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We analyze 10,986 participants (mean age 77; 63% women; 54% non-White)
across seven U.S. cohorts to study the relationship between mitochondrial
DNA (mtDNA) heteroplasmy and nuclear DNA methylation. We identify 597
CpGs associated with heteroplasmy burden, generally showing lower methy-
lation. These CpGs are enriched in dynamically regulated island shores and
depleted in CpG islands, indicating involvement in context-specific rather than
constitutive gene regulation. In HEK293T cells, we introduce a truncating
mtDNA mutation (MT-COX3, mt.9979) and observe a positive correlation
between variant allele fraction and methylation at cg04569152, supporting a
direct mtDNA–nDNA epigenetic link. Many heteroplasmy-associated CpGs
overlap with known methylation-trait associations for metabolic and beha-
vioral traits. Composite CpG scores predict all-cause mortality and incident
CVD, with one-unit increases associated with 1.27-fold and 1.12-fold higher
hazards, respectively. These findings suggest an mtDNA–nDNA epigenetic
connection in aging and disease, though its direction andmechanisms remain
to be studied.

Mitochondria are central for generatingmolecular energy andmultiple
biochemical processes1–3. The mitochondrial genome is a double-
stranded DNAmolecule (mtDNA), which is 16.6 kb in size and exists in
multiple copies per cell1–3. This gives rise to two quantities: mtDNA

copy number (mtDNA CN), a measure of the average number of
mtDNA molecules per cell, and heteroplasmy, where different mtDNA
alleles coexist within the same sample4. Heteroplasmy often arises
somatically and accumulateswith age5–7. Recent research suggests that
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heteroplasmy burden is associated with cancer and mortality7. How-
ever, the biological pathways underlying these relationships remain
unclear.

Mitochondrial function depends on tight coordination between
mitochondrial DNA (mtDNA) and nuclear DNA (nDNA)8. DNA methy-
lation, a key regulator of gene expression9,10, has been implicated in
modulating mitochondrial function11,12. Interestingly, the reverse may
also be true, that is, mtDNA variation can influence nuclear epigenetic
states8. For instance, global nDNA methylation levels were shown to
vary in human cybrid cells that shared identical nuclear genomes but
carried different mtDNA haplogroups13. Similarly, in a hybrid mouse
modelwith nDNA fromone strain andmtDNA fromanother,mammary
tumor metastasis was altered through changes in DNA methylation,
with corresponding shifts in gene expression14. Extending this evi-
dence, recent epigenome-wide association studies (EWAS) and meta-
analyses have identified CpG sites associated with mtDNA CN15,16.
Supporting a potential mechanistic connection, experimental studies
have shown that alteringmtDNACN leads to changes inmethylation at
specific CpG sites and affects the expression of nearby genes15. Toge-
ther, these findings suggest that mtDNA may influence health out-
comes through nuclear methylation pathways.

While previous studies have examined global DNAmethylation in
relation to mtDNA haplogroups defined by inherited variants13,14,17,18,

other work has implicated mtDNA heteroplasmy in cellular function
and adverse health outcomes6. However, the broader biological
impact of heteroplasmy remains unclear. We hypothesize that mtDNA
heteroplasmy may be associated with changes in nDNA methylation,
contributing to age-related outcomes. To assess this, we identified
CpG sites associated with mtDNA heteroplasmy using data from mul-
tiple large-scale, racially diverse cohorts and performed functional
validation by introducing a protein-truncating mtDNA mutation (MT-
COX3,mt.9979) into HEK293T cells (Fig. 1). As noted by Lopes (2020)8,
DNA methylation may serve as a regulatory link between mitochon-
drial and nuclear genomes in shaping disease risk. Therefore, we
examined whether these heteroplasmy-associated methylation mar-
kers are predictive of all-cause mortality and CVD risk. Our findings
suggest that mitochondrial and nuclear factors may work together to
influence health and disease, though the direction and underlying
mechanisms of these links are still unclear and need further study.

Results
Participant characteristics
We conducted association analyses of genome-wide CpG methylation
and mtDNA heteroplasmy in 10,986 participants from seven diverse
U.S.-based cohorts19–26, most of whomweremiddle-aged (mean age: 57
years). Overall, 6,866 (63%) were women and 54% of participants were

MSS and MHC
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(DAVID/NCBI)
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Populations of multiple races

Total mortality, 
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Fig. 1 | Study flowchart.Whole-genome sequencing was conducted to identify
mitochondrial DNA (mtDNA) heteroplasmy in 10,986 individuals across seven
epidemiological cohorts. Cohort- and ancestry-specific association analyses were
performed to investigate the relationship between mtDNA heteroplasmy and
nuclear DNA (nDNA) methylation levels at CpG sites. Random-effects meta-
analyses were subsequently conducted in both pooled and race-stratified datasets.
CpG sites demonstrating statistically significant associations (false discovery rate
[FDR] < 0.05) were subjected to downstream bioinformatic analyses, including
gene ontology enrichment and transcriptomic integration. Experimental

validation using targeted genome editing in cell lines, followedbypyrosequencing,
provided functional evidence supporting a causal role of mtDNA heteroplasmic
variation in modulating nuclear epigenetic states. Integrative analyses further
linked heteroplasmy-associated CpGs to complex traits through methylation
quantitative trait loci (mQTL) mapping, interrogation of the Epigenome-Wide
Association Studies (EWAS) Catalog and Genome-Wide Association Studies
(GWAS) Catalog, and Mendelian randomization. Finally, composite methylation
scores derived from heteroplasmy-associated CpG sites were evaluated for asso-
ciation with all-cause mortality and cardiovascular disease risk.
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non-White, based on self-reported sex, race, and ethnicity (Supple-
mentary Data 1–2).

We used two measures to quantify heteroplasmy burden: mito-
chondrial heteroplasmy count (MHC), the number of heteroplasmic
variants, and mitochondrial local constraint score sum (MSS), which
reflects their predicted functional impact27. Heteroplasmic variants
were identified at 2,264 distinct sites across the mtDNA genome
(Fig. 2A), each present in less than 1% of participants in the combined
sample (Supplementary Data 3). Approximately one-third of partici-
pants carried at least one heteroplasmic variant, and approximately
12.4% (8.3% to 18.8% across cohorts) had an MSS between 0.01 and
0.25; 4.4% (2.7% to 5.8%) had an MSS between 0.251 and 0.5; and 7.9%
(5.4% to 10.8%) had an MSS greater than 0.5 (Fig. 2B, Supplementary
Data 1-2). Consistent with previous findings, MHC levels increase with
age5,7 (Fig. 2C). Across cohorts, 8% to 22% of participants were current
smokers, 15% to 45% were former smokers, and 41% to 65% were never
smokers (Supplementary Data 1-2). Predicted smoking scores were
generally consistent with self-reported smoking status (Supplemen-
tary Fig. 1).

Association and meta-analyses of heteroplasmy with DNA
methylation
We conducted cohort- and race-specific association analyses between
mtDNA heteroplasmy burden scores (MHC and MSS) and DNA
methylation at CpG sites across the nuclear genome using a linear
regressionmodel for unrelated individuals and linearmixedmodel for
family data. Models were adjusted for age, self-reported sex, smoking
score28, genetic principal components (PCs) to account for population
admixture, white blood cell counts, and batch variables, including year
of blood draw for whole genome sequencing29, and DNA methylation
chip ID, and row and column positions (see Methods). Meta-analyses
were performed across all samples (primary analysis) and within race-
specific subgroups (secondary analysis). The primary analysis focused
on CpG sites present on both the 450K and EPIC arrays (Supplemen-
tary Data 4) after extensive quality control (see Methods). We exam-
ined genomic inflation factors and compared association models with
and without adjustment for genetic PCs (Supplementary Figs. 2–9)

In the random-effectsmeta-analysis of all samples (n = 10,986),we
observed slightly deflated genomic control values (λGC) for both MSS
(λGC =0.79) and MHC (λGC = 0.83) (Supplementary Data 5). At a false

discovery rate (FDR) p < 0.05, we identified 597 unique CpGs asso-
ciated with MSS (n = 479) and MHC (n = 166) across the genome
(Fig. 3A, Table 1, Supplementary Data 6–7). We observed consistent
effect sizes for the epigenome-wide analyses with MSS and MHC
(Pearson r = 0.75) (Fig. 3B, Supplementary Fig. 10), reflecting the
moderate to high correlation between the two heteroplasmy metrics
across cohorts (Supplementary Data 8). The majority of CpGs (91% for
MHC and 94% for MSS with FDR <0.05) displayed negative associa-
tions with heteroplasmy, indicating that a higher level of heteroplasmy
was associated with a lower level of DNA methylation (Fig. 3C). The
directionality of the association was most consistent across the
cohorts for significant CpGs, as exampled with cg15233611 (Fig. 3D).

Random-effects meta-analyses of associations between DNA
methylation at CpG sites and both MSS and MHC were conducted
separately in White American (n = 5104) and African American
(n = 5882) participants as secondary analyses (Supplementary
Data 9–10, Supplementary Figs. 11–12). We compared the beta esti-
mates of top CpGs (p < 10-5) from themeta-analyses ofWhite American
participants with those of African American participants. For MSS,
most CpGs (82%) showed a consistent direction of association,
although the correlation in effect sizes between the two groups was
modest (Pearson r =0.30). Similar patterns were also observed for
MHC between the two groups (Supplementary Figs. 13–14).

Transcriptomic implication of CpGs associated with
heteroplasmy
To investigate possible downstream consequences of DNA methyla-
tion, we retrieved the gene transcripts associated with the identified
CpGs (eQTM) from the eQTM database from the Framingham Heart
Study (FHS)30. We found 95 heteroplasmy-associated CpGs exhibiting
significant associations with the expression of 146 cis-genes within
1Mb of a CpG (p < 1 × 10-7) (Supplementary Data 11). Of those, 43 CpG
sites showed significant associations with the expression levels of the
genes they are located in (Table 2), indicating thatmethylation at these
sites may influence the expression of their corresponding genes. For
example, cg02633767, located in the 3’- untranslated region of TAP2
(Transporter 2, member B of the ATP-binding cassette subfamily on
chromosome 6) was significantly associated with the expression of
TAP2 gene (p = 1 × 10-29). This gene encodes a protein that is essential
for the proper functioning of the immune system31.
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Fig. 2 | Distribution of heteroplasmy. A Distribution of heteroplasmy counts
(MHC) in study participants (n = 10,986) across the double-strandedmitochondrial
DNA (mtDNA) molecule, following quality control procedures (see Methods).
Heteroplasmic variants were identified at 2264 unique sites across the mtDNA
genome, with each site occurring in less than 1% of participants in the combined
sample (Supplementary Data 3). Pink regions indicate the D-loop regions. Blue
regions indicate the 13 protein-coding genes. B Distribution of MHC and mito-
chondrial local constraint score sum (MSS) score across the study participants.

MHC represents the total number of heteroplasmic variants in an individual, while
MSS reflects the predicted deleteriousness and functional impact of these variants.
Approximately 32.4% of participants carried at least one heteroplasmic variant.
Among all participants, 12.4% had MSS values between 0.01 and 0.25, 4.4% had
values between 0.251 and 0.5, and 7.9% had MSS values greater than 0.5. C The
distribution of MHC across age groups indicates a trend of increasing MHC levels
with advancing age.
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Genomic context enrichment analysis of heteroplasmy-
associated CpG sites
Togain insights into their biological relevance,we usedChi-square test
or Fisher’s Exact test (for cell count less than 5) to determine whether
the 597 heteroplasmy-associated CpG sites are non-randomly dis-
tributed across genomic contexts. We found that these sites were
significantly depleted in CpG islands (0.42-fold, p = 5.2 × 10-21) but
enriched in shore regions flanking CpG islands (north shore: 1.96-fold,
p = 1.6 × 10-19; south shore: 1.83-fold, p = 9.4 × 10-12), with no significant
enrichment in shelf regions farther from CpG island (p >0.5) (Sup-
plementary Data 12). Additionally, significant depletion was observed
in DNase I hypersensitive site (DHS) regions (0.32-fold, p = 4.1 × 10-6).
No significant enrichment was observed in enhancer regions
(p = 0.083) or differentially methylated regions (DMRs) (p =0.086).

We further analyzed 146 cis-genes associated with the 95
heteroplasmy-associated CpGs (Supplementary Data 11). Similar to the
broader set of 597 CpGs, these eQTMs displayed depletion in CpG
islands (0.55-fold, p = 0.004) and enriched in north shore (2-fold,
p =0.00014). Additionally, they showed stronger depletion in DHS
(0.26-fold, p = 1.2 × 10-11) and DMRs (0.19-fold, p = 9.4 × 10-8) regions,
while showed no enrichment in the south shore (p =0.41), shelf, or
enhancer locations (p > 0.4) (Supplementary Data 12).

Gene set enrichment analysis
Of the genes annotated to CpGs, 370 were analyzed by DAVID, a
comprehensive tool for functional annotation, disease association,

and Gene Ontology (GO) analysis32. Based on Genetic Association
Database (GAD), these genes were significantly enriched in a broad
selection of diseases such as metabolic conditions (FDR=0.014), can-
cer (FDR =0.017), and chemical dependency (addicted to drugs,
nicotine, or alcohol) (FDR =0.003), among others (Fig. 4A, Supple-
mentary Data 13). GO analysis identified pathways, such as signaling
(e.g., GO:0023051, FDR=4 × 10-9) and neurodevelopment (e.g.,
GO:0048856, FDR = 5.8 × 10-7) (Fig. 4B, Supplementary Data 14). GO
analysis also identified cellular components involving synaptic func-
tions and neurotransmission (e.g., synapse [GO:0045202], FDR
=0.0002), andmembrane components (e.g., postsynapticmembrane,
[GO:0045211], FDR =0.01) (Supplementary Data 15). Gene set enrich-
ment analysis of 146 genes linked to 95 CpGs revealed top pathways
and cellular components similar to those identified from the full set of
heteroplasmy-associated genes (Supplementary Data 14–15).

Genes involved in mitochondrial assembly and function
Through functional annotation of 370 genes with DAVID32 and
MitoCarta3.033., we identified 27 genes known or predicted to be
involved in mitochondrial processes (Supplementary Data 16). Of
these, twelve encode proteins that are part of the 1136 mammalian
mitochondrial proteome listed in MitoCarta3.033, representing a
lower-than-expectednumber ofmitochondrial genes in our set relative
to a background of 20,000 genes (Fisher’s Exact Test, p =0.022). For
example, ABHD10 encodes a mitochondrially localized enzyme and
regulates redox homeostasis by modulating the palmitoylation of
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Fig. 3 | Association and meta-analyses of mtDNA heteroplasmy with DNA
methylation. A Cohort- and race-specific association analyses using linear
regression were followed by meta-analyses in pooled samples (n = 10,986) to
identify CpG sites associated with MSS (top) and MHC (bottom). We found 479
MSS- and 166 MHC-associated CpGs at a false discovery rate (FDR) < 0.05 in a two-
sided test. The x-axis indicates chromosomes in different colors. The gray dotted
line represents the FDR-adjusted significance threshold (FDR =0.05), and the black
dotted line indicates the Bonferroni threshold (p = 1 × 10-7). B Comparison of effect
sizes (beta values) for MSS vs. MHCmeta-analyses, showing a Pearson correlation r
of 0.75. Red dots indicate CpGs with positive betas and blue dots with negative
betas. C Volcano plot of DNA methylation with MSS in meta-analysis. Most sig-
nificant CpGs (94%, FDR <0.05) showed negative associations (blue dots), while a
minority showed positive associations (red points). D Forest plot of the top CpG,
cg15233611, from linear regression analyses of MSS in African American (AA) and
White American (EA) participants, and in themeta-analysis. All tests were two-sided

t-tests. Among AA participants, beta-estimates (95% CI) were 0.00087 (–0.0097,
0.011) in ARIC, –0.0077 (–0.032, 0.016) in CARDIA, –0.018 (–0.038, 0.0021) in
GENOA, –0.022 (–0.033, –0.0097) in JHS, 0.0059 (–0.027, 0.039) in MESA, and
–0.021 (–0.066, 0.024) in WHI, with a meta-analysis estimate of –0.010 (–0.021,
0.00063) in all AAparticipants. ForWhiteAmerican (EA) participants, theβ (95%CI)
values were –0.0087 (–0.022, 0.0041) in ARIC, –0.0094 (–0.031, 0.012) in CARDIA,
–0.015 (–0.021, –0.0092) in FHS, –0.013 (–0.035, 0.0086) in MESA, and –0.039
(–0.058, –0.0019) in WHI. The meta-analysis of EA participants yielded a beta of
−0.015 (–0.020, –0.010), and the overall meta-analysis combining AA and EA par-
ticipants produced a beta of –0.014 (–0.019, –0.0099). CI confidence interval, ARIC
Atherosclerosis Risk in Communities, CARDIA Coronary Artery Risk Development
in Young Adults, FHS Framingham Heart Study, GENOA Genetic Epidemiology
Network of Arteriopathy, JHS Jackson Heart Study, MESA Multi-Ethnic Study of
Atherosclerosis Study, WHI Women’s Health Initiative.
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antioxidant proteins34. Among the others, NDUFA5 and NDUFS4
encode subunits of Complex I, a critical component of the mito-
chondrial electron transport chain essential for oxidative phosphor-
ylation and ATP production35,36. The remaining genes are implicated in
NAD+ /NADP + /NADPH-dependent functions, oxidative stress
response, or phosphorylation-related pathways. For instance,
ALDH3B1 encodes a protein involved in cellular detoxification and
oxidative stress mitigation37.

Functional validation of correlation between nuclear CpG
methylation and VAF in COX3-mutants
We selected five CpG sites based on an interim analysis of the data for
functional validation (Supplementary Data 17), primarily based on
their interim meta-analysis p-values and high pyrosequencing design
scores ( > 0.8), and evidence of being cis-eQTMs or having associated
cis-SNPs (i.e., mQTLs). To assess the impact of mitochondrial muta-
tions on methylation, HEK293T (human embryonic kidney) cell lines
were edited to harbor a nonsense mutation at mt.9979 in MT-COX3
(cyclooxygenase-3 gene, referred to as COX3-mutant cell lines) using
the FusXTBE system38,39. Successful editing was confirmed by Sanger
sequencing. DNA methylation levels at the selected CpG sites were
quantified by pyrosequencing40,41. Of note, the mt.9979 mutation was
not observed in our cohorts (Supplementary Data 3).

Variant allele fractions (VAFs) of the nonsensemutation (mt.9979)
ranged from 11-91%, with minimal evidence of off-target editing (Sup-
plementary Fig. 15). Pyrosequencing was performed on 3 unedited
control cell lines and 12 COX3-mutant lines selected to represent a
spectrum of VAFs (Supplementary Data 18). Correlation analysis
revealed a statistically significant positive linear relationship between
VAF and DNA methylation at CpG site cg04569152 (p =0.025) but not
at the other four CpG sites (Supplementary Figs. 16-17). This finding
was replicated in an independent sample set (cell lines) (Supplemen-
tary Data 18), where the association remained significant (p = 0.029),

and was further strengthened when all samples were combined
(p = 0.003) (Fig. 4C, Supplementary Fig. 16). These findings support a
potential link betweenmitochondrial DNAmutations and nuclearDNA
methylation, raising the possibility that variation in mitochondrial
function could contribute to shaping the nuclear epigenetic landscape.

Linking heteroplasmy-associated CpGs to human traits via
EWAS Catalog
We queried the MRC-IEU epigenome-wide association studies (EWAS)
Catalog42 to associate the heteroplasmy-associated CpGs (FDR <0.05)
to previously reported diseases and traits. We identified 54 CpG-trait
associations, involving 52 unique CpGs associated with five traits (p < 1
× 10-7) in studies with more than 5000 participants in the MRC-IEU
EWAS Catalog42 (Supplementary Data 19). The five traits included
alcohol consumption per day (6 CpGs), body mass index (4 CpGs),
C-reactive protein (3 CpGs), educational attainment (1 CpG), and
smoking-related traits (35 CpGs) (Supplementary Fig. 18).

Linking heteroplasmy-associated CpGs to human traits via
mQTLs and GWAS Catalog
Investigating DNA methylation quantitative trait loci (mQTLs) and
their associated genome-wide association study (GWAS) traits or dis-
eases may provide insights into themolecular mechanisms underlying
complex traits and diseases43,44. In our analysis, 505 heteroplasmy-
associated CpG sites were associatedwith at least one SNP (p < 5 × 10-8)
in the FHS mQTL database45. Of these, 374 CpG sites were linked to at
least one SNP associated with a trait or disease in the GWAS Catalog46.
For each CpG, we retained the SNP with the most significant GWAS
association to provide trait specificity and avoid redundancy (Sup-
plementary Data 20). A substantial proportion of the traits identified,
such as blood pressure, lipid levels, body mass index, type 2 diabetes,
and smoking behavior, are well-established risk factors for both car-
diovascular disease and all-cause mortality.

Table 1 | Top 10 CpGs associated with MHC and MSS

CpG ID Chr Position P Beta SE Gene Symbol Relation to CpG Island

MHC

cg07515565 6 1624386 6.6 × 10−12 −0.00382 0.000556 GMDS Island

cg12453228 6 41338345 7.8 × 10−10 −0.00467 0.00076 N_Shore

cg15233611 12 122244660 2.2 × 10−9 −0.0048 0.000802 SETD1B S_Shore

cg03025830 8 21905599 8.1 × 10−9 −0.00842 0.001461 FGF17 Island

cg13851767 9 123656764 2.9 × 10−8 −0.00492 0.000887 Island

cg24724428 6 11044888 4.2 × 10−8 0.003733 0.000681 ELOVL2 Island

cg11613559 10 121577971 6.3 × 10−8 −0.00399 0.000738 INPP5F Island

cg19969694 15 41185800 6.5 × 10−8 −0.0031 0.000573 VPS18 N_Shore

cg19234738 3 134031551 6.7 × 10−8 −0.00494 0.000915 N_Shore

cg18964375 1 33772147 8.0 × 10−8 −0.00406 0.000757 Island

MSS

cg02454536 15 68713677 7.2 × 10−15 −0.02016 0.002591 ITGA11

cg12559228 19 50191882 4.5 × 10−11 −0.00894 0.001357 C19orf76 N_Shore

cg14818812 8 142362180 6.6 × 10−11 −0.01232 0.001887

cg16879115 12 7819180 9.7 × 10−11 −0.00798 0.001233 APOBEC1

cg15233611 12 122244660 2.2 × 10−10 −0.01431 0.002255 SETD1B S_Shore

cg27363141 6 30038929 4.0 × 10−10 −0.00407 0.000651 RNF39 Island

cg19254163 11 60623782 4.1 × 10−10 −0.00975 0.00156 GPR44 S_Shelf

cg07843568 19 1254066 6.2 × 10−10 −0.00841 0.00136 MIDN Island

cg10498052 17 16367232 1.7 × 10−9 −0.00803 0.001332 NCRNA00188

cg11386711 3 186651116 2.2 × 10−9 −0.01106 0.001848 ST6GAL1 S_Shelf

MHCmitochondrial heteroplasmy count score,MSSmitochondrial local constraint score sum. Relation to CpG Island, Relation to UCSC CpG Island (see Supplementary Data 6–7). Genome-wide
association analyses were performedbetweenDNAmethylation andheteroplasmymeasures (MHCandMSS) using linear regression. Association significancewas assessed using a two-sided t-test.
A false discovery rate (FDR) threshold of p < 0.05, corresponding to p < 0.0000253 for MHC and p < 0.0000735 for MSS, was applied to determine significance. Gene names were italicized.
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Linking heteroplasmy-associated CpGs to human traits via MR
analysis
Mendelian randomization (MR)47 was used to assess potential causal
relationships between DNA methylation at heteroplasmy-associated
CpG sites and both CVD-related outcomes and all-cause mortality.
Using the cis-mQTLs (p < 5 × 10-8) in the FHS mQTL database45 as
instrumental variables, we identified top associations across ten CVD-
related traits and age at death (FDR <0.05) (Supplementary Data 21).

For example, cg15233611 showed a positive causal effect on HDL
cholesterol (MR β = 1.5, FDR =0.00012) and a negative effect on tri-
glycerides (MR β = −1.45, FDR =0.00011) (Fig. 4D). These results align
with previous findings linking lower methylation at cg15233611 to
smoking48, and established associations between smoking, decreased
HDL cholesterol, and increased triglyceride levels49,50. cg15233611 is
located in the SET Domain Containing 1B (SETD1B) gene that is
involved in histone methylation51, and was correlated with reduced

Table 2 | Association between heteroplasmy-associated CpGs and expression of their corresponding genes

CpG Chr CpG position Relation to CpG Island Gene eQTM analysis

Beta SE p

cg07133347 1 107058139 S_Shore PRMT6 -0.7 0.08896 5.5 × 10-15

cg17036469 1 109624967 AMPD2 -1.08 0.185191 5.5 × 10-9

cg14150727 1 202213288 N_Shore LGR6 2.44 0.395107 7.4 × 10-10

cg25242471 2 218874009 Island WNT6 0.53 0.05258 1.7 × 10-23

cg17607231 2 230225613 SP140 -2.47 0.181437 1.7 × 10-40

cg19098619 2 166337184 SCN9A 3.44 0.315746 6.8 × 10-27

cg22488352 3 111978631 N_Shore ABHD10 -0.44 0.063665 1.1 × 10-11

cg17658717 3 45035761 Island CLEC3B 1.79 0.132004 4.2 × 10-40

cg10585661 3 184338829 Island FAM131A 0.7 0.069013 6.6 × 10-24

cg01899089 5 369853 N_Shore AHRR -1.19 0.208976 1.4 × 10-8

cg00271210 6 166656564 RPS6KA2 1.07 0.071288 2.0 × 10-48

cg21794222 6 167122574 CCR6 -5.45 0.327461 2.0 × 10-58

cg04482331 6 44151860 Island TMEM63B -0.85 0.151474 2.4×10-8

cg02633767 6 32826549 TAP2 -2.48 0.214404 4.1 × 10-30

cg09676013 6 33112722 HLA-DPB2 0.98 0.158997 8.3 × 10-10

cg11196182 7 1949776 N_Shelf MAD1L1 -4.19 0.171358 4.2 × 10-116

cg08636573 7 101238560 CLDN15 1.01 0.094182 4.2 × 10-26

cg19216211 8 22598472 N_Shore C8orf58 1.65 0.142573 4.9 × 10-30

cg22562591 8 81090741 PAG1 -1.98 0.286954 7.2 × 10-12

cg23902994 8 1866765 ARHGEF10 1.62 0.167261 9.6 × 10-22

cg00695112 9 69247830 N_Shore TJP2 2.79 0.357576 9.6 × 10-15

cg18770763 11 724524 N_Shore EPS8L2 2.4 0.176139 1.6 × 10-40

cg24134897 11 859669 S_Shore TSPAN4 0.92 0.120301 3.0 × 10-14

cg16151451 11 849152 Island TSPAN4 1.42 0.135466 3.2 × 10-25

cg13010014 11 124871068 S_Shore ROBO3 1.95 0.232573 8.7 × 10-17

cg11711057 12 107580666 N_Shore BTBD11 1.93 0.182767 2.0 × 10-25

cg22563815 15 78564606 N_Shore CHRNA5 1 0.094421 1.9 × 10-25

cg19696491 15 78564781 N_Shore CHRNA5 0.65 0.077452 8.5 × 10-17

cg26134665 16 31010222 STX1B -1.69 0.263236 1.9 × 10-10

cg04554272 16 963989 N_Shore LMF1 -0.39 0.056704 9.8 × 10-12

cg20669292 17 42671401 Island PLEKHH3 0.42 0.065766 1.4 × 10-10

cg27470213 17 78971612 LGALS3BP 3.94 0.310299 1.5 × 10-35

cg19758448 17 39672042 S_Shelf PGAP3 -0.4 0.071028 1.5 × 10-8

cg13049862 17 1480875 S_Shelf MYO1C 1.83 0.32374 1.7 × 10-8

cg26234644 17 10731109 S_Shore TMEM220 0.95 0.119416 3.5 × 10-15

cg00842549 17 48574557 N_Shelf HOXB3 1.68 0.199871 8.5 × 10-17

cg23891399 17 75828538 UNC13D 0.45 0.068929 9.6 × 10-11

cg08350509 19 3028221 N_Shore TLE2 0.73 0.105307 5.6 × 10-12

cg00002033 19 39307840 Island LRFN1 0.56 0.081337 6.3 × 10-12

cg18504989 19 45782939 N_Shelf DMPK 2.5 0.319273 8.0 × 10-15

cg01314574 21 45438886 N_Shore COL18A1 6.02 0.489462 1.3 × 10-33

cg04064254 21 45989655 S_Shore COL6A1 4.23 0.247755 3.6 × 10-61

cg22650271 22 39364159 SYNGR1 -4.33 0.380992 4.5 × 10-29

Wequeried the eQTMdatabasegenerated in the FraminghamHeart Study (FHS)30. GeneSymbol refers to thecorrespondinggene of aCpGannotation. Expression levels of thecorresponding genes
were regressed on CpGs, adjusting for covariants (see Supplementary Data 11). Association analyses were performed between DNA methylation and gene expression using linear regression.
Association significance was assessed using a two-sided t-test. A false discovery rate (FDR) threshold < 0.05 corresponded to p < 4.04 × 10-8. Gene names were italicized.
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expression of HPD (4-hydroxyphenylpyruvate dioxygenase)52 (Sup-
plementary Data 11) that is about 33 Kb downstream of the SETD1B.
Another example is cg03732020 inNR1H3, whichwas inferred tohave a
causal associationwith high-density lipoprotein (HDL) cholesterol (MR
beta = 8.5, FDR = 5.5 × 10-90), consistent with previous findings. NR1H3
encodes liver X receptor alpha (LXRα), a nuclear receptor that plays a
key role in lipid metabolism, particularly in the regulation of HDL
levels53,54.

Association analysis of heteroplasmy-associated CpG scores
with all-cause mortality
To investigate the potential mechanistic link between mitochondrial-
nuclear communication and age-related disease risk, we derived
heteroplasmy-associated CpG methylation scores and evaluated their
associations with all-cause mortality. The FHS was used as the training
cohort, with internal validation performed across the remaining
cohorts. External validation was conducted using the Health and
Retirement Study (HRS) cohort (Supplementary Data 22).

We observed 562 deaths over a median 13-year follow-up among
3488 FHS participants with DNA methylation data. Additionally, we
observed a total of 430deaths over amedian follow-up of 14 to 20 years
across the JHS and MESA cohorts. In the HRS cohort, there were 451
deaths over a median follow-up of 3 years (Supplementary Data 23).

We applied elastic net Cox regression to heteroplasmy-associated
CpGs and identified 57 CpGs associated with MHC for all-cause

mortality in FHS (Supplementary Data 24). We constructed a weighted
MHC-CpG score and found that a one standard deviation (SD) higher
level of this score was associated with a 1.61-fold higher hazard of all-
causemortality (95% CI: 1.50, 1.72), adjusting for age, self-reported sex,
and smoking status. In testing samples, we found that a one-SD higher
level of the weighted MHC-CpG score was associated with a 1.12-fold
higher hazard of all-cause mortality (95% CI: 0.99, 1.27) in the meta-
analysis of JHS and MESA cohorts, and a 1.27-fold higher hazard of all-
cause mortality (95% CI: 1.09, 1.48) in the meta-analysis of JHS, MESA,
and HRS cohorts, adjusting for age, self-reported sex, and smok-
ing (Fig. 5).

Using the samemethod,we identified 33MSS-associatedCpGs for
all-cause mortality in FHS (Supplementary Data 25). We found con-
sistent results between the MSS-CpG weighted score and all-cause
mortality in FHS, as well as in meta-analyses of testing samples,
adjusting for age, self-reported sex, and smoking status. Furthermore,
we observed consistent results in both the base model (age and self-
reported sex adjusted) and the multi-covariate adjusted model for the
associations of both MHC- and MSS-weighted scores with all-cause
mortality (Supplementary Figs. 19–20).

Association analysis of heteroplasmy-associated CpG scores
with CVD
Similarly, we derived heteroplasmy-associated CpG methylation
scores and evaluated their associations with incident CVD. In the FHS,
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Fig. 4 | Functional characterization of heteroplasmy-associated CpGs. A A total
of 370 genes annotated to the heteroplasmy-associated CpGs were analyzed using
DAVID, a comprehensive tool for functional annotation, disease association, and
Gene Ontology (GO) analysis. Enrichment was assessed using DAVID’s modified
Fisher’s exact test (EASE score), a two-sided test, detecting both over- and under-
representation of terms relative to the background set. Enrichment analysis using
the Genetic Association Database (GAD) revealed that these genes are enriched in
metabolic traits and processes related to multicellular organization (a false dis-
covery rate, FDR <0.05). B GO biological pathway analysis of these 370 genes
indicated enrichment in pathways related to signaling and neurodevelopment
(FDR<0.05). C Correlation between variant allele fraction (VAF) and CpG methy-
lation at cg04569152. Functional validation using HEK293T cell line editing and
pyrosequencing demonstrated a significant positive correlation between VAF of an
mtDNA nonsense mutation (mt.9979 in MT-COX3) and methylation levels at

cg04569152 (p =0.003 froma two-sided t-test). Themutationwas introducedusing
the FusX TALE-based editing system (FusXTBE), andmethylation was quantified by
pyrosequencing. Linear correlation was assessed using Pearson’s method, sup-
porting a potential epigenetic influence of mtDNA heteroplasmic variation on
nuclear CpG methylation (see Supplementary Fig. 16). D Integrative analysis of
cg15233611(SETD1B) illustrates its associations with mtDNA heteroplasmy burden,
measured by the mitochondrial local constraint score sum (MSS), as well as with
smoking, HDL cholesterol, and triglycerides, supported by methylation-trait asso-
ciations and Mendelian randomization (MR). Pink circles with the positive sign (+)
indicate a positive association, while blue circleswith the negative sign (-) indicate a
negative association. Association analyses were performed using linear regression,
with significance assessed by two-sided t-tests for regression coefficients. Mende-
lian randomization (MR) analyses used the inverse-variance weighted (IVW)
method, with significance assessed by two-sided Wald z-tests.
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300 participants developed CVD during a median follow-up of
approximately 8 years among 3,488 participants. We observed a total
of 320 incident CVD cases with a median follow-up of 14 to 16 years
across the JHS and MESA. The external cohort HRS had 301 incident
CVD cases with a much shorter median follow-up (4 years) compared
to other cohorts. (Supplementary Data 23).

We selected 18 CpGs for MHC using elastic net Cox regression
(Supplementary Data 26) for CVD. In the FHS testing sample, we found
that a SD higher level of the weighted MHC-CpG score was associated
with a 1.29-fold higher hazard of CVD (95% CI: 1.23–1.36), adjusting for
age, self-reported sex, and smoking status. In the testing cohorts, we
found that a one-SD higher MHC-CpG score was associated with a 1.15-
fold higher hazard of CVD (95% CI: 0.97–1.36) in the meta-analysis of
JHS andMESA, and a 1.12-fold higher hazard of CVD (95%CI: 0.99–1.26)
in the meta-analysis of JHS, MESA, and HRS (Fig. 5, Supplemen-
tary Fig. 21).

We identified 19 MSS-associated CpGs for CVD using elastic net
Cox regression in FHS (Supplementary Data 27). Compared to that of
the weighted MHC-CpG score, the weighted MSS-CpG score showed
slightly weaker associations with CVD in the training cohort and meta-
analysis of JHS, MESA, and HRS as the testing samples in both base
model and the model with smoking as an additional covariate.
Adjusting for additional multi-covariates further attenuated the asso-
ciations for both weighted MHC- and MSS-scores (Supplementary
Figs. 21–22).

Discussion
Weexamined the associations between nDNAmethylation andmtDNA
heteroplasmy in 10,986 participants from seven U.S.-based cohorts
representing diverse racial and ethnic backgrounds. Our analysis
identified 597 unique CpGs (FDR <0.05) with differential methylation
associated with mtDNA heteroplasmy burden. More CpGs were asso-
ciated with the mitochondrial stress signal (MSS) metric than with
heteroplasmic variant count (MHC), with most exhibiting inverse

associations, indicating that higher heteroplasmy burden generally
corresponds to lower levels of nDNA methylation. Heteroplasmy-
associated CpGs were significantly depleted in CpG islands, DHS, and
DMRs, but enriched in island shores, regions characterized by
dynamic, tissue-specific55–57, and environmentally responsive gene
regulation58. These patterns suggest that heteroplasmy-associated
CpGs may influence gene expression in a context-dependent manner
rather than through constitutive promoter activity9,10

To assess functional relevance, we introduced a single hetero-
plasmic mutation (mt.9979, MT-COX3) into HEK293T cells38,39 and
measured DNA methylation at selected CpG sites with
pyrosequencing40,41. Increasing VAF of the COX3 mutation was posi-
tively correlated with methylation at cg04569152, contrasting with the
mostly inverse trend seen in the population data. This discrepancy
likely reflects differences in experimental context. Specifically, the
epidemiologic associations were derived from whole blood samples,
which reflect systemic and immune-related processes, while the
experimental validation was conducted in a single immortalized
human embryonic kidney cell line. Furthermore, the heteroplasmy
burden score in the population analysis reflects a composite of many
rare heteroplasmic variants, whereas the experimental model isolates
the effect of a single, protein-truncating mutation with potentially
distinct functional consequences, one not observed in the population-
level data (Supplementary Data 3). Despite the difference in direction,
these results provide functional evidence that mitochondrial hetero-
plasmic variation can directly influence nuclear epigenetic states,
reinforcing the hypothesis of mitochondrial-nuclear crosstalk59–61.

Findings from integrative analysis align with prior literature sup-
porting crosstalk between the nuclear and mitochondrial genomes in
response to environmental cues59–61. Many genes annotated to
heteroplasmy-associated CpG sites are involved in mitochondrial
biosynthesis, redox regulation, and energy metabolism. These include
MRPS11, which encodes mitochondrial ribosomal protein S1162,
NDUFA5 and NDUFS4 (encoding respiratory chain complex I
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Fig. 5 | Forest plot: association analysis of heteroplasmy count (MHC)-asso-
ciated DNA methylation score with mortality and incident CVD. We applied
elastic net–regularized Cox proportional hazards regression in the Framingham
Heart Study (FHS) training cohort to identify heteroplasmy count (MHC)-asso-
ciated CpGs, yielding 57 associated with all-cause mortality in panel A and 18
associated with cardiovascular disease (CVD) in panel B. Statistical significance of
regression coefficients was assessed using two-sided Wald z-tests. The forest plot
presents hazard ratios (HRs) and 95% confidence intervals (CIs) for associations
between weighted MHC-CpG scores and outcomes (mortality and incident CVD)
across training and testing cohorts, adjusted for age, self-reported sex, and
smoking status (never, former, current). In FHS, the 57- and 18-CpG scores yielded
HRs (95% CI) of 1.61 (1.50–1.72) for all-cause mortality and 1.29 (1.23–1.36) for CVD,
respectively. Internal validation in the Jackson Heart Study (JHS) and the Multi-
Ethnic Study of Atherosclerosis (MESA) showed, for all-cause mortality, HRs (95%

CI) of 0.99 (0.77–1.28) inMESAWhite American (EA) participants, 1.18 (1.06–1.31) in
JHS, and 1.02 (0.70–1.48) in MESA African American (AA) participants for the 57-
CpG score. For CVD, the 18-CpG score yielded HRs (95% CI) of 0.97 (0.78–1.21) in
MESA EA, 1.19 (1.05–1.36) in JHS, and 1.41 (0.97–2.04) in MESA AA. Meta-analysis of
JHS and MESA participants produced HRs (95% CI) of 1.12 (0.99–1.27) for all-cause
mortality and 1.15 (0.97–1.36) for CVD. External validation in the Health and
Retirement Study (HRS), which was not used for CpG selection, found that for all-
causemortality, the 57-CpG score yieldedHRs (95%CI) of 1.28 (1.16–1.42) in EA, 1.62
(1.31–2.01) in AA, and 1.78 (1.18–2.70) in Hispanic American (HA) participants. For
CVD, the 18-CpG score yielded HRs of 1.07 (0.97–1.19) in EA, 0.83 (0.59–1.16) in AA,
and 1.48 (1.06–2.05) in HA. Meta-analysis of MESA, JHS, and HRS participants
produced HRs (95% CI) of 1.27 (1.09–1.48) for all-cause mortality and 1.12
(0.99–1.26) for CVD.
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subunits)35,36, and PRMT6, a nuclear protein methyltransferase that
may influence mitochondrial biogenesis63. Additional examples
include SNED1, which encodes an extracellular matrix protein involved
in tissue organization and development64, while TAP2, an ABC trans-
porter that facilitates molecular transport across intracellular mem-
branes, including mitochondria65. Together, these findings highlight
the bidirectional nature of mitochondrial-nuclear relationship.

To assess the broader implications of these epigenetic changes,
we examined overlap between heteroplasmy-associated CpGs and
known methylation-trait associations42. Several CpGs were linked to
metabolic and behavioral traits such as BMI, alcohol consumption, and
smoking. Mendelian randomization analyses supported potential
causal roles of methylation at select CpGs in influencing CVD risk
factors, such as HDL cholesterol and triglycerides. Finally, composite
CpG scores were predictive of both all-cause mortality and incident
CVD across multiple validation cohorts, underscoring the potential
clinical relevance of mitochondrial–epigenetic interactions.

Despite these strengths, our study has limitations. Its cross-
sectional design precludes causal inference. Our findings support
several plausible, non-mutually exclusive models: (1) mtDNA hetero-
plasmy may influence nuclear DNA methylation and downstream
health outcomes, as suggested by our experimental data, MR, and
outcome analyses; (2) nuclear epigenetic regulation may affect mito-
chondrial genome stability11,12. (3) both may be co-regulated by shared
extrinsic factors such as aging, smoking, or oxidative stress. The latter
is supported by the association of many heteroplasmy-linked CpGs
with smoking in EWAS Catalog42, even after adjusting for detailed
smoking scores. Our ongoing functional studies inducing hetero-
plasmy and assessing downstream methylation aim to clarify these
relationships. Additionally, examining the role of clonal
hematopoiesis66, an age-related somatic process, may further illumi-
nate the mechanisms underlying our observations.

This study leveraged genetically diverse, sex-balanced cohorts
and applied rigorous quality control throughout statistical analyses.
Despite these efforts, we observed variability in genomic inflation
factors (λGC) in a few cohort, despite adjustments for genetic ancestry
and technical variation. While random-effects meta-analysis reduced
this inflation, some residual confounding remain. Lastly, while whole
blood is a practical biospecimen, future studies should consider tissue-
specific validation of key findings.

In summary, this study provides an epigenome-wide analysis
associating mtDNA heteroplasmy burden with specific nuclear CpG
methylation changes in a large, multi-ethnic human population. By
integrating multiple approaches, this work lays the groundwork for
future investigations into the relationship between mtDNA hetero-
plasmy and nuclear DNA methylation in the context of health and
disease. While our findings may reflect an epigenetic aspect of
mitochondrial–nuclear interaction, further research is needed to
clarify the directionality and underlying mechanisms of these
associations.

Methods
Ethical compliance
All research was conducted in accordance with relevant ethical
guidelines and regulations, with study protocols approved by the
Institutional Review Boards (IRBs) of all participating institutions. The
ARIC study maintains IRB oversight via a central IRB at Johns Hopkins
(protocol 96-0484). CARDIA was overseen by a single IRB at the Uni-
versity of Alabama at Birmingham (protocol 268201300026C-5-0-1),
which operates under Federal Wide Assurance (FWA00005960). The
FHS received approval from the Boston Medical Center and Boston
University Medical Campus IRB (protocol H-32132). For the GENOA
study, approvalswereobtained from theUniversity ofMichiganHealth
Sciences and Behavioral Sciences IRB (protocols HUM00008655 and
HUM00113791). The Jackson Heart Study was approved by the

University of Mississippi Medical Center IRB (protocol 1998-6004).
The MESA study is overseen by University of Washington IRB (IRB ID
STUDY00014523) under Federal Wide Assurance FWA00006878. The
WHI was approved by the IRBs of all participating institutions, with
oversight from the Fred Hutchinson Cancer Research Center IRB (IRB
protocol 3467). Fred Hutch has an approved FWA on file with the
Office for Human Research Protections (OHRP) under assurance
number 0001920. For HRS, approvalwas obtained by theUniversity of
Michigan Health Sciences and Behavioral Sciences IRB (IRB-HSBS) (IRB
protocol HUM00063444). Written informed consent was obtained
from all participants in each study. No compensationwas provided for
participants.

Study participants
This study included 10,986 participants (mean age 57 years, women
63%, 54% non-White participants based on self-reported sex, race, and
ethnicity) from seven diverse U.S.-based cohorts: ARIC (Athero-
sclerosis Risk in Communities)19, CARDIA (Coronary Artery Risk
Development in Young Adults)20, FHS (Framingham Heart Study)21,22,
GENOA (Genetic Epidemiology Network of Arteriopathy)23, JHS (Jack-
sonHeart Study)24,MESA (Multi-Ethnic Studyof Atherosclerosis)25, and
WHI (Women’s Health Initiative)26. Based onprior research67,most FHS
participants showed high genetic similarity to European ancestry
reference panels, whilemost JHS and GENOA participants were similar
to African ancestry reference panels (mean ~80%). Other cohorts
included individuals from both self-identified groups. Our analyses
were stratified by self-reported race/ethnicity, without excluding
genetic ancestry outliers. Thus, race/ethnicity as used in this study
should not be considered equivalent to ancestry proportions. In
addition, MESA included 33% Hispanic participants. Details on parti-
cipant collection for each cohort were provided in the Supplementary
Methods and Supplementary Data 1-2.

Inclusion & ethics
All protocols for participant examinations and genetic material col-
lection were approved by the Institutional Review Boards at the
respective research sites. Written, informed consent was provided by
all participants for genetic studies. All research was carried out in
accordance with relevant guidelines and regulations.

Profiling and quality control of DNAmethylation in whole blood
Peripheral whole blood samples were used for genomic DNA extrac-
tion andbisulfite conversion, followedbymethylation profiling per the
manufacturer’s protocol (Illumina Inc., San Diego, CA). Two platforms
were used for DNA methylation measurement across cohorts (Sup-
plementary Data 4): the Infinium HumanMethylation 450K BeadChip
array (covering over 480,000 CpG sites, Illumina Inc., San Diego, CA)
for FHS, WHI, and ARIC, and the Infinium MethylationEPIC BeadChip
array (covering over 850,000 CpG sites, Illumina Inc., San Diego, CA)
for CARDIA, GENOA, JHS, andMESA. Over 90% of CpGs from the 450K
array are covered by the EPIC array. Analyses included all CpGs cov-
eredby both arrays,with subsequent analyses focusing onoverlapping
CpGs. In individual cohorts, probes with high missing rates ( > 20%),
non-significant detection p-values (> 0.01), underlying SNPs or probes
targeting SNPs (minor allele frequency > 5% within 10 bp based on
1000Genomes Project data)were removed. To ensure consistency, we
further excluded possibly problematic probes after the meta-analysis,
following the guidelines in Illumina methylation array probe filtering
(450K and EPIC/850K)68 which compile resources for filtering proble-
matic probes. Briefly, for the 450K array, 38,941 unique probes were
filtered based on Chen et al.69, including 33,457 probes that aligned to
multiple genomic locations (16,532 of which were autosomal CpGs
associated with significant sex-related methylation differences) and
29,233 non-specific probes, with overlap between categories. For the
850K array, 54,918 unique probes were excluded based on Pidsley
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et al.70, comprising 43,254 cross-reactive probes (including those
aligning to multiple locations) and 12,679 probes containing genetic
variants. In total, 66,103 unique probes were removed across both
arrays. Of note, we removed 38,941 unique probes to report CpG
probes that were present on both platforms in the main text. In the
SupplementaryData listingCpG siteswith p <0.05, we indicatedwhich
sites were flagged as problematic, without removing any probes.
Samples with high missing rates ( > 1%), poor genotype matching, or
those identified as outliers in clustering analyses were also excluded71.

Whole genome sequencing in whole blood
The whole blood-derived DNA in each cohort underwent whole gen-
ome sequencing (WGS) at several TOPMed contract sequencing
centers67. The Human Genome Sequencing Center at the Baylor Col-
lege of Medicine and the Broad Institute performedWGS for ARIC and
CARDIA samples. The whole genome sequencing of the FHS, WHI, and
MESA samples was conducted by the Broad Institute of MIT and Har-
vard. Samples from JHS were sequenced at the University of
Washington. WGS of GENOA was performed at the University of
Washington and the Broad Institute. All the sequencing centers
employed consistent data processing and sequencing processing cri-
teria. Subsequent DNA sequence alignment of the reads to human
genome build GRCh38 was also carried out at these locations. The
generated BAM files were sent to TOPMed’s Informatics Research
Center (IRC). For the purpose of consistency, the IRC administered re-
alignment and the remake of the BAM files using a common pipeline67.
This study used the WGS data from Freeze 8.

Identification and quantification of mtDNA heteroplasmy
The MToolBox software package72 was applied to identify hetero-
plasmy in mtDNA sequence reads for all cohorts except ARIC, where
the mitochondrial high-performance call (mitoHPC)73 pipeline was
applied. MToolBox removed nuclear mitochondrial DNA segments
(NumtS) by remapping reads onto the reference nuclear genome
(GRCh37/hg19) and applied scripts to detect nucleotide mismatches
and detect indels72. mitoHPC is an automated pipeline to analyze
mtDNA sequence reads with a circularized mitochondrial chromo-
some. mitoHPC extracts NumtS to build upmtDNA read sinks. mtDNA
reads were further remapped to a circularized mitochondrial chro-
mosome (chrM) to recover low coverage areas73.

For this study, we only considered heteroplasmic sites from single
nucleotide variants (SNVs). We excluded heteroplasmic variants at
positions 1 to 61, 301, 302, 310, 316, 499, 567, 3107, and 16088 to 16569.
These regions have previously been associated with NUMTs or
sequencing artifacts because of their location within homopolymeric
stretches. To improve data quality, sites with coverage below 250were
excluded before calculating burden scores for rare variants, resulting
in 16,015 mitochondrial DNA base positions used in the analysis. For
MToolBox72, a variant allele was identified by comparing mtDNA
sequence reads to the revised Cambridge Reference Sequence (rCRS)
at each mtDNA site74. MitoHPC uses a two-step variant calling process
to identify heteroplasmies, generating a consensus mitochondrial
sequence for each individual to improve read mapping and detection
accuracy73. A variant allele fraction (VAF) was defined as the ratio of
variant allele reads to the overall sequence reads observed at that
mtDNA site. To minimize false positives, a heteroplasmic variant was
determined using the 5%–95% threshold of VAF based on a previous
study7. For a mtDNA site j of individual i, the heteroplasmic variant,
denoted as Hij, was defined by the following indicator function. If the
VAF at amtDNA site exceeded the lower or upper bound, the indicator
function was assigned to a value of 0:

Hij = 1 VAFij
� �

=
1 if VAFij 2 0:05, 0:95½ �

0o:w:

�
ð1Þ

To investigate the association between heteroplasmy and DNA
methylation, we constructed two continuous variables to quantify
heteroplasmy burden: mitochondrial heteroplasmy count (MHC) and
the mitochondrial local constraint score sum (MSS)7,27. The MHC of
participant i was defined as the sum of the number of mtDNA het-
eroplasmic sites:

MHCi =
X
j

Hij ð2Þ

The MSS was based on the measure of the mitochondrial local
constraint (MLC) score that functionally characterizes a mtDNA allele.
Each mtDNA allele is assigned a MLC score between 0 and 1, and a
higher MLC score indicates more harmful biological consequences27.
TheMSSi was defined as the sumof theMLC scores of variant alleles at
all heteroplasmy sites in individual i:

MSSi =
X
j

mjHij ð3Þ

Thus, the MSS quantifies the potential functional influence of the
heteroplasmy burden for an individual.

Association of mtDNA heteroplasmy burden with DNA
methylation
We performed cohort- and race-specific association analyses between
mtDNA heteroplasmy burden scores (MHC and MSS) and DNA
methylation at CpG sites using linear regression for unrelated indivi-
duals and linear mixed-effects models for related individuals, model-
ing familial correlations as random effects where applicable. Our
analysis framework is as follows. In thefirst step, the nDNAmethylation
residuals were calculated by regressing the nDNA methylation values
of a CpG on age, self-reported sex, smoking score28, white blood cell
counts, batch variants (chip IDs and rows/columns), and genetic
principal components (PCs) to account for population stratification.
Themethylation residuals were thenmodeled as the outcome variable
with the mtDNA heteroplasmy burden as the explanatory variable,
adjusting for age, age squared, self-reported sex, smoking score, white
blood cell counts and the year of blood draw (representing the batch
variable formtDNAmeasurement)29. Significance was assessed by two-
sided t-tests in regression analyses.

To minimize the confounding effect of smoking7, we explored
different smoking variables in the regression analyses of methylation
residuals with heteroplasmy burden, including smoking status (i.e.,
never, former, and current smokers), smoking score, and the combi-
nation of smoking status and smoking score. The smoking score was
calculated from 183 CpGs using the EpiSmokEr R package28 to provide
a more objective assessment of a person’s smoking status and better
reflect smoking history compared to self-report (e.g., recall bias,
second-hand smoking ormissing data due to reluctance to report).We
found that the smoking score was able to capture the most smoking-
related signals, and hence, we used the smoking score in our primary
analysis.

In MESA, participants of Hispanic ethnicity were combined with
non-Hispanic White participants because previous findings indicate
that the genetic effects tend to be similar between these racial
groups75. We adjusted an index variable to represent racial groups in
the association analysis of the combined participants in MESA. We
calculated a genomic inflation factor (λGC) for each cohort- and race/
ethnicity-specific sample. In the White American participants of the
ARIC cohort, we further assessed λGC by performing a resampling
analysis, generating a null distribution through random shuffling of
participants’ outcome and predictor variables in theMHC analysis. We
compared beta estimates from models with and without adjustment
for genetic PCs in each cohort- and race/ethnicity-specific sample to
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assess the impact of population stratification on the association
analyses.

Meta-analysis of the association between mtDNA heteroplasmy
burden and DNA methylation
The inverse variance weighted random effects method was used to
combine results across cohorts of all participants as the primary ana-
lysis. We also conducted separate meta-analyses in African American
participants andWhite American participants as the secondary results.
We reported primary results for CpGs that were present on both the
Infinium HumanMethylation450 BeadChip array and the Methylatio-
nEPIC BeadChip array in the meta-analyses. We used FDR <0.05 in
meta-analysis to account for multiple testing. All subsequent analyses
were conducted with these CpGs.

Functional inference: identification of expression quantitative
trait methylation (eQTM)
To explore possible downstream consequences of heteroplasmy-
associated CpGs, we queried the eQTM database generated in the
FHS30. The eQTM analysis identifies CpG sites that display associations
with expression of nearby (cis-) or remote (trans-) genes. In FHS, the
eQTM resource was generated using DNA methylation and gene
transcript levels based on RNA sequencing (i.e., RNAseq) in 2,115 study
participants30. We focused on cis-eQTMs, which were gene transcripts
whose transcription start sites were within 1Mb of a CpG. The identi-
fied cis-eQTMs (i.e., nearby genes to the CpGs) were used for gene
enrichment analysis

Functional inference: genomic context enrichment analysis of
heteroplasmy-associated CpG sites
DNA methylation effects vary depending on the genomic location of
CpG sites9,10, such as in islands, shores, shelves, or open sea regions. To
investigate this, weusedChi-square test or Fisher’s ExactTest (with cell
count <5) to assess whether the distribution of heteroplasmy-
associated CpG sites differed from random expectation. We con-
ducted genomic context enrichment analyses for all heteroplasmy-
associated CpG sites (FDR <0.05), including those acting as eQTMs.
This analysis highlights biologically relevant regions that may warrant
further functional investigation.

Functional inference: gene set enrichment analysis
We used the DAVID32 (Database for Annotation, Visualization and
Integrated Discovery) web server for functional enrichment analysis
and functional annotation of genes mapped to heteroplasmy-
associated CpGs (FDR <0.05). DAVID offers a robust suite of func-
tional annotation tools aimed at decoding the biological significance
of gene sets32. In particular, DAVID obtains biological terms from Go
Ontology and pathways from resources, such as BioCarta76 and Kyoto
Encyclopedia of Genes and Genomes (KEGG)77. Statistically significant
pathways were reported at FDR <0.05.

Functional validation of correlation between nuclear methyla-
tion levels at specific CpG sites and variant allele fraction (VAF)
in COX3-mutants
Prioritize CpG sites: We selected five CpGs for functional validation
based on their interim meta-analysis p-values and high pyrosequen-
cing design scores ( > 0.8), which indicate suitability for reliable and
specific targeting with a pyrosequencing assay40. Additional selection
criteria included evidence of being cis-eQTMsor having associated cis-
SNPs (i.e., mQTLs). While these CpGs ranked highly in the interim
analysis, they may not remain among the most significant sites in the
final meta-analysis across all samples.

Generation of COX3-mutant cell lines via transfection of
HEK293T cells using transcription activator-like effectors (TALEs): To
investigate the functional relationship between nuclear CpG

methylation and VAF of a mitochondrial DNA variant allele fraction,
cell lines harboring a nonsense mutation in the mitochondrial
cyclooxygenase-3 (MT-COX3) gene at position mt.9979 were gener-
ated using an FusX TALE (transcription activator-like effector) Based
Editor (FusXTBE) system in HEK293T cells (ATCC CRL-3216), which
employs plasmids constructed following standardprotocolsdescribed
below38,39. The edited mitochondrial loci were verified by Sanger
sequencing. Briefly, left- and right-TALE arms targeting for MT-COX3
mt.9979 site were assembled and cloned into the FusXTBE-G1397-
DddAtox_Cterm and FusXTBE-G1397-DddAtox_Nterm plasmids (pro-
vided by the Ekker Lab), using GoldenGate Assembly38. The assembled
TALE plasmids were transformed into NEB Stable Competent E. coli
(NEB C3040H) according to the manufacturer instructions and cul-
tured overnight at 30 °C on LB-kanamycin plates containing X-Gal and
IPTG. White-colored colonies were picked and further cultured over-
night in liquid LB at 30 °C. PlasmidDNAwas extractedusing theQiagen
Spin Miniprep Kit (Qiagen 27106). Quality control checks were per-
formed to confirm correct TALE assembly38.

Generate mtDNA heteroplasmies: 200,000 human embryonic
kidney (HEK293T) cells were seeded in separate wells of a 6-well
culture plate and allowed to adhere for 24 h before being trans-
fected with 600 ng of each COX3 FusXTALE plasmids using
Lipofectamine 3000 (Invitrogen L3000001) as per the manu-
facturer instructions. Transfected cells were then cultured for
72 h before clonal sorting using propidium iodide. Total DNA was
isolated from each clonal cell lines after 1–2 weeks of recovery
growth using an adjusted protocol for the Quick extract DNA
extraction Solution (Lucigen QE09050). Cells were then har-
vested by centrifugation at 500 ng, resuspended in 200uL of
Extraction Solution, and then incubated on a thermocycler for
15 min at 68 °C and then 10min at 95 °C to complete the isolation.
DNA samples were then stored at -20 °C until needed.

PCR and Sanger-Based Evaluation of mt.9979 G > A Mutation
in MT-COX3: VAFs of the nonsense mutation at position mt.9979
in MT-COX3 gene were assessed via PCR using custom-designed
PCR primers (Forward: 5’-AGGCATCACCCCGCTAAATC-3’;
Reverse: 5’-GGCCAGACTTAGGGCTAGGA-3’) and AmpliTaq Gold
360 PCR Master Mix (Applied Biosystems 4398886) with the
annealing temperature set to 55 °C, and Sanger Sequencing of the
targeted MT-COX3 region. Mutant cell lines were either subject to
a single round of editing and cloning (Initial), resorted and grown
from previously edited clones (Re-Sort), or were subject to a 2nd
round of editing/sorting to achieve higher VAF (Re-Edit); editing
strategy for each cell line is annotated in Tables 1 and 2.
Sequencing data was analyzed using the EditR software41 to
determine the exact G > A editing percentage at mt.9979 within
each line. Wild-type (WT), negative control (WT cells which were
treated with transfection reagents, but no plasmids) and mutant
cell lines are listed in Tables 1 and 2 with their associated VAFs.

Determination of CpG methylation via pyrosequencing and sta-
tistical analysis: CpG methylation was determined using
pyrosequencing40. Briefly pyrosequencing is a sequencing-by-
synthesis method which quantitatively monitors the incorporation of
nucleotides by measuring light released during enzymatic conversion
of released pyrophosphate. CpG methylation ratios are determined,
following bisulfite treatment and PCR, from the ratio of T and C
nucleotides at a specific site. Samples were sequenced at the Genetic
Resources Core Facility at the Johns Hopkins University School of
Medicine [RRID:SCR_018669]. Pearson’s Correlation Coefficients
(PCCs) and p-values were calculated using Python 3 and the SciPy
statistical functions package78.

Linking heteroplasmy-associated CpGs to EWAS Catalog
For functional inference, we mapped heteroplasmy-associated CpGs
(FDR-adjusted p < 0.05) to disease traits by querying the MRC-IEU
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EWAS Catalog42. We reported diseases/traits for CpGs with p < 1 × 10-7

in studies with sample sizes exceeding 5,000 from theMRC-IEU EWAS
Catalog42.

Identification of DNA methylation quantitative trait loci
(mQTLs) and linking CpGs to human traits viamQTLs andGWAS
Catalog
To explore the genetic basis of heteroplasmy-associated CpGs, we
queried the mQTL database generated in the 4126 FHS participants
who had both WGS and DNA methylation data45. The mQTL analysis
identifies single nucleotide polymorphisms (SNPs) that are associated
with the methylation of neighboring (cis-) or distant (trans-) CpGs. We
focused on cis-mQTLs, i.e., SNPs residing within 1Mb ( ± 1Mb) from a
CpG site45. We examined traits that showed associations with the sig-
nificant cis-mQTLs (i.e., SNPs) using the NHGRI-EBI GWAS Catalog46.
We considered SNPs that showed significant associations (p < 5 × 10-8)
with traits in studies with more than 5000 samples in discovery and
replication analyses, or studies with more than 10,000 participants
with only discovery analyses. mQTLs were used in Mendelian rando-
mization (MR)47 to infer causal association between CpGs and traits
related to CVD risk.

Mendelian randomization (MR) analysis for CVD-related traits
and all-cause mortality
To investigate whether differential methylation at heteroplasmy-
associated CpGs causally influences CVD risk and mortality, we per-
formed two-sample MR47 between exposures (heteroplasmy-asso-
ciated CpGs) and a range of CVD and mortality-related traits as
outcomes (myocardial infarction, body mass index, obesity, systolic
blood pressure, diastolic blood pressure, hypertension, fasting glu-
cose, fasting insulin, diabetes, total cholesterol, HDL cholesterol, LDL
cholesterol, triglycerides, and all-cause mortality). Our in-house
developed analytical pipeline, MR-Seek was used for MR analysis79.
Full summary statistics for 516 GWAS datasets were downloaded from
NHGRI-EBI. Cis-mQTL variants45 were used as the instrumental vari-
ables (IVs) in the MR analyses. We selected independent cis-mQTLs
(linkage equilibrium, r2 < 0.001)47, retaining only the cis-mQTL variant
with the lowest SNP-CpG p-value in each LD block. Inverse-variance
weighted (IVW) MR tests were applied to combine results from mul-
tiple IVs, and used the MR-Egger method to assess horizontal pleio-
tropic effects47. Results with a significance level of p <0.05 for
heterogeneity were excluded. For CpG with only one IV, the Wald MR
method was used to assess significance. Significance levels of MR
results were determined based on the Benjamini-Hochberg corrected
FDR <0.05. The most significant result was presented for each trait
(outcome). Significance was assessed by two-sided Wald z-tests in MR
analyses.

Outcomedefinitions for association analysis with heteroplasmy-
associated CpG scores
We investigated whether heteroplasmy-associated CpGs were asso-
ciated with all-cause mortality and CVD, given that mtDNA hetero-
plasmyhas been associatedwith all-causemortality7 andhypertension,
a major risk factor for CVD80. All-cause mortality includes deaths from
any cause. Incident CVD events included myocardial infarction
(recognizedor unrecognizedor by autopsy), anginapectoris, coronary
insufficiency, congestive heart failure, cerebrovascular accident,
atherothrombotic infarction of brain, and death due to these
conditions.

Selection of CpGs for predicting all-cause mortality and CVD
Given the correlation among many CpGs, we selected heteroplasmy-
associated CpGs for predicting all-cause mortality and CVD using the
elastic-net method with regularized Cox regression from the glmnet R
package81,82. The elastic-net method combines Ridge and Lasso

penalties, allowing flexible regularization for feature selection and
coefficient shrinkage despite covariate multicollinearity. We first
obtained CpG residuals by regressing CpGs (i.e., those associated to
MHC andMSS) on age, self-reported sex, and smoking scores. The FHS
cohort was used as the training set, and we selected CpGs to predict
CVD and all-cause mortality using an alpha of 0.5 and five-fold cross-
validation to determine the lambda value that minimizes the mean
cross-validated error81,82.

Construction of CpG-scores for association analysis with out-
come variables
The selected CpGs were used to construct the heteroplasmy-
associated CpG scores for predicting CVD or all-cause mortality. For
individual j, the score Sj was constructed as a weighted sum of
methylation levels across heteroplasmy-associated CpG sites:

Sj =
X

i
βi � rij ð4Þ

where βi is the estimated effect size of the ith CpG obtained from the
regularized regression, rij is the residuals of CpG i for individual j. The
scores were standardized to have ameanof 0 and a standard deviation
(SD) of 1, referred to as CpG-standardized scores. Separate CpG-
standardized scores were obtained for the CpGs associated with MHC
and MSS.

Association analyses with all-cause mortality and CVD
The Cox proportional hazards model was fitted to evaluate the asso-
ciations of all-cause mortality and CVD with the CpG-standardized
scores for both MHC and MSS. The base model includes age and self-
reported sex as covariates. The second model additionally accounted
for smoking status (never, former, and current). Smoking status was
used instead of smoking score because the former has traditionally
been included in association analyses of all-cause mortality or CVD as
the outcome. Additionally, the smoking score variable was not avail-
able in the replication cohort. Themulti-covariatemodel included age,
self-reported sex, smoking status, BMI, systolic blood pressure (SBP),
use of antihypertensive medication, total cholesterol, high-density
cholesterol, diabetes, and use of lipid-lowering medication. We con-
ducted race- and cohort-specific association analyses in JHS andMESA.
Since FHS was used as the training cohort to select CpGs, a meta-
analysis was performed using the random effects inverse variance
method, excluding FHS for internal validation. Due to the small num-
ber of events in CARDIA and WHI, these cohorts were excluded from
the testing phase. Significance was assessed by two-sided Wald z-tests
in regression analyses.

External replication of CpG-score association with all-cause
mortality and CVD
The Health and Retirement Study (HRS), established in 1992, recruits
participants aged 50 andolder, alongwith their spouses, to investigate
factors related to aging83. HRS was utilized as an independent repli-
cation cohort to evaluate the association between the CpG-
standardized scores and all-cause mortality as well as CVD. In HRS,
DNAm was measured using Illumina HumanMethylationEPIC Bead-
Chip (Supplementary Information). Race/ethnicity-specific association
analyses were conducted in self-reported White American (n = 2506),
African American (n = 612), and American Hispanic (n = 532) partici-
pants. The proportional hazards assumption was examined and found
to be met in all analyses.

URLs
DAVID: https://david.ncifcrf.gov/
GWAS Catalog: https://www.ebi.ac.uk/gwas/
GWAS summary data: https://gwas.mrcieu.ac.uk/
The FHS QTL database: https://ftp.ncbi.nlm.nih.gov/eqtl/original_

submissions/phs002938_MolecularQTLs/
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MitoHPC: https://github.com/ArkingLab/MitoHPC
MRC-IEU EWAS Catalog: http://www.ewascatalog.org
OpenOmicsmr-seek: https://github.com/OpenOmics/mr-seek.git

Statistics and reproducibility
This study included both observational and experimental compo-
nents. For the observational analyses, DNA methylation and hetero-
plasmy associations were examined in a cross-sectional design, while
heteroplasmy-associated CpG score–outcome associations were
assessed longitudinally. For the functional analyses, cell line experi-
ments were conducted. Statistical analyses were primarily based on
regression models, with significance assessed using two-sided t-tests
or two-sided Wald z-tests. Multiple testing correction was performed
primarily using the Benjamini-Hochberg false discovery rate (FDR)
method and the Bonferroni correction method. To evaluate reprodu-
cibility, we performed meta-analyses across multiple cohorts for DNA
methylation and heteroplasmy associations. We conducted indepen-
dent replication in the Health and Retirement Study (HRS) for CpG
score–outcome associations. No statistical method was used to pre-
determine sample size. All available cohort participants with complete
outcomeand predictor datawere included; participantsmissing either
variable were excluded. The experiments were not randomized, and
the Investigators were not blinded to allocation during experiments
and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The whole genome sequencing (WGS), DNA methylation, and pheno-
typic data from the Atherosclerosis Risk in Communities study (ARIC),
Coronary Artery Risk Development in Young Adults Study (CARDIA),
Framingham Heart Study (FHS), Genetic Epidemiology Network of
Arteriopathy (GENOA), the JacksonHeart Study (JHS),Multi-Ethnic Study
of Atherosclerosis Study (MESA) Cohort (accession number:
phs001416.v1.p1), and the Women’s Health Initiative (WHI) used for
association analysis of DNA methylation and mitochondrial measure-
ments have been deposited in the dbGaP database under accession
codes, phs001211.v5.p4 (ARIC) [https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs001211.v5.p4], phs001612.v3.p3
(CARDIA) [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study_id=phs001612.v3.p3], phs000007.v32.p13 (FHS) [https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs000007.v34.p15], phs001345.v3.p1 (GENOA) [https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001345.v3.p1],
phs000964 (JHS) [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000964.v5.p1], and phs001237 (WHI) [https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs001237.v3.p1]. For external replication, the DNA methylation and
phenotypic data from Health and Retirement Study (HRS) (accession:
phs000428.v2.p2; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000428.v2.p2). The WGS, DNA methylation,
and phenotypic data from all cohorts used in this study are available via
the dbGaP website (see above) under controlled (restricted) access to
ensure participant confidentiality and privacy. Applicants submit a
dbGaP Data Access Request that typically includes: (i) a local IRB
approval (expedited or full) or, where permitted by the study’s Data Use
Limitations (DULs), an institutional exemption/not–human-subjects
determination; (ii) a completed Data Use Certification (DUC) signed by
the institution’s signing official; and (iii) a brief project description.
Access for ARIC, CARDIA, FHS, GENOA, JHS, MESA, WHI, and HRS is
provided through dbGaP in accordance with their study-specific DULs.
FHS requires expedited or full IRB review (exempt determinations are
not accepted), and HRS additionally requires an HRS Cross-Reference

File request and Genetic Data Access Use Agreement following dbGaP
authorization. Review by the relevant Data Access Committee typically
takes 2–4 weeks; the overall timeline, including IRB and institutional
signatures, is generally 3–12 weeks. The summary data generated in this
study with p<0.01 are available in the Supplementary Information/Data
accompanying this paper. All source data for generating Figures
(Figs. 2A, B, 3A–D, 4A–C, 5A, and 5B; Supplementary Figs. 1-22) are
available in figshare84 https://doi.org/10.6084/m9.figshare.30095950.
The underlying raw numerical values are included in the Supplementary
Data files.

Code availability
Codes and data for generating Figs. 2A, B, 3A–D, 4A–C, 5A and B;
Supplementary Figs. 1-22 are available in figshare84 https://doi.org/10.
6084/m9.figshare.30095950.
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