TWAS.

We will next assess the accuracy of predicted expression levels
along the PCs. If an independent test dataset is available, we first need
to project its cell type gene expression levels for each gene g, i.e., yg ,
onto the PCs, by eyg = ygEF , where EF is orthogonal matrix used in the
singular value decomposition of the sc-eQTLs effect size matrix. The
projected expression level of gene g across different PCs is denoted byeyg . We could estimate the correlation between predicted gene
expression and eyg by

r = cor eyg ,Xgwg

� �
=
cov eyg ,Xgwg

� �
varðXgwg Þ

=
E eyTg Xgwg

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Xgwg

� �r ð11Þ

Notably, eyTg Xg can be approximated by the external sc-eQTLs
effect size βgEF and varðXgwg Þ could also be derived from the refer-
ence LD panel. So r can still be calculated if only sc-eQTLs summary
statistics are available from the test data.

To calculate the p-value of the derived correlation, we use Fisher’s
transformation to obtain the z-score from correlation coefficients:

z =0:5*ln
1 + r
1� r

� �
� N 0,

1ffiffiffiffiffiffiffiffiffiffiffiffi
n� 3

p
� �

ð12Þ

where n is the sample size. The converted Z-score follows a nor-
mal distribution. The prediction model is deemed significant if r >0:1
and p-value < 0.05, following the standard procedure in TWAS43.

Finally, when an independent sc-eQTLs dataset is unavailable, we
propose to simulate another set of eQTLs from the original data as an
external validation set. Assume we have the effect size
bg = ðbg1, . . . ,bgJÞ0 and standard error sg = ðsg1, . . . , sgJÞ0 from the ori-
ginal eQTLs summary statistics. We use parametric bootstrap and
simulate a new set of effect sizes from a multivariate normal dis-
tribution.

αg � MVN wg , s
T
g Rsg

� �
ð13Þ

whereR is the LD correlation matrix of cis-SNPs for gene g. For each
simulated summary statistic αg and its standard deviation sg , we will
calculate r using the formula above and evaluate its statistical
significance. We repeat the simulation 100 times and report the
average r and p-values.

Bi-clustering identifies relevant cell types/axis of gene expres-
sion variation and risk genes
We utilize bi-clustering algorithms to identify risk genes and disease-
relevant cell types or axes of gene expression variations.

We construct a matrix of TWAS effect sizes, with each row
representing a cell type or PC of gene expressions, and each column
representing a gene. Bi-clustering is a method that clusters a matrix’s
rows and columns simultaneously. We use the two-dimensional
Euclidean distance as the dissimilarity metric for bi-clustering. To be
more specific, for a given gene x cell type cluster, we label the TWAS
effect sizes across different genes and cell types/gene expression PCs
in a cluster as T 1, . . . ,Tm. The dissimilarity metric for the set of genes

and cell types is given by:

D=
2

mðm+ 1Þ
Xm
j1 = 1

Xj1
1 ≤ j2 ≤ j1

Tj1
� Tj2

� �2
ð14Þ

where Tj1
and Tj2

are the TWAS effect sizes.
Bi-clustering can simultaneously identify cell types/PCs with

shared risk genes as well as risk gene clusters with similar effects. To
further assess the statistical significance of identified gene x cell type/
PCclusters, weuse permutation testby shuffling the rowsand columns
of the TWAS effectmatrix to generate an empirical distribution for the
dissimilarity measures for a given set of genes and cell types/PCs. To
evaluate p-values, we compare the dissimilarity metric obtained
from the original data with the generated empirical distribution.
The p-values are calculated based on the fraction of generated dis-
similarity metrics that are smaller than the value obtained from the
original data.

Cell-type-aware computational drug repurposing pipeline and
validation
We modified the cell-type-aware drug repurposing pipeline (CADRE)
from our previous work44. We first cluster the RNASeq data of cell lines
from the CMap database85 with brain sn-RNASeq data. For each brain-
related cell type, we identify the cell line whose transcriptome profiles
most closely resemble the cell type (basedon Euclideandistance of the
expression levels of all measured genes). We focus on the Touchstone
subset, which includes gene expression profiles from nine cell lines
treated with ~3000 well-annotated small-molecule drugs. Our drug
repurposing analysis was restricted to four traits with sufficient num-
bers of associated loci (i.e., smoking initiation, drinks per week, Alz-
heimer’s disease, and schizophrenia), since CMap requires at least 10
positively, and 10 negatively associated genes as input85,86. CMap
computes a τ score to link disease states with drug-induced gene
expressionprofiles.Amorenegative τ score indicates that thedrug can
normalize the gene expression profile associated with the trait, sug-
gesting its potential for disease treatment.

We propose a permutation procedure to evaluate the statistical
significance of the τ scores. Specifically, for each permutation, we
shuffle the gene names for significant TWAS genes (under the Bon-
ferroni threshold for testing multiple genes in each cell type), pair the
Z-scores with shuffled gene names, and use them as input. Since per-
mutation breaks the link between gene names and their TWAS
Z-scores, τ scores calculated from permuted datasets will form a null
distribution. The p-values can be calculated by the fraction of τ-scores
from the permuted dataset that aremore negative than those from the
original dataset.

We also employ two different classes of methods (7 methods in
total) to validate the putative drugs identified by our pipeline. These
methods include:
(1) Enrichment analysis examining whether drug-targeted pathways

are enriched with TWAS hits, based on the hypothesis that an
effective drug may exert its therapeutic effect by targeting
disease-associated genes. For this purpose, we utilized eTESLA60,
a published method that leverages meta-regression to assess
whether a drug target pathway is enriched with TWAS hits. We
curated gene sets for drug-targeted pathways using DrugBank87,
a database of the mechanisms of action for approved drugs. We
constructed a design matrix where each row represents a gene
and each column represents a pathway. Each entry of the matrix
is assigned a value of 1 if the gene is part of a specific pathway
and 0 otherwise. eTESLA then regresses Z-scores over the design
matrix, and computes p-values of regression coefficients to
determine whether the corresponding drug-targeted pathways
show significant enrichment with the TWAS hits.
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(2) Mendelian randomization (MR) methods to investigate whether
the expression levels or secreted protein levels of drug target
genes causally influence disease risk. To test our hypotheses
that gene expression or protein levels regulated by the drug
target genes have a causal effect on disease, we applied three
complementary MR approaches: inverse variance weighted
MR88 (MR-IVW),MR-Egger89, andMR-RAPS90. Thesemethods are
known for their distinct strengths; when used together, they
may enhance the robustness of the findings. We name our
analyses based on the type of molecular QTLs used and the MR
approaches employed, i.e., eQTL-MR-IVW, eQTL-MR-Egger,
eQTL-MR-RAPS for gene expression QTLs, and pQTL-MR-IVW,
pQTL-MR-Egger, pQTL-MR-RAPS for protein QTLs.eQTLs
datasets.

We utilized several eQTLs datasets in our analysis. For single-cell
data,weused twopublished sc-eQTLsdatasets: Fujita et al21. andBryois
et al.20. The Fujita et al21. dataset consists of single-nucleus RNA
sequencing (snRNA-seq) data derived from the dorsolateral prefrontal
cortex (DLPFC) of 424 elderly individuals. It includes gene expression
profiles from seven major neocortical cell types and 64 subtypes,
enabling cell-type-specific cis-eQTLs mapping. For our analyses, we
focusedon the sevenmajor cell types. TheBryois et al. dataset includes
single nucleus RNA sequencing (sn-RNASeq) data from 196 donors of
European ancestry, covering eightmajor central nervous system (CNS)
cell types, including oligodendrocytes, excitatory neurons, inhibitory
neurons, astrocytes, microglia, oligodendrocyte precursor cells
(OPCs), endothelial cells, andpericyteswithin the cortical regionof the
brain. For bulk eQTLs data,we leveraged theMetaBrain2 dataset, which
consists of 2683 cortical samples of European ancestry aggregated
from 14 independent studies.We perform fixed effectmeta-analysis of
sc-eQTLs for the seven overlapping cell types between the Fujita et al.21

and Bryois et al.3 to maximize sample sizes, which we call meta-sc-
eQTLs in the manuscript. This meta-analyzed sc-eQTLs dataset, along
with the bulk eQTL data from MetaBrain2, are jointly analyzed using
the BASIC framework and alternative methods (e.g., mashr) and inte-
grated with GWAS for all downstream analyses.

To validate identified sc-eQTLs, we used the dataset from Lopes
et al.,29 which contains 255 primary human CD11b+ microglia samples
isolated from several brain regions in 100 individuals of European
ancestry. While there are other sc-eQTLs datasets, they do not contain
full eQTLs summary statistics, making it impossible to validate identi-
fied eQTLs summary statistics.We therefore advocate for the release of
full summary statistics frompublished studies tomaximize their utility.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MetaBrain eQTLs summary statistics13 can be obtained from
https://www.metabrain.nl/cis-eqtls.html. Fujita et al. cell type-level
eQTLs21 are available from https://vmenon.shinyapps.io/rosmap_
snrnaseq_eqtl/. Bryois et al. cell type-level eQTLs20 are available from
https://doi.org/10.5281/zenodo.5543734. Lopes et al. microglial
eQTLs16 can be downloaded from https://doi.org/10.5281/zenodo.
4118605. Velmeshev et al. single cell RNAseq data91 are available from
https://autism.cells.ucsc.edu. The BASIC axis-QTLs and sc-eQTLs
summary statistics are available from https://liugroupstatgen.
shinyapps.io/BASIC-axis-QTL/ and the linked Zenodo repository92

(https://doi.org/10.5281/zenodo.17221192).

Code availability
The software implementing the BASIC method is available at https://
github.com/LidaWangPSU/BASIC under the MIT License and the
linked Zenodo repository92 (https://doi.org/10.5281/zenodo.17221192).
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