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Water-resistant redox-active metal–organic
framework

Ryota Akai 1, Showa Kitajima1, Kohei Okubo 1, Nobuyuki Serizawa 2,
Hirotomo Nishihara 1,3, Hitoshi Kasai1 & Kouki Oka 1,4,5

Metal–organic frameworks (MOFs) comprise coordination bonds and have
attracted attention for electrochemical applications. However, MOFs are
usually structurally weak in aqueous solutions, especially in acidic aqueous
solutions, owing to their coordination bonds, making their application in
charge-storage devices challenging. In the current work, we demonstrate a
redox-active MOF (RAMOF) that is structurally stable and achieves reversible
charge storage with almost the theoretical capacity even in acidic aqueous
electrolytes owing to its strong Zr–O bonds and the large coordination num-
ber. In addition, the RAMOF exhibits high durability ( > 98% after 100 cycles)
and high Coulombic efficiency (99.9%) owing to its high crystallinity and
proton conductivity. An aqueous MOF–air rechargeable battery is fabricated
and exhibits high durability and high Coulombic efficiency. Furthermore, the
material recycling of the RAMOF based on its coordination bonds is demon-
strated. Therefore, we conceptually prove the application and advantages of
RAMOFs in aqueous environments.

Metal–organic frameworks (MOFs) are crystalline porous materials,
wherein pores of different dimensions and sizes are constructed via
coordination bonds between metal ions and organic linkers1–3. As the
environments and functions of the pores, permeable for electrolytes,
canbe facilely tunedby changing the components,metals, andorganic
linkers, MOFs have attracted attention in various applications, such as
electrode-active materials4–7, gas adsorption materials2,8,9, catalysts4,10,
and sensors1,11,12. However, since acidic protons can cleave coordina-
tion bonds in MOFs by promoting hydrolysis of the metal-organic
linker bonds13, MOFs are usually structurally weak in aqueous solu-
tions, especially in acidic aqueous solutions, making their application
in aqueous charge-storage devices challenging14,15.

Redox-active MOFs (RAMOFs), which comprise redox-active sites
in their structures, exhibit high capacity retention in organic electro-
lytes owing to their structural stability in organic electrolytes, and
thereforehave been applied as electrode-activematerials formetal-ion
batteries4,5,16. However, as mentioned above, most RAMOFs undergo

structural collapse in aqueous electrolytes, especially in acidic aqu-
eous electrolytes, owing to which their application as electrode-active
materials for aqueous batteries is limited to batteries except for acidic
aqueous electrolytes17–22. In addition, although RAMOFs have a robust
three-dimensional structure and pores for effective electrolyte per-
meation, no RAMOF has been reported to achieve high values for all
the three criteria required for application as a charge-storage material
in aqueous electrolytes: full capacity (close to the theoretical capacity
based on the molecular weight), high durability (capacity retention
close to 100%), and high Coulombic efficiency (discharge capacity/
charge capacity close to 100%).

Meanwhile, metal–air rechargeable batteries, which use metals
(e.g., aluminum and zinc) as the anode-active material, oxygen as the
cathode-active material, and basic aqueous solutions as the electro-
lyte, have been developed and are expected to achieve high energy
densities ascribed to resource-abundant oxygen with high
capacity23–25. However, dendrites usually precipitate on the surfaces of
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the metal anodes during repeated charging and discharging, which
degrades the cyclability of the batteries24. In addition, highly con-
centrated basic aqueous electrolytes (6–7M KOH aqueous solution)
are often used for efficient ionic conduction, which causes carbonate
clogging owing to reactions of the electrolyte with atmospheric CO2,
leading to lower cyclability of the batteries26. To solve these problems,
organic–air rechargeable batteries that use organic redox-active
materials as the anode-active material and acidic aqueous solutions
as the electrolyte have been demonstrated27–32. These batteries inher-
ently avoided issues such as dendrite precipitation and carbonate
clogging that were commonly observed in metal–air rechargeable
batteries27–32. However, despite these advantages, organic redox-active
materials often suffer from gradual dissolution or degradation in
acidic aqueous electrolytes during repeated cycling, which still limits
their cyclability33. In other words, an anode-active material that is able
to store charge with high durability (capacity retention close to 100%)
even in such electrolytes is highly required.

In the current work, we focus onUiO-66, which has been reported
to be a crystalline porousmaterial, awater-resistantMOF, especially an
acid-resistant MOF, owing to its strong Zr–O bonds14,15,34 and the large
coordination number35. By introducing redox-active p-hydroquinone
units (redox potential: approximately +0.1 V vs. Ag/AgCl27,36), in place
of benzene in the organic linker of the acid-resistant MOF, we prepare
the acid-resistant RAMOF UiO-66-(OH)2, which achieves reversible
charge storage with an ideal capacity close to the theoretical capacity
based on the molecular weight even in acidic aqueous electrolytes,
owing to its optimized particle size, high porosity, and proton con-
ductivity. In addition, the RAMOF exhibits high durability and high
Coulombic efficiency owing to its high crystallinity and proton con-
ductivity. Then, by using the RAMOF as an anode-active material, an
aqueous MOF–air rechargeable battery is fabricated. In addition, after
use of the battery, we recycle the RAMOF through a simple treatment
with an aqueous carbonate solution because the coordination bonds
of the RAMOF exhibit instability in aqueous carbonate solutions while
retaining robustness in acidic aqueous solutions.

Results and discussion
Preparation and characterization of UiO-66-(OH)2
As shown in Fig. 1a, UiO-66-(OH)2 with 1,4-dihydroxybenzene27,33 as an
organic redox-active linker was prepared with reference to a previous
work37. Since electrode-active materials with low conductivity could
only achieve reversible charge storage with an ideal capacity close to
theoretical capacity up to 100nm from the conductive surface38, as
shown in Supplementary Table 1 Entry 1 and 2, UiO-66-(OH)2with small
particle size (average particle size: 70 ± 20 nm) was prepared by
decreasing the precursors’ concentration and reaction time in the
microwave. As shown in Supplementary Fig. 1, smaller particle sizes
were obtained at lower precursors’ concentrations. This trend
demonstrated a positive correlation between precursors’ concentra-
tions and particle sizes under otherwise identical reaction conditions.
In fact, UiO-66-(OH)2 with a large particle size prepared by long reac-
tion time, shown in Supplementary Figs. 2 and3 andTable 1 Entry 3, did
not achieve an ideal capacity close to the theoretical capacity (Sup-
plementary Fig. 4).

In this section, we characterized UiO-66-(OH)2 as a MOF (Sup-
plementary Table 1 Entry 2). As shown in Fig. 1b, c, the
Brunauer–Emmett–Teller (BET) surface area and the pore size of UiO-
66-(OH)2 were evaluated based on N2 gas adsorption/desorption at
77 K, andwas found to be 1075m2 g−1 and0.62 nm, respectively, similar
to previously reported values39,40, indicating that the UiO-66-(OH)2 in
the current work also had a high porosity and specific surface area.
Based on powder X-ray diffraction (PXRD) analysis, as shown in Fig. 1d
(blue line), UiO-66-(OH)2 was confirmed to be isostructural with the
previously reported UiO-6641. As shown in Fig. 1d (red line), the crys-
tallinity of UiO-66-(OH)2 was maintained even after immersion in a

0.05M H2SO4 aqueous solution for 24 h; this was presumably because
of the Zr–O bonds with high bond energy of 766.1 ± 10.6 kJmol−114,15,34

and the large coordination number (12 organic linkers per Zr cluster,
which was the largest value among MOFs35). In order to support that
strong Zr–O bonds were formed, we also synthesized UiO-66-(OH)2
under harsher conditions (higher temperature, longer reaction time,
and higher precursors’ concentration, where the details are provided
in the caption of Supplementary Fig. 6) than those previously
reported37, and measured Fourier-transform infrared (FT-IR) spectra
(Supplementary Fig. 6). As shown in Supplementary Fig. 6, the peak
positions derived fromO–Zr–OandZr–(OC) inUiO-66-(OH)2 prepared
under different reaction conditions were identical (662 cm−142 and
575 cm−139, respectively), indicating that strong Zr–O bonds were suc-
cessfully formed, even under the reaction conditions (Experimental
Section 2.1), to resist acidic aqueous solutions. As shown in Fig. 1e and
Supplementary Fig. 7, the organic linkers of UiO-66-(OH)2 are usually
readily missing39. Therefore, the percentage of missing organic linkers
in UiO-66-(OH)2 was evaluated based on thermogravimetric analysis
(the details are described in the Experimental Section 2.3)43–45. The
compound was found to have 5.91 organic linkers per Zr cluster out of
a theoretical organic linker number of 6 per Zr cluster.

Electrochemical properties of UiO-66-(OH)2
Then, we characterized the electrochemical properties of UiO-66-
(OH)2. In the first cycle, the potential was swept from +0.50 V vs. Ag/
AgCl to −0.20 V vs. Ag/AgCl and then swept back to +0.50V vs. Ag/
AgCl. As shown in Supplementary Fig. 8, in the potential region, where
the redox reaction between p-hydroquinone and p-benzoquinone was
often observed46–48, the UiO-66-(OH)2/carbon/polyvinylidene difluor-
ide (PVdF) composite electrode exhibited no redox capability. How-
ever, as shown in Fig. 2a, upon sweeping the potential in the positive
direction from +0.50V vs. Ag/AgCl to +0.90 V vs. Ag/AgCl, an irre-
versible oxidation peak appeared at around +0.7 V vs. Ag/AgCl, and a
redox peak emerged in the range of −0.1 – +0.4 V vs. Ag/AgCl. In order
to investigate the details of the charge storage mechanism of UiO-66-
(OH)2, as shown in Supplementary Figs. 9 and 10, weperformed ex situ
and in situ FT-IR analyses. By focusing on the initial state of the
structure of UiO-66-(OH)2, as shown in Supplementary Fig. 11 and
Supplementary Table 5, we found that the density functional theory
(DFT)-optimized structure of the cluster of UiO-66-(OH)2 exhibited an
O···O distance of 2.48 Å49, suggesting that the initial state of the
structure of UiO-66-(OH)2 had hydrogen bonds between the protons
of C–(OH) of p-hydroquinone and carboxy groups. As shown in Fig. 2a
andSupplementary Fig. 10a, an irreversible oxidationpeak appeared at
around +0.7 V vs. Ag/AgCl upon sweeping the potential in the positive
direction from +0.50V to +0.90V vs. Ag/AgCl. As shown in Supple-
mentary Fig. 9a, b, in the ex situ FT-IR spectrum after applying the
potential at +0.90V vs. Ag/AgCl, a new peak appeared at 1638 cm−1,
derived from C=O50, which indicated that the new peak was attributed
to the formation ofC=Oby the oxidation (Supplementary Fig. 9c). This
attribution was further supported by the finding that the oxidation
potential shift to the positive direction was presumably caused by
hydrogen-bond formation, as reported in previous works51,52. In addi-
tion, as shown in Supplementary Fig. 10a and b, the peak intensity of
1235 cm−1 at the initial state of the red solid-line spectrum, attributed to
C–(OH) of p-hydroquinone53–55, decreased upon oxidation, resulting in
the purple solid-line spectrum, thereby suggesting the oxidation of
hydrogen-bonded C–(OH) of p-hydroquinone. From the above results,
as shown in Supplementary Fig. 10c, the oxidation peak at around
+0.7 V vs. Ag/AgClwas attributed to theoxidationof hydrogen-bonded
C–(OH) of p-hydroquinone to C=O of p-benzoquinone. After that, as
shown in Supplementary Fig. 10a, upon sweeping the potential from
+0.90 V to −0.20V vs. Ag/AgCl, we observed a reduction peak at
around0.0 V vs.Ag/AgCl and an increaseof thepeak intensity from the
purple solid- to the blue solid-line spectra (Supplementary Fig. 10b). As
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shown in Supplementary Fig. 12 and Supplementary Table 6, the
molecular electrostatic potential (MESP)map suggested that C=Oof p-
benzoquinone in the oxidation state of UiO-66-(OH)2 would be the
reduction site for proton storage owing to the strongly negative MESP
value of the oxygen atoms in p-benzoquinone56,57. These results indi-
cated that the reduction peak around 0.0V vs. Ag/AgCl (Supplemen-
tary Fig. 10a) was attributed to the reduction of C=O of p-
benzoquinone toC–(OH) ofp-hydroquinone (Supplementary Fig. 10c).
After that, upon sweeping thepotential from−0.20V to +0.90Vvs.Ag/
AgCl (SupplementaryFig. 10a), as shown in SupplementaryFig. 10b,we

observed two kinds of oxidation peaks at around +0.3 V (polarized)
and +0.7 V vs. Ag/AgCl, and observed a decrease in peak intensity from
the blue solid- via red dotted- to purple dotted-line spectra. Based on
these peak intensity changes (Supplementary Fig. 10b and c) and
previous literature (redox reactions of non-hydrogen-bonded p-
hydroquinone47,48), the oxidation peaks around +0.3 V and +0.7 V vs.
Ag/AgCl were attributed to non-hydrogen-bonded and hydrogen-
bonded C–(OH) of p-hydroquinone, respectively. From the above
analyses, as shown in Fig. 2a, the oxidation peak at around +0.7 V vs.
Ag/AgCl was attributed to the oxidation of hydrogen-bonded C–(OH)

Fig. 1 | Preparation and characterization of UiO-66-(OH)2. a Preparation and
scanning electron microscopy (SEM) image of UiO-66-(OH)2 (scale bar: 100nm).
bN2 adsorption/desorption isothermsofUiO-66-(OH)2 at 77 K.The crystallinitywas
maintained after N2 adsorption (Supplementary Fig. 5). c Pore size distribution of
UiO-66-(OH)2 (Vp: pore volume,W: pore width). d Powder X-ray diffraction (PXRD)
patterns of UiO-66-(OH)2 (blue), after immersion in a 0.05M H2SO4 aqueous

solution for 24 h (red), and simulation of UiO-66 (black). e Thermogravimetric
analysis of UiO-66-(OH)2 under air. UiO-66-(OH)2 exhibited three-step weight loss:
the first step was caused by the loss of absorbed water from the crystal structure,
the second stepwas caused by the dehydration of the Zr clusters, and the third step
was caused by the loss of the organic linker (2,5-dihydroxyterephthalic acid)43–45.
Source data are provided as a Source Data file.
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ofp-hydroquinone (Supplementary Fig. 10c), and the redoxpeak in the
range of −0.1 – +0.4 V vs. Ag/AgCl was attributed to the redox reaction
of non-hydrogen-bonded C–(OH) of p-hydroquinone (Supplementary
Fig. 10c).

As shown in Fig. 2b, the proton conductivity of the pelletized UiO-
66-(OH)2 was measured by conducting electrochemical impedance
spectroscopy (EIS), and the proton conductivity was calculated based
on a fitting analysis58 assuming an equivalent circuit (Supplementary

Fig. 13 and Supplementary Table 2). As shown in the flattened semi-
circles in Fig. 2b, dielectric relaxation was observed in the high fre-
quency range, and the proton conductivity of UiO-66-(OH)2 was
2.18 × 10−6 S cm−1 under 95% relative humidity (RH) at 30 °C. As shown
in Supplementary Fig. 14, the direct current (DC) electrical con-
ductivity calculated fromDC resistancemeasurement was 3.81 × 10−8 S
cm−1, which was significantly lower than 2.18 × 10−6 S cm−1, supporting
2.18 × 10−6 S cm−1 as the proton conductivity of UiO-66-(OH)2 under

Fig. 2 | Electrochemical properties of UiO-66-(OH)2. a Cyclic voltammogram of
the UiO-66-(OH)2/carbon/PVdF composite electrode in a 0.05M H2SO4 aqueous
solution under Ar atmosphere at the scan rate of 10mV s−1. As shown in Fig. 2a, a
polarization was observed. The previous work reported that the semiquinone state
is stabilized at pH < 1, according to DFT calculations, leading to two one-electron
oxidation steps rather than a single two-electron step46. In addition, since the
conversionof quinone in its neutral state to quinone radical anionwas unfavorable,
the reduction proceeded via the protonated intermediate46. These factors con-
tributed to the polarization observed in the oxidation process. b Cole-Cole plot of
UiO-66-(OH)2. Impedance spectrum of the disk-shaped pellet under 95% RH at

30 °C (Z’: real part, Z”: imaginary part). The flattened semicircles represented the
bulk and grain boundary resistances. The crystallinity was maintained even after
impedancemeasurements (Supplementary Fig. 16). c Charging (black)/discharging
(red) curves of half-cell using the UiO-66-(OH)2/GMS/PVdF composite electrode at
5 C. Inset: The electrode cycle test (42 C). At 42C, the UiO-66-(OH)2/GMS/PVdF
composite electrode achieved a discharge capacity of more than 90% of the the-
oretical capacity based on the molecular weight of UiO-66-(OH)2. Therefore, we
performed a cycling test at 42C. d Rate capability of the UiO-66-(OH)2/GMS/PVdF
composite electrode (5, 10, 15, 20, 30, and 45C). Source data are provided as a
Source Data file.
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95% RH at 30 °C. The Arrhenius plot in Supplementary Fig. 15 gave an
activation energy (Ea) of 2.02 eV ( > 0.4 eV59), indicating that the proton
conduction occurred via the vehicle mechanism. As shown in Fig. 1e,
since UiO-66-(OH)2 readily absorbed water molecules60, protons
should be transferred to the interior of the UiO-66-(OH)2 crystals by
the vehicle mechanism, owing to which high rate capabilities as an
electrode-active material were expected.

Most organic redox materials have low conductivities; therefore,
conductive additives are usually required to enable their use as organic
electrode-active materials28,30,61,62. Accordingly, as shown in Supple-
mentary Figs. 17a and b, two common conductive additives for organic
electrode-active materials, Super P Conductive Carbon Black (Super
P)63 and single-walled carbon nanotubes (SWNTs)64, were tested by
fabricating UiO-66-(OH)2/carbon/PVdF composite electrodes (the
details are given in the Experimental Section 2.4). Super P had a small
particle size ( < 40nm), whichmade it difficult to disperse and support
UiO-66-(OH)2 on a conducting surface. Meanwhile, the fibrous SWNTs
got easily entangled and bundled65, which also made it difficult to
disperse UiO-66-(OH)2, as it was insoluble in organic solvents. As
shown in Supplementary Fig. 18 (blue and black lines), the UiO-66-
(OH)2/Super P/PVdF composite electrode exhibited a discharge capa-
city of 17.9mAh g−1 (10% of the theoretical capacity) and the UiO-66-
(OH)2/SWNT/PVdF composite electrode exhibited a discharge capa-
city of 96.1mAh g−1 (56% of the theoretical capacity); that is, both
composite electrodes were unable to achieve theoretical capacity
based on the molecular weight of UiO-66-(OH)2. Then, we evaluated
the redox capability of the UiO-66-(OH)2/graphene mesosponge
(GMS)/PVdF composite electrode in a 0.05MH2SO4 aqueous solution.
GMS is a three-dimensional graphene material with high flexibility,
porosity, and conductivity66,67. As shown in Supplementary Fig. 17c,
UiO-66-(OH)2 was well-dispersed on GMS. As shown in Supplementary
Fig. 18 red, the UiO-66-(OH)2/GMS/PVdF composite electrode exhib-
ited a superior redox capability to those of Super P and SWNTs. GMS
has rarely been used as a conductive additive for RAMOFs, and was
employed in the current work to enhance their electrical conductivity.

As shown in the charge/discharge curves in Fig. 2c, the UiO-66-
(OH)2/GMS/PVdF composite electrode exhibited a plateau potential of
around +0.15 V vs. Ag/AgCl and a discharge capacity of 171.2mAh g−1,
which was close to the theoretical capacity (171.9mAhg−1) estimated
from the molecular weight of UiO-66-(OH)2. The electrolyte easily
soaked into UiO-66-(OH)2 owing to its high porosity (BET surface area:
1075 m2 g−1, pore size: 0.62 nm) and proton conductivity (2.18×10−6 S
cm−1 under 95% RH at 30 °C), and GMS formed a good adhesive
interfacewith UiO-66-(OH)2 owing to its small particle size ( < 100 nm).
Therefore, almost all the organic linkers of UiO-66-(OH)2 stored pro-
tons and electrons. Furthermore, the Coulombic efficiency achieved
99.9%, which indicated that protons and electrons were reversibly
stored owing to the high crystallinity and proton conductivity of UiO-
66-(OH)2. As shown in Fig. 2c inset, the UiO-66-(OH)2/GMS/PVdF
composite electrode exhibited a high cyclability of more than 98% of
its initial capacity even after 100 cycles. The PXRD in Supplementary
Fig. 19 confirmed that the structure of UiO-66-(OH)2 was maintained
owing to its strong Zr–O bonds and the large coordination number
even after 100 cycles in the half-cell, showing its high structural sta-
bility. As shown in Supplementary Fig. 20, a long-term cycle test of the
electrode was also performed. The UiO-66-(OH)2/GMS/PVdF compo-
site electrode retained over 95% of its initial capacity even after 1000
cycles, demonstrating its high cyclability. In addition, as shown in
Fig. 2d, the UiO-66-(OH)2/GMS/PVdF composite electrode exhibited
high-rate capabilities based on the proton conductivity (2.18 × 10−6 S
cm−1 under 95% RH at 30 °C) of UiO-66-(OH)2, achieving a discharge
capacity of 154.8mAhg−1 (90%of the theoretical capacity) even at 45 C.
Therefore, although MOFs usually decompose in aqueous solutions,
particularly in acidic aqueous solutions, we have demonstrated a
RAMOF that was structurally stable and achieved reversible charge

storage of 171.4mAh g−1 (close to the theoretical capacity based on the
molecular weight) even in acidic aqueous electrolytes, while also
exhibiting high durability ( > 98% after 100 cycles), and high Cou-
lombic efficiency (99.9%) owing to its high crystallinity and proton
conductivity.

Aqueous MOF–air rechargeable batteries
As shown in Fig. 3a, b, an aqueous MOF–air rechargeable battery with
the UiO-66-(OH)2/GMS/PVdF composite electrode as the anode, Pt/C
as the cathode, and a0.05MH2SO4 aqueous solution as the electrolyte
was fabricated. It should be noted that, until now, RAMOFs have been
applied only as cathode-active materials in aqueous rechargeable
batteries, whereas the current work demonstrated their use as an
anode-activematerial (Supplementary Table 3).As shown inFig. 3c, the
battery exhibited charging/discharging curves of a Coulombic effi-
ciency of 99.9% and a plateau discharging voltage of around +0.56 V,
demonstrating reversible proton and electron storage capability. As
shown in Fig. 3c, the discharge capacity of the battery was
171.8mAhg−1, which corresponded to the theoretical capacity
(171.9mAhg−1), and therefore almost all organic linker sites reversibly
stored protons and electrons (Coulombic efficiency was almost
99.9%). As shown in Fig. 3c inset, the aqueous MOF–air rechargeable
battery exhibited a high cyclability of 99% of its initial capacity even
after 100 cycles. The PXRD and ex situ FT-IR spectra in Supplementary
Figs. 19 and 21 confirmed that the structure and composition of UiO-
66-(OH)2 were maintained owing to its strong Zr–O bonds and the
large coordination number even after 100 cycles of the battery, sup-
porting that both the structure and composition of UiO-66-(OH)2
remained unchanged. As shown in Supplementary Fig. 22, a long-term
battery cycle testwas alsoperformed. The battery retainedover 92%of
its initial capacity even after 1000 cycles, demonstrating its high
cyclability. In addition, as shown in Fig. 3d, the battery exhibited high-
rate capabilities, achieving a discharge capacity of 157.3mAh g−1 (92%
of the theoretical capacity) even at 45 C, and, as shown in Supple-
mentary Fig. 23, it retained a discharge capacity of 102.8mAhg−1 (60%
of the theoretical capacity) at 60C. Figure 4a–d and Supplementary
Tables 3 and 4 summarize the advantages of the aqueous MOF–air
rechargeable battery compared to aqueous MOF-based rechargeable
batteries17–22 and aqueous organic–air rechargeable
batteries27–32,38,56,62,68–70. The current work demonstrates a high battery
performance; reversible charge storage with an ideal capacity close to
theoretical capacity (99.9%), high durability (99% after 100 cycles), and
high Coulombic efficiency (99.9%).

Decomposition and reconstruction of the UiO-66-(OH)2/GMS/
PVdF composite electrode
To demonstrate the advantages of RAMOFs, constructed via coordi-
nation bonds, in an aqueous environment, we demonstrated the
material recycling of the UiO-66-(OH)2. As the aqueous MOF–air
rechargeable battery was simply composed of the UiO-66-(OH)2/GMS/
PVdF composite electrode immersed in an electrolyte, the anode,
cathode, and the electrolyte could be easily separated. The UiO-66-
(OH)2/GMS/PVdF composite could be facilely stripped from the cur-
rent collector. As shown in Figs. 5, 1. UiO-66-(OH)2 was decomposed
intometals andorganic linkersby soaking the composite electrode in a
1M NH4HCO3 aqueous solution

71 (Experimental Section 2.2), and GMS
and PVdF were separated by filtration to obtain a solution of metals
and organic linkers (Supplementary Fig. 24). Following the method in
the Experimental Section 2.2, as shown in Supplementary Fig. 25, 2.
UiO-66-(OH)2 was reconstructed and recycled (hereinafter referred to
as UiO-66-(OH)2-R). As described in the Experimental Section 2.2,
although the yield ofUiO-66-(OH)2-R (approximately 10%)was still low,
the recycling yield could be improved by investigating decomposition
and reconstruction conditions (e.g., solvent and modulator) in our
continuous work. As shown in Supplementary Fig. 26, UiO-66-(OH)2-R
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became more defective than the original UiO-66-(OH)2, with a theo-
retical capacity of 154.1mAh g−1. As shown in Supplementary Fig. 27, 3.
the UiO-66-(OH)2-R/GMS/PVdF composite electrode exhibited a dis-
charge capacity of 152.9mAhg−1, which corresponded to the theore-
tical capacity (154.1mAh g−1), successfully proving that UiO-66-(OH)2
couldbedecomposed and reconstructed (recycled) as ananode-active
material. Therefore, as shown in Fig. 5, combined with the decom-
position/reconstruction of UiO-66-(OH)2 based on its coordination
bonds, the advantages of RAMOFs in an aqueous environment were
conceptually demonstrated.

Since MOFs are well-known to be structurally unstable in acidic
aqueous solutions, owing to their coordination bonds, the application
of RAMOF as electrode-activematerials for aqueous batteries has been
limited to systems that avoid acidic aqueous electrolytes. In the cur-
rent work, we demonstrated a high-performance RAMOF with p-
hydroquinone as an organic linker, whose reversible charge storage

capability was elucidated through ex situ and in situ FT-IR analyses and
DFT calculations. The UiO-66-(OH)2 was structurally stable even in
acidic aqueous electrolytes owing to its strong Zr–O bonds and the
largest coordination number in MOFs, and achieved reversible charge
storage with an ideal capacity close to the theoretical capacity of the
UiO-66-(OH)2 for the first timeby reducing its particle size. In addition,
the RAMOF exhibited high durability ( > 98% after 100 cycles) and high
Coulombic efficiency (99.9%) owing to its high crystallinity and proton
conductivity. An aqueous MOF–air rechargeable battery was fabri-
cated with the RAMOF as the anode-active material; the battery
exhibited high durability (99% after 100 cycles) and high Coulombic
efficiency (99.9%), which indicated that using a RAMOF as an anode-
active material overcame the weak points of aqueous organic-air
rechargeable batteries. Furthermore, the material recycling of the
RAMOF based on its coordination bonds was demonstrated. There-
fore, we conceptually proved the application and advantages of

Fig. 3 | Schematic and performance of the aqueous metal–organic framework
(MOF)–air rechargeable battery. Schematic diagrams of the (a) charging/(b)
discharging of the aqueous MOF–air rechargeable battery. c Charging (black)/dis-
charging (red) curves of the aqueous MOF–air rechargeable battery at 5 C. The
dotted line represents the theoretical capacity based on the molecular weight of

UiO-66-(OH)2 (171.9mAhg−1). Inset: The battery cycle test (14 C). At 14C, the battery
achieved a discharge capacity of more than 98% of the theoretical capacity based
on themolecular weight ofUiO-66-(OH)2. Therefore, we performed a cycling test at
14 C. d Rate capability of the battery (5, 10, 15, 20, 30, and 45C). Source data are
provided as a Source Data file.
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RAMOFs in aqueous environments. In our continuous work, we will
apply the water-resistant RAMOF to the electrode-active material for
other aqueous batteries to develop appropriate applications of MOFs.
In order to reduce the amount of conductive additives, in our con-
tinuouswork, wewill address the following two strategies. First, wewill
develop an electrically conductive MOF with high acid resistance for
energy storage in strong acidic aqueous electrolytes by focusing on
the hard and soft acids and bases principle, which strongly affects the
acid stability of coordination bonds in MOFs. Second, we consider the
incorporation of in situ-formed conductive polymers in the porous
framework, as demonstrated in our previous work using redox-active
covalent organic frameworks31, which could potentially overcome the
low intrinsic conductivity of RAMOFs.

Methods
Electrode preparation
UiO-66-(OH)2/GMS/PVdF composite electrodes were prepared by
drop-casting a slurry of UiO-66-(OH)2, GMS, and PVdF (4:5:1 w/w/w)

and N-methyl-2-pyrrolidone onto glassy carbon substrates. The mass
loading of UiO-66-(OH)2 was adjusted to approximately 0.1–1.0mg.

Electrochemical characterization
Electrochemical measurements were performed using a 0.05MH2SO4

aqueous solution. Cyclic voltammetry and half-cell measurements
were conducted using a potentiostat system (HZ-7000, Meiden
Hokuto, Japan) comprising a coiled Pt wire as the counter electrode
and a RE-1B aqueous reference electrode (Ag/AgCl (3M NaCl); BAS
Inc.) under Ar gas. Half-cell measurement was conducted in the range
of from −0.20 to +0.90 V vs. Ag/AgCl.

MOF–air rechargeable battery evaluation
A tailor-made two-compartment glass cell with an unglazed plate to
separate the cathode and anode compartments was employed as the
electrochemical cell27–29. The UiO-66-(OH)2/GMS/PVdF composite
electrode was used as the anode, and a 20% Pt on carbon (Pt/C) paper
from Fuel Cell Earthwas used as the conventional cathode. Both anode

Fig. 4 | The comparison of battery performance. The summary of (a) discharge
capacity/theoretical capacity and discharge capacity retention, b Coulombic effi-
ciency and discharge capacity retention of aqueous MOF-based rechargeable
batteries17–22 (further details, see Supplementary Table 3). Although performance
between redox-active metal–organic frameworks (RAMOFs) should be compared
with half-cell measurements, all previous data were based on full-cell

measurements with zinc as the anode. Therefore, in the current work, the perfor-
mance of RAMOFs was compared with batteries. The summary of (c) discharge
capacity/theoretical capacity and discharge capacity retention, d Coulombic effi-
ciency and discharge capacity retention for aqueous organic–air rechargeable
batteries27–32,38,56,62,68–70 (further details, see Supplementary Table 4).
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and cathode sections were filled with a 0.05M H2SO4 aqueous solu-
tion, and the cathode side was open to the air. The battery was eval-
uated for several cycles to confirm the reproducibility at 20 °C.

Data availability
The data generated in this study are provided in the Supplementary
Information/Source Data file. The data supporting the findings of this
study are available within the article and its Supplementary Informa-
tion. Source data are provided with this paper.
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