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M Check for updates

The adoption of whole genome sequencing (WGS) in clinical oncology is
challenged by low data quality and increased artifacts in standard-of-care
formalin-fixed paraffin-embedded (FFPE) samples. Analysis of 56 fresh frozen
(FF) and FFPE matched pairs demonstrates that FFPE processing results in a
median 20-fold enrichment in artifactual calls across mutation classes and
impairs detection of clinically relevant biomarkers such as homologous
recombination deficiency (HRD). We demonstrate that implementation of
consensus calling reduces artifactual structural variant (SV) calls by 98% but is
not sufficient in mitigating artifactual calls for single nucleotide variants
(SNVs) and indels as compared to FF data. We develop FFPErase, a machine
learning framework that filters SNV/indel artifacts and delivers clinical grade
variant reporting allowing accurate quantification of clinically relevant bio-
markers. Comparison of FFPErase WGS calls to clinical reporting by FDA-
approved panel tests demonstrates 99% sensitivity and enables reporting of
24% more clinically relevant findings.

Cancer genome studies have accelerated the discovery of novel diag-  cancers. These targeted approaches do not yield clinically relevant

nostic, prognostic and therapeutic biomarkers. Prospective sequen-
cing of cancer biopsies is now routine in clinical oncology and
represents a pivotal step in treatment planning. To this end, most
clinical testing assays leverage targeted panel sequencing, a cost-
effective, scalable solution that is amenable to the short fragment sizes
and low DNA quality associated with FFPE.

However, panel tests are designed to support the detection of
small mutations in the genes most frequently mutated in common

findings in up to 60% of cancer patients, especially those with less
common cancer diagnoses’. WGS is the only DNA profiling assay
that enables comprehensive characterization of a cancer genome
through the identification of the full spectrum of clinically relevant
mutations across variant classes, such as SNVs, indels, SVs, copy
number variants (CNVs) and complex mutation signatures, such as
tumor mutational burden (TMB), microsatellite instability (MSI)
and HRD’.
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In recent years, seminal studies have demonstrated the diagnostic
utility of WGS, enabling detection of clinically relevant biomarkers in
68-90% of patients with rare cancers, pediatric tumors, hematological
neoplasms, and advanced metastatic disease*”’. With decreasing
sequencing costs, WGS is becoming increasingly accessible. However,
amajor limitation of WGS applications in oncology is the reliance on FF
tissue as a source of tumor DNA due to FFPE preparations resulting in
hyper-fragmented DNA (225-300 bps) that is smaller than the optimal
WGS range (360-480 bps), and generating low coverage data with an
enrichment in artifactual variant calls'>™*. Development of end-to-end
laboratory and analytical workflows to generate high-fidelity WGS data
from FFPE material would open up molecularly guided clinical decision
support for patients who do not benefit from existing diagnostic
approaches. Importantly, routine WGS profiling of FFPE would
advance biomarker discovery through the analysis of ongoing and
retrospective clinical trial cohorts""¢.

Recent efforts to address the challenges of WGS in FFPE material
have focused on optimization of DNA extraction and library preparation
protocols” %, or computational tools to post-process mutation calls®* .
Of these, FFPESig and FFPolish filter artifactual SNVs but not indels and
FFPESig specifically is trained on targeted data rather than WGS. More
recently, FFPEimpact was developed as a scoring method to quantify the
level of FFPE damage within a sample; however, this tool does not
output a set of high-quality filtered calls?”. Importantly, none of these
methodologies has been quality-controlled against validated clinical
sequencing assays. As such, there is still no computational tool that
effectively assesses the impact of FFPE damage across the spectrum of
variant classes in a cancer genome, including SNVs, indels as well as SVs,
and clinically relevant mutation signatures (TMB, HRD, MSI, etc.)*%. As
laboratory workflows are established for the derivation of high-quality
sequencing data, there is a pressing need to develop generalizable tools
for analysis and variant reporting in FFPE-derived WGS data.

Here, we analyze 56 trios of matched FF, FFPE and normal control
WGS data to identify the genome-wide consequences of FFPE damage
across all variant classes using a consensus calling approach®. We
developed FFPErase, a random forest classifier that improves FFPE
artifact classification and concordance between matched FF/FFPE
datasets and delivers clinical-grade reporting across all variant classes
and clinically relevant mutation signatures, thereby unlocking the
potential of WGS in clinical oncology.

Results

Cohort and data characteristics

We acquired matched FF/FFPE WGS data from 168 samples across
three centers, comprising 56 patient trios (FF, FFPE, germline control)
and 16 cancer types (Fig. 1a, Supplementary Data 1). The dataset
includes 40 published trios from Oxford University Hospitals, 10 in-
house trios from Memorial Sloan Kettering Cancer Center (MSKCC),
and six trios from BC Cancer (BCC).

Formalin fixation, DNA extraction, and WGS were performed
independently in each center, resulting in median genome-wide cov-
erages of 93x for FF and 51x for FFPE samples (Supplementary Fig. 1a).
The target FFPE coverage for MSKCC, Oxford and BCC was 80x, 70x
and 40x, respectively, and the average drop in coverage from FF to
FFPE was 36x. Purity and ploidy estimates remained consistent across
FF and FFPE. Although protocols differed between institutions, FFPE
libraries across all centers had shorter average insert sizes
(166-358 bp) than FF (356-503 bp) and increased GC bias (Supple-
mentary Fig. 1b, c). These results demonstrate lower effective coverage
and library quality in FFPE-derived WGS.

Comparison of genome-wide mutation calls between

FFPE and FF

To evaluate the effect of FFPE processing in variant calling from WGS,
we first compared the output of single algorithm variant calling

approaches to consensus calling using three individual variant callers
per mutation class. We evaluated FF/FFPE mutations considering 1. the
union of all passed calls and 2. consensus calls (i.e., variants supported
by at least two callers).

Our data demonstrated that consensus variant calling sig-
nificantly decreases the proportion of FFPE specific SVs (92-12%).
However, this improvement is not seen in SNV and indel calls, where
the median proportion of FFPE-specific mutations remained high (62
and 73%, respectively). This highlights the need to implement a con-
sensus variant calling methodology but also to incorporate additional
approaches for artifact filtration across variant classes (Fig. 1b, c).
Retaining a consensus calling approach, we called 2,346,008 SNVs and
387,851 indels in FF samples and 3,946,938 SNVs and 466,232 indels in
FFPE, signifying a median 2.0x and 2.4x increase in SNVs and indels,
respectively, with variability across centers (Supplementary Data 2)'*'%,
Across the dataset, there were up to 152x more SNVs and 42x more
indels called in FFPE-derived WGS data, lowering the precision of small
mutation calling to 50% for SNVs and 62% for Indels. SV calling preci-
sion was less affected amongst the samples (median fold-change 0.76
(0.19-1.42)) (Fig. 1d, Supplementary Fig. 1d).

Overall, 85% of SNVs (1,992,218) and 75% of indels (289,231) in FF
were also called in FFPE (Supplementary Data 3). While SV consensus
calling maintained high precision (80%, 5094/6364), sensitivity was
lower (57%, 5094/8880) due to reduced coverage on SV detection
amongst other factors such as shorter read fragments and lower
mapping quality (Supplementary Fig. 2a, b). Coverage impact was
evident as FF-specific SV loci (n=3776) were on average 15x lower in
FFPE compared to shared FF/FFPE calls (n=5102). With 52% of FF-
specific loci having at least 2 supporting reads in FFPE, increased
coverage could recover these SVs. CNV profiles in FFPE showed higher
noise levels resulting in hyper-segmentation and less reliable deter-
mination of copy number state (Supplementary Fig. 2c—f)'"'%,

Impact of FFPE damage on the ability to identify clinically rele-
vant molecular biomarkers

A major motivation for expanding WGS application to FFPE biospeci-
mens is the reporting of clinically relevant biomarkers. We therefore
evaluated the sensitivity and specificity of FFPE WGS data as compared
to matched FF WGS in calling established molecular biomarkers.
Annotations with OncoKb* and COSMIC* identified 117 small muta-
tions (27 indels, 90 SNVs), 46 SVs, and 32 amplifications in FF derived
WGS data. Sensitivity for the same driver detection in FFPE was 89%
(174/195). An additional set of 13 FFPE-specific findings were reported
likely due to intratumor heterogeneity’. (Supplementary Fig. 3, Sup-
plementary Data 4-5, Supplementary Information)

Next, the implications of FFPE damage were assessed on TMB and
cancer-associated mutation signatures. Derived from our consensus
call set, genome-wide TMB was elevated in FFPE (median: 10.28, range:
1.42-536.38) compared to FF (median: 3.45, range: 0.04-561.56), yet
coding TMB was unaffected (Fig. 2a-c), suggesting elevated artifact
representation in non-coding regions. Of note, without deploying
consensus calling coding TMB was elevated an average 7-fold (Sup-
plementary Fig. 4a).

Samples with a high artifact rate showed enrichment in specific
mutation signatures. For example, an increased contribution of SBS37
was observed in 45/56 FFPE samples (median proportion: 23.4%)
compared to the corresponding FF (12/56, median proportion: 3.6%)
(Fig. 2d-e, Supplementary Fig. 4b, ¢, Supplementary Data 6). Addi-
tionally, FFPE-derived data exhibited a 2.8x increase in both insertions
and repeat-mediated deletions (Supplementary Fig. 4d). In contrast,
SV profiles remained largely unaffected (median cosine similarity:
0.97, range: 0.02-1.00) (Supplementary Data 7)>*.

We hypothesized that the rise in genome-wide mutation burden
and corresponding artifact signatures could impair the detection of
composite mutation signatures like HRD. Utilizing HRDetect** and

Nature Communications | (2025)16:10649


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-65654-7

Surgical Tissue Resection Trio Acquisition

Tumor

RS
-5

Center Specific
Tumor Sequencing

Uniform
Mutation Calling
& Consensus

Whole Genome
Sequencing

.---.-.--.t-----------.

Matched Normal AGTCCCTGAATCGA
>
b c
Calling Strategy Comparison FFPE Only Totals
1.0 7 ®
’ 1.0e+05 ..‘
(J
o
0.8 1.0e+04
5 +
g 1000 7
g 061 ® s = ® sNvs
o . Y
E ® Indels z & @ Indels
100
= ® svs £ $q ® svs
(e} @ w
i 5 o
04 © 10 7 ! ®
®
1 ® O®
021 )
0 »e
T T T T T T T T
T T o
All Calls Consensus Calls (NN ISR s & & QQ}Q
&FR® N
Strategy
All Passed Calls
d
Artifact Enrichment in Al Calls [ FFPE only
I Shared
o 10
o
8
=
g 0.8
i}
Q
s 06
g3
w
g
o 04
T
0.2
0.0
SNVs Indels SVs
Mutation Class
Artifact Enrichment in Consensus Calls
1.0
0.8
5 0.6
£
g
g 04
@
0.2
0.0

SNVs

Indels

Mutation Class

Fig. 1| Cohort Characteristics. a Graphical representation of data accruement,
demonstrating acquisition of trios and sequencing at multiple centers. b Pointplot
showing distribution across 56 FF/FFPE pairs in percentage of calls unique to FFPE
sample in all passed calls versus consensus calls for each variant class. Center
represents mean percentage and error bars represent 95% confidence intervals.

c Scatterplot showing call totals for all passed calls versus consensus calls for each
variant class. d Stacked barplots demonstrating proportion of detected mutation

calls within FFPE samples that are shared with matched FF in each mutation class.
Top plots showing artifact enrichment in all passed calls and bottom blots showing
artifact enrichment specifically in high confidence consensus calls. FF, Fresh Fro-
zen; FFPE, Formalin-fixed, paraffin-embedded; SNV, single nucleotide variant; indel,
small insertion or deletion; SV, structural variant. Source data are provided as a
Source Data file. Panel a created in BioRender. Papaemmanuil, E. (2025) https://
BioRender.com/qIm8gy?2.
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CHORD?, 7 samples were flagged as likely HRD by both callers in the FF
data. However, HRD scores in the corresponding FFPE data were below
the detection cutoff for 7/7 cases by HRDetect, and 4/7 by CHORD,
resulting in incorrect HRD classification (Fig. 2f, g, Supplementary
Data 8). These discrepancies demonstrate that increased SNV/indel
artifacts in FFPE affects two key predictor features of HRD: SBS3 and
microhomology-mediated indels, leading to false HRD classification
(Supplementary Fig. 4e).

Evaluation of MSI status by TMB, MSlIsensor, and MIMcall scores
in FF identified 2 MSI-positive samples (TMBs: 99 and 562) (Supple-
mentary Data 9). Both MSI positive samples exhibited increased con-
tribution of MMR-associated signatures (SBS15, SBS21)**°%, Contrary
to HRD, FFPE artifacts did not affect presentation or detection of MMR-

related signatures. There was one false positive MSlsensor call in FFPE
(H158880; FFPE: 11.09, FF: 1.68) and none in MIMcall. However, this
sample had low TMB (FFPE: 1.71, FF: 1.43) and no presentation of MMR-
associated signatures in FF, demonstrating the necessity of integrating
multiple genome-wide features in MSI assessment.

Taken together, this analysis demonstrates that whilst common
cancer-associated mutations can be captured in FFPE-derived WGS
data, without correction, clinically relevant signatures can be missed
(e.g., HRD) or misclassified (e.g., MSI). Importantly, comprehensive
assessment of FFPE-derived data across biomarker classes, inclusive of
small mutations, structural variants and complex mutation signatures,
is warranted to ensure accurate interpretation of reporting of these
signatures.
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Fig. 2 | Genomewide Signal Impact. a Example of a WGS FF tumor resection
(H201536) through a Circos plot showing the different types of somatic mutations
along the genome. The outermost ring shows the intermutation distance for all
SNVs color-coded by the pyrimidine partner of the mutated base. The middle ring
shows small insertions (green) and deletions (red). The innermost ring shows copy
number changes, and the arcs show SVs. b Circos plot as described for matched
FFPE tumor resection. ¢ Violin plot showing TMB distribution across cohort (n = 56)
for FF and FFPE samples excluding hypermutator cases H203508 and H203526 for
interpretability. Both coding and and genomewide TMB calculations are shown
(two-sided Mann-Whitney U test, Coding: p =3.489e-01, Genomewide: p = 2.38le-
06). In the middle of the split violin is a box and whisker plot for the all data points
(coding and non-coding) with the median as a white dot, a thick bar for the inter-
quartile range (25-75th percentile) and a thin bar that goes to the minimum and
maximum of the data. d Boxplots showing cosine similarity in COSMIC SBS and ID
signature contribution matrices (median SBS: 0.58, ID: 0.84) as well as cosine
similarity in SV context matrices (median: 0.97) between 56 matched FF/FFPE

samples. The line in the middle of each box represents the median, while the upper
and lower ends of each box represent the interquartile range (IQR) (25th-75th
percentile) and the whiskers represent 1.5x the IQR. e Barplot showing significant
signature differences between FF and FFPE for 56 matched samples (two-sided
Mann-Whitney U test, SBS1 p = 3.641e-02; SBS37 p=1.211e-12; ID2 p = 8.420e-03).
Bars at mean contribution of signature of all 56 samples and error bands showing
95% confidence intervals. f Barplot showing HRD detection status for callers
HRDetect and CHORD in patients with HRD (n = 7). g Concordance in HRDetect and
CHORD scores for the seven HRD positive patients identified with scores above the
recommended threshold for each tool. Red dotted lines show threshold of detec-
tion per tool (0.5 for CHORD and 0.7 for HRDetect) for FFPE sample score. FF each
mutation class. FF, Fresh Frozen; FFPE, Formalin-fixed, paraffin-embedded; SNV,
single nucleotide variant; indel, small insertion or deletion; SV, structural variant;
HRD, homologous recombination deficiency. Raw data for (a,b) can be accessed at
the EGA study. Source data for (c-g) are provided in Supplementary Data 2, 6, 8 and
the data repository. Source data are also provided as a Source Data file.

Rationale for the development of an FFPE-specific artifact
classifier

The distinct mutation patterns observed in FFPE, such as the enrich-
ment of SBS37 signature and repeat-mediated deletions, present an
opportunity to develop informatics solutions that learn and correct for
FFPE-specific artifacts. To this end, we evaluated 33 SNV and 29 indel-
associated features (Supplementary Data 10) and noted significant
importance in features related to VAF, read mapping quality, and insert
size (Supplementary Fig. 5a-b)*’.

We designed a machine learning classifier tailored to discern
FFPE-specific artifacts. We hypothesized that certain patterns of FFPE-
associated artifacts are likely shared across preparation protocols,
while some may be protocol or laboratory-specific. To test this
hypothesis, we evaluated three classification models: 1. Consider
mutations derived from samples from a single center for training/
testing; 2. Consider mutations from samples derived from two centers
and testing on data from a third; 3. A combined approach, training a
model per sample with mutations across all centers but excluding
mutations from the test sample. All models utilized a balanced random
forest architecture, with the 1- and 3-center approaches employing a
leave-one-out cross-validation and the 2-center approach representing
validation on a fully independent dataset. (Fig. 3a-c, Supplementary
Data 11, Supplementary Information).

The classifier's performance across all approaches showcased a
93-94% median accuracy for SNVs and 89-91% for indels. Importantly,
models where the test center data were incorporated during training
(1- and 3-center) marginally outperformed the 2-center approach
(Supplementary Fig. 5¢) suggesting that there are both shared, as well
as center-specific effects of FFPE damage that can only be captured if
these are represented in the training dataset. Using the 3-center
approach, precision for SNV/indel calling increased from 52 to 92% for
FFPE mutations relative to the FF calls, while maintaining an 80%
sensitivity. Notably, the cross center approach was the only to not filter
high-confidence driver mutations shared by FF and FFPE, demon-
strating that it extracts the most robust FFPE artifact profile (Fig. 3d, e,
Supplementary Data 12).

Post-filtering results in high concordance in drivers and global
signatures

Next, we used the 3-center approach to filter artifacts in each hold-out
sample and assessed the impact of FFPE filtration on reporting of
clinically relevant drivers and global mutational patterns. Con-
cordance for TMB, COSMIC signatures, and HRD detection drastically
improved.

Upon filtration, median genome-wide TMB decreased from 10.3
(1.4-536.4) to 2.9 (0.3-497.4), much closer to FF TMB estimates
(median: 3.5) (Fig. 4a, Supplementary Data 13). The cosine similarity
between FF and FFPE for SNV signatures improved to 0.94 (0.40-1.00)

(Fig. 4b, Supplementary Fig. 6a-b, Supplementary Data 14), and the
contribution of FFPE-specific signatures (e.g., SBS37) was notably
decreased. Similar results were obtained for indels (Fig. 4c). To verify
that signature concordance after filtering was independent of the
signature fitting method, we calculated signature exposures using
both MutationalPatterns*® and MuSiCal* and observed consistent top
signatures and concordance between matched FF and filtered FFPE
samples (Supplementary Fig. 6¢).

Post-filtration, 7/7 HRD+ tumors were correctly classified in FFPE
(Fig. 4d). For the 2 cases identified as MSI +, artifact filtration reduced
mutation burden by 7-8% without removing contribution of MMR-
associated signatures. These results demonstrate that FFPErase
removes artifacts without losing sensitivity, thus enabling accurate
detection of biological signals related to HRD and MMR. Importantly,
FFPErase accurately classified all drivers shared between FF/FFPE
(n=103). Of the 11 FFPE-unique driver calls, 4 (1 SNV, 3 indels) were
classified as artifacts. 2 of these were indels located in the polymorphic
HLA-A locus, a region that is highly variable, suggesting that classifier
performance in loci with decreased mapping quality may require more
training data.

Performance of FFPErase as compared to existing approaches
We compared the FFPErase results from the 3-center approach to two
publicly available artifact removal strategies, FFPolish and FFPESig.
Additionally, we adapted the scoring tool FFPEimpact to output fil-
tered mutational contexts (Supplementary Information)®**. FFPolish
leverages a feature extraction approach like FFPErase for SNVs but not
indels. When applied to our data, FFPolish had a lower accuracy
compared to FFPErase (63 vs. 95%) and critically removed 42% of SNV
drivers shared by matched FF/FFPE tissue (Fig. 5a, Supplementary
Data 15). FFPESig does not provide an artifact detection strategy but
rather corrects trinucleotide contexts using FFPE signatures learned
from targeted sequencing data. The adapted version of FFPEimpact
outputs a similarly filtered trinucleotide context but does not provide
per-mutation classification. To assess the performance of all tools, we
quantified cosine similarity between matched FF and post-filtered FFPE
contexts and show that the similarity index was higher using FFPErase
compared to all other methods (FFPErase: 0.99, FFPolish: 0.91,
FFPEimpact: 0.90, FFPESig: 0.83) (Fig. 5b—d, Supplementary Data 16).
These findings highlight that FFPErase is the only tool to deliver a per-
mutation classification, filter putative artifacts and result in near FF
variant calls. Furthermore, we applied our FFPErase filtration to a
representative dataset from the FFPolish study®* consisting of 31 bur-
kitt lymphoma and 38 cervical cancer cases and achieved a median
accuracy of 97% for SNVs and 90% for indels across samples (Supple-
mentary Fig. 7).

Next, we evaluated FFPErase performance against clinical findings
in a cohort of 34 cases for which we had FFPE-derived WGS data and
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matched clinical sequencing by FDA-approved MSK-IMPACT" from the
same biopsy. A total of 92 clinically relevant events were reported by
MSK-IMPACT. 99% were retained in FFPErase-processed WGS data.
Importantly, analysis of WGS from the FFPE specimen revealed addi-
tional, clinically relevant events in 41% (14/34) of patients increasing
the number of findings by 24% (Fig. 6a, Table 1, Supplementary
Data 17). These findings were not captured by panel tests and were
mostly represented by SVs.

Inversions

Translocations

Clinical use case: artifactual clone from FFPE removed from
ovarian cancer with PARP inhibitor resistance
Beyond driver mutations and global signatures, FFPE artifact filtration
can directly impact the analysis of tumor clonal structure, with direct
implications for surveillance studies during disease progression and
treatment response.

We present a case study that highlights the clinical utility of
FFPErase in an ovarian cancer patient with a germline BRCA2 mutation
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Fig. 3 | Artifact Classifier. a Graphical representation of training and validation
process from mutation labeling to validation stratification on the basis of centers.
b Parallel axis plot showing feature distributions for random sampling of 6704 SNVs
(50% shared, 50% artifact). Final axis categorizes FFPE unique mutations as 1 and
mutations shared with FF as O for the ARTIFACT class. ¢ PCA reducing feature space
to two principal components and shading mutations as shared with FF (blue) or FFPE
unique (green) for SNVs from all samples excluding hypermutator cases (1823304
artifacts and 560,618 real). Axis legends adjusted for extreme outliers (greater than
0.00001 percentile and less than 99.999 percentile). d AUC for ROC and Precision-

Recall for 500 random training samplings of 750 (50% shared, 50% artifacts) muta-
tions from 3 samples per center (nine total) and tested on all other sample mutations.
e Timepoints for an example tumor (H135022) derived from FF and FFPE pre and post
filtration are shown in the form of a Circos plot as described in Fig. 2. FFPE, formalin-
fixed, paraffin-embedded; PCA, principal component analysis; FF, fresh frozen; SNV,
single nucleotide variant; AUC, area under curve; ROC, receiver operating char-
acteristic. Raw data for panels b-e can be accessed at the dbGAP, EGA, and 100,000
genomes studies. Source data can be generated using the tool repository. Panel a
created in BioRender. Papaemmanuil, E. (2025) https://BioRender.com/nzk6z38.

and a heterogeneous response to platinum and PARP inhibitors
(PARPi). WGS data were generated for the two responsive pre-
treatment FF specimens and one resistant post-therapy FFPE sample
with a BRCA2 reversion mutation (Fig. 6b). Both pre-treatment FF
tumors had TMBs of 4.09 and 4.40 with high HRDetect scores (97 and
96%). In contrast, prior to filtering the FFPE sample had a high TMB
(20.19) and low HRDetect score (37%). FFPErase designated 80% of
SNVs and 43% of indels as artifacts refining TMB estimates to 4.44 and
HRDetect score to 99% in the processed data.

Prior to filtering, clonal reconstruction across three samples
identified 8 clones. HRD-related signature SBS3 was detected in all
clones except for two that were unique to FFPE (5 and 7). Filtration with
FFPErase demonstrates that clone 7 was primarily defined by artifac-
tual mutations (CCF: 20.2%, 92% artifacts) and corrects the mutational
profile of clone 5 (CCF: 77.8%, 17% artifacts). Notably mutation sig-
nature analysis of clone 5 post FFPErase filtering showed no evidence
of SBS3 suggesting HR proficiency*. This is consistent with the BRCA2
reversion. Clone 5 also had high contributions of cisplatin signatures
(SBS31/35) (Fig. 6¢, d, Supplementary Fig. 8)**. Taken together, cleanup
with FFPErase enables accurate genomic characterization of a clone
associated with treatment resistance that would have been missed
without correction.

Discussion

Challenges in performing WGS in FFPE biospecimens pose a critical
barrier to adoption of WGS in clinical oncology. In this study, we
deliver a comprehensive meta-analysis of three independent FFPE
WGS datasets with matched FF and germline control WGS data (n=56
trios)'®. We study the genome-wide presentation of FFPE-related arti-
facts across mutation classes including SNVs/indels, SVs and global
mutational signatures inclusive of HRD, MSI and TMB.

Despite variation in FFPE preparation and sequencing protocols, we
identified common artifact patterns across the three centers, suggesting
that these are associated with core components of FFPE processing.
Consistent with prior studies, SNV/Indel calling is confounded by an
enrichment of FFPE-associated artifacts in 95% of tumors. Artifact
mutations in FFPE are enriched for SBS37, insertions and repeat-
mediated deletions. While FFPE-associated artifacts do not impair driver
mutation detection and prioritization in our dataset, they do affect
detection accuracy of clinically relevant mutation signatures such as
HRD. For example utilizing FFPE WGS data as input, HRDetect fails to
accurately classify 7/7 patients with HRD+ status in FF data, whilst
CHORD only captures 3/7 HRD+ cases. Whilst genome-wide TMB is
increased in FFPE data, coding TMB is not, which is consistent with
clinical testing data®*. SV calling was mostly consistent between FF and
FFPE when utilizing consensus calling, requiring two out of three callers
to call an event. SV sensitivity was predominantly affected by variation in
coverage, which may result in a loss of detection and reporting of spe-
cific SVs; however, genome-wide SV profiles (i.e., HRD) are preserved.

The enrichment of artifactual calls highlights a clear need to dif-
ferentiate artifacts from real mutations in FFPE-derived WGS data. For
SVs, employing consensus calling greatly increases precision, but not for
small mutations. To this end, we leverage the data in this analysis and
develop FFPErase, a machine learning model that is informed by the
analysis of SNVs/indels from matched FF/FFPE WGS data from three

centers. FFPErase achieves high accuracy in artifact classification
increasing the precision of mutation calling by 40% without filtering out
driver events. Benchmarking showed improved model performance
when in-house and external samples were both included in training. This
observation indicates that FFPE-associated artifacts are generalizable
across FFPE processing workflows, yet center-specific artifacts are also
present. FFPErase delivers a center-agnostic FFPE filtering workflow.
Most importantly, this tool enables the characterization of clinically
relevant mutation signatures like HRD without reducing TMB associated
with biologically relevant signals such as MSI.

Existing methods like FFPESig and FFPolish have limited capabilities
in artifact removal, focusing solely on SNVs, training on targeted data or
lacking a per-mutation artifact prediction. FFPEimpact is designed to
score the extent of FFPE damage and does not remove artifacts from the
data. Our comparative analysis to these tools shows that FFPErase
achieves the highest accuracy in artifact detection (95%) and cosine
similarity between matched FF and FFPE contexts (0.99), while critically
preserving 95% of shared SNVs. To ensure generalizability, the tool was
further tested against a fourth, external dataset of 69 tumor samples
from 2 never seen cancer types achieving 97% accuracy. Notably,
FFPErase is the only tool benchmarked against an FDA-approved tar-
geted panel assay. FFPErase not only retains 99% of clinically relevant
events reported by MSK-IMPACT, but also uncovers additional clinically
significant events in 41% of patients, primarily SVs.

Sequential sampling is increasingly implemented in clinical prac-
tice, as a means to understand disease progression and treatment
response. We present a case study that shows how the FFPE-related
artifacts affect resolution and interpretation of tumor clonal phylo-
genies. Sequential WGS profiling of an ovarian cancer patient with het-
erogeneous response to PARP inhibition shows the emergence of a
treatment-resistant clone in a post-therapy FFPE resection. Deconvolu-
tion of the subclonal structure and HRD status is challenged by the
presence of artifacts in the FFPE resection. Upon filtering with FFPErase,
we deliver a clean representation of the clonal architecture of the tumor
and an accurate clone-specific assessment of HRD status that informs
disease presentation and treatment resistance.

A limitation of our study is that FFPErase does not address
hypersegmentation in CN from FFPE-derived WGS data. Perhaps
adaptation of methods such as dryclean or ACE can support this, but
would need significantly larger datasets**¢. Additionally, although we
demonstrate that high depth coverage can be achieved in FFPE, opti-
mization of laboratory protocols to improve library quality and
sequencing depth is warranted but beyond the scope of this study. We
note that applying FFPErase to targeted/exome sequencing data rather
than WGS would require retraining the model using relevant data (e.g.,
exome or panel) to account for variations in sequencing depth and
coverage patterns between these assays.

Our work provides a clear path forward for the implementation of
FFPE-derived WGS datasets in oncology through the combination of
consensus variant calling and artifact filtration methods such as
FFPErase. Applications such as FFPErase enable the utilization of FFPE
biospecimens and ultimately help democratize the development of
clinical WGS workflows in a wide variety of settings (academic centers,
community hospitals, etc.) and accelerate correlative studies for bio-
marker discovery.
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Fig. 4 | Filtration Impact on Global Signatures. a Boxplots showing distribution
of genomewide TMB in both FF and FFPE samples prior to filtration with FFPErase
compared to FFPE samples post filtration for all 56 matched FF/FFPE pairs. The line
in the middle of each box represents the median, while the upper and lower ends of
each box represent the interquartile range (IQR) (25-75th percentile) and the
whiskers represent 1.5x the IQR. b Stacked bar plot showing median contribution
percentage of highest contribution signatures in SNVs for FF, FFPE, and filtered
FFPE. ¢ Same as (b) for indel signatures. d Distribution comparisons for FF vs.
unfiltered FFPE vs. filtered FFPE of HRDetect (Frozen vs. FFPE p = 9.876e-03, Frozen
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Frozen

vs. Filtered p=1) and CHORD (Frozen vs. FFPE p =4.281e-03, Frozen vs. Filtered

p =2.479¢-01) scores for 7 HRD positive cases by FF scoring with shaded regions for
each tool’s HRD threshold. (two-sided Mann-Whitney U test) TMB, tumor muta-
tional burden; FF, fresh frozen; FFPE, formalin-fixed, paraffin, embedded; COSMIC,
Catalog Of Somatic Mutations In Cancer; SBS, single base substitution; ID, inser-
tion/deletion; HRD, homologous recombination deficiency. Source data for all
panels are provided in Supplementary Data 6, 8,13 and the data repository. Source
data are also provided as a Source Data file.
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Methods (ClinicalTrials.gov number, NCT01775072) with informed consent
Study participants from the patients or their guardians. This study was approved by the

Patients who were seen within the Department of Pediatrics at Mem-
orial Sloan Kettering Cancer Center with presumed or established solid
tumor malignancies (including CNS tumors) were eligible to enroll on
an institutional prospective tumor/germline-sequencing protocol

MSKCC Institutional Review Board/Privacy Board. Patients with newly
diagnosed as well as relapsed/refractory disease were eligible. The rest
of the data was sourced from public or request-for-access repositories
as described™®?*,
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Fig. 5 | Comparison to Existing Methods. a ROC and PR AUC plots comparing
FFPErase, FFPolish, and a VAF thresholding method (setting a filter on every
mutation with VAF < 0.2*sample purity) results on all samples within the cohort.
b Boxplot showing the distribution of mutational context cosine similarities as
compared to FF data for unfiltered and filtered FFPE by use of FFPErase, FFPESig,
FFPolish and FFPEimpact with statistical annotations between unfiltered and fil-
tered data by each tool for all 56 matched pairs. (two-sided Mann-Whitney U test,
FFPErase p = 6.024e-07, FFPESig p = 9.951e-02, FFPolish p =1; FFPEimpact p=1; ns =
5e-02 <p < =1,*=1e-02<p < =5e-02,*=1e-03<p < =1e-02,**=le-04<p < =le-

03,***=p < 1e-04) The line in the middle of each box represents the median, while
the upper and lower ends of each box represent the interquartile range (IQR) (25th-

75th percentile) and the whiskers represent 1.5x the IQR. ¢ Same as (b). for indels for
all 56 matched pairs (two-sided Mann-Whitney U test, FFPErase p =1.838e-10,
FFPEimpact p =1). d Example 96-mutational context plots for substitutions from
H203498 FF/FFPE alongside the filtered FFPE profiles using FFPErase, FFPESig,
FFPolish and FFPEimpact. SBS, single base substitution; FF, fresh frozen; FFPE,
formalin-fixed, paraffin-embedded; ROC, receiver operating characteristic; PR,
precision recall; AUC, area under curve. Raw data for panels a and d can be accessed
at the dbGAP, EGA, and 100,000 genomes studies. Source data for (b, c) are pro-
vided in Supplementary Data 16 and the data repository. Source data are also
provided as a Source Data file.

Study design and WGS analysis

Raw data for 56 tumor specimens were collected across three centers,
representing independent workflows for FFPE sample preparation and
sequencing (Supplementary Data 1). For each tumor, trios of samples
for each tumor, including two resections, one prepared as FF and the
other as FFPE, as well as a matched normal sample from peripheral
blood, were sourced. An additional 35 FFPE-only tumor specimens with
matched normal peripheral blood were collected and processed from
MSKCC. Patient specimens spanned 16 cancer indications and age at
resection ranged from 5 to 89 years. Both FF and FFPE tumors were
assessed using the same analytical pipelines based on consensus call-

ing across all variant classes’.

Sample Collection

Patient samples from three independent centers were collected, pro-
cessed and sequenced separately. A trio of samples was collected for
each patient, two tumor samples from the same resection that were
prepared as FF and FFPE samples, and one matched normal sample for
matched analysis. Ten trios were collected from MSKCC, six from BCC,
and forty from Oxford University Hospitals.

Tissue fixation, processing, and embedding

For the 45 subjects from MSKCC, surgical samples were placed into
standard tissue cassette(s) and completely immersed in fresh 10%
Neutral Buffered Formalin (NBF) and loaded into the Peloris tissue
processor. Surgical routine samples were processed for about 7 h in
multiple steps per reagent consisting of formalin (90 min), alcohol
(125 min), xylene (90 min) and paraffin (90 min). Cassettes were then
removed and embedded in paraffin blocks using the Tissue-Tek
AutoTEC a120.

DNA extraction

For the 45 subjects from MSKCC, tumor DNA was extracted from fresh
frozen (FF) OCT embedded tissue biopsies and matched normal from
peripheral blood using the DNeasy Blood & Tissue Kit (Qiagen catalog #
69504) according to the manufacturer’s protocol for all but one sample
where the AllPrep DNA/RNA Mini Kit (Qiagen catalog # 80204) was used.
FFPE tissue was deparaffinized using heat treatment (90 °C for 10’ in
480 pL PBS and 20 pL 10% Tween 20), centrifugation (10,000 x g for 15")
and ice chill. Paraffin and supernatant were removed, and the pellet was
washed with 1 mL of 100% EtOH followed by an incubation overnight in
400 pl of 1M NaSCN for rehydration and impurity removal. Tissues were
subsequently digested with 40 ul of Proteinase K (600 mAU/ml) in 360 pl
Buffer ATL at 55 °C. DNA isolation proceeded with the Mag-Bind Blood &
Tissue DNA HDQ 96 Kit (Chemagic SKU M6399-01) according to the
manufacturer’s protocol modified by replacing AW2 buffer with 80%
ethanol. All DNA was eluted in 0.5X Buffer AE.

For the six subjects from BCC, tumor DNA was extracted from FF
tissue biopsies and matched normal. FFPE tissue was deparaffinized
using xylene and then extracted using the QIAmp DNA FFPE Tissue Kit
(Qiagen catalog # 56404) according to the manufacturer’s protocol.

DNA extraction for the 40 samples from Oxford University Hos-
pitals is detailed in the associated publication’®.

Whole genome sequencing
For the 45 subjects from MSKCC, after PicoGreen quantification and
quality control by Agilent BioAnalyzer, 500 ng of genomic DNA were
sheared from all FF samples and where possible from all but 5 FFPE
samples (minimum gDNA: 140.9 ng) using a LE220-plus Focused-
ultrasonicator (Covaris catalog # 500569). Sequencing libraries were
prepared using the KAPA Hyper Prep Kit (Kapa Biosystems KK8504)
and were subjected to a 0.5X size select using aMPure XP beads
(Beckman Colter catalog # A63882) after post-ligation cleanup. For the
FF samples, PCR-free libraries were pooled equivolume for sequencing
and for the FFPE samples five cycles of PCR were performed. Samples
were then run on a NovaSeq 6000 in a 150 bp/150 bp paired-end run,
using the NovaSeq 6000 SP, S1, S2, or S4 Reagent Kit (300 Cycles)
(Illumina).

For the six subjects from BCC, FF samples were prepared as follows:
One microgram of genomic DNA was arrayed in a 96-well microtitre
plate and subjected to shearing by sonication (Covaris). Sheared DNA
was end-repaired and size selected using AMPure XP beads targeting a
300-400 bp fraction. After 3’ A-tailing, full length TruSeq adapters were
ligated. Libraries were purified using AMPure XP beads. Library fragment
sizes were assessed using an aliquot of PCR amplified library DNA on the
Agilent 2100 Bioanalyzer DNA100O chip, or Caliper GX DNA100O chip.
The PCR-free library concentration was quantified using a qPCR Library
Quantification kit (KAPA, KK4824). Four cycles of PCR were applied to
rescue low-yield libraries prior to sequencing with paired-end 100 base
reads on the lllumina HiSeq platform according to manufacturer
recommendations. FFPE was prepared as follows: gDNA was normalized
to 250 ng in a volume of 62 pL elution buffer (Qiagen) and transferred
into a microTUBE plate for shearing on an LE220 (Covaris) acoustic
sonicator using the conditions: Duty Factor - 20%, Peak Incident Power -
450 W, Cycle per burst - 200, Duration - 2x 60 s with an intervening
spin. FFPE protocol has a dominant DNA peak in the size range between
300 and 400 bp. To improve the library quality of FFPE-derived DNA,
solid-phase reversible immobilization (SPRI) bead-based size selection
was performed before library construction to remove smaller DNA
fragments from highly degraded FFPE DNAs. If not removed early in the
library construction process, these smaller fragments would otherwise
dominate the final amplified library. FFPE DNA damage and end-repair
and phosphorylation were combined in a single reaction using an
enzymatic premix (NEB), then bead purified using a 0.8:1 (bead: sample)
ratio to remove small FFPE fragments. Repaired DNA fragments were
next A-tailed for ligation to paired-end, partial lllumina sequencing
adapters then purified twice with PCR Clean DX beads (0.9:1 ratio). Full-
length adaptered products were achieved by performing 8 cycles PCR
with primers introducing fault-tolerant hexamer “barcodes” allowing
multiplexing of libraries. Indexed PCR products were double purified
with 0.9:1 beads. Concentration of final libraries was determined using
size profiles obtained from a high sensitivity Caliper LabChip GX toge-
ther with Quant-iT (Invitrogen) quantification. Libraries were sequenced
with paired-end 150 base reads on a HiSegX instrument running v2.5
chemistry (Illumina).

WGS for the 40 samples from Oxford University Hospitals is
detailed in the associated publication’®.
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Bioinformatic analysis

Sequencing data was gathered and analyzed analogously using the Isabl
platform and included: 1. Data QC; 2. Ensemble variant calling for
germline and somatically acquired mutations from at least two out of
three algorithms run for each variant class; 3. Signature extraction (i.e.,
mutation signatures, MSI score, homologous recombination deficiency);
4. Variant classification; and, 5. The generation of a clinical prototype
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summary report’. Briefly, upon completion of each sequencing run, Isabl
imports paired tumor-normal FASTQ files, executes alignment, quality
control algorithms and generates tumor purity and ploidy estimates.
Whole-genome paired-end reads were aligned to human reference
genome (GRCh37d5) using BWA-mem (v0.7.17) as a part of the pcap-
core v2.18.2 wrapper (https:/github.com/cancerit/PCAP-core)*’. The
wrapper includes marking of duplicates using Picard. For tumor samples
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Fig. 6 | Detailed Use-Case for PARP-inhibitor treated Ovarian Case H203572.

a Graphical representation of concordance test against FDA-approved MSK-
IMPACT panel calls with breakout scatterplot of called mutations by VAF in WGS vs.
VAF in MSK-IMPACT. b Timeline for ovarian cancer patient H203572 in respect to
WGS samples with corresponding circos plots described in Fig. 3 for: pre-therapy
right ovary resection from FF tissue, pre-therapy infracolic omentum resection
from FF tissue, post- therapy distal pancreas resection from FFPE tissue both pre
and post filtration with FFPErase. Additional panels below consisting barplots
showing the absolute number of mutations attributed to the five SBS signatures
with the highest exposure in the tumor, below that the 96 trinucleotide contexts of
SNVs, and lastly the global HRD probability score from HRDetect for each sample.
¢ Phylogenetic tree for pre-filtration clonality analysis with each bar representing

the number of mutations per abstracted clone and colored by proportions of study
relevant SBS signatures with gray denoting other signature contributions. Drivers
are annotated on the clone they are associated with and are matched by using mean
CCF per clone as compared to the mutation CCF. d 96 trinucleotide contexts for
each SNV clone pre-filtration along with bars on the right that are length adjusted
for number of mutations within the clone and show percentage of variants filtered
by FFPErase. VAF, variant allele frequency; FF, fresh frozen; SBS, single base sub-
stitution; FFPE, formalin-fixed, paraffin-embedded. Source data for panels a is
provided in Supplementary Data 17 and the data repository. Source data are also
provided as a Source Data file. Raw data for (b-d) can be accessed at the dbGAP
study. Panel 6b created in BioRender. Papaemmanuil, E. (2025) https://BioRender.
com/cdp997a.

ensemble variant calling for each variant class (substitutions, insertions
and deletions and structural variations) was performed. High confidence
somatic mutations are classified with regards to their putative role in
cancer pathogenesis and statistical post-processing enables the deriva-
tion of MSI scores, mutation signatures and HRD scores. Clinical rele-
vance of mutations in common cancer genes was annotated using
OncoKb, COSMIC, Ensembl Variant Effect Predictor, VAGrENT, gnomAD
and ClinVar databases. Details of the variant calling and annotation can
be found in the Supplementary Information.

Identification of somatic mutations in whole-genome sequences
Somatic alterations were detected comparing the tumor against the
matched normal for each variant type. All bioinformatic tools were
launched using an in-house wrapper. Allele-specific subclonal CN chan-
ges were detected using Battenberg (cgpBattenberg v1.4.0) (https:/
github.com/cancerit/cgpBattenberg)*®.  Single-nucleotide  variants
(SNVs) were identified using Strelka2 (v2.9.1 with manta v1.3.1), (https://
github.com/Illumina/strelka), MuTect2 (gatk:v4.0.1.2), (https:/github.
com/broadinstitute/gatk), and CaVEMan (cgpCavemanWrapper v1.7.5)
(https://github.com/cancerit/cgpCaVEManWrapper)**™, Variant post-
processing was done using default flags for Strelka2 and MuTect2,
while for CaVEMan, cgpCavemanPostprocessing (v1.5.2) was used fil-
tering for sequencing artifacts with >=3 mutant alleles in at least 1% of
samples within a panel of 100 unmatched blood normal (https://github.
com/cancerit/cgpCaVEManPostProcessing). Small insertions and dele-
tions (indels) were detected using Strelka2, MuTect2, and Pindel
(cgpPindel v1.5.4) (https://github.com/cancerit/cgpPindel) and filtered
against a panel of 100 unmatched normals™. Structural genomic variants
(SVs) were identified using SVABA (-v1.0.0 commit 47c7a88) (https://
github.com/walaj/svaba), ~ GRIDSS  (v2.2.2)  (https:/github.com/
PapenfussLab/gridss), and BRASS (v4.0.5 with GRASS v1.1.6) (https://
github.com/cancerit/BRASS) using a panel of 100 in-house unmatched
normals**>*, Finally, microsatellite-instability status was assessed using
MSISensor (v0.5) (https://github.com/ding-lab/msisensor)* and MIMcall
(https://github.com/afujimoto/MIMcall)*,

Variant consolidation and annotation

VCF files for SNVs and indels were merged with an in-house wrapper
using chromosome, position, reference allele, and alternative allele.
The merged VCFs were annotated with VAGrENT (v3.3.0, https://
github.com/cancerit/VAGrENT) and VEP (v92, https://github.com/
Ensembl/ensembl-vep)***> VCF files for SVs were merged using Mer-
geSVvcfs  (v1.0.2, https://github.com/papaemmelab/mergeSVvcf).
High-confidence mutations were designated as those that were passed
by at least 2 callers and >600 bp in length for SV calls.

Calculation of TMB

TMB was calculated using high-confidence, somatic substitutions and
indels that fall within coding regions. The totals for these variant
classes were combined and then converted to coding TMB using a
divisor of 30 to approximate the length of the human exome in Mb and
2900 to approximate length of the human genome in Mb. Values

greater than ten mutations per Mb were considered hypermutators,
thresholds set by the study in Grobner et al.®.

Identification of mutation signatures for substitutions

and indels

Mutational signature analysis was performed with the Mutatio-
nalPatterns package (v3.4.1, https://bioconductor.org/packages/
release/bioc/html/MutationalPatterns.html) for both substitutions
and indels using signatures for the SBS and ID variant classes from
COSMIC Mutational Signatures (v3.1) with the addition of Temozolo-
mide signature from Kucab et al. for substitution signatures.

Inference of clonal structure

Clonal structure was analyzed using high-confidence SNVs called in
each biopsy or the union of SNVs whenever multiple biopsies were
available for a patient. DPClust (v0.2.2, https://github.com/Wedge-
Oxford/dpclust) was used for calculation of cancer cell fraction cor-
rected for purity and local CN as well as clustering and assignment of
mutations across samples with the exception of the Gibbs Sampling
Dirichlet Process step which was optimized internally*®. Clonal order-
ing was deduced using clonevol (v0.99.11, https://github.com/hdng/
clonevol®*, Mutational signatures were computed in each cluster
independently. Figures were generated with matplotlib (v3.1.0, https://
matplotlib.org/).

Development of artifact classification model

The artifact classifier was designed using scikit-learn (v0.24.1, https://
scikit-learn.org/0.24/) and imbalanced-learn (v.0.8.0, https://
imbalanced-learn.org/stable/). Custom mutational feature extraction
was performed on the high confidence call set produced from Isabl for
both somatic substitutions and indels to format for training and test.
Optimization of classification was done using nextflow (https://github.
com/nextflow-io/nextflow) in order to parallelize artifact detection
and achieve computation time of under 2hours. The final artifact
classifier was developed to run given a VCF and a BAM as input and was
trained using a balanced Random Forest model. It leverages 33 fea-
tures per single nucleotide variant and 29 features per indel that are
either at the sample or mutation level and has a depth of 100 trees.
Test strategies involving training and test data from the same center
employed a leave-one-out cross validation strategy where a model was
produced for each test sample using equal amounts of randomly
sourced mutations from all other available samples for training. This
was done for the 1-center and 3-center approaches. Machine learning
architectures were explored and compared including a convolutional
neural network approach leveraging pileup images®”. These are
detailed in Supplementary Information. We implemented the code in
such a way that the model can be retrained with new data utilizing the
preprocessing and training modules™.

Feature extraction
Features are extracted from tumor BAMs using a VCF to designate
mutation loci and leveraging a combination of custom scripts and
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Table 1| Driver Annotations for FFPE WGS to MSK-IMPACT Validation

Sample ID Disease IMPACT Drivers (Called in FFPE: 0/1)  Additional Findings by WGS (Tiled Relevance
by IMPACT: 0/1)
H136375_T0O6 Osteosarcoma TP53 p.X261_splice (1) TERT SV (0) Oncogenic
RAC1 AMP (1) PRKACA DEL (0) Oncogenic
H156416_T02 Leiomyosarcoma
H158219_TO1 Sarcomatoid Malignant Neoplasm NOS ATRX p.Q973* (1) DLG2 DEL (0) Oncogenic
TP53 p.P278S (1) ZFHX3 DEL (1) Oncogenic
PIK3CA p.H1047R (1)
FBXW?7 LOSS (1)
H196094_T0O2 Leiomyosarcoma
H196388_T02 Glioblastoma Multiforme TP53 p.V157F (1) ATRX DUP (1) Oncogenic
CDKN2A/B LOSS (1)
BRAF-KIAA1549 SV (1)
JAK1 p.P861fs*4 (1)
17p LOSS (1)
10 LOSS (1)
H196388_TO3 Glioblastoma Multiforme TP53 p.V157F (1) ATRX DUP (1) Oncogenic
CDKN2A/B LOSS (1) 17p CNLOH (1) Prognostic
BRAF-KIAA1549 SV (1)
JAK1 p.P861fs*4 (1)
17p LOSS (1)
BRAF AMP (1)
10 LOSS (1)
H200646_T02 Embryonal Rhabdomyosarcoma MGA (1)
MDM2 AMP (1)
H201688_TO1 Diffuse Leptomeningeal Glioneur-
onal Tumor
H202874_T02 Colon Adenocarcinoma PIK3CA p.H1047R (1) MSI High (MSISensor + Signatures) Therapy
ATM p.M2384fs*19 (1) Informing
NF1 p.T2196fs*5 (1)
NF1 p.D946fs*1 (1)
ARID1A p.D1850fs*34 (1)
High TMB (1)
H203305_T01  Adrenocortical Carcinoma CTNNB1 p.G34E (1) PRKAR1A p.*338E (1) Oncogenic
RB1 DEL (1) KDM6A DEL (1) Oncogenic
H206102_TO1 Undifferentiated Sarcoma NF1INV (1) TP53 DEL (1) Oncogenic
EGFR AMP (1)
H209568_TO1 Rhabdomyosarcoma TP53 p.Y126C (1)
NF1 DEL (1)
H209570_TO2  Embryonal Rhabdomyosarcoma DICER1 p.E1705K (1)
TP53 p.E258* (1)
17p LOSS (1)
H209578_TO1 Astrocytoma KRAS p.Q61H (1)
H210036_TO1 Undifferentiated Sarcoma TERT SV (1)
CXXC5-MN1 (1)
H210038_T01 Pilocytic Astrocytoma NF1 DEL (1) NF1 DEL (Overlapping) (1) Oncogenic
H210039_TO1 Schwannoma NF2 p.Q410* (1) ATM splice SNV (1) Oncogenic
CDKN2A/B/MTAP LOSS (1)
22 CNLOH (1)
H210178_TO1 Low-Grade Neuroepithelial Tumor FGFR1 p.N577K (1)
H210491_TO1 Anaplastic Astrocytoma TP53 p.R273C (1) SBS11 Therapy
TP53 p.G226D (1) Informing

PIK3CA p.H1065Y (1)
PTEN p.K267fs*9 (1)
KRAS p.G13D (1)

IDH1 p.R132C (1)

STK11 p.A241T (1)
SMARCA4 p.W1178*4 (1)
TCF7L2 ¢.875+1G > A (1)
MGA ¢.2092+1 G > A (1)
SMAD3 p.W30* (1)
REST p.P893fs*5 (1)
MSHS p.F1088fs*2 (1)
BCOR p.R1053fs*2 (1)
MLH1 LOSS (1)

High TMB (1)

ATRX p.V1347fs*2 (1)
PIK3R1 p.1442del (1)

H210492_TO1 Myoepithelial Carcnioma

EWSRI1-KLF1 (1)
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Table 1 (continued) | Driver Annotations for FFPE WGS to MSK-IMPACT Validation

Sample ID Disease IMPACT Drivers (Called in FFPE: 0/1)  Additional Findings by WGS (Tiled Relevance
by IMPACT: 0/1)
H210494 TO2  Alveolar Rhabdomyosarcoma KMT2D p.R755Pfs*3 (1)
PAX3-FOXO1 (1)
H210579_TO1 Neuroblastoma NF1 DUP (1) TERT SV (1) Prognostic
MYCN AMP (1) 17 CNLOH (1) Prognostic
H210584 _TO1 Neuroblastoma DLG2-EDC4 (+ 1q loss) (0) Prognostic
H210588_TO1 Undifferentiated Sarcoma EWSRI1-NF2 (1) BCORL1 DEL 0) Oncogenic
H210589_TO1 Glioblastoma TP53 p.D281Y (1) RPL5 p.E133* (0) Oncogenic
TP53 p.R175H (1) MGA p.L1376fs*20 (1) Oncogenic
TERT promoter SNV (1) FAT1SV (1) Oncogenic
PTPN11 p.E76K (1)
CDKN2A/B/MTAP DEL (1)
CDKN2C DEL (1)
PTEN DEL (1)
H210624_TO1 Gastric Remnant Adenocarcinoma ARID1A p.Q487fs*132 (1)
KRAS p.G12C (1)
TGFBR2 DEL (1)
H210686_TO1 Medulloblastoma PTCH1 p.Y1181* (1)
PTCH1 p.A1088fs*59 (1)
MAX p.R60Q (1)
PIK3R1 p.C659fs*3 (1)
TERT promoter SNV (1)
KDMB6A p.W1193* (1)
H210687_T02 Embryonal Rhabdomyosarcoma
H210818_TO1 Sertoli-Leydig Cell Tumor AKT1 p.R76_C77insWRPRPNTFIIR (1)
H210819_TO1 Uterine Adenosarcoma DICER1 p.D1810F (1)
TP53 p.D259V (1)
DIS3 ¢.580+2T>G (1)
H210830_T01 Dysembryoplastic Neuroepithelial Tumor FGFR1DUP (1)
H210834_TO1 Neuroblastoma SMARCA4 p.E1579* (1)
H210835_TO1 Spindle Cell Neoplasm CTNNB1 p.T411 (1)
H210844_T01 Schwannoma SH3PXD2A-HTRA1 (0) Diagnostic

H210862_TO1 Pineal Parenchymal Tumor of Intermediate

Differentiation

JAZF1-ETV1 (1)

Data for driver mutations discovered by MSK-IMPACT and whether or not they were also discovered in WGS from FFPE. Additionally any findings that were found only by WGS and whether or not they
were tiled in the panel test. (SV Structural Variant, DEL Deletion, DUP Duplication, CNLOH Copy Neutral Loss of Heterozygosity, AMP Amplification).

Picard’s CollectSequencingArtifactMetrics (v2.25.6, https://github.
com/broadinstitute/picard). Features were assessed and selected
using permutation feature importance and random forest mean
decrease in impurity. Feature correlation was also assessed using
Spearman’s correlation to determine relationships between all
features.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw data from MSKCC have been deposited in the dbGAP database
under accession code phs002620.v1.p1 [https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs002620.v1.p1] for the fresh
frozen and normals of the 10 trio samples used for training and the
matched FFPE have been deposited under accession code
phs004176.vl.pl [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study id=phs004176.v1.p1]. The remaining MSKCC raw data
from FFPE tumors and matched normals used for validation have also
been deposited under the dbGAP accession code phs004176.v1.pl
[https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs004176.v1.p1]. These data are available under restricted access
due to individual privacy concerns. Permanent employees of an insti-
tution at a level equivalent to a tenure-track professor or senior scientist

with laboratory administration and oversight responsibilities may
request access through dbGAP. The requests, which are managed by
NCI's Data Access Committee, take less than 2 days for approval and
access is permitted for 12 months. The raw data from BCC generated in
this study has been deposited in the EGA database under accession
code EGAD0O0001011331. The raw data from the Oxford dataset was
accessed upon request from the original study authors. Primary data
from the 100,000 Genomes Project, which are held in a secure research
environment, are available to registered members of the Research
Network. Membership of the Research Network is open to all indivi-
duals, students, or staff affiliated with UK academic research institu-
tions, NHS trusts, relevant charitable organizations, foreign universities
and research institutions, governmental departments, and foreign
healthcare organizations involved in significant research activity. The
datasets for the validation on the National Cancer Institute (NCI) Cancer
Genome Characterization Initiative (CGCI) Burkitt Lymphoma Genome
Sequencing Project (BLGSP) and HIV+ Tumor Molecular Characteriza-
tion Project - Cervical Cancer (HTMCP-CC) is available by request
through https://portal.gdc.cancer.gov/ under accession codes
phs000527.v1.pl [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000527.v1.pl], phs000528.vl.p1 [https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000528.
v1.pl]. Summary and processed data for the figures are available in the
data repository at https://github.com/papaemmelab/Domenico NC_
FFPE. Source data are provided with this paper.
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Code availability

FFPErase has been made available online at https://github.com/
papaemmelab/nf-ffperase (https://doi.org/10.5281/zenodo0.16326434).
Scripts for generating the figures are provided where possible at
https://github.com/papaemmelab/Domenico_NC_FFPE.
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