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Quantum computers hold the potential to revolutionise the simulation of
quantum many-body systems, with profound implications for fundamental
physics and applications like molecular and material design. However,

demonstrating quantum advantage in simulating quantum systems of prac-
tical relevance remains a significant challenge. In this work, we introduce a
quantum algorithm for preparing Gibbs states of interacting fermions on a
lattice with provable polynomial resource requirements. Our approach builds
on recent progress in theoretical computer science that extends classical
Markov chain Monte Carlo methods to the quantum domain. We derive a

bound on the mixing time for quantum Gibbs state preparation by showing
that the generator of the quantum Markovian evolution is gapped at any
temperature up to a maximal interaction strength. This enables the efficient
preparation of low-temperature states of weakly interacting fermions and the
calculation of their free energy. We present exact numerical simulations for
small system sizes that support our results and identify well-suited algorithmic

choices for simulating the Fermi-Hubbard model beyond our rigorous

guarantees.

Quantum computers promise to have a transformative impact on
computing, as quantum algorithms are believed to solve certain
computational problems significantly faster—potentially offering
super-polynomial speed-ups over their classical counterparts. How-
ever, it is important to recognise that such substantial quantum
advantages are far from generic. Among the most promising areas of
application is the simulation of quantum many-body systems’. While
quantum approaches to understanding the zero-temperature ground
state physics of quantum many-body systems date back to the early
days of quantum computing?, recent progress in theoretical computer
science has introduced new algorithmic techniques for preparing
quantum Gibbs states at non-zero temperature. In particular, simu-
lated Lindbladian evolution within the quantum circuit model has

emerged as a powerful tool for this task®. These so-called quantum
Gibbs samplers represent the non-commutative analogues of the
classically successful Markov chain Monte Carlo (MCMC) methods®,
and are expected to offer efficient access to non-zero temperature
properties of quantum many-body systems, especially in regimes that
are classically intractable.

Starting from the algorithmic breakthrough result?, there is the
physical intuition that quantum Gibbs samplers can perform well for
some specific case instances relevant to computational physics and
computational chemistry. This is contrasted to known worst-case
hardness results>*~’, as well as to previously proposed intricate non-
zero temperature quantum methods that are (partially) missing rig-
orous guarantees®™ or are believed to be computationally expensive
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on relevant finite-size instances for finite temperature” ™. The guiding
idea behind the latest algorithmic Lindbladian constructions is to
efficiently simulate thermalisation processes in nature, as, e.g., mod-
elled by the Davies generator’®?. In particular, it is possible to bring
together algorithmic efficiency with an exact notion of quantum
detailed balance, and we refer to the recent quantum Gibbs sampler
frameworks™* as well as references therein for an extended
discussion.

Classical MCMC algorithms are termed efficient when they con-
verge to the Gibbs state in time polynomial or even logarithmic in
system size*. In contrast, the recently proposed quantum Gibbs sam-
plers based on algorithmic Lindbladian evolution are solely efficient in
the sense that all algorithmic steps are implemented efficiently, but the
complexity or overall runtime crucially relies on the so-called mixing
time, which specifies for how long we need to conduct the evolution to
get e-close to the Gibbs state. For an efficient algorithm, we would then
require the Lindbladian to undergo fast mixing in time scaling poly-
nomially with system size. This then has to be resolved for each phy-
sical system of interest on a case-by-case basis. The situation is akin to
quantum adiabatic algorithms, where the runtime is governed by the
Hamiltonian gap along the adiabatic path** and careful analytical stu-
dies are typically challenging.

With classical MCMC methods it is well-understood that rigorous
bounds on the convergence time as studied in mathematical
physics®? often vastly overestimate the observed convergence times
when running the algorithms in practice and reading out physical
information, such as the partition function, relevant observables, or
correlation functions. However, it is by design challenging to numeri-
cally run quantum Gibbs samplers to estimate practical mixing times—
after all, we do not (yet) have reliable large-scale quantum computers
and the classical simulation thereof is believed to be hard. As such,
analytical bounds on mixing times are the first main tool to start our
efficiency analysis. They would also serve as valuable benchmarks for
future empirical studies of these models on fault-tolerant quantum
computers, extending beyond the regimes with analytical guarantees.

In order to witness decisive quantum advantages, our goal is to
provide quantum many-body systems with instances of quantum
Gibbs samplers where

(i) Classical methods are not sufficient to conclusively determine
the physics at non-zero temperature.

(ii) We can derive rigorous and efficient bounds on the mixing time,
at least for certain non-trivial parameter regimes.

We can subsequently give informed heuristics on how to fine-
tune quantum Gibbs samplers to see efficient mixing times for
relevant specific case parameter regimes beyond analytical
worst-case guarantees.

(iii)

As an example, previous general results on efficient quantum
mixing times have been recently obtained in the high-temperature
limit*>*, where, however, classical methods are proven to also be
efficient®. Other problem-specific abstract results on efficient mixing
time bounds from the theoretical computer science literature include
random sparse Hamiltonians®, random local Hamiltonians™, the toric
code®, and parent Hamiltonians of shallow quantum circuits***.

In contrast, here we focus on the quantum simulation of fermionic
systems of practical relevance—specifically the Fermi-Hubbard model
on D-dimensional lattices—and establish rigorous bounds on its cor-
responding mixing times in both the weakly and strongly interacting
regimes. This model enjoys widespread applications in science, for
example, to the Mott metal-insulator transition and to high-
temperature superconductivity®®, while at the same time remaining
challenging for classical methods®**°. As such, it further serves as a
standard benchmark for computational methods", including quantum
simulations using ultra-cold atoms*%. There is also evidence that, in

contrast to quantumly hard, glassy spin systems, interacting fermionic
systems are computationally challenging due to their entanglement
structure**—which is believed to be amenable to quantum methods (in
regimes where classical ones might not be). Lastly, we emphasise again
that the sought-after efficiency for specific cases and typical finite
system sizes would not be in contradiction with the known worst-case
hardness results for fermionic systems®’.

Results

Fermionic systems

We start with the recent algorithmic work®, which derives that the
mixing time of Lindbladian quantum Gibbs samplers can be upper
bounded by giving lower bounds on the spectral gap of the Lind-
bladian. This spectral gap, in turn, is equal to the spectral gap of a
corresponding parent Hamiltonian, which we analyse. Our approach is
to first study free fermions, governed by the quadratic Hamiltonian

2n
H=Hy= Y whyw;, with {0, 0} =26;, o] =w;,
ij=1

written in terms of Majorana fermions w;. Note that the single-particle
Hamiltonian £ includes the chemical potential terms, which effectively
control the number of fermions in the system. Since our ensuing
results allow for arbitrary chemical potentials, these methods can be
used to study systems with desired levels of hole doping. We follow the
general algorithmic quantum Gibbs sampler framework of ref. 22,
which we review in detail in Supplementary Information, but the key
point of the quantum algorithm is to simulate dynamics generated by
an algorithmic Lindbladian of the form

. 1
c'pl= — i(G,p + Z(LapLg it p}> ,

acA

which is fully specified after choosing a suitable set of jump operators
A% and corresponding filter functions f“. The Lindblad operators L, are
then filtered operator Fourier transforms of the jump operators, while
the coherent term G is uniquely determined from the detailed-balance
condition; this is the condition that guarantees the Gibbs state to be a
fixed point of the Lindbladian evolution. Intuitively, these choices are
akin to establishing the set of proposals and their acceptance
probabilities in the Metropolis-Hastings algorithm. We make the
specific design choice of Majorana jump operators, {A% = wa}i'il, and
equal Gaussian filter functions f* = f, obeying the required conditions.
In particular, this allows us to exactly compute the finite spectral gap of
the free fermionic parent Hamiltonian via Prosen’s third quantisation
formalism** as (see Methods)

Ap=2- e 4B 11 cosh2B | A1), @

where B=T"is the inverse temperature. This is lower bounded due to
the locality of the system ensuring || A || <O(1). On top of this,
recognising that the dynamics is restricted to that of Gaussian states if
we start from a Gaussian state, we calculate the covariance matrix of
the evolved state, which, together with optimal trace norm bounds*
allows us to prove a logarithmic upper bound on the mixing time for

free fermions
too< Y joe(2”
mix — ZAO g c N

For the first time, this thus proves rapid mixing in logarithmic time of
non-commuting Hamiltonians at any temperature.

Then, after observing that the free fermionic parent Hamiltonian
in third quantisation itself simplifies to a (different) free fermionic
Hamiltonian, we make use of Hastings™ stability result*** on the
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spectral gap of free fermions under perturbation in order to quanti-
tatively extend the finite spectral gap in the thermodynamic limit to
the interacting parent Hamiltonian (Theorem 1). To lift the locality of
interactions from the fermionic Hamiltonian to the Lindbladian’s par-
ent Hamiltonian, we use Lieb-Robinson bounds and employ matrix
analysis methods and identities such as Duhamel’s formula.

Our main finding is phrased most generally for lattice fermionic
Hamiltonians with exponentially decaying interactions, henceforth
termed quasi-local. Namely, we show that for such systems and at any
constant temperature 7> 0, there exists a constant maximal interac-
tion strength below which the corresponding purified Gibbs states can
be prepared efficiently. This result can be summarised in the following
theorem and corollary:

Theorem 1. For any interacting quasi-local fermionic Hamiltonian
H=Hy+AV at any temperature 7> 0, there exists a positive system-
size-independent value A, such that the Lindbladian £ for Gibbs
state preparation has a spectral gap A lower bounded by a constant for
any |A| <A, closing at most linearly in |A| from that of the non-
interacting case Hy.

Corollary 1.1. The mixing time of the Gibbs state preparation is upper
bounded by ¢, = O(n + log(1/€)), and the overall quantum complexity
to create the quantum Gibbs state is O(n? polylog (1/¢€)) and requires
O(n) qubits; where n denotes the system size and € >0 the desired
accuracy in trace norm.

Crucially, the constant on the interaction strength is independent
of the system size, and thus we conclude that (weakly) interacting
fermionic systems in fixed dimension and at any constant temperature
can be efficiently simulated on quantum computers. Although free
fermions are efficiently solvable, to the best of our knowledge, there is
no provably efficient classical algorithm for the weakly-interacting
regime, leading to a potential exponential quantum advantage. This is
in contrast to the previously studied case of high temperatures®*?,
where they have shown stability around the infinite temperature limit,
hence offering only a polynomial quantum advantage®>*’.

Our results apply, in particular, to the Fermi-Hubbard model. Its
spinful version on a D-dimensional lattice is governed by the Hamil-
tonian

__tz<zojﬂ /ala)+Uzamal'ral¢a1¢’

where ( -, - ) denotes neighbouring sites on the lattice, o € {1, {} the
spins, and aj") the fermionic annihilation and creation operators on
site i with spin o. The weakly-interacting limit corresponds to
U/t 1%, which can then serve as an analytical starting point for
further numerical investigations. Furthermore, while the Fermi-
Hubbard model is exactly solvable for the D=1 case®, we emphasise
that our results are equally valid in any dimension. We refer to ref. 39
for a recent review of exact and heuristic results for the Hubbard
model. In particular, the state-of-the-art in powerful heuristic methods,
such as tensor networks, allows one to study the ground state of the
Fermi-Hubbard model up to lattices of size 16 x 16°". Notably, in two-
dimensional systems with next-nearest-neighbour hopping, even the
weak-coupling regime exhibits rich behaviour as the chemical
potential is varied, with multiple competing instabilities emerging
near the van Hove singularity*®. Our algorithm enables the study of
such phenomena with, in principle, arbitrarily high theoretical
precision.

Applications, extensions, and numerical simulations
As an application of Gibbs sampling, we adapt ref. 31, [Theorem 8] to
calculate partition functions for the considered systems. Hence, this

provides the means to resolve the physics in thermal equilibrium of the
underlying quantum many-body system in an end-to-end fashion:

Proposition 2. For any interacting quasi-local fermionic Hamiltonian
H=Hy+AV at any temperature 7> 0, there exists a positive system-
size-independent value A, such that for any |A\|<A_,, the corre-
sponding partition function Z is determined in quantum complexity
O(n5¢~2), with success probability at least 3/4 and up to a relative
error €>0.

Further, our methods equally apply to the opposite regime U/t > 1
of the Fermi-Hubbard model. Here, we start by exactly solving the
atomic limit £=0 case of no hopping with the same choices of jump
operators and filter functions (see Supplementary Information B3),
after which we use adapted eigenvalue perturbation techniques to
control finite £>0. This result can be summarised in the following
theorem:

Theorem 3. For any quasi-local perturbed atomic Hamiltonian
H = Hyomic + AV at any temperature 7> O, there exists a positive system-
size-independent value A, such that the Lindbladian £ for Gibbs
state preparation has a spectral gap A lower bounded by a constant for
any |A| <A, closing at most as O(|A|%) with arbitrary a < 1 from that of
the atomic case Hyomic-

We again find that at any finite temperature, there exists a con-
stant (system-size-independent) maximal ¢ below which the corre-
sponding Gibbs states can be algorithmically created with the
complexities as stated in Corollary 1.1. We emphasise that the flexibility
of our proof techniques naturally lends itself to future explorations of
other quantum many-body systems in various regimes, such as spin
systems in external fields, where the spin-spin interaction is treated as
the perturbation. Here, one has to take into account that provably
efficient classical algorithms exist for quantum perturbations of
atomic Hamiltonians also at low temperatures™.

We perform small-scale exact classical simulations for the weakly-
interacting spinless and spinful Fermi-Hubbard model in order to trial
the hidden asymptotic constants in our analytical result. We find rea-
sonable finite-gap behaviour and confirm, in particular, the predicted
system size-independent scaling. Next, we aim to heuristically improve
the algorithmic choices in order to shorten the mixing times beyond
our theoretical guarantees. In general, the temperature dependence
scales unfavourably in our analytical result, and this becomes at first
equally visible in the numerical analysis. However, varying the choice
of the jump operators from Majoranas to Paulis and the filter functions
from Gaussian to Metropolis (see Supplementary Information Equa-
tion (A8)), we observe a spectral gap of the Lindbladian whose mag-
nitude is no longer decreasing when lowering the temperature for the
small system sizes we simulate. This would make the overall algo-
rithmic dependence on the inverse temperature S only quasi-quad-
ratic, significantly broadening the practical applicability of the
algorithm.

To probe beyond the weakly-interacting regime covered by our
analytical bounds, we investigate intermediate coupling strengths with
2 5 U/t 56 for spinless D=1, 2 systems at different temperatures. Our
numerical results suggest that, for one-dimensional and nearly one-
dimensional cases, the algorithm remains efficient even at arbitrary
coupling strength, incurring only a small additional cost that scales
poly-logarithmically with U/t. For higher dimensions, however, the
diversity of physical phenomena exceeds the scope of our simulations,
currently preventing any definitive conclusions beyond our theoretical
analysis. Details are provided in Figs. 1 and 2, and the corresponding
simulation code is available at ref. 53.

Discussion
We have shown for the first time that the Gibbs states of weakly-
interacting fermions in any dimension and at any constant
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Fig. 1| Numerical results beyond our analytical guarantees. Plotting the gap 4 of
the full Lindbladian £ associated with the spinless D=2 Fermi-Hubbard thermal
state with design choices beyond our analytical results—when using the Metropolis
filter function and single site Pauli jump operators instead—as a function of the
coupling strength U. Here we plot different system sizes separately, for the case
p=1and t=1, demonstrating a large spectral gap in the regime of intermediate
coupling 2 5 U/t 5 6, which also does not seem to close with growing inverse
temperature S (see Supplementary Figs. 7 and 9). At what coupling strength the gap
closes is controlled by the support of the filter function, incurring only poly-
logarithmic additional algorithmic cost in UJ/t.

—o— U > 0, spinless, 1 XN ----U < 0, spinless, 1 x N
U > 0, spinful, 1x N U < 0, spinful, 1x N
U > 0, spinless, 2x N U < 0, spinless, 2x N
U > 0, spinful, 2x N U < 0, spinful, 2x N

Nqubits

Fig. 2 | Numerical results confirming our analytical findings. Plotting the slope
d= ig—ﬁlu:ot under which the spectral gap 4 of the full Lindbladian £ closes from
that of the unperturbed Lindbladian ﬂg in the analytically bounded regime, as the
system size n grows, at $=1. As per our main result (Theorem 1), leading to the
complexities as stated in Corollary 1.1, this quantity has to be upper-bounded
uniformly in n. We refer to Supplementary Figs. for data for more sets of para-
meters exhibiting different types of behaviours.

temperature can be efficiently prepared in polynomial time on quan-
tum computers. We have further demonstrated that this allows us to
directly determine physical properties of the underlying systems—
such as the partition function—in an end-to-end fashion while staying
in polynomial quantum complexity. This is in contrast to, e.g., phase
estimation-based quantum methods, which suffer from the so-called
state preparation complexity bottleneck that generically hides large
complexity overheads'*’. As such, we believe that the presented
methods have great potential for resolving the relevant non-zero-
temperature physics of the Fermi-Hubbard and other fermionic
models in classically challenging regimes, hence shedding light on the
unknown parts of their phase diagrams. Other applications of efficient
quantum Gibbs samplers to be explored are in quantum approaches to
optimisation®*** and quantum machine learning®.

Going forward, it would be interesting to improve the exact
dependencies on all the relevant parameters in our main result, as well
as to work out all the hidden constants therein. One might then also
fine-tune the choice of jump operators and filter functions for specific

systems and parameter regimes, hopefully even improving on the
current cubic complexity in system size, potentially all the way down to
quasi-linear. The rapid mixing of free fermions serves as a good indi-
cation for the weakly-interacting case to also mix rapidly, which would
already bring down one factor of n. As we have seen, the cubic
dependency on the system size is then mainly due to the quadratic
dependence on the number of jump operators taken, which needs to
be linear so that the Lindbladian dynamics can be irreducible and
ergodic. However, we could potentially use different sets of jump
operators at different times, consisting of as few as a single jump
operator at any given time. The generated dynamics then could not be
described by a single quantum Markov semigroup, and any one of the
corresponding Lindbladians would not be able to get us from an
arbitrary starting position to the Gibbs state; however, the combina-
tion of all of them could create a complicated path in the state space
eventually getting us to the Gibbs state, with potentially significantly
better dependency on the system size.

In order to determine the classical-quantum efficiency
boundary for the Fermi-Hubbard model in the absence of reasonable
quantum computers, it would be important to perform larger-scale
classical simulations of the quantum Gibbs samplers, with varying
design parameters to estimate the relevant spectral gap (e.g., based
on tensor network methods™*"*%). Especially for translationally
invariant systems in D=1, for which the parent Hamiltonian would
also inherit the invariance, one could use the imaginary-time iTEBD
algorithm to simulate the evolution or iDMRG to calculate the spec-
tral gap for infinite-sized systems. Any such findings should then be
compared to the state-of-the-art classical results®**° to make state-
ments about large quantum advantages for practically relevant
problems.

Finally, our presented proof methods based on eigenvalue per-
turbation techniques also seem promising to explore other quantum
many-body systems in different regimes, including, for example,
bosonic systems. As a first step, the extensions presented in Supple-
mentary Information B3 are easily shown to hold for any Hamiltonians
that are separable in the lattice sites.

Methods

Free fermions

Lets consider a free fermionic Hamiltonian Hy=w”-h-
w= Z,-Z;:l w;h;w; given in terms of Majorana fermions, with & being a
Hermitian and anti-symmetric matrix. We denote these operators
using bold matrix-vector notation for convenience. We start by

choosing the jump operators in the algorithmic Lindbladian to be

Majorana fermions, {4% = wa}f,'il, and the filter functions f* to be equal

and real in the Fourier space. Note that the conditions on the filter
function then say that fa(z/) =f(w)=q(v) - eP/* with g(v) real and even.

We readily find the Heisenberg time-evolved jump operators as
A(8) = et AgHot = giHhot ggg—iHot = g=4iht . g

and the Lindblad operators are then just
L= / fOe M dt . w=f(—4h) - w.
Hence we find that

S LiL,=w - q4h) -sinh(2Bh) - @+ Tr (?(—4h)2) )

acA

but since [ -B-w, @' -C-w]=w"-[B, C]- w, this sum will commute
with the Hamiltonian Hy. This, in turn, means it is invariant under time
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evolution, and so the coherent term G will be proportional to g(0), as

G= /mg(t) Y Ll dt o g(0).

acA

But since g(v) o tanh(Bv/4), this means that the coherent term van-
ishes, G=0.

For future convenience, before analysing the spectrum of the
Lindbladian, let’s consider the similarity transformation Hy[p] = a;l/ 4.

chlof* -p-af*1-05"* into the parent Hamiltonian. This super-

operator is Hermitian due to the quantum detailed-balance condition.
As this is a similarity transformation, the spectrum of H,, will be the
same as of Eg. We can calculate that

o5 Loyt =f(—4h) e w,
and the QDB condition also ensures 051/4La02/4 = a}/“LZo[;l/“. Bringing
these calculations together and following Prosen’s third
quantisation**, which we review in Supplementary Section A3, the
parent Hamiltonian simplifies to

Hy =~ —c'-S.c+c-S-ct+cf-A-cf+c-A-c—Tr (\/52+A2> .

Here we have restricted the Hilbert space to that of physical states with
even numbers of Majore}na fermions; and S=q(4h)?
A=q(4h)* sinh(2Bh), and {¢{,¢;};_; is a set of 2n canonical fermionic
creation and annihilation operators. This is just a quadratic fermionic

operator, and hence its complete spectrum, which is the same as that
of [:(T), is straightforwardly calculable as

i=1

2n
spec (L()= {Z(—l + (=) - q(4e)’ cosh(Zﬁei)} ,
xe(0, 1"

where ¢; € spec(h). In particular, the corresponding spectral gap
between the highest and second-highest eigenvalue is

Ao =2 - min g(4€;)* cosh(2fe;) .
L

Taking the Gaussian filter function, g(v)=e=5"/8, the spectral gap
would be monotonically decaying with | k||, and hence lower bounded
by a constant for local systems obeying || & || <O(1). This argument
also assures that the Gibbs state is the unique fixed point of the
dynamics generated by £;.

On top of this, by recognising that when we start with a Gaussian
state po and evolve it with a quadratic Lindbladian, we will stay within
the subspace of Gaussian states, we can restrict our view to the evo-
lution of the covariance matrix I';(¢)= iTr ([w;, w;]p(v)). Denoting the
initial covariance matrix by Iy, we can straightforwardly solve its
equation of motion* and get that I'(¢) = £ tanh(28h) + ~29(4h)* cosh2pht.
(To — i tanh(2Bh)) - e~24(4" coshBhr We can also check that the cov-
ariance matrix of the Gibbs state g is I'gﬂ = étanh(zﬁh) =T(oc0), and so
the evolution indeed converges to the Gibbs state.

Finally, we can use optimal trace norm bounds obtained in ref. 45,
which tell us that Hp(t) — U”H <iir@-r, |, which we can set
Tr B Tr
smaller to € and solve for ¢ and hence deduce that

to< 1 log (2_”)
™7 4 min, g(4¢;)* cosh(2f¢;) €)’

Locality of parent Hamiltonians
Ref. 22 shows that if H is a geometrically local Hamiltonian, A, are
local, and the filter function is Gaussian, then the Lindblad operators
L, are quasi-local and G is a sum of quasi-local terms. Here, we
extend this result and discuss the locality properties of the parent
Hamiltonian for fermionic systems and systems with exponentially
decaying interactions. The quasi-locality of the parent Hamiltonian
will be an important ingredient in the proofs of gap stability we
present below.

We shall again consider the (general) transformation into the
parent Hamiltonian

_ —1/4 T L1/4 1/4 -1/4
H[p]—aﬂ -L[oﬁ p-Og |05,

4D
and also define the transformed operators appearing therein by
L,=05"*L,04* and G=0,"*Ga}/*.

Proposition 4. Consider a Hamiltonian H with interactions that decay
at least exponentially, and local jump operators A* with Gaussian filter
functions. Then the parent Hamiltonian (4.1) is a sum of quasi-
local terms.

Proof. We define local approximations of L, and G using

oo
i:) _ / fa(t + iﬁ/4)eiHBrmitAae’iHBrw)t de,
—00

A i ity 0t (1O O pmitlg ot
Ga'= [ g+ip/etnot (L1 >e bt dt,
J —c0

where B/(a) is a ball of radius r around the support of A° and
Ho =3 jinaxfy is the truncated Hamiltonian to the region Q. The
conjugation by the Gibbs state translates into the shift of the functional
arguments in the integrands, and is explained in Supplementary
Information A2, D.

Here we shall use a weaker version of the Lieb-Robinson bound
than the one for local systems from ref. 60 [Lemma 5] used in ref. 22
[Prop. 20], which also holds for exponentially decaying Hamiltonian
interactions, and tells us that

HethAae—th _ eiHBrm,tAae—iHE,m,tH 42
< | A% || min{2,Je~Fr (et — 1)} 4.2
for some constants /, v, and . From now on, we shall assume ||A9|| < 1.
Using the Gaussian filter, it will follow that

7 7 _
Il L,—L, || <Ce#r,

1G,— Gy || <Ceir;
calculations of which are detailed in
Information A4.

Note that the Lieb-Robinson bound, which follows from the
bound on the commutator with the Hamiltonian terms, is true in
our fermionic setting independently of whether A, is even or odd
in the number of fermions, since the constituent Hamiltonian
terms are always even, so that (4.2) still holds. We refer to ref. 61
for more on Lieb-Robinson bounds and locality for fermions.

the Supplementary

Bounds on the strength of the perturbation

In this section, we shall think of the parent Hamiltonian H of the
interacting system as a perturbation of the free fermionic parent
Hamiltonian H,,. The expectation is that for a small enough interaction
strength A of the system’s Hamiltonian H = Ho + AV, the spectral gap of
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the parent Hamiltonian 7 should remain constant. To prove this idea,
we will make use of results about stability of spectral gap under per-
turbation for free fermions*, but before that we would need to
understand how the strength of the parent Hamiltonian perturbation
V=H — H, depends on A.

We start by deriving the following Lemma from Duhamel’s for-
mula (see Supplementary Information D):

Lemma 5. For any operator O, Hermitian operators Hop, V, and\, a € C,
we have

Heu((H0 +AV)Qe—a(Ho +AV) _ oty e—aH, H

<IAlal max || [V, exHoOg~stFo] |
NS

As previously, we shall denote the operators appearing in the full

parent Hamiltonian by L, and G, and we shall also denote their cor-
responding counterparts appearing in the free fermionic parent

Hamiltonian by i‘; and G'. Then to understand the strength of

. = 50 - -0
V=H — H,y, we will need to bound || L, — L, || and || G, — G, |.
Using our Lemma together with the exact solution for time evo-
lution in the free fermionic case, we find that

||eH(ﬁ/4+it)AaefH(ﬁ/4+it) _ eMolB/4+it) AaoHo(B/4+it) H
<[\ |B/4+it| - eaPrarit,

where we have assumed that | h|,, <O(1) and that the Hamiltonian
contains only terms with even numbers of fermions. Importantly, the
constants appearing in this expression are independent of the
system size.

Hence, it immediately follows that

~ ~ o .
N ig—Lg 1l <\ / IfA©O)lcy|B/4 +it|e= P ide = cy A,
—00

for some constant c; independent of the system size. As the dissipative
part of the perturbation V is a sum over different products or tensor
products of this or equivalent expressions, we can conclude that the
strength of this part grows linearly in |1], independently of the system
size (see Supplementary Information B2 for details).

Now looking at the coherent term, we shall split it up into quasi-

local contributions G=Y,G, with G,= [*_g(t)eL}L e~ dt. Then
we similarly need to bound || G, — G, [, which we will split into a part

depending on ||L}L, — 19710

and a part depending on

}‘eH(ﬂ/4+it)L2’nge—H(ﬁ/4+it) _ eHO(/Z/4+it)L2+Lge—Ho(ﬁ/4+it)

Here we can again use our Lemma to bound this second contribution
by

Using the exact solution L2 = Zf(—4h)a,-o),-, we can upper-bound this
further like

+i (B/4+it)Hq 1 OF 1 O ,—s(B/4+it)H,
NIB/4 +it| max]| [V, ¢ 19710 ]

max H [V, eSB/4+itH 0T O e—s(ﬁ/4+it)H0}
s€l0, 1] ara

<20,eP/* . wy(0)- || f(—4h)II2,,

where wy(t) is system-size-independent function growing subexpo-
nentially in ¢ (as discussed in Supplementary Information E). Obser-
ve that the previous argument for bounding the conjugated

expression Hol;mLLLaa},“—o&%“Lgngo;}/"(‘)H also shows that

Lola—Lg'Lg

<c4I\|. Finally, this means that
- -0
I Gg—Gg ll
< [ 1801 (cyN+INIB/4 +tieswy(©) de=c,N,
where the convergence is ensured by the decay bounds of g(t)
obtained in ref. 22 [Lemma 30].

This proves that the strength of the perturbation of the parent
Hamiltonian is upper bounded by a constant multiple of the strength
of the perturbation of the system’s Hamiltonian, uniformly in system
size, i.e., that vV, where V=3 _,V, is upper bounded like
Il Vo Il <clAl. To match the locality definition we will need to use
exactly, we would further make a standard argument by writing this

perturbation as a telescoping sum over different radii (see Supple-
mentary Information B2).

In Supplementary Lemma E.1, we also present a slightly weaker
notion of this result, with the strength bounded by |A|* for an arbitrary
constant a <1 for small enough |A|, which works for general Hamilto-
nians, and hence can be used to obtain our secondary result for per-
turbations around the atomic limit.

Constant gap and fast mixing

In our previous sections, we have proven that for a quasi-local inter-
acting fermionic Hamiltonian H=Hy+AV and with our algorithmic
choices, the parent Hamiltonian , has [/, vl-decay and the perturba-
tion V has (c|A|, p)-decay as per Definitions 1 and 2 of ref. 46 (see
Supplementary Information B2 for review). Hence, we can finish our
discussion of the stability of the spectral gap by using [ref. 46, Cor-
ollary 1] to show that the gap of  closes at most linearly in |A| from that
of Hy — uniformly in system size—and hence is lower bounded by a
constant as per our main Theorem 1.

Finally, this result allows us to bound the mixing time ¢, of the
Lindbladian £, defined as the minimal time necessary to get us e-close
to the Gibbs state from an arbitrary initial position, and show fast
mixing in polynomial time bounded by

log(2 11 05" I
i < # =0(n+ log(1/e)).

t
Together with the complexity analysis from ref. 22 [Theorem 34], this
gives us the overall time complexity of the algorithm as stated in
Corollary 1.1.

Calculating the partition function

As a possible application of the efficient Gibbs state preparation, we
adapt the strategy from ref. 31 for calculating partition functions
Zg\)=Tr (e~PH®M)) to the case of interacting fermionic systems, where
we have denoted H(A;) = Hy + A;V. Note that we can calculate the non-
interacting partition function explicitly as

Z5(0)= H 2 cosh(2f¢;),

i=1

where the product is taken only over one ¢; € spec(h) from each
symplectic pair + ¢;. By measuring the observable ef#®)e-8H}i.1) in the

Zp(A;1y)
Zg(\)

and the Gibbs state will require access to block encodings of Hy and V,
from which we get a block encoding for H(A;) via LCU, and hence a
block encoding for the observable and the Hamiltonian simulation via
QSVT. By choosing a schedule O0=t<t< <t1<4=1A] and

state gz(A;), we would obtain the ratio . Preparing this observable
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denoting \; =¢; % we can calculate Zg(1) as a telescoping product

Zﬁ(}\iﬂ)
ZpN\) -

-1
ZM =240 []
i=1

We refer to ref. 31 [Appendix C] for the details of these calculations, the
gist of which lies in choosing the schedule such that ¢4, - t;= O(n™), and
so [=0(n) as A=0(1). Then we would prepare the Gibbs states gz(1;)
and measure the expectation values of the observables 8 e-BHR:.1)
for each i € [I-1] at least O(ne™) times. Averaging these measurements
and calculating the partition function using the telescoping product
would yield the result in Proposition 2.

Data availability

We have not analysed any datasets as our work proceeds within a
theoretical and mathematical approach. The figures shown contain all
the available data, which was generated using the provided code.

Code availability
Source code for simulating the spectral gap is available at https://
github.com/Quantum-Al-Lab-ICL/Quantum-Gibbs-Sampling.
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