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The d3-methyl group, which combines the “magic methyl effect” and the
deuterium effect, is highly sought after by medicinal chemists, resulting in the

development of various d3-methyl reagents derived from low-cost, readily
available CD3;0D. However, a universally applicable, cost-effective, easily
accessible and handleable, highly active, and recyclable d3-methyl reagent

remains elusive. Herein, we design a thianthrene-based organic polymer (TT-
OP) that shows the ability of capturing and releasing the d3-methyl reagent.
This polymer demonstrates excellent loading capacity, scalability, and stabi-
lity. Utilizing this developed heterogeneous d3-methyl reagent (TT-OP-CD5),
we achieve selective d3-methylation of over 35 biologically active molecules
d3-at oxygen, nitrogen, sulfur, and carbon sites—transformations that are very
challenging to be realized by other methods. Finally, we establish an auto-
mated platform for high-throughput, scalable d3-methylation of pharmaceu-

tical molecules by integrating solid-phase synthesis with continuous-flow,
demonstrating its sustainability and practicality for drug synthesis.

The methyl group is one of the most fundamental and simplest
structural units in synthetic and medicinal chemistry, playing a crucial
role in numerous biological processes, including DNA replication,
protein modification, and various metabolic pathways'>. Introducing a
methyl group into drug molecules can effectively improve their solu-
bility and target selectivity, prolong their half-life in vivo, and reduce
the ICso value. For instance, incorporating methyl functional groups
into the anticardiovascular drug simvastatin doubled its half-life, while
the efficacy of the antibody OXIR increased by 480 times compared to
its precursor®. The colloquial term “magic methyl effect” is often used
to describe these unique advantages in the medicinal chemistry
community®®, Deuterium-labeled compounds are widely employed as
analytical tools for investigating reaction mechanisms and elucidating
metabolic pathways’™. In addition, due to the deuterium isotope
effect, where C-D bonds exhibit higher dissociation energies than C-H

bonds, substituting hydrogen atoms in drugs with deuterium can
significantly enhance their absorption, distribution, metabolism, and
excretion properties” ™.

Consequently, the d3-methyl group, which combines the “magic
methyl effect” and the deuterium effect, is highly valued by medicinal
and organic chemists'®, Notably, among the five currently approved
deuterated drugs, three contain deuterated methyl groups, and several
d3-methyl-containing molecules are under clinical investigation (Fig. 1).
To meet this demand, various d3-methyl reagents have been developed,
including CDsl, d6-DMSO, CD5;CO,D, CD;0D, and derivatives based on
CD;0D"*, Although CD;OD stands out as the most cost-effective and
readily accessible d3-methyl reagent, its direct application is constrained
by the requirement for a specialized catalytic system and its relatively
low reactivity, limiting its general applicability***°. Therefore, there is an
urgent need to develop a universally applicable, cost-effective, readily
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Fig. 1| Project design. a Traditional homogeneous d3-methyl reagents and bioacti

ve molecules containing d3-methyl groups. b From manual to automated synthesis of

d3-methyl bioactive molecules by SPS-based continuous-flow platform. SPS solid-phase synthesis.

accessible, easily handleable, highly active, and recyclable d3-methyl
reagent derived from CD50D.

Recently, Wu'’s group reported an automated platform that inte-
grates solid-phase synthesis (SPS)*® with a continuous-flow system
for the automated synthesis of prexasertib derivatives®. This strategy,
combining SPS and continuous-flow processing, unlocks new avenues
for automated synthesis. Inspired by this and the biochemistry of
S-adenosylmethionine in living organisms*>*, we here develop a
thianthrene-based organic polymer (TT-OP) that has the capability to
capture and release the d3-methyl derived from CD3OD. Impressively,
TT-OP can be scaled up to hectogram-scale quantities and exhibits
excellent immobilization capability for the ds-methyl group, yielding
TT-OP-CD5; with a maximum loading capacity of approximately 80%.
The solid TT-OP-CD5; demonstrates highly selective and universal cap-
ability for d3-methylating bioactive molecules at oxygen, nitrogen,
sulfur, and carbon sites, delivering the desired pharmaceutical pro-
ducts and regenerating the TT-OP, which remains super-stable and
reusable for over 50 runs. This property of TT-OP enables us to
establish a program-controlled, SPS-based continuous-flow automation
platform, offering a clean, universal, and high-throughput d3-methy-
lation method for the late-stage modification of a wide range of phar-
maceutical molecules, easily accessible via a push-button interface.

Results

Synthesis and characterization of TT-OP and TT-OP-CD;
Thianthrene (TT)-based polymers (TT-OP) were prepared via an
anhydrous FeCly-mediated***® Friedel-Crafts alkylation reaction, uti-
lizing formaldehyde dimethyl acetal (FDA) as a cross-linker under a
nitrogen atmosphere (Fig. 2a). Using this polymerization method, TT-
OP could be readily synthesized on a hectogram scale (Supplementary
Information). As shown in Fig. 2b, c, solid-state cross-polarization/
magic angle spinning nuclear magnetic resonance (®*C CP/MAS NMR)
spectroscopy and Fourier transform infrared (FT-IR) spectroscopy
measurements confirmed the successful crosslinking of TT-OP by FDA.
The signal observed at approximately 40 ppm in the *C CP/MAS NMR
spectrum and the weak peak at around 2920 cm™ in the FT-IR spec-
trum were attributed to the —~CH,- groups, along with minor remnants
of ~CH,OCHj3; in the polymer. UV-visible diffuse reflectance spectro-
scopy (UV-vis DRS) spectrum reveals that TT is a near-ultraviolet-
sensitive material, whereas the absorption edge of TT-OP extends to
approximately 800 nm, resulting in its reddish-brown color (Fig. 2d).
With TT-OP in hand, we next evaluated its capability to load CD;
groups using CD3;OTf, which could be generated in situ from CD;0D
and Tf,0. To confirm successful loading, solid-state H magic angle
spinning nuclear magnetic resonance (MAS NMR) spectroscopy was
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Fig. 2 | Synthesis and characterization of TT-OP and TT-OP-CDj;. a Synthetic
procedure of TT-OP and TT-OP-CDs. b Solid-state *C CP/MAS NMR spectrum of TT-
OP. ¢ FT-IR spectra of TT and TT-OP. d UV-vis absorption diffuse reflectance
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spectra of TT and TT-OP. e Solid-state 2H MAS NMR of TT-OP and TT-OP-CDs. f XPS
survey spectra of TT-OP and TT-OP-CDs. g S 2p XPS spectra of TT-OP and TT-
OP-CDs.

performed. As depicted in Fig. 2e, the spectrum of TT-OP-CDj3 exhibits
a distinct peak at 2.74 ppm, corresponding to the CD; group. The
elemental composition of TT-OP and TT-OP-CDs, determined by sur-
vey XPS, is shown in Fig. 2f. Notably, an additional F 1 s peak appears in
the TT-OP-CD; XPS spectrum, with a binding energy of 689 eV, con-
sistent with the CF3SO5™ counterion associated with sulfonium*:. High-
resolution XPS analysis of the S 2p signal further elucidates the for-
mation of the S-CD; bond (Fig. 2g). The S 2p XPS spectrum of TT-OP
shows one spin-orbit split doublet (2ps/, and 2p,,), characteristic of
the S—-C (aromatic) bond. While this peak is retained in the TT-OP-CD3
XPS spectrum, deconvolution of the broadened S 2p signal reveals a
new S species (sulfonium) at a higher binding energy, consistent with
the binding of CD; groups to sulfur sites, which likely involves electron
donation from sulfur to the CD5 groups. In addition, there appears a
new peak with significantly higher binding energy in the TT-OP-CD;
XPS spectrum, corresponding to the CF;SO5~ group®. To quantify the
amount of S-bound CD3 groups, d3-methylation of N-methylaniline
using TT-OP-CD3; was conducted, demonstrating that more than
0.12mmol of CD3 groups were loaded per 100 mg of TT-OP-CD;
polymer (see Supplementary Information for details).

Substrate scope

With the TT-OP-CD; in hands, the selectivity of TT-OP-CD3 and three
other commercially available d3-methyl reagents (CDsl, CD;OTf, and
(CD5),S0,) were investigated. When a substrate with three nucleophilic
sites was treated with these reagents, the results showed that TT-OP-
CD; exhibited the best selectivity and the highest yield (see Supple-
mentary Information for details). After identification of the good
selectivity and reactivity of TT-OP-CDs, various pharmaceuticals, nat-
ural products, and their derivatives containing multiple potential
reactive sites were evaluated under optimized reaction conditions

(Fig. 3). Beginning with d3-methyl esterification of carboxylic acid-
based pharmaceutical molecules, we were pleased to find that, irre-
spective of whether complex primary, secondary, or tertiary carboxylic
acids were used, the d3-methylation products (2a-2h) were obtained in
yields ranging from 83% to 97%. The heterogeneous nature of the d3-
methylation reagent enabled high-purity products to be achieved
through simple filtration and extraction. Notably, the d3-methyl
esterification reaction exhibited excellent selectivity and functional
group tolerance, effectively accommodating substrates containing
nucleophilic amino, secondary amide, and phenolic groups, as well as
sensitive functionalities such as aldehydes, ketones, alkenes, and het-
erocyclic units. To demonstrate the practicality, late-stage functiona-
lization of pharmaceuticals, including bezafibrate, d-biotin, niflumic
acid, carprofen, repaglinide, frusemide, and mycophenolic acid, was
performed, delivering the corresponding d3-methyl esterification
products (2i-20) with N-H or O-H bonds preserved in the desired
yields. This strategy also provides a reliable and rapid method for
deuterium-switching of methyl ester drugs. Commercially available
drugs such as clopidogrel and bifendate were readily converted to their
corresponding deuterated variants (2p and 2q) through a simple two-
step process (alkali-promoted hydrolysis followed by d3-methylation
with TT-OP-CD3), achieving total yields of 79%-85%.

Next, this strategy was applied to phenols. Selective d3-
methylation of phenolic hydroxyl groups was achieved to afford pro-
ducts (2r-2v) in high yields. Methoxsalen, commonly used in combi-
nation with UVA light therapy (PUVA therapy) to treat psoriasis—a
chronic skin condition characterized by scaly, red patches—represents
arelevant example. Deuterium substitution at the methyl ether has the
potential to improve its first-pass effect and photostability. Notably,
methoxsalen was effectively converted into d3-methoxsalen (2t) with
78% total yield. The ortho-dimethyl ether (veratrole) motif frequently
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serves as a metabolic site in pharmaceutical molecules*. Using this
heterogeneous d3-methylation approach, the key deuterated building
blocks 2u and 2v for deutetrabenazine (SD-809, the first approved
deuterated drug) and deuterated fruquintinib were smoothly obtained
in 87% and 82% yields, respectively. Then, we explored S-alkylation,

which plays a significant role in chemical biology. For example,
S-alkylation modifications of cysteine-containing peptides have been
extensively employed in activity-based protein profiling*~*°. Conse-
quently, we examined S-atom d3-methylation using TT-OP-CD3. Under
the standard reaction conditions, both aryl thiophenols and
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biologically active cysteine-containing peptides or 1-thioglycosides
were effectively and selectively S-d3-methylated to afford the corre-
sponding products (3a-3e) in yields ranging from 82% to 92%.

The late-stage functionalization of sulfonamides and secondary
amines was also investigated. Nimesulide, a non-steroidal anti-inflam-
matory and anti-rheumatic drug, was successfully d3-methylated to
yield 4a in 93% yield. To evaluate the selectivity toward N-H units,
glibenclamide, which bears three types of N-H bonds, was employed.
As expected, selective d3-methylation occurred at the sulfonamide
N-H unit (4b) due to its lower pK, value. Erlotinib, a small molecule
tyrosine kinase inhibitor, reacted smoothly with TT-OP-CD; to produce
the nitrogen d3-methylated compound 4c, while preserving the
terminal alkyne group. When carvedilol, which contains an O-H bond
and two N-H bonds, was used as a substrate, selective d3-methylation
at the carbazole N-H bond was observed, delivering product 4d in 75%
yield. Similarly, lenalidomide, which contains both an active aryl-amino
group and an imide group, was treated with TT-OP-CD; under standard
conditions, affording 4e in 82% yield with the active amino group
intact. The 4f serves as a crucial precursor in the synthesis of d3-
methylamine, which is the direct deuterium source for sorafenib. Our
synthetic strategy enables the rapid and efficient one-step synthesis of
compound 4f in high yield, streamlining the production process. Next,
various N-CDj3 drugs, including d3-diparalene (4g), d3-sildenafil (4h),
d3-imipramine (4i), d3-loxapine (4j), and d3-olanzapine (4k), were
smoothly obtained in yields ranging from 78% to 88%. Furthermore,
the heterogeneous TT-OP-CDj; reagent also proved effective for d3-
methylation of active methylene groups using five-, six-, and seven-
membered cyclic B-ketoesters, producing the corresponding products
(5a-5c¢) in good yields. In summary, the heterogeneous deuterated d3-
methyl reagent demonstrated an ability for selective and clean d3-
methylation at oxygen, nitrogen, sulfur, and carbon sites with unique
selectivity and excellent functional group tolerance, overcoming
challenges typically faced by other methylation reagents.

The ability to load other alkylating reagents onto TT-OP for
sequential alkylation was further investigated (Fig. 4). Phenethyl-
containing and bromopropyl-containing thianthrenium salts (desig-
nated TT-OP-CH,CH,Ph and TT-OP-CH,CH,CH,Br, respectively) were
successfully prepared and applied to esterification, etherification, and
sulfonamide alkylation, yielding the corresponding alkylated products
(6-11). Notably, although TT-OP-CH,CH,CH,Br possesses two elec-
trophilic sites, alkylation occurred exclusively at the sulfonium site.
Vardenafil, one of the most widely used drugs for the treatment of
male erectile dysfunction®, is primarily metabolized in the liver via
cytochrome P450 (CYP) 3A4, with its main metabolite being the
N-desethylated form of the piperazine structure®. To study the meta-
bolic effects, d5-vardenafil (12) was specifically prepared, and its
plasma concentrations were measured following oral administration in
rats. The results demonstrated that d5-vardenafil (12) exhibited a lower
Cmax (maximum plasma concentration) and a longer t;/, (biological
half-life) compared to vardenafil, confirming the improved pharma-
cokinetic profile of d5-vardenafil.

SPS-based continuous-flow platform

The stability of TT-OP is of significant importance for multirun experi-
ments and the smart SPS-based continuous-flow d3-methylation plat-
form. Impressively, our results indicated the exceptional stability of TT-
OP, which could be recovered and reused more than 50 times without
any loss of its loading ability or reactivity (Fig. 5a). Encouraged by this
remarkable stability, we designed and developed a program-controlled
SPS-based continuous-flow d3-methylation platform (Fig. 5b). This plat-
form consists of four syringe pumps, switching valves, a tower reactor
with an interlayer, a programmable heating bath system, and a software
controller. The four syringe pumps correspond to four channel systems
controlled by the software program: line 1is the loading channel with the
DCE solution of CD;OTf; lines 2 and 4 are the washing channels with
MeCN and DCE solution, respectively; line 3 is the d3-methylation
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channel with MeCN solution of substrate. To validate the concept, the
d3-methylation reactions of fenofibrate, nimesulide, and triclosan at
gram to decagram scales were conducted on this platform. Taking
fenofibric acid as an example, the DCE solution of CD;OTf (20 mmol) on
line 1 was initially pumped through the tower reactor containing 40 g of
TT-OP at a flow rate of 10 mL/min, at 55 °C for 8 h. Subsequently, the
MeCN solution on line 2 was pumped to remove residual CD;0Tf/ DCE
(10 mL/min, 20 min, 25 °C). Following this, fenofibrate (10 mmol, 3.19 g)
and K,CO3 (20 mmol, 2.8 g) dissolved in a MeCN/H,O mixture (250/
50 mL) on line 3 were pumped through the tower reactor at a rate of
0.8 mL/min. The residence time within the reactor was maintained at 3 h,
after which the mixture flowed into a product bottle, yielding d3-methyl
fenofibrate (2.85 g) in 85% yield. Finally, the DCE solution on line 4 was
pumped at a rate of 10 mL/min for 20 min to restore the initial state of
the reactor. Notably, all four steps could be executed automatically with
a single click of the “start” button via a computer or mobile phone
control program. By replenishing the starting materials in each container
and leveraging the programmed reaction sequence, the system could
sustain multiple reaction cycles. Ultimately, we obtained 11.4 g of com-
pound 2h, 54 g of compound 2s, and 2.8 g of compound 4a, with
average yields exceeding 85%.

Discussion

In summary, we have successfully designed a TT-OP with excellent
capability for immobilizing d3-methyl groups, yielding TT-OP-CDs. The
solid TT-OP-CD; demonstrates highly selective and efficient d3-
methylation of carboxylic acids, phenols, amines, amides, thiols, and
B-ketoesters, delivering a variety of significant deuterated pharma-
ceuticals and simultaneously releasing the support. Notably, TT-OP
exhibits exceptional stability that can be reused for more than 50 runs
without any loss of loading capacity and reactivity. These features
enable us to establish an automated platform for high-throughput d3-
methylation of pharmaceutical molecules by integrating SPS with
continuous-flow. This program-controlled platform offers several

remarkable and unique advantages: 1. Very simple and automatic
operation: The process requires only the addition of starting materials,
followed by a single click of the start button to produce the desired
products. 2. Powerful capability for late-stage modification: The plat-
form can selectively incorporate d3-methyl groups at oxygen, nitro-
gen, sulfur, and carbon sites of pharmaceutical molecules and natural
products. In addition, it accommodates other alkylation reactions
(e.g., ethyl, phenethyl, and bromoalkyl) by simply switching the
reagents in the reservoir and pressing the start button. 3. Straightfor-
ward scale-up mode: Continuous addition of starting materials enables
flow synthesis for large-scale production. In conclusion, the automated
d3-methylation platform, characterized by its long-term stability, low-
cost support and deuterium source, and ease of operation and pur-
ification, holds great promise for smart, efficient, and practical appli-
cations in pharmaceutical synthesis.

Methods

General procedure for d3-methylation of carboxylic acid, phe-
nol, amine, thiol, and active methylene

To the Schlenk tube was added substrate (0.5 mmol, 1.0 equiv), TT-OP-
CD; (500 mg), K,CO5; (1.0 mmol, 138.2mg, 2.0 equiv), and MeCN
(5 mL). The reaction was stirring at room temperature for 12 h. After
the reaction, the recyclable TT-OP was simply centrifuged at
10000 rpm (10610 g) for 10 min and was washed with dichlor-
omethane (5 mL) three times, dried under vacuum, and directly reused
for the next reaction cycle without any further purification. The
organic layers were combined, dried over anhydrous Na,SO,4, and
concentrated in vacuo. The residue was purified by chromatography
on silica gel or without further purification to afford desired product.

Data availability

Data supporting the findings of this manuscript are reported within the
Article and its Supplementary Information and are also available from
the corresponding author upon request.
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