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The Kibble-Zurek (KZ) mechanism has been extensively studied in various
second-order phase transitions, yet the case of tricriticality—the point where
second-order phase transition lines terminate—remains experimentally elu-
sive. Here, we theoretically propose probing KZ scaling at tricritical points
using Rydberg atom arrays arranged as two- and three-leg ladders, which
realize the tricritical Ising and tricritical Potts universality classes. By slowly
ramping the Rabi frequency and detuning, we extract two relevant tricritical
exponents, v and v/, both via conventional paths from the disordered to the
ordered phase and via “tangential” paths confined entirely within the dis-
ordered phase. At faster speeds, ramping dynamics go beyond the standard KZ
paradigm: data collapse analysis using the parent critical exponents (rather
than the tricritical ones) reveals renormalization group flows toward the
adjacent second-order critical line, and we identify it as a dynamical analog of
Zamolodchikov’s c-theorem. Our protocol is readily implementable on exist-
ing Rydberg quantum simulators. This provides a direct route to measuring
distinct tricritical exponents which can reveal an emergent spacetime super-
symmetry constraint 1/v — 1/v’'= 1. Moreover, this work deepens our theoretical

understanding and opens new avenues for exploring beyond-KZ quantum
dynamics with rich renormalization group structure.

The Kibble-Zurek (KZ) mechanism concerns dynamical scaling beha-
vior near a critical point"2. Originally proposed in the context of clas-
sical phase transitions, its quantum counterpart has been extensively
explored both within*™" and beyond*" the Landau-Ginzburg-Wilson
paradigm. With recent advances in quantum simulators, numerous
experimental studies on artificial quantum platforms, such as super-
conducting qubits'®"?, ion traps** %, and Rydberg atom arrays> ¢, have
emerged. The KZ ramping technique is particularly well-suited for
probing critical phenomena for two complementary reasons. First,
quantum simulators allow for versatile dynamical control and site-
resolving measurements. Second, dynamical probing bypasses the
challenge of adiabatic preparation of a gapless critical state”’, where
only a finite coherence time is available on these platforms.

At the intersection of first- and second-order phase transitions, a
particular phenomenon known as tricriticality occurs. The tricritical
point holds theoretical and practical importance. For instance,

spacetime supersymmetry, originally proposed in high-energy physics,
can emerge in the low-energy regime of various models®®>*, with one
of the most experimentally promising cases being the 1+ 1-dimensional
tricritical Ising (TCI) model**". Tricritical points also play an important
role in quantum annealing protocols, where ramping near these points
can accelerate optimization processes®*°, Furthermore, the proximity
to first-order phase transitions raises questions about the validity of
standard KZ scaling”, suggesting that new phenomena may emerge in
this context. Despite its importance, no experimentally feasible pro-
tocol of tricritical KZ effect has been proposed***°.

Here, we propose an experimentally accessible model based on
Rydberg atom ladders*~°, as illustrated in Fig. 1a and b. Figure 1c
presents the ground-state phase diagram, controlled by the Rabi fre-
quency and detuning, with the key feature being the tricritical point
connecting 1st- and 2nd-order (Ising/Potts) transition lines. The TCI
and tricritical Potts (TCP) transitions™ are realized respectively in the
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Fig. 1| Rydberg ladders and Kibble-Zurek protocols. a,b Two- and three-leg
ladders that exhibit tricritical Ising and Potts points, respectively. Atoms of dif-
ferent colors correspond to different atomic species. The geometry is fixed

(i.e., r,2), while the Rabi frequency Q and detuning A can be tuned. ¢ The schematic
phase diagram and ramping protocols. The solid (dashed) blue line denotes the
second (first) order Ising/Potts transition, and a tricritical point lies in between. In
Protocol I, we keep Q fixed and ramp A from the disordered phase to the symmetry
breaking phase, both across and near the tricritical point. In Protocol II, we consider
a tangential ramping direction. The orange dot arrow refers to ramping of higher
speeds, where a dynamical analog to Zamolodchikov’s c-theorem is proposed.

two- and three-leg ladders. From the perspective of renormalization
group (RG) theory, these tricritical fixed points are characterized by
two symmetry-preserving relevant operators®>*, introducing rich RG
flow behaviors. These additional operators significantly impact the KZ
dynamics, in contrast to the more widely studied critical points, which
feature only a single symmetry-preserving relevant operator.
Furthermore, since the tricriticality only occurs at a single point in
the phase diagram, generically (i.e., with non-vanishing deviation) only
intermediate-distance physics is controlled by the tricritical point, with
long-distance physics exhibiting more conventional behavior. Indeed,
this is a concrete consequence of the celebrated Zamolodchikov’s c-
theorem®. Measuring tricritical exponents is therefore challenging in
conventional materials, but this very task fits well with the capability of
site-resolved imaging in quantum simulators, using dynamical finite-size
scaling’®1"1%2¢55, We capitalize on this through the ramping Protocols I
and II, as shown in Fig. 1c. Protocol I is of immediate experimental
relevance. The conceptual novelty of Protocol Il lies in the fact that,
throughout the ramping, the system parameters are in the disordered
phase, which is beyond the framework relating KZ to domain wall for-
mation. These protocols provide a direct route to measuring distinct
tricritical exponents, which can reveal an emergent spacetime super-
symmetry constraint in the two-leg case. Moreover, by exploring a much
wider range of ramping speeds, the results reveal intriguing crossover
behavior from tricriticality to its parent second-order criticality, where a
dynamical analog of Zamolodchikov's c-theorem is proposed.

Results

Rydberg models and equilibrium phase diagrams

The microscopic models, two- and three-leg Rydberg atom ladders, are
modified from a previous model*. In both the original and the current

models, the system consists of two species of atoms**>’, assembled in

an alternating pattern along the ladder, see Fig. 1a, b. Each atom is
modeled by a two-state system, with the ground state |g) and the
Rydberg state |r). A laser couples both states and determines the Rabi
frequency Q and detuning A through the laser strength and frequency,
respectively. The two species are chosen such that Rydberg atoms of
the same species repel, while those of different species attract. The
Hamiltonian reads

Q C
H= Z(;Of - Aﬂt) + e, M
14

where X, Y denote the species of the atoms i and j, and ry; is the inter-
atom distance. n=|r)(r| is a projector onto the Rydberg state or,
equivalently, the Rydberg number operator. o, = |g)(r| + h.c. couples
the ground state and the Rydberg state. r, is chosen to be reasonably
small, so that only one atom within a rung can be excited to the
Rydberg state due to Rydberg blockade.

In the original model, one fixes r, and Q, and tunes two para-
meters, namely r; and A. In the current work, we consider instead
tuning Q and A, keeping the geometry fixed throughout, see Fig. 1c. In
fact, the phase diagram of the original model has the same structure
as in Fig. 1c (with Q replaced by r;) thanks to universality (see also the
numerical phase diagram in Supplementary Note 1). However, the
new setup has the virtue that both Q and A are determined by the
laser, and are experimentally readily tuned in a dynamical fashion. In
contrast, the lattice geometry is unchangeable during the dynamical
evolution. Indeed, the atoms are arranged in a desired geometry by
using optical tweezers. During the evolution, with atoms excited to
Rydberg states, the tweezers could easily ionize the Rydberg atoms,
causing significant atom loss. The upshot is that, in the original model,
within each experimental run, one can only move in the horizontal
(i.e., detuning) direction in the phase diagram. In the current setup, on
the other hand, one is able to move along any path in the phase
diagram.

The ladder models have a Z, (S5) symmetry that permutes the two
(three) legs. For small A, the atoms remain in the ground state, and the
system is in the disordered phase. For large A, the atoms prefer to be
excited to the Rydberg state. However, with Rydberg blockade in
action, the best one can do is to excite one of the two (three) legs. This
breaks the symmetry to j (reflective 7Z,), and hence we expect the
transition to be Ising (three-state Potts) type. For small Q, the Hamil-
tonian is dominated by diagonal terms in the Zbasis, and the transition
tends to be first-order. For large Q, the quantum fluctuation dom-
inates, and the transition tends to be second-order. In between, TCI
(TCP) points emerge, with distinct critical exponents compared to the
Ising (Potts) case. All these predictions are corroborated by numerical
simulations using density matrix renormalization group (DMRG)*%°,
see Methods for details. With the model and the phase diagram at
hand, we next turn to dynamical evolutions. In the main text, we focus
on the two-leg ladder. For the three-leg case, results repeat almost
verbatim and we postpone them to the Supplementary Note 2.

KZ scalings across and near TCI point

To begin with, we consider ramping from the disordered phase to the
ordered phase, similar to the conventional KZ protocol. This is shown
in Fig. 1c as Protocol I, where the ramping parameter is given by
g=A - Aqq. The ground-state correlation length diverges as &gs ~ |1,
where v is the critical exponent. Since the correlation length £ itself has
length dimension, i.e., []=-1, the dimension of the ramping para-
meter is [g] =1/v. Next, we define the dynamical process: ramping g
with speed s, i.e., g=st, with t=0 set as the time passing the phase
boundary. By this, one can recover the celebrated KZ scaling of the
correlation length, &z - s# by noting the dimension of speed:
[s]=1[g] - [t]=1/v + z = 1/u, where z is the dynamical critical exponent.
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Fig. 2 | KZ scaling of Binder ratio in the TCI case. TEBD simulations using
Hamiltonian (1) with N=2L atoms and 1/7° interactions for (a-d). a Binder ratio U as
function of g= A — At o< t for various ramping speed s with L =16. The first peak is
marked with a cross. The ground state Binder ratio for open boundary conditions
(black dashed line) is included for reference. b KZ ramping across the TCI point,
with data collapse achieved for s*L. ¢ KZ ramping near the TCI point, with data

collapse achieved for AL"". d For tangential KZ, we achieve data collapse with s* L.
In the insets, the data collapse figure of merit Z is plotted against the corre-
sponding critical exponents. e-h show analogous results using an effective spin-1
model with size L for TEBD simulations. The gray dashed curves represent quad-
ratic fits in (b,c,f,g) and cubic fits in (d,h).

In the quantum simulators we consider, however, the systems are
finite-sized, meaning that the correlation length is limited at the critical
point rather than diverging. This leads to a deviation from the ¢z = s*
scaling. Fortunately, as in the equilibrium case, finite-size scaling also
applies to the KZ mechanism, namely £, /L = 7 (s*L)"5"%?% where L
is the linear system size (e.g., the length of the ladder in our quasi-1D
geometry). However, extracting the length scale &z from the two-
point correlation function introduces ambiguity, and this long-
distance feature can easily be affected by noise’. Therefore, we
choose the Binder ratio U to characterize the dynamics. The main
advantages of U are twofold. First, it is dimensionless and does not
scale by itself, thus eliminating one additional scaling parameter to be
determined. Second, unlike the correlation length, it is a number
defined without the need of fitting. Specifically, the time-dependent
Binder ratio is defined through the order parameter M as

(WO IM*|gp(0)) ‘
3y M2 1)

The order parameter is defined as M = } ;n;, — n;», where a and b denote
the atoms within each rung, and |¢(¢)) is the wavefunction evolved by
the Hamiltonian (1) up to time ¢. This quantity can be readily measured
in Rydberg platforms using site-resolved in situ imaging.

Figure 2a shows how the Binder ratio changes over time when
ramping across the critical point at different speeds s. We observe that
the Binder ratio oscillates rather than directly reaching a plateau, so we
need to be cautious when using Binder data to determine scaling laws.

Uy=1-

The Binder curves at different speeds should show similar behavior
due to the scaling invariance of the criticality. We choose the first peak
after crossing the critical point (¢ > 0) as a reference point for finite-size
scaling. This is known as finite-time scaling®”**, meaning that we do not
need to wait for a long time for the quantity to saturate; instead, we use
data that is relatively close to the critical point. This is crucial for
tricritical physics, as data far from the critical point may not obey
tricriticality, as we will see later.

We now discuss our first ramping scheme, Protocol I, which
involves ramping across or near the tricritical point, as shown in Fig. 1c.
Experimentally, this corresponds to ramping the detuning A within a
range of fixed Rabi frequency Q around Q¢ with the deviation from the
tricritical point parametrized by h=Q — Qrc;. While the tricritical point
Q1 can be determined with high precision numerically, achieving this
can be tricky experimentally. We will see that without knowing Q¢ a
priori, using scaling techniques, we can still extract the critical expo-
nents. A side product of our protocol is a method of finding Qrc.

From a theoretical perspective, scanning near the tricriticality
provides information about two relevant perturbations, resulting in
both leading and subleading critical exponents® . In particular, the
leading critical exponent, u, can be extracted by ramping the para-
meter g at speed s, following the standard KZ scaling. Simultaneously,
the parameter h is associated with a subleading critical exponent, v/,
with [h] =1/v' (see Methods and Supplementary Fig. 2 for more details).
Note that h'L forms a dimensionless combination. These critical
exponents can be obtained from conformal field theory (CFT), sum-
marized in Table 1.
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Table 1| The central charge and critical exponents of the
universality classes

universality class c v H v' '
two-leg Ising 1/2 1 1/2 / /
two-leg TCI 7/10 5/9 5/14 5/4 5/9
three-leg Potts 4/5 5/6 5M / /
three-leg TCP 6/7 712 7/19 7/4 7m

The dynamical exponent z for all cases is 1, due to the emergent Lorentz symmetry.

With these considerations in mind, we propose a dynamical finite-
size scaling for Binder peaks near the tricritical point, described by the
following equation

Upeac =f(s"L, 1" L), 3)

where fis a universal function.

We perform extensive numerical simulations of the dynamical
evolution using the time-evolving block decimation (TEBD) algorithm
with open boundary conditions®****"”", Using the Binder peaks
extracted from Fig. 2a for different system sizes L, ramping speeds s,
and ramping paths parameterized by h, we verify Eq. (3). In particular,
we expect that for exponents u and v’ that match the universal ones,
Upeak as a function of s*L and k'L will exhibit an optimal data collapse.
Our numerical results lend full support for this expectation, as shown
in the main figures of Fig. 2b, c. Figure 2b corresponds to 7=0, i.e.,
ramping across the tricritical point, and we fix s*L and collect data for a
window of Q in Fig. 2c. In the inset of Fig. 2b, we test different values of

u by a figure of merit 2= \/Z-d? where d; is the vertical distance

[t

between the data point at i and the smooth fitting curve value at the
same horizontal value of s*L. We plot 2 as a function of u, with the

minimum corresponding to the optimal data collapse, which agrees
closely with the CFT prediction. Next, in the inset of Fig. 2c, we show
that we can obtain v’ even without the knowledge of Q¢ by taking the
latter as another optimization parameter. The contour of the figure of
merit shows a good agreement with both v’ and the earlier used Q+¢,
and 6Qrq in the inset of Fig. 2c represents the difference from the
value obtained from DMRG.

Additionally, we perform larger-scale simulations by making cer-
tain approximations. Since r; is sufficiently small, two atoms in a rung
cannot be simultaneously excited to the Rydberg state. Hence, each
rung can be recognized as a spin-1 mode (see the Methods section for
more details). With such a spin-1 representation, we can simulate much
larger system sizes, more than double the original sizes, as shown in
Fig. 2f-h. The conclusions drawn from the full N=2L atom simulations
remain unchanged, achieving the same universal scaling behavior.

From the numerical results, we conclude that this protocol pro-
vides a highly precise method for probing the leading and subleading
critical exponents without the need to prepare critical ground states,
bringing the experimental observation of the elusive tricritical point
much closer to reality.

Tangential KZ scaling

The two-dimensional phase diagram with a curved phase boundary
allows a novel type of KZ scaling, which we dub “tangential” to high-
light how the dynamical path touches the phase boundary. The con-
ceptual novelty here lies in the fact that throughout the ramping, one
stays exclusively in the disordered phase and never enters the ordered
phase, unlike previous KZ protocols. This fact leaves uncertain some
heuristic arguments commonly found in the literature, where domain
walls or generally topological defects that are only well-defined in the
symmetry-breaking phase play a key role. Nevertheless, scaling

relations that do not depend on detailed modeling of the dynamics
remain valid.

In the tangential ramping, we are effectively ramping the sub-
leading operator, with the leading operator vanishing (see Methods for
more details). Hence, the scaling relation is modified to

U=£(s"L), with g’ =z+1/v)7%, “

which provides a direct probe of the subleading exponent. It is known
previously that the Binder ratio works the best in the ordered phase,

but scales not as well in the disordered phase”. To remedy this, we
~ ~4 22
introduce a disordered Binder ratio U=1—1(M")/(M") . Here, the

disorder parameter is defined as

M=>"T]swap, 5)

i jzi

where SWAP interchanges the atoms of each rung. The operator can
be equivalently written as M=SWAP(/, + SWAP,(--- + SWAP, (I, +
SWAP,)---)), which facilitates an efficient matrix-product operator
(MPO) calculation. Unlike the ordered Binder ratio, which we choose
the peak, the disordered Binder ratio exhibits a valley when
tangentially passing through the tricritical point, as shown in
Supplementary Note 3. The disordered Binder valleys are collected,
and the data collapse is shown in Fig. 2d, which is fully consistent with
the scaling relation in Eq. (4).

Dynamical Zamolodchikov’s c-theorem

Quantum dynamics can be roughly classified by its characteristic time
scale, with adiabaticity and quenching as the two opposite limits. In the
case of KZ, a natural parameter is the ramping speed s, and s is gen-
erally assumed to be small so that the physics is well controlled by the
critical point. In previous discussions, this is also the regime we
focused on. Now we go slightly beyond and focus on intermediate-
speed ramping.

Heuristically, upon inspecting the phase diagram in Fig. 1c with a
Od tricritical point and a 1d critical line, we expect only the neighboring
region of the tricritical point to be controlled by its universal property,
and as one moves far away, the Ising/Potts criticality takes over. The
argument can be made more precise by examining the RG flow around
the tricritical point, see Fig. 3a. One sees that far away from the tri-
critical point, the RG flow generically takes a detour near the critical
line, thus inheriting criticality from the latter’>”,

Returning to dynamics, it follows that the tricritical exponents can
only be observed with sufficiently slow ramping. This is evident in
Fig. 3b, where the upper-right corner of the figure shows a good data
collapse when the horizontal axis is scaled by the tricritical exponent
Ura. For faster ramping speeds, data for different system sizes is
spread out. However, if we rescale the horizontal axis by the critical
exponent [ising, as shown in Fig. 3¢, the data collapse is restored in the
fast-ramping regime. This indicates that in this regime, the emergent
TCl is not observed, but the original Ising criticality manifests instead.
This result holds generally for different ramping directions through
the tricritical point. Specifically, by choosing a direction in which the
tricriticality extends the furthest in the ground state (Supplementary
Note 4), one might expect that only TCI would be observed in this
regime. Nevertheless, we still observe Ising criticality dominating the
dynamics. The appearance of two distinct critical exponents across
different ramping speed ranges is a generic feature that reflects this
rich RG structure, as we also demonstrate for the three-leg case (see
Supplementary Note 2).

These results are reminiscent of the celebrated Zamolodchikov’s
c-theorem. The theorem states that along an RG flow the central charge
¢ has to decrease. This physics is again well represented by the case of
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Fig. 3 | RG perspective of KZ in the TCI case. a RG flow (black lines) near the TCI.
The blue line indicates the numerical phase boundary determined by Binder ratio
and central charge (see Methods). b,c Ramping with a broad range of ramping

speed s. Both figures are plotted with the same data but with different scalings of s.

For slower ramping (upper right region in (b)), the TCI critical exponent allow the
best data collapse. For faster ramping (lower left region in (c)), the Ising critical
exponent allow the best data collapse.

tricritical points in the ground state, where two different criticalities
come into play, and is best illustrated by the RG flow in Fig. 3a.
Although the KZ protocols do not directly measure the central charge,
our observed crossover behavior still largely conforms to the same
phenomenology, namely a flow from tricriticality (high ¢) to the Ising/
Potts criticality (low c).

Discussion

In this work, we systematically investigate the KZ scaling near tricritical
points, using two- and three-leg Rydberg ladders. Through both con-
ventional and tangential ramping protocols near the tricritical point,
we accurately determine the critical exponents associated with the two
relevant operators, in close agreement with their CFT predictions at the
exact tricriticality. Additionally, we uncover a dynamical analog of
Zamolodchikov’s c-theorem in an intermediate-speed ramping regime.

We anticipate an imminent experimental realization of our pro-
posals, particularly for the two-leg model, which only requires a planar
geometry and harbors TClI criticality. Looking forward, the TCl is clo-
sely related to spacetime supersymmetry—a long-sought concept in
theoretical physics. In our setup, the critical exponents v and v’ cor-
respond to the bosonic sector of the two lowest weight symmetry-
preserving fields, € and €'. These fields exhibit power-law correlations,
(€i€;) ~ i —j|7%, with A, = 2 - 1/v (and similarly for €, giving A,).
Notably, A, — A.=1/v —1/v'= 1. This relationship is no coincidence: the
fermionic mode g is linked to these fields through the supersymmetry
generator, resulting in the relation A, = A, +1/2=A, —1/2, illustrating
the structure of fermion bridging the two bosons. Hence, our protocol
offers an effective method of corroborating this nontrivial ramification
of emergent supersymmetry. On the other hand, directly measuring
the corresponding fermion ¢ dynamically remains an open question,
as it would likely require ramping fermionic operators®’*, This intro-
duces an interesting direction for future research, which we intend to
explore further.

Note added: In a recent post”, the authors also investigate the KZ
mechanism at a supersymmetric tricritical point with two relevant
directions. Although their model differs from ours, the same universality
emerges, leading to overlapping and mutually corroborating findings.

Methods
Ground state phase diagrams
We describe the method used to obtain the ground state phase dia-
grams for the two- and three-leg ladders. In both cases, we employ
DMRG to compute the ground state [¢).

For each Rabi frequency Q, we sweep the detuning A to calculate
the Binder ratio of the ground state under periodic boundary

conditions (PBC), Ugs(L, Q, A)=1—L(gpIM*|g)/(¢IM?|p)’. For differ-
ent system sizes L, the Binder curve Ugs versus A crosses at a single
point, which is used to determine the transition point. By collecting the
transition detuning values along with their corresponding Rabi fre-
quencies, we obtain the phase boundary.

Next, we identify the tricritical point by calculating the central
charge c along the phase boundary. The maximum value of c identifies
the tricritical point®. Specifically, we calculate the entanglement
entropy along the phase boundary. The entanglement entropy S(!) of a
subsystem with length [ is defined as S({/)= — Trp(l)log p(l), where
p()=Tr, |@)(¢| is the reduced density matrix obtained from the
ground state |) calculated under PBC. The central charge of the state
is then obtained by fitting the entanglement entropy to’®”’

Sih= glog {sin <”Tl>} + const. (6)

For the two-leg model, we use cesium 70S (a-type) and sodium
69S (b-type) as the two species of atoms in the main text. The inter-
actions between atoms are van der Waals C/r°, with interaction con-
stants (Caa, Cob, Cab) = (650, 1570, —614) GHz pm®. The Rydberg
blockade is manifest with r, =5 pum. Then r; =7 um sets the attractive
energy scale to 5.2 MHz. This energy scale controls the position of the
tricritical point Qy¢; and Ay, allowing one to tune it to a desired value
in experiments by adjusting r;. With these parameters, we plot how ¢
changes along the phase boundary characterized by Q, near the tri-
critical regime, as shown in Supplementary Fig. 2a. The central charge
peaks at Qrcy = 2.6 MHz with ¢ = 7/10, and gradually decreases to 1/2 in
the direction toward the standard second-order line. The tangential
scaling v’ is explicitly demonstrated in the inset, through proper data
collapse with the horizontal axis AL"". The numerical phase diagrams
are presented in Supplementary Note 1 and share the same features as
Fig. 1c in the main text.

Besides the full-range van der Waals calculation mentioned
above, we also performed finite-range interaction calculations (i.e.,
truncating longer-range interactions). In the latter case, we include

CO@00O
0000
and O represents atoms whose interactions with the reference atom

are included. We find no differences between the full-range and such
finite-range DMRG results. The reason for checking finite-range
interactions is that in dynamical simulations, including all-range
interactions makes Trotter decomposition very challenging. Hence,
in the dynamics calculations, as detailed in the following section, we
include only this finite range of interactions.

interactions up to: where @ represents the reference atom
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For the three-leg ladder case, we also performed the same cal-
culation with the same parameters of cesium 70S and sodium 69S as
used in the two-leg case, by simply adding one more atom to each
rung, as shown in Fig. 1b. The central charge result is similar to its two-
leg cousin, except that the numerical values of the central charge and
critical exponents follow those of Potts and tricritical Potts, see Sup-
plementary Fig. 2b. However, it is quite heavy to perform dynamical
evolution with the full setup. Hence, to demonstrate the universality
feature of the physics, we also propose an effective model, as detailed
in the following section. The same universality is found, with the phase
diagram presented in Supplementary Note 1.

The effective model for the two-leg ladder

Here, we present an effective description of the two-leg ladder when
the blockade condition is well satisfied. In each rung, two spin-1/2
atoms form a Hilbert space of four states. If both atoms cannot be
simultaneously excited due to the blockade, then only three states
remain accessible, and each rung can be effectively described as a
spin-1 mode. To be more specific, we label the atoms on the upper
rungasi=1,3,5,...,2L —1and the lower rung atoms asj=2,4,6, ..., 2L.
Each rung is labeled by /=1, 2, 3, ..., L, which also labels the corre-
sponding spin-1. In this representation, the Hamiltonian (1) can be
written in terms of §* and $* operators, with the following corre-
spondence:

Q07 +0)) < V20S]
A(n;+nj) < AS]

T ™
2 1°1+1

Vab + Vab
S S

ab
Vit tn;,) <

ab
V5 (il q + Ny ny) <

where the attractive interaction between dual-species atoms is given
by V*l‘b =C,p/ré  (upper-upper/lower-lower interaction) and
ng =Ca/(r}+r3)” (upper-lower/lower-upper interaction). Longer-
range interactions between S and S7,, can also be included, with
repulsive interaction strengths V#@=C,/2r)® and V¥=C,,/
(2ry)? +r§)3, and similar expressions for V?b and Vlz’ .

The same universality is observed in the ground state phase dia-
gram, with the non-universal feature that the position of the tricritical
point is shifted by approximately 5% when only attractive effects are
included. When longer-range repulsive interactions are also included,
the position of the tricritical point shifts by approximately 0.6%
compared to the full range spin-1/2 model.

The effective model for the three-leg ladder
The effective Hamiltonian for the three-leg ladder reads

Q
H= ZEX,-—An,.—jn,-n,-ﬂ. ®)
l

In this effective model, by enforcing Rydberg blockade, each site has
four states |0), |a), |b) and |c), corresponding to all atoms in the ground
state or one of the atoms on a rung excited to the Rydberg state,
respectively. X =3, _, , .|@)(0| +h.c. couples the ground state and the
Rydberg state as usual, and n=3%_,_, , .|la)(a| projects to the Rydberg
states. Inter-rung attractive interactions are encompassed in a
coupling constant /, which we set to 1 as the energy scale.

To properly work with the three-leg ladder, we need to redefine
several physical quantities. The order parameter is defined by

_ 2mi/3 ami/3
M;= Znia+e By, +e*™3n,, )
l

and the disorder operator reads

Ms=> ][ cva, 10)
i j=i

where CYCL=0){0| +|b)(al +|c)(b| +|a)(c| permutes the atoms along

the rungs. A numerics-friendly version is M5 =CYCL,(/, + CYCL,(- - - +

CYCL,_;(/; +CYCL;)- - -)). The Binder ratio can then be defined in the

same way as described in the main text.

Numerical simulation of KZ dynamics
We employ the TEBD algorithm to simulate the KZ dynamics. We
include finite-range interactions and use Trotter decomposition for
the unitary evolution with open boundary conditions. During the
ramping process, the time step is fixed at At. To ensure the con-
vergence of our results, we test different values of
At = 0.0004, 0.0002, 0.0001 ps, always obtaining consistent results.
All ramping speeds in the main text are given in units of MHz/pis. The
singular value decomposition truncation cutoff of 5 x 10™ is used.
With this approach, the time-dependent wavefunction [¢(t)) is
obtained, and various physical operators can be measured from this
wavefunction to extract the quantities discussed in the main text.
For the two-leg case, as the DMRG results suggest, finite-range
truncation of the C/r° interactions in Hamiltonian (1) still exhibits
proper tricriticality. In the dynamical simulation, when implementing
the Trotter decomposition, interactions are included for every group
of six atoms. For example, the @ atom participates in three different

groupings: 888 888 888 . Boundary atoms are handled

appropriately under open boundary conditions by adjusting the
grouping scheme near the edges, following approaches similar to
refs. 23,26. These simulations produce the results shown in Fig. 2a-d.
Additionally, we employ the spin-1 representation [cf. Egs. (7)] for
TEBD simulations. This approach reduces the dimension of the local
Hilbert space, making dynamical simulations feasible for much larger
system sizes, as demonstrated in Fig. 2e-h. Importantly, the same
universal dynamical scalings are uncovered in both methods.

For the three-leg case, we use Hamiltonian (8) for TEBD simula-
tions, and results are summarized in Supplementary Note 2.

Critical exponents and scaling dimensions

In the main text, we identified two critical exponents v and v’ near the
tricriticality. In the CFT language, these exponents correspond to two
symmetry-preserving relevant conformal fields, € and €, in TCI/Potts
CFT, with scaling dimensions A and A, respectively.

The € field is very similar to its counterpart at the parent critical
line. It drives the system between disordered and ordered phases. For a
shifted parameter g, the field couples to it with an additional action
term compared to the critical point value: S = [dxdrg - €. Near criti-
cality, scaling invariance is still preserved and action is unchanged
under the following scaling transformations with ratio b:

x— b, 1= b1, g > b'"g, € - b™e 11
This immediately gives the relation between the critical exponents that
can be measured in experiments and the scaling dimension of the
coupled conformal field: A, +1/v=1+z [cf. Table 1 and Supplementary
Table I].

The € field, as the most relevant operator, is responsible for the
spontaneous symmetry breaking. However, in the phase diagram
spanned by two parameters, there is a direction that does not lead to
either phase—namely, the direction parallel to the local phase
boundary. In this direction, the perturbation involving € is completely
canceled, and the subleading field ¢’ takes charge. We denote the angle
of the phase boundary relative to the detuning direction as 6, and the
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deviation in this direction from the tricritical point as k. This angle 6
can be determined by expanding lattice operators in terms of con-
formal fields, as illustrated in the next subsection. h refers to the
strength of deviation from the tricritical point, with the equilibrium
critical exponent defined as v'. Since A, couples to €', which contributes
most significantly to the action, following the same argument gives
Aq+1/v'=1+ z In the main text, we define h=Q - Q¢ to control the
deviation from the tricritical point, which has the relation s = h, sin(6).
We use the dimension [h] = 1/v’in this sense, as verified by the central
charge scaling along the phase boundary shown in the insets of Sup-
plementary Fig. 2.

With these equilibrium features near the tricritical point, we
therefore propose a “tangential ramping” protocol that tangentially
approaches the tricritical point. In this direction, before reaching the
near-tricritical regime, the energy gap remains finite. Near the tricri-
tical point, the KZ mechanism becomes relevant due to the gapless
nature, with the scaling entirely controlled by ¢ and thus enabling
measurement of 1/'.

Expansion of lattice operators by conformal fields

In this section, we explain how we obtain the RG flow at the tricritical
point shown in Fig. 3a. We relate lattice operators ¢*, n [cf. Eq. (1)] to
conformal fields. From symmetry considerations, we have

o =(0")taeta,e + ...
12)
n = (n) +bje +bhye' + ...

We note that ¢* and n are coupled to Q and A, respectively. Once we
determine these coefficients, and hence the relative strength between
eand €', we can establish (i) the direction of the phase boundary (where
the e component vanishes) and (ii) the generic RG flow trajectory in the
phase diagram with parameters Q and A. We explain how to extract
these coefficients numerically below.

The main analytical tool we use is the state-operator correspon-
dence in CFT. Roughly speaking, this relates the energy eigenstates of a
microscopic model to the primary fields of the field theory. Two
important consequences follow. First, the energies of the lowest
eigenstates are given by E,=A, + n, where A, is the conformal
dimension of the field ¢ and n labels the descendant level. Here we
have shifted and rescaled the energy spectrum so that the ground state
has zero energy and descendant states have unit energy intervals. We
can thus identify the particular states [€), |€'), see Supplementary Fig. 3.
Second, we have the matrix element (¢|¢|0) :(2n/L)A¢. Combined
with the expansion, Eq. (12), we can extract the four coefficients of
interest. The conformal dimensions and the numerical results are
collected in Supplementary Table I. This is the data we used to plot the
RG flow in Fig. 3a. We also mention that the densest direction of the RG
trajectory lines coincides with the DMRG phase boundary calculation
(blue line, obtained using the Binder ratio), showing good agreement
in determining the tangential direction.

Data availability
The data generated in this study have been deposited in the Zenodo
database under identifier https://doi.org/10.5281/zenodo.17385416.

Code availability
The numerical codes used in this study are available from the corre-
sponding author upon request.
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