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Polynomial-time quantum Gibbs sampling
for the weak and strong coupling regime of
the Fermi-Hubbard model at any
temperature

Štěpán Šmíd 1 , Richard Meister 1, Mario Berta 1,2 & Roberto Bondesan 1

Quantum computers hold the potential to revolutionise the simulation of
quantum many-body systems, with profound implications for fundamental
physics and applications like molecular and material design. However,
demonstrating quantum advantage in simulating quantum systems of prac-
tical relevance remains a significant challenge. In this work, we introduce a
quantum algorithm for preparing Gibbs states of interacting fermions on a
lattice with provable polynomial resource requirements. Our approach builds
on recent progress in theoretical computer science that extends classical
Markov chain Monte Carlo methods to the quantum domain. We derive a
bound on the mixing time for quantum Gibbs state preparation by showing
that the generator of the quantum Markovian evolution is gapped at any
temperature up to a maximal interaction strength. This enables the efficient
preparation of low-temperature states of weakly interacting fermions and the
calculation of their free energy. We present exact numerical simulations for
small system sizes that support our results and identify well-suited algorithmic
choices for simulating the Fermi-Hubbard model beyond our rigorous
guarantees.

Quantum computers promise to have a transformative impact on
computing, as quantum algorithms are believed to solve certain
computational problems significantly faster—potentially offering
super-polynomial speed-ups over their classical counterparts. How-
ever, it is important to recognise that such substantial quantum
advantages are far from generic. Among the most promising areas of
application is the simulation of quantum many-body systems1. While
quantum approaches to understanding the zero-temperature ground
state physics of quantum many-body systems date back to the early
days of quantum computing2, recent progress in theoretical computer
science has introduced new algorithmic techniques for preparing
quantum Gibbs states at non-zero temperature. In particular, simu-
lated Lindbladian evolution within the quantum circuit model has

emerged as a powerful tool for this task3. These so-called quantum
Gibbs samplers represent the non-commutative analogues of the
classically successful Markov chain Monte Carlo (MCMC) methods4,
and are expected to offer efficient access to non-zero temperature
properties of quantum many-body systems, especially in regimes that
are classically intractable.

Starting from the algorithmic breakthrough result3, there is the
physical intuition that quantum Gibbs samplers can perform well for
some specific case instances relevant to computational physics and
computational chemistry. This is contrasted to known worst-case
hardness results2,5–7, as well as to previously proposed intricate non-
zero temperature quantum methods that are (partially) missing rig-
orous guarantees8–14 or are believed to be computationally expensive
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on relevant finite-size instances for finite temperature15–19. The guiding
idea behind the latest algorithmic Lindbladian constructions is to
efficiently simulate thermalisation processes in nature, as, e.g., mod-
elled by the Davies generator20,21. In particular, it is possible to bring
together algorithmic efficiency with an exact notion of quantum
detailed balance, and we refer to the recent quantum Gibbs sampler
frameworks22,23 as well as references therein for an extended
discussion.

Classical MCMC algorithms are termed efficient when they con-
verge to the Gibbs state in time polynomial or even logarithmic in
system size4. In contrast, the recently proposed quantum Gibbs sam-
plers based on algorithmic Lindbladian evolution are solely efficient in
the sense that all algorithmic steps are implemented efficiently, but the
complexity or overall runtime crucially relies on the so-called mixing
time, which specifies for how longwe need to conduct the evolution to
get ϵ-close to theGibbs state. For an efficient algorithm,wewould then
require the Lindbladian to undergo fast mixing in time scaling poly-
nomially with system size. This then has to be resolved for each phy-
sical system of interest on a case-by-case basis. The situation is akin to
quantum adiabatic algorithms, where the runtime is governed by the
Hamiltonian gap along the adiabatic path24 and careful analytical stu-
dies are typically challenging.

With classical MCMCmethods it is well-understood that rigorous
bounds on the convergence time as studied in mathematical
physics25–29 often vastly overestimate the observed convergence times
when running the algorithms in practice and reading out physical
information, such as the partition function, relevant observables, or
correlation functions. However, it is by design challenging to numeri-
cally run quantumGibbs samplers to estimate practicalmixing times—
after all, we do not (yet) have reliable large-scale quantum computers
and the classical simulation thereof is believed to be hard. As such,
analytical bounds on mixing times are the first main tool to start our
efficiency analysis. They would also serve as valuable benchmarks for
future empirical studies of these models on fault-tolerant quantum
computers, extending beyond the regimes with analytical guarantees.

In order to witness decisive quantum advantages, our goal is to
provide quantum many-body systems with instances of quantum
Gibbs samplers where

(i) Classical methods are not sufficient to conclusively determine
the physics at non-zero temperature.

(ii) We can derive rigorous and efficient bounds on themixing time,
at least for certain non-trivial parameter regimes.

(iii) We can subsequently give informed heuristics on how to fine-
tune quantum Gibbs samplers to see efficient mixing times for
relevant specific case parameter regimes beyond analytical
worst-case guarantees.

As an example, previous general results on efficient quantum
mixing times have been recently obtained in the high-temperature
limit30,31, where, however, classical methods are proven to also be
efficient32. Other problem-specific abstract results on efficient mixing
time bounds from the theoretical computer science literature include
random sparse Hamiltonians33, random local Hamiltonians34, the toric
code35, and parent Hamiltonians of shallow quantum circuits36,37.

In contrast, herewe focus on the quantumsimulationof fermionic
systems of practical relevance—specifically the Fermi-Hubbard model
on D-dimensional lattices—and establish rigorous bounds on its cor-
responding mixing times in both the weakly and strongly interacting
regimes. This model enjoys widespread applications in science, for
example, to the Mott metal-insulator transition and to high-
temperature superconductivity38, while at the same time remaining
challenging for classical methods39,40. As such, it further serves as a
standard benchmark for computationalmethods41, including quantum
simulations using ultra-cold atoms42. There is also evidence that, in

contrast to quantumly hard, glassy spin systems, interacting fermionic
systems are computationally challenging due to their entanglement
structure43—which is believed to be amenable to quantummethods (in
regimeswhere classical onesmight not be). Lastly, we emphasise again
that the sought-after efficiency for specific cases and typical finite
system sizes would not be in contradiction with the known worst-case
hardness results for fermionic systems6,7.

Results
Fermionic systems
We start with the recent algorithmic work3, which derives that the
mixing time of Lindbladian quantum Gibbs samplers can be upper
bounded by giving lower bounds on the spectral gap of the Lind-
bladian. This spectral gap, in turn, is equal to the spectral gap of a
corresponding parent Hamiltonian, which we analyse. Our approach is
to first study free fermions, governed by the quadratic Hamiltonian

H =H0 =
X2n
i, j = 1

ωihijωj , with fωi,ωjg=2δij , ω
y
i =ωi ,

written in terms of Majorana fermions ωi. Note that the single-particle
Hamiltonian h includes the chemical potential terms, which effectively
control the number of fermions in the system. Since our ensuing
results allow for arbitrary chemical potentials, these methods can be
used to study systemswith desired levels of hole doping.We follow the
general algorithmic quantum Gibbs sampler framework of ref. 22,
which we review in detail in Supplementary Information, but the key
point of the quantum algorithm is to simulate dynamics generated by
an algorithmic Lindbladian of the form

Ly½ρ�= � i½G,ρ�+
X
a2A

LaρL
y
a �

1
2
fLyaLa,ρg

� �
,

which is fully specified after choosing a suitable set of jump operators
Aa and corresponding filter functions f a. The Lindblad operators La are
then filtered operator Fourier transforms of the jump operators, while
the coherent termG is uniquely determined from the detailed-balance
condition; this is the condition that guarantees the Gibbs state to be a
fixed point of the Lindbladian evolution. Intuitively, these choices are
akin to establishing the set of proposals and their acceptance
probabilities in the Metropolis-Hastings algorithm. We make the
specific design choice of Majorana jump operators, fAa =ωag

2n
a= 1, and

equal Gaussian filter functions fa = f, obeying the required conditions.
In particular, this allows us to exactly compute the finite spectral gapof
the free fermionic parent Hamiltonian via Prosen’s third quantisation
formalism44 as (see Methods)

Δ0 = 2 � e�4β2khk2 coshð2β k h kÞ , ð1Þ

where β = T −1 is the inverse temperature. This is lower bounded due to
the locality of the system ensuring k h k ≤Oð1Þ. On top of this,
recognising that the dynamics is restricted to that of Gaussian states if
we start from a Gaussian state, we calculate the covariance matrix of
the evolved state, which, together with optimal trace norm bounds45

allows us to prove a logarithmic upper bound on the mixing time for
free fermions

tmix ≤
1

2Δ0
log

2n
ϵ

� �
:

For the first time, this thus proves rapid mixing in logarithmic time of
non-commuting Hamiltonians at any temperature.

Then, after observing that the free fermionic parent Hamiltonian
in third quantisation itself simplifies to a (different) free fermionic
Hamiltonian, we make use of Hastings’ stability result46–48 on the
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spectral gap of free fermions under perturbation in order to quanti-
tatively extend the finite spectral gap in the thermodynamic limit to
the interacting parent Hamiltonian (Theorem 1). To lift the locality of
interactions from the fermionic Hamiltonian to the Lindbladian’s par-
ent Hamiltonian, we use Lieb-Robinson bounds and employ matrix
analysis methods and identities such as Duhamel’s formula.

Our main finding is phrased most generally for lattice fermionic
Hamiltonians with exponentially decaying interactions, henceforth
termed quasi-local. Namely, we show that for such systems and at any
constant temperature T > 0, there exists a constant maximal interac-
tion strength belowwhich the corresponding purified Gibbs states can
be prepared efficiently. This result can be summarised in the following
theorem and corollary:

Theorem 1. For any interacting quasi-local fermionic Hamiltonian
H =H0 + λV at any temperature T >0, there exists a positive system-
size-independent value λmax such that the Lindbladian Ly for Gibbs
state preparation has a spectral gapΔ lower bounded by a constant for
any jλj≤ λmax, closing at most linearly in ∣λ∣ from that of the non-
interacting case H0.

Corollary 1.1. The mixing time of the Gibbs state preparation is upper
boundedby tmix =Oðn+ logð1=ϵÞÞ, and the overall quantumcomplexity
to create the quantum Gibbs state is eOðn3 polylog ð1=ϵÞÞ and requires
OðnÞ qubits; where n denotes the system size and ϵ >0 the desired
accuracy in trace norm.

Crucially, the constant on the interaction strength is independent
of the system size, and thus we conclude that (weakly) interacting
fermionic systems infixed dimension and at any constant temperature
can be efficiently simulated on quantum computers. Although free
fermions are efficiently solvable, to the best of our knowledge, there is
no provably efficient classical algorithm for the weakly-interacting
regime, leading to a potential exponential quantum advantage. This is
in contrast to the previously studied case of high temperatures30,31,
where they have shown stability around the infinite temperature limit,
hence offering only a polynomial quantum advantage32,49.

Our results apply, in particular, to the Fermi-Hubbard model. Its
spinful version on a D-dimensional lattice is governed by the Hamil-
tonian

HFH = � t
X
hi, ji,σ

ay
i,σaj,σ +a

y
j,σai, σ

� �
+U

X
i

ay
i,"ai,"a

y
i,#ai,#,

where 〈 ⋅ , ⋅ 〉 denotes neighbouring sites on the lattice, σ∈ {↑, ↓} the
spins, and aðyÞ

i,σ the fermionic annihilation and creation operators on
site i with spin σ. The weakly-interacting limit corresponds to
U/t≲ 139–41, which can then serve as an analytical starting point for
further numerical investigations. Furthermore, while the Fermi-
Hubbard model is exactly solvable for the D = 1 case50, we emphasise
that our results are equally valid in any dimension. We refer to ref. 39
for a recent review of exact and heuristic results for the Hubbard
model. In particular, the state-of-the-art in powerful heuristicmethods,
such as tensor networks, allows one to study the ground state of the
Fermi-Hubbard model up to lattices of size 16 × 1651. Notably, in two-
dimensional systems with next-nearest-neighbour hopping, even the
weak-coupling regime exhibits rich behaviour as the chemical
potential is varied, with multiple competing instabilities emerging
near the van Hove singularity40. Our algorithm enables the study of
such phenomena with, in principle, arbitrarily high theoretical
precision.

Applications, extensions, and numerical simulations
As an application of Gibbs sampling, we adapt ref. 31, [Theorem 8] to
calculate partition functions for the considered systems. Hence, this

provides themeans to resolve the physics in thermal equilibriumof the
underlying quantum many-body system in an end-to-end fashion:

Proposition 2. For any interacting quasi-local fermionic Hamiltonian
H =H0 + λV at any temperature T >0, there exists a positive system-
size-independent value λmax such that for any jλj≤ λmax the corre-
sponding partition function Z is determined in quantum complexityeOðn5ϵ�2Þ, with success probability at least 3/4 and up to a relative
error ϵ >0.

Further, ourmethods equally apply to the opposite regimeU/t≫ 1
of the Fermi-Hubbard model. Here, we start by exactly solving the
atomic limit t = 0 case of no hopping with the same choices of jump
operators and filter functions (see Supplementary Information B3),
after which we use adapted eigenvalue perturbation techniques to
control finite t > 0. This result can be summarised in the following
theorem:

Theorem 3. For any quasi-local perturbed atomic Hamiltonian
H =Hatomic + λV at any temperatureT > 0, thereexists apositive system-
size-independent value λmax such that the Lindbladian Ly for Gibbs
state preparation has a spectral gapΔ lower bounded by a constant for
any jλj≤ λmax; closing atmost asOðjλjαÞwith arbitraryα < 1 from that of
the atomic case Hatomic.

We again find that at any finite temperature, there exists a con-
stant (system-size-independent) maximal t below which the corre-
sponding Gibbs states can be algorithmically created with the
complexities as stated inCorollary 1.1.We emphasise that theflexibility
of our proof techniques naturally lends itself to future explorations of
other quantum many-body systems in various regimes, such as spin
systems in external fields, where the spin-spin interaction is treated as
the perturbation. Here, one has to take into account that provably
efficient classical algorithms exist for quantum perturbations of
atomic Hamiltonians also at low temperatures52.

We perform small-scale exact classical simulations for the weakly-
interacting spinless and spinful Fermi-Hubbard model in order to trial
the hidden asymptotic constants in our analytical result. We find rea-
sonable finite-gap behaviour and confirm, in particular, the predicted
system size-independent scaling. Next, we aim to heuristically improve
the algorithmic choices in order to shorten the mixing times beyond
our theoretical guarantees. In general, the temperature dependence
scales unfavourably in our analytical result, and this becomes at first
equally visible in the numerical analysis. However, varying the choice
of the jump operators fromMajoranas to Paulis and the filter functions
from Gaussian to Metropolis (see Supplementary Information Equa-
tion (A8)), we observe a spectral gap of the Lindbladian whose mag-
nitude is no longer decreasing when lowering the temperature for the
small system sizes we simulate. This would make the overall algo-
rithmic dependence on the inverse temperature β only quasi-quad-
ratic, significantly broadening the practical applicability of the
algorithm.

To probe beyond the weakly-interacting regime covered by our
analytical bounds,we investigate intermediate coupling strengthswith
2≲ U/t≲ 6 for spinless D = 1, 2 systems at different temperatures. Our
numerical results suggest that, for one-dimensional and nearly one-
dimensional cases, the algorithm remains efficient even at arbitrary
coupling strength, incurring only a small additional cost that scales
poly-logarithmically with U/t. For higher dimensions, however, the
diversity of physical phenomena exceeds the scope of our simulations,
currentlypreventing any definitive conclusions beyondour theoretical
analysis. Details are provided in Figs. 1 and 2, and the corresponding
simulation code is available at ref. 53.

Discussion
We have shown for the first time that the Gibbs states of weakly-
interacting fermions in any dimension and at any constant
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temperature can be efficiently prepared in polynomial time on quan-
tum computers. We have further demonstrated that this allows us to
directly determine physical properties of the underlying systems—
such as the partition function—in an end-to-end fashion while staying
in polynomial quantum complexity. This is in contrast to, e.g., phase
estimation-based quantum methods, which suffer from the so-called
state preparation complexity bottleneck that generically hides large
complexity overheads1,41. As such, we believe that the presented
methods have great potential for resolving the relevant non-zero-
temperature physics of the Fermi-Hubbard and other fermionic
models in classically challenging regimes, hence shedding light on the
unknown parts of their phase diagrams. Other applications of efficient
quantumGibbs samplers to be explored are in quantumapproaches to
optimisation54,55 and quantum machine learning56.

Going forward, it would be interesting to improve the exact
dependencies on all the relevant parameters in ourmain result, as well
as to work out all the hidden constants therein. One might then also
fine-tune the choice of jump operators and filter functions for specific

systems and parameter regimes, hopefully even improving on the
current cubic complexity in systemsize, potentially all thewaydownto
quasi-linear. The rapid mixing of free fermions serves as a good indi-
cation for the weakly-interacting case to alsomix rapidly, which would
already bring down one factor of n. As we have seen, the cubic
dependency on the system size is then mainly due to the quadratic
dependence on the number of jump operators taken, which needs to
be linear so that the Lindbladian dynamics can be irreducible and
ergodic. However, we could potentially use different sets of jump
operators at different times, consisting of as few as a single jump
operator at any given time. The generated dynamics then could not be
described by a single quantumMarkov semigroup, and any one of the
corresponding Lindbladians would not be able to get us from an
arbitrary starting position to the Gibbs state; however, the combina-
tion of all of them could create a complicated path in the state space
eventually getting us to the Gibbs state, with potentially significantly
better dependency on the system size.

In order to determine the classical-quantum efficiency
boundary for the Fermi-Hubbard model in the absence of reasonable
quantum computers, it would be important to perform larger-scale
classical simulations of the quantum Gibbs samplers, with varying
design parameters to estimate the relevant spectral gap (e.g., based
on tensor network methods51,57,58). Especially for translationally
invariant systems in D = 1, for which the parent Hamiltonian would
also inherit the invariance, one could use the imaginary-time iTEBD
algorithm to simulate the evolution or iDMRG to calculate the spec-
tral gap for infinite-sized systems. Any such findings should then be
compared to the state-of-the-art classical results39,40 to make state-
ments about large quantum advantages for practically relevant
problems.

Finally, our presented proof methods based on eigenvalue per-
turbation techniques also seem promising to explore other quantum
many-body systems in different regimes, including, for example,
bosonic systems. As a first step, the extensions presented in Supple-
mentary Information B3 are easily shown to hold for any Hamiltonians
that are separable in the lattice sites.

Methods
Free fermions
Let’s consider a free fermionic Hamiltonian H0 =ω

T � h �
ω=

P2n
i, j = 1 ωihijωj given in terms of Majorana fermions, with h being a

Hermitian and anti-symmetric matrix. We denote these operators
using bold matrix-vector notation for convenience. We start by
choosing the jump operators in the algorithmic Lindbladian to be

Majorana fermions, fAa =ωag
2n
a= 1, and the filter functions fa to be equal

and real in the Fourier space. Note that the conditions on the filter

function then say that f̂
aðνÞ= f̂ ðνÞ=qðνÞ � e�βν=4 with q(ν) real and even.

We readily find the Heisenberg time-evolved jump operators as

AðtÞ= eiH0tAe�iH0t = eiH0tωe�iH0t = e�4iht �ω ,

and the Lindblad operators are then just

L=
Z 1

�1
f ðtÞe�4iht dt �ω= f̂ ð�4hÞ �ω :

Hence we find that

X
a2A

LyaLa =ω
T � qð4hÞ2 � sinhð2βhÞ �ω+ Tr f̂ð�4hÞ2

� �
,

but since [ωT ⋅ B ⋅ω, ωT ⋅C ⋅ω] =ωT ⋅ [B, C] ⋅ω, this sum will commute
with the HamiltonianH0. This, in turn, means it is invariant under time

Fig. 1 | Numerical results beyond our analytical guarantees. Plotting the gapΔ of
the full Lindbladian Ly associated with the spinless D = 2 Fermi-Hubbard thermal
state with design choices beyond our analytical results—when using theMetropolis
filter function and single site Pauli jump operators instead—as a function of the
coupling strength U. Here we plot different system sizes separately, for the case
β = 1 and t = 1, demonstrating a large spectral gap in the regime of intermediate
coupling 2≲U/t≲ 6, which also does not seem to close with growing inverse
temperatureβ (see Supplementary Figs. 7 and9). Atwhat coupling strength the gap
closes is controlled by the support of the filter function, incurring only poly-
logarithmic additional algorithmic cost in U/t.

Fig. 2 | Numerical results confirming our analytical findings. Plotting the slope
~d =∓∂Δ

∂U∣U =0± under which the spectral gap Δ of the full Lindbladian Ly closes from
that of the unperturbed Lindbladian Ly

0 in the analytically bounded regime, as the
system size n grows, at β = 1. As per our main result (Theorem 1), leading to the
complexities as stated in Corollary 1.1, this quantity has to be upper-bounded
uniformly in n. We refer to Supplementary Figs. for data for more sets of para-
meters exhibiting different types of behaviours.
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evolution, and so the coherent term G will be proportional to ĝð0Þ, as

G=
Z 1

�1
gðtÞ �

X
a2A

LyaLa dt / ĝð0Þ :

But since ĝðνÞ / tanhðβν=4Þ, this means that the coherent term van-
ishes, G =0.

For future convenience, before analysing the spectrum of the

Lindbladian, let’s consider the similarity transformationH0½ρ�= σ�1=4
β �

Ly
0½σ

1=4
β � ρ � σ1=4

β � � σ�1=4
β into the parent Hamiltonian. This super-

operator is Hermitian due to the quantum detailed-balance condition.
As this is a similarity transformation, the spectrum of H0 will be the

same as of Ly
0. We can calculate that

σ�1=4
β Lσ1=4

β = f̂ ð�4hÞ � e�βh �ω,

and theQDB condition also ensures σ�1=4
β Laσ

1=4
β = σ1=4

β Lyaσ
�1=4
β . Bringing

these calculations together and following Prosen’s third
quantisation44, which we review in Supplementary Section A3, the
parent Hamiltonian simplifies to

H0 ffi �cy � S � c+ c � S � cy + cy � A � cy + c � A � c� Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 +A2

p� �
:

Herewe have restricted theHilbert space to that of physical stateswith
even numbers of Majorana fermions; and S = q(4h)2,
A=qð4hÞ2 sinhð2βhÞ, and fcyi , cig

2n

i = 1 is a set of 2n canonical fermionic
creation and annihilation operators. This is just a quadratic fermionic
operator, and hence its complete spectrum, which is the same as that
of Ly

0, is straightforwardly calculable as

spec ðLy
0Þ=

X2n
i = 1

ð�1 + ð�1Þxi Þ � qð4ϵiÞ2 coshð2βϵiÞ
( )

x2f0, 1g2n
,

where ϵi∈ spec(h). In particular, the corresponding spectral gap
between the highest and second-highest eigenvalue is

Δ0 = 2 �min
i

qð4ϵiÞ2 coshð2βϵiÞ :

Taking the Gaussian filter function, qðνÞ= e�β2
ν2=8, the spectral gap

would bemonotonically decaying with ∥h∥, and hence lower bounded
by a constant for local systems obeying k h k ≤Oð1Þ. This argument
also assures that the Gibbs state is the unique fixed point of the
dynamics generated by Ly

0.
On top of this, by recognising that when we start with a Gaussian

state ρ0 and evolve it with a quadratic Lindbladian, we will stay within
the subspace of Gaussian states, we can restrict our view to the evo-
lution of the covariance matrix ΓijðtÞ= i

2 Tr ð½ωi,ωj�ρðtÞÞ. Denoting the
initial covariance matrix by Γ0, we can straightforwardly solve its

equation of motion59 and get that ΓðtÞ= i
2 tanhð2βhÞ+ e�2qð4hÞ2 coshð2βhÞ�t �

Γ0 � i
2 tanhð2βhÞ

� � � e�2qð4hÞ2 coshð2βhÞ�t . We can also check that the cov-

ariance matrix of the Gibbs state σβ is Γσβ
= i

2 tanhð2βhÞ= Γð1Þ, and so

the evolution indeed converges to the Gibbs state.

Finally, we can use optimal trace norm bounds obtained in ref. 45,

which tell us that ρðtÞ � σβ

			 			
Tr
≤ 1

2 k ΓðtÞ � Γσβ
k
Tr
, which we can set

smaller to ϵ and solve for t and hence deduce that

tmix ≤
1

4mini qð4ϵiÞ2 coshð2βϵiÞ
log

2n
ϵ

� �
:

Locality of parent Hamiltonians
Ref. 22 shows that if H is a geometrically local Hamiltonian, Aa are
local, and the filter function is Gaussian, then the Lindblad operators
La are quasi-local and G is a sum of quasi-local terms. Here, we
extend this result and discuss the locality properties of the parent
Hamiltonian for fermionic systems and systems with exponentially
decaying interactions. The quasi-locality of the parent Hamiltonian
will be an important ingredient in the proofs of gap stability we
present below.

We shall again consider the (general) transformation into the
parent Hamiltonian

H½ρ�= σ�1=4
β � Ly σ1=4

β � ρ � σ1=4
β

h i
� σ�1=4

β , ð4:1Þ

and also define the transformed operators appearing therein by
~La = σ

�1=4
β Laσ

1=4
β and ~G= σ�1=4

β Gσ1=4
β .

Proposition 4. Consider a Hamiltonian H with interactions that decay
at least exponentially, and local jump operators Aa with Gaussian filter
functions. Then the parent Hamiltonian (4.1) is a sum of quasi-
local terms.

Proof. We define local approximations of ~La and ~G using

~L
ðrÞ
a =

Z 1

�1
f aðt + iβ=4ÞeiHBr ðaÞtAae�iHBr ðaÞt dt ,

~G
ðrÞ
a =

Z 1

�1
gðt + iβ=4ÞeiHBr ðaÞt LðrÞya LðrÞa

� �
e�iHBr ðaÞt dt ,

where Br(a) is a ball of radius r around the support of Aa and
HΩ =

P
IjI\Ω≠;hI is the truncated Hamiltonian to the region Ω. The

conjugationby theGibbs state translates into the shift of the functional
arguments in the integrands, and is explained in Supplementary
Information A2, D.

Here we shall use a weaker version of the Lieb-Robinson bound
than the one for local systems from ref. 60 [Lemma 5] used in ref. 22
[Prop. 20], which also holds for exponentially decaying Hamiltonian
interactions, and tells us that

eiHtAae�iHt � eiHBr ðaÞtAae�iHBr ðaÞt
		 		
≤ k Aa k min 2, Je�μrðeμvjtj � 1Þ
 � ð4:2Þ

for some constants J, v, and μ. From now on, we shall assume ∥Aa∥ ≤ 1.
Using the Gaussian filter, it will follow that

k ~La � ~L
ðrÞ
a k ≤Ce�μr ,

k ~Ga � ~G
ðrÞ
a k ≤ ~Ce�~μr ;

calculations of which are detailed in the Supplementary
Information A4.

Note that the Lieb-Robinson bound, which follows from the
bound on the commutator with the Hamiltonian terms, is true in
our fermionic setting independently of whether Aa is even or odd
in the number of fermions, since the constituent Hamiltonian
terms are always even, so that (4.2) still holds. We refer to ref. 61
for more on Lieb-Robinson bounds and locality for fermions.

Bounds on the strength of the perturbation
In this section, we shall think of the parent Hamiltonian H of the
interacting system as a perturbation of the free fermionic parent
HamiltonianH0. The expectation is that for a small enough interaction
strength λ of the system’s HamiltonianH =H0 + λV, the spectral gap of
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the parent HamiltonianH should remain constant. To prove this idea,
we will make use of results about stability of spectral gap under per-
turbation for free fermions46–48, but before that we would need to
understand how the strength of the parent Hamiltonian perturbation
V =H�H0 depends on λ.

We start by deriving the following Lemma from Duhamel’s for-
mula (see Supplementary Information D):

Lemma5. For any operatorO, HermitianoperatorsH0,V, and λ,α 2 C,
we have

eαðH0 + λV ÞOe�αðH0 + λV Þ � eαH0Oe�αH0
		 		
≤ jλj jαj max

s2½0, 1�
V , esαH0Oe�sαH0
� 
		 		 :

As previously, we shall denote the operators appearing in the full

parent Hamiltonian by ~La and ~G, and we shall also denote their cor-
responding counterparts appearing in the free fermionic parent

Hamiltonian by ~L
0
a and ~G

0
. Then to understand the strength of

V =H�H0, we will need to bound k ~La � ~L
0
a k and k ~Ga � ~G

0
a k.

Using our Lemma together with the exact solution for time evo-
lution in the free fermionic case, we find that

eHðβ=4+ itÞAae�Hðβ=4+ itÞ � eH0ðβ=4+ itÞAaeH0ðβ=4+ itÞ
		 		

≤ c1jλj � jβ=4+ itj � ec2 jβ=4+ itj ,

where we have assumed that k hk1 ≤Oð1Þ and that the Hamiltonian
contains only terms with even numbers of fermions. Importantly, the
constants appearing in this expression are independent of the
system size.

Hence, it immediately follows that

k ~La � ~L
0
a k ≤ jλj

Z 1

�1
j f aðtÞjc1jβ=4+ itjec2 jβ=4+ itjdt = c3jλj ,

for some constant c3 independent of the system size. As the dissipative
part of the perturbation V is a sum over different products or tensor
products of this or equivalent expressions, we can conclude that the
strength of this part grows linearly in ∣λ∣, independently of the system
size (see Supplementary Information B2 for details).

Now looking at the coherent term, we shall split it up into quasi-

local contributions G =∑aGa with Ga =
R1
�1 gðtÞeiHtLyaLae

�iHt dt. Then

we similarly need to bound k ~Ga � ~G
0
a k, which we will split into a part

depending on LyaLa � L0ya L0a
			 			 and a part depending on

eHðβ=4+ itÞL0ya L0ae
�Hðβ=4+ itÞ � eH0ðβ=4+ itÞL0ya L0ae

�H0ðβ=4+ itÞ
			 			 :

Here we can again use our Lemma to bound this second contribution
by

jλjjβ=4+ itj max
s2½0, 1�

V , esðβ=4+ itÞH0L0ya L0ae
�sðβ=4+ itÞH0

h i			 			 :
Using the exact solution L0a =

P
i f̂ ð�4hÞaiωi, we can upper-bound this

further like

max
s2½0, 1�

V , esðβ=4+ itÞH0L0ya L0ae
�sðβ=4+ itÞH0

h i			 			
≤ 2c2e

c3β=4 �whðtÞ� k f̂ ð�4hÞk21 ,

where wh(t) is system-size-independent function growing subexpo-
nentially in t (as discussed in Supplementary Information E). Obser-
ve that the previous argument for bounding the conjugated

expression σ�1=4
β LyaLaσ

1=4
β � σ�1=4

β, 0 L0ya L0aσ
1=4
β, 0

			 			 also shows that

LyaLa � L0ya L0a
			 			 ≤ c4jλj. Finally, this means that

k ~Ga � ~G
0
a k

≤
Z 1

�1
jgðtÞj � c4jλj+ jλjjβ=4+ itjc5whðtÞ

� �
dt = c6jλj,

where the convergence is ensured by the decay bounds of g(t)
obtained in ref. 22 [Lemma 30].

This proves that the strength of the perturbation of the parent
Hamiltonian is upper bounded by a constant multiple of the strength
of the perturbation of the system’s Hamiltonian, uniformly in system
size, i.e., that Va, where V =

P
a2AVa, is upper bounded like

k Va k ≤ cjλj. To match the locality definition we will need to use
exactly, we would further make a standard argument by writing this
perturbation as a telescoping sum over different radii (see Supple-
mentary Information B2).

In Supplementary Lemma E.1, we also present a slightly weaker
notion of this result, with the strength bounded by ∣λ∣α for an arbitrary
constant α < 1 for small enough ∣λ∣, which works for general Hamilto-
nians, and hence can be used to obtain our secondary result for per-
turbations around the atomic limit.

Constant gap and fast mixing
In our previous sections, we have proven that for a quasi-local inter-
acting fermionic Hamiltonian H =H0 + λV and with our algorithmic
choices, the parent HamiltonianH0 has [J, ν]-decay and the perturba-
tion V has (c∣λ∣, μ)-decay as per Definitions 1 and 2 of ref. 46 (see
Supplementary Information B2 for review). Hence, we can finish our
discussion of the stability of the spectral gap by using [ref. 46, Cor-
ollary 1] to show that the gapofH closes atmost linearly in ∣λ∣ from that
of H0 – uniformly in system size—and hence is lower bounded by a
constant as per our main Theorem 1.

Finally, this result allows us to bound the mixing time tmix of the
LindbladianLy, defined as theminimal time necessary to get us ϵ-close
to the Gibbs state from an arbitrary initial position, and show fast
mixing in polynomial time bounded by

tmix ≤
log 2

ϵ k σ�1=2
β k

� �
Δ

=Oðn+ logð1=ϵÞÞ:

Together with the complexity analysis from ref. 22 [Theorem 34], this
gives us the overall time complexity of the algorithm as stated in
Corollary 1.1.

Calculating the partition function
As a possible application of the efficient Gibbs state preparation, we
adapt the strategy from ref. 31 for calculating partition functions
ZβðλiÞ= Tr ðe�βHðλiÞÞ to the caseof interacting fermionic systems,where
we have denoted H(λi) =H0 + λiV. Note that we can calculate the non-
interacting partition function explicitly as

Zβð0Þ=
Yn
i = 1

2 coshð2βϵiÞ ,

where the product is taken only over one ϵi∈ spec(h) from each
symplectic pair ± ϵi. Bymeasuring the observable eβHðλiÞe�βHðλi+ 1Þ in the

state σβ(λi), we would obtain the ratio
Zβðλi+ 1Þ
ZβðλiÞ . Preparing this observable

and the Gibbs state will require access to block encodings ofH0 and V,
from which we get a block encoding for H(λi) via LCU, and hence a
block encoding for the observable and the Hamiltonian simulation via
QSVT. By choosing a schedule 0 = t1 ≤ t2 ≤ ⋯ ≤ tl−1 ≤ tl = ∣λ∣ and
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denoting λi = ti
λ
jλj, we can calculate Zβ(λ) as a telescoping product

ZβðλÞ= Zβð0Þ
Yl�1

i = 1

Zβðλi + 1Þ
ZβðλiÞ

:

We refer to ref. 31 [AppendixC] for thedetails of these calculations, the
gist ofwhich lies inchoosing the schedule such that ti+1 − ti =Θ(n−1), and
so l =Θ(n) as λ =Θ(1). Then we would prepare the Gibbs states σβ(λi)
and measure the expectation values of the observables eβHðλiÞe�βHðλi + 1Þ

for each i∈ [l−1] at leastΘ(nϵ−2) times. Averaging these measurements
and calculating the partition function using the telescoping product
would yield the result in Proposition 2.

Data availability
We have not analysed any datasets as our work proceeds within a
theoretical and mathematical approach. The figures shown contain all
the available data, which was generated using the provided code.

Code availability
Source code for simulating the spectral gap is available at https://
github.com/Quantum-AI-Lab-ICL/Quantum-Gibbs-Sampling.
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