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Peering inside the black box by learning the
relevance of many-body functions in neural
network potentials

Klara Bonneau 1,9, Jonas Lederer 2,3,9, Clark Templeton 1,9 ,
David Rosenberger 1,4, Lorenzo Giambagli 1, Klaus-Robert Müller 2,3,5,6 &
Cecilia Clementi 1,7,8

Machine learned potentials based on artificial neural networks are becoming a
popular tool to define an effective energy model for complex systems, either
incorporating electronic structure effects at the atomistic resolution, or
effectively renormalizing part of the atomistic degrees of freedom at a coarse-
grained resolution. One main criticism regarding neural network potentials is
that their inferred energy is less interpretable than in traditional approaches,
which use simpler and more transparent functional forms. Here we address
this problem by extending tools recently proposed in the nascent field of
explainable artificial intelligence to coarse-grained potentials based on graph
neural networks.With these tools, neural network potentials can be practically
decomposed into n-body interactions, providing a human understandable
interpretation without compromising predictive power. We demonstrate the
approach on three different coarse-grained systems including two fluids
(methane and water) and the protein NTL9. The obtained interpretations
suggest that well-trained neural network potentials learn physical interactions,
which are consistent with fundamental principles.

Molecular simulations have emerged in the last 75 years as a valuable
tool to recover or even predict interesting physical phenomena at the
microscopic scale and provide a detailed mechanism for grasping the
underlying molecular processes1. In principle, the most accurate
description of a molecular system is given by the solution of the
associated Schrödinger’s equation. However, it is common practice to
invoke the separation of scales between electrons and nuclei (Born-
Oppenheimer approximation) and define an effective energy function
for the nuclei that should take into account the electronic effects2.
Historically, this has been done empirically in the definition of classical
atomistic force-fields, which have been designed, refined, and used for
the study ofmolecular systems3,4. Classical force-fields assume that the

potential energy of a molecular system can be described as a function
of “bonded” terms (e.g. bonds, angles, dihedrals) and “non-bonded”
pairwise potentials (e.g., Van der Waals, Coulomb)1,2. All the potential
energy terms are defined by fixed functional forms, with parameters
tuned to reproduce experimental data and/or first principle calcula-
tions on small test systems1,3.

Recent advances in machine learning (ML) have triggered a step-
change in the development of data-driven force-fields. In particular,
neural network potentials (NNPs) have been proposed to more accu-
rately capture the electronic effects in the potential energy functions
for the nuclei5,6. While classical, non-bonded potential terms are gen-
erally limited to 2-body interactions, the use of NNPs, and more
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specifically graph neural networks (GNNs)7 significantly increases the
expressivity of the energy function and allows flexible parameteriza-
tion of many-body interactions8–13.

While leaps in the development of GNN-basedmodels have shown
great promise in studying complex macromolecular systems14 and
predictingmaterial properties15, the results and themodels themselves
are often seen as black boxes. NNPs take molecular conformations as
input and only provide the corresponding potential energy and its
derivatives as output. The increasedmodel accuracy comes at the cost
of insight into the nature and strength of molecular interactions. In a
classical force-field each term in the energy function can be dissected,
but deciphering which terms in the potential energy are important for
stabilizing certain physical states or interpreting a prediction is sig-
nificantly more difficult in a GNN-based model.

In parallel to the development of atomisticNNPs,GNNs have been
successfully employed in the definition of models at reduced
resolutions16–21, where some of the atomistic degrees of freedom are
renormalized into a reduced number of effective “beads” to speed up
the simulation time. The difficulty in the definition of coarse-grained
(CG) models lies in the fact that many-body terms play an important
role, as a reduction in the number of degrees of freedom is associated
with increased complexity in the effective CG energy function. It has
been shown that, to reproduce experimentally measured free energy
differences22 or the thermodynamics of a finer-grained model23,24,
many-body terms need to be included. Like atomistic NNPs, CG NNP
models exhibit a black-box nature, offering no insight into the learned
many-body terms. Given the necessity and complexity of capturing
these terms, the development of interpretable CG NNPs is highly
desirable.

The black-box problem is not unique to molecular systems, but
rather ubiquitous in the application of ML. For trusting image classi-
fiers, it is important to know if an accurate classification stems from a
correct learning of the features or a learning of an undetected bias in
the training set (e.g. refs. 25–27). Analogously, to trust NNPs and their
ability to extrapolate to new systems, it is important to know if an
accurate prediction arises from the network learning the physical
properties of the different interactions or is merely a data memoriza-
tion, or a compensation of errors28. As a response, the new area of
“Explainable Artificial Intelligence (XAI)” has emerged to begin pro-
viding tools to tackle the interpretation of artificial neural networks29.
The field of XAI ranges from self-explainable architectures11,30–32 to
post-hoc explanations33–36. Some of those approaches are starting to
find use also in physical and chemical applications, e.g., for explaining
predictions regarding toxicity or mutagenicity37–39, predictions of
electronic-structure properties40,41, guiding strategies in drug
discovery42,43, analyzing protein-ligand binding44–46, or uncertainty
attribution47,48. XAI approaches have also been utilized to provide a
better understanding of the error introduced in molecular models49.

In this work, we apply XAI to explain NNPs in the context of
molecular dynamics simulations of CG systems. The NNPs are
trained at CG resolution from atomistic simulation data for sev-
eral systems of different complexity. We use Layer-wise Relevance
Propagation applied to GNNs (GNN-LRP) to interpret the CG
models beyond a mere energy prediction. In particular, we study
the n-body contributions associated with the learned effective
interactions in the NNP, and evaluate them based on fundamental
principles. A key advantage of using GNN-LRP for this task is its
ability to reveal learned interactions among a subset of beads
taking into account their surroundings. On the other hand, the
many-body decomposition of the model output with the tradi-
tional recursive method (e.g. ref.28) determines the energy nee-
ded to form isolated n-mers of beads from sub-elements, thus
ignoring the effect of the surrounding environment.

Ideally, an “interpretable model” should enable researchers to
build trust in its predictions and, in a second step, extract scientific

knowledge from successful applications while identifying the sources
of deficiencies or anomalies when the model fails. Here, we focus on
the first step – enhancing trust in NNPs for CG systems by demon-
strating the physically sound nature of the learned interactions in two
examples. As a first example, we compare different classes of GNN
architectures to obtain CG models of bulk fluids and show that an
interpretation of accurate CG models provides meaningful insight into
the learned physical concepts. Interestingly, two GNN architectures,
even if quite different from each other, convey the same physical
interpretation: At least in terms of 2-body and 3-body contributions, the
two networks appear to offer different functional representations of the
same underlying energy landscape. As a second example, we examine a
machine learned CG model for the protein NTL9 and show that its
interpretation allows us to pinpoint the stabilizing and destabilizing
interactions in the various metastable states, and even interpret the
effects of mutations. The fact that the learned interactions align with
existing physical and chemical knowledge makes the employed GNNs
more trustworthy, supporting a wider use of these methods.

Results
Application of Layer-wise Relevance Propagation to Neural
Network Potentials
A computationally efficient and minimally invasive approach to
explain the predictions of neural networks in a post-hoc manner is
layer-wise relevance propagation (LRP)29,34. The purpose of LRP is to
decompose the activation value of eachneuron into aweighted sumof
contributions from its inputs. In the case of the final layer of NNPs, this
amounts to decomposing the energy output into a sum of energy
contributions of its inputs. Once this decomposition is complete, the
numerical values of each element in the sum can be examined, with
larger absolute values considered more relevant contributions (stabi-
lizing or destabilizing, depending on their sign) and smaller values
deemed less relevant.

To fix the ideas, let us first consider a multi-variable function f
such that f : RN ! R and assume that the following decomposition is
done:

f ðxÞ=
XN

α = 1

f αðxαÞ such that f αðxαÞ
�� ��≥ f α + 1ðxα + 1Þ

�� ��

8α 2 f1, . . . ,N � 1g:
ð1Þ

Then f1(x1) and fN(xN) are the most and least relevant elements,
respectively. We could therefore state that the contribution due to the
variable x1 to the function is larger than the contribution due to the
variable xN. As each neuron in each layer of a modern neural network
canbe seen as amulti-variable function, such relevancedecomposition
can be iteratively applied (while maintaining layer-wise relevance
conservation34,50), from the last computation to the first one, allowing
for an explanation of the neural network prediction.

A straightforward approach to obtain an expression like Equation
(1) is the first-order Taylor expansion around a given point x*. As dis-
cussed in the Methods section, different choices of the expansion
point x*, which are deeply connected with the neural network archi-
tecture and behavior, imply different relevance propagation rules29.
Crucially, x* is not chosen to be extremely close to the input point x,
and that is why, despite being linked to Taylor decomposition and
therefore explicitly depending on the derivative of the function, LRP is
not a sensitivity analysis25. Indeed, LRP provides an explanation of the
model’s output by decomposing it into contributions from sub-sets of
input features, whereas sensitivity analysis focuses on how local
changes in input features affect the output.

For the case of GNNs, the LRP technique can be extended to
eventually attributing relevance to higher-order features in the input
graph. This approach is referred to as GNN-LRP41, schematically
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described in Fig. 1a. In a nutshell, GNN-LRP decomposes the model’s
energyoutput into relevanceattributions to sequences of graph edges.
Those sequences describe “walks” over a few nodes in the input graph.
The associated relevance attribution is also often referred to as the
relevance score of the walk. By aggregating the relevance scores of all
walks associated with a particular subgraph, we can determine its n-
body relevance contribution to the model output (shown in Fig. 1b). A
more detailed description of GNN-LRP and of how the relevance of n-
body contributions are calculated, is provided in the Methods Section
as well as in Supplementary Section S6.

Methane and Water
We start by analyzing and comparing CG models for bulk methane
(CH4) and water (H2O). Methane has previously been studied with
various coarse-graining methods, since its non-polar and weak Van-
der-Waals interactions make it a simple test system16. On the other
hand, water is capable of forming complex hydrogen bonding struc-
tures andmuch research has been devoted to itsmodeling, both at the
atomistic scale51 and at the CG level17,52–56.

For both systems, we define CG models by integrating out the
hydrogen atoms and positioning an effective CG bead in place of the
central carbon or oxygen atom. For each system, we train two CG
models with different choices of GNN architectures, PaiNN57 and
SO3Net58, to define the CG effective energy. Both architectures are
trained using the force-matching variational principle for coarse-
graining, to create a thermodynamically consistent CGmodel from the
atomistic data18,53,59–61. With the trained models, we performmolecular
dynamics (MD) simulations for both liquids. For more details on the
MD simulation behind the atomistic data or the CG simulations based
on the NNPs, please refer to the Supplementary Section S1. A brief
discussion of the specific features of these GNNs and more details of
NNP training are provided in the Methods Section.

The ability of the two CG models to reproduce the structural
features of the two systems is shown in Fig. 2 and Supplementary

Figs. S1 and S7. In particular, the radial distribution function (RDF) as
obtained in the CG models is shown in Fig. 2 against the atomistic
reference model for methane (right column) and water (left column).
Note that the SO3Netmodel exhibits irreducible representations up to
a rotation order of lmax = 2, while PaiNN utilizes a maximum rotation
order of lmax = 1. With increasing lmax, the NNP can learn more
expressive representations of the chemical environment in each
message-passing block and as a consequence, in comparison to
SO3Net, PaiNN requires a larger cutoff to accurately reproduce the
RDF of water. For more details on the difference between irreducible
representations of different lmax, we refer to the Supplementary Sec-
tion S3.1. For a comparison between PaiNN models with different
cutoff radii, please refer to Supplementary Fig. S2.

Formethane, the smooth oscillatory behavior of the RDF is similar
to a Lennard-Jones (LJ) fluid62, suggesting that many-body interactions
may not be very relevant in a CG model of this molecule. In contrast,
for water, the height of the first solvation shell is sharply peaked and
decays more rapidly than in the case of methane. For both systems,
both architectures reproduce the corresponding RDF.

In Fig. 2, the average 2-body relevance contribution is plotted (red
curves) as a function of their distance, alongside the RDF for each
model. Since the relevance contributions correspond to a decom-
position of the output energy, a positive (negative) relevance con-
tribution implies an increase (decrease) in the energy, thus a
destabilizing (stabilizing) effect of the associated interaction.

For both methane and water, both PaiNN and SO3Net show a
2-body relevance contribution that diverges as the distance between
two beads goes to zero. This observationmatches our intuition that at
distances below a certain “effective radius”, the network should learn a
repulsive excluded-volume interaction to avoid the overlapping of the
CG beads. For all models, the relevance contribution decays to zero as
the distance between two beads approaches the cutoff value con-
sidering two beads connected in the corresponding GNN. This corre-
sponds to the intuition that the interactions between two beads

Fig. 1 | Concept of Layer-wise Relevance Propagations for Graph Neural Net-
works (GNN-LRP) illustrated for a system of four particles (i.e. coarse-grained
(CG) beads, in the present context). a In Graph Neural Networks, the input graph
is defined by a cutoff radius (illustrated in shaded blue) that determines the direct
neighbors for each input node. By iterative message-passing (MP) steps inmultiple
layers (layer index t ∈ {0, 1, 2}), information can be exchanged between more
distant nodes (outside of the cutoff region), updating the representation of each
node xi

t . The model output (in our case the potential energy E) is obtained by

passing the learned feature representations through a multilayer perceptron and
final pooling over the individual bead energies ei. Obtaining the relevance Rwalk

involves propagating the output back through the network, by considering the
connections between each node in one layer and the nodes in the previous layer.
This procedure defines “walks” across the network layers.bThewalks involving the
same subset of n nodes are aggregated to obtain a decomposition of the output
into n-body contributions.
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become weaker as the beads move further apart, and is enforced by
the cosine shape of the cutoff function.

The 2-body relevance contributions in all models show an inverse
relationship to the RDF. In the case of water, both models display a
stabilizing well near the first RDF peak corresponding to the first sol-
vation shell. For SO3Net trained on methane, this dip in relevance is
diminished due to its relatively short cutoff. For the same reason, the
relevance attributions show only small or no stabilizing wells for the
second solvation shells of both water and methane. Despite the effect
of the cutoff function at larger distances, both models exhibit similar
behavior for the two liquids.

While the 2-body contributions are very similar for all scenarios,
the 3-body contributions indicate significant differences between the
water and methane models. To visualize the 3-body contribution, we
describe each triplet of beads by the largest angle and opposed edge
length in the triangle formed by the three beads. The 3-body relevance
contribution may then be visualized in a contour plot as depicted in
Fig. 3. The plot shows the average 3-body contribution of triplets
grouped in bins of similar angle and distance values. The 3-body
contribution of each individual triplet of beads is calculated as
explained in the Methods Section.

It is first interesting to note that the 3-body relevance contribu-
tions formethane are very close to zero compared to water, indicating
that the 3-body terms are not very important for the CG methane. For
water, both models produce similar behavior for the averaged 3-body
relevance contributions. The fact that two different architectures, with
different interaction cutoffs, learn a similar relevance distribution
indicates that these models learn the same underlying potential of
mean force.

The destabilizing contributions of the water models correspond
to the shortest distances at any given angle. Here, the 3-body terms
likely correct for an overstructuring of the 2-body interactions. This is
corroborated by Supplementary Fig. S9, where we plot the 3-body
contribution as a function of three variables entirely defining the
involved triangle (largest angle and length of the two adjacent edges):
For the destabilizing contributions, the length of the two smallest

edges in the triangle is comparable to the distance corresponding to
the first steep increase of the RDF, indicating that these destabilizing
contributions stem from the same repulsive excluded-volume inter-
action also learned by the 2-body terms. Having 3-body interactions
correct for 2-body interactions is a known effect when parameterizing
explicit n-body functions to build CG models54,55,63. The strongest sta-
bilizing contributions in the water models in Fig. 3 correspond to
configurations with an angle around 50-60 degrees, associated with
the population of water molecules sitting interstitially inside the tet-
rahedral arrangement64,65. The fact that, in both models, 3-body terms
are crucial to recover structural properties of CG water indicates that
the model does not only use 3-body terms to correct for 2-body terms
but also learns “real” effective 3-body terms, representing the hydro-
gen bonding propensity of water.

To further support the statement that the NNPs trained on water
learn meaningful 3-body interactions while the NNPs trained on
methane rely solely on 2-body interactions, a 2-body-only watermodel
is shown in Supplementary Section S3, where the Inverse Monte Carlo
(IMC)66,67 method is used for parameterizing a pair potential on the
system’s RDF. Supplementary Fig. S1 shows that, for methane, the IMC
2-body model is still capable of reproducing the correct distributions
of the relevant features, whereas for water, it fails to reproduce the
angular distribution. Additionally,wealso observe that an invariant but
non-equivariant GNN such as SchNet68 performs well on methane, but
fails at fully reproducing the atomistic distributions for water (see
Supplementary Section S3).

Supplementary Fig. S7 shows the distribution of angles and dis-
tances for triplets involved in a 3-body contribution given the specified
network cutoff, both for the atomistic (training) datasets and for the
CG simulations. It is interesting to see that in all four models, the NNP-
CG simulations are able to reproduce the distributions from atomistic
simulations. Furthermore, Supplementary Fig. S7 illustrates that, even
if from the analysis of the 2-body interactions it may appear that the
networkwasmerely learning stabilizing interactions for configurations
thatwere present frequently in the training dataset (e.g. RDFpeak), the
distributions of angles and distances in both atomistic and CG

Fig. 2 | Comparison of radial distribution functions (RDF) resulting from
simulations with an atomistic (AA) or coarse-grained (CG) model and corre-
sponding 2-body relevance. Panels a, c correspond to water and b, d to methane
models. Panels a, b show the results for PaiNN-based, and c, d for SO3Net-based
models. The relevance in arbitrary units, shown in red, is normalized by the

absolute total relevance over the number of walks of the respective model and
rescaled for each model type. A negative value implies a stabilizing interaction as
themodel output is the energy. Relevance values are averaged in 75 bins across the
distance range, the corresponding average is shown in a solid line and shaded
regions correspond to the standard deviation in each bin.
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simulations show that the learned effective 3-body interactions in the
NNPs represent more than simple statistics derived from the training
dataset.

It is worth noting that while the average relevance contribution is
shown in Figs. 2 and 3 as a function of distances and angles, the indi-
vidual relevance scores for single walks over configurations of beads
cover a broad range. In the Supplementary Section S5.1, we provide a
more detailed analysis on the relevance attributed to individual walks.
Supplementary Figs. S5 and S6 show the entire distribution of 2-body
walk relevance over all the configurations of the water and methane
models. High (positive, destabilizing) relevance values correspond to
short distances between beads and low (negative, stabilizing) rele-
vance values to distances located at the first peak of the RDF. A rele-
vance score of almost zero corresponds to distances approaching the
network cutoff.

The contour plots in Fig. 3 show the 3-body contributions as a
function of only two variables, thus averaging out the additional vari-
able uniquely defining the triangle formed by three interacting beads.
In Supplementary Fig. S9, we show the distribution of 3-body con-
tributions as a function of three variables entirely determining the
triangle formed by the involved triplet of beads. The PaiNN model for
methane shows the rare appearance of stabilizing 3-body contribu-
tions corresponding to the shortest edge of the trianglemeasuring 3.15
Å, on the onset region of the RDF, where the energy should be domi-
nated by repulsive interactions. These contributions are absent in the
SO3Net model and are very rare in the training distribution: Supple-
mentary Fig. S10 shows that only very few data points correspond to
these configurations, and the learned repulsive 2-body contributions
are an order of magnitude stronger than these stabilizing 3-body
contributions. While this model performs seemingly well in MD
simulations (see the reproduction of the structuralmetrics in Fig. 2 and
Supplementary Figs. S1 and S7), this detailed analysis of the learned
contributions with GNN-LRP reveals some shortcoming of this model
that could be improved by enhancing the training data distribution.
More details on this analysis can be found in the Supplementary Sec-
tion S5.2. This result underscores how GNN-LRP can uncover model

artifacts in the learned interactions, which cannot be seen by simply
considering the thermodynamic and structural properties obtained by
MD simulations.

As mentioned above, the main advantage of GNN-LRP over tra-
ditional many-body decomposition is that GNN-LRP gives n-body
contributions of subgraphs in the environment of the entire system
while themany-body decomposition framework computes the n-body
energies, as predicted by the NNP, to form isolated n-mers from m-
mers with m < n. As demonstrated and discussed in detail in the Sup-
plementary Section S4, the traditional many-body decomposition of
the NNP gives rise to noisy and uninformative 2- and 3-body terms as
these terms are taken in isolation and not in the context of the bulk
fluid, as is instead done by GNN-LRP.

Both 2-body and 3-body contributions obtained with GNN-
LRP resonate with fundamental knowledge of the water and
methane systems. NNPs learn 2-body interactions aligning with
the RDF and learn that 3-body interactions for methane are neg-
ligible, while for water they are important. GNN-LRP especially
allows us to show that, overall, models based on different archi-
tectures trained on the same data show mostly similar relevance
attributions, suggesting that the different models have learned
the same underlying physical interactions. Additionally, it
uncovered slight model deficiencies that were not detected with
MD simulations, underscoring the role of GNN-LRP in dissecting
the importance of higher-order interactions for the NNPs.

NTL9
Finally, we show the GNN-LRP interpretation of an NNP-CG protein
model, specifically that of 39 residue NTL9 (PDB ID: 2HBA, residues 1-
39). We use the PaiNN architecture introduced in the previous section
to learn a CG model of NTL9 from the same atomistic reference data
used in a previous study20, following the procedure introduced by
Husic et al.18. More details on the training procedure can be found in
the Methods Section. In this study, only Cα atoms are kept in the CG
resolution and each amino-acid type is represented by a unique bead
embedding. We selected this protein because of its well-characterized

Fig. 3 | Average 3-body relevance contributions for water and methane on
PaiNN and SO3Net models as a function of largest angle (θ) and opposed edge
length (L) for triplets involved in a 3-body walk. Panels a, c correspond to water
and b, d to methane models. Panels a, b show the results for PaiNN-based, and
panels c and d for SO3Net-based models. The relevance, in arbitrary units, is nor-
malized by the absolute total relevance over the number of walks of the respective

model and rescaled for each model type. A negative value implies a stabilizing
interaction as the model output is the energy. Angle and distance ranges are divi-
ded in 50 bins each, and colors correspond to average values of the 3-body rele-
vance for all triplets whose largest angle and opposed edge length correspond to
the bin.
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folded/unfolded state and nontrivial folding pathways. A comparison
of the Free Energy Surface (FES) projected onto the first two TICA
components (collective variables capturing the slow motions of the
system,69) is shown in Fig. 4.

The folded state of NTL9 contains 3 β-sheets that are formed by
residues along theC- andN-terminal regions, aswell as a central α helix
(shownon the bottom left in Fig. 4). The stability of this short fragment
of the N-terminal domain of the Ribosomal Protein L9 is likely due to
the strong hydrophobic core between the β-sheets and the α-helix70,71.
To test whether the CG model is learning these effective interactions,
we compute the relevance contribution for 2- and 3-body interactions
in the trained model, for structures taken from different metastable
states. The contact map in Fig. 5a shows the mean 2-body relevance
contributions for each pair of amino-acids in the folded (upper right)

and unfolded (lower left) states. Interestingly, the 2-body interactions
stabilizing the folded state correspond to contacts associated with the
main secondary structure elements, while in the unfolded state both
stabilizing and destabilizing interactions are found also outside of the
secondary structure. The strongest 2- and 3-body interactions inside
the folded state are shown in Fig. 6. The strongest 2-body contribu-
tions are found in the β13 sheet, most of which are stabilizing interac-
tions. Notably, the VAL3-GLU38 interaction is destabilizing, which
indicates that the CGmodel learns to represent the side-chain specific
interaction between the charged Glutamate and the hydrophobic
Valine. This aligns with the Martini3 coarse-grained force-field para-
meterization for protein side-chains, where the interaction between
thebeads representingValine andGlutamate side-chains is classified as
“repulsive”72,73. The strongest 3-body interactions in the folded state,

Fig. 4 | Comparison of the free energy (FE) surface from the all-atom (AA, left)
to the coarse-grained (CG, right) simulations shown as a function of the first
two components of time-lagged independent component analysis (TICA)69.
Four regions of interest in TICA space are labeled by F (folded), U (unfolded), P1

(folding pathway 1), and P2 (folding pathway 2). The structures used for the
interpretation of the respective states are shown on the left. Protein visualizations
generated with UCSF ChimeraX109.

Fig. 5 | Relevance contact maps for wild-type NTL9. aMean relevance of amino-
acid pairs in the folded state (upper right) and the unfolded state (lower left);
bMean relevance difference between the folded state and the P1 (upper right) and
P2 (lower left) states, respectively, i.e. RP1/P2 − RF. The regions bordered in black

correspond to the contacts associatedwith themain secondary structure elements.
The arrows and waves correspond to regions of the protein sequence inside a β-
sheet and an α-helix respectively.

Article https://doi.org/10.1038/s41467-025-65863-0

Nature Communications |         (2025) 16:9898 6

www.nature.com/naturecommunications


shown in Fig. 6b, stabilize the helix and the overall tertiary structure of
the protein. Note that because of the renormalization of the solvent
degrees of freedomduring coarse-graining, these interactionsmay not
correspond to direct interactions between the residues but likely
include some solvent-mediated interactions, such as hydrophobic
effects. Indeed, the energy computed by the CGmodel corresponds to
the CG potential of mean force, which is formally a free energy with
both energetic and entropic contributions74.

NTL9 can fold by two different pathways, which appear as two
distinct “branches” in the free energy landscapes in Fig. 4. We examine
the differences in relevance patterns between the two pathways con-
necting the folded to unfolded states. In panel b of Fig. 5 we show the
difference in the mean relevance contributions of 2-body interactions
in both intermediate states relative to the folded state. Here, a positive
difference means that the interaction has a lower relevance in the
folded state than in the intermediate state and thus that this interac-
tion is less stable in the intermediate state. In the state indicated as P1
in Fig. 4, many interactions inside the β12 sheet appear less relevant
than in the folded state, whereas the difference with the folded state is
essentially null in the β13 sheet and in the α-helix. This indicates that P1
corresponds to an intermediate state where the β13 sheet and the α-
helix are native-like but the β12 is less stable than in the native state.
Indeed, analysis of the structures in P1 reveal that β12 is not correctly
formed. The P2 state shows the opposite behavior with interactions in
the β13 sheet and in the α-helix less relevant than in the native state,
indicating that in the P2 state, only the β12 sheet is correctly formed.
These two folding pathways with the same characteristics were also
found in previous computational studies of NTL975–77. Note that
although the relevance attribution in the folded state shows that the
network captures the interaction decay with the distance between
residues, the relevanceattribution in a given state providesmuchmore
information than contained in the contactmaps for these states, as can
be seen by comparing the relevance attribution of both intermediate
states to their contact maps shown in Supplementary Fig. S11.

The interpretation of the learned interactions can be pushed a
step further by considering the effects of mutations on the relevance
analysis. We consider mutations of residues deemed stabilizing in the
folded state. In the machine learned Cα CG model of the protein
employed here, one can straightforwardly perform a mutation by
changing the aminoacid identity, that is, by changing the embedding
of the correspondingCαbead.We select twomutations to illustrate the
ability of the CG model to learn specific interactions such as hydro-
phobic/hydrophilic interactions between side-chains and side-chain
specific packing. In particular, the mutation ILE4ASN is chosen to

disrupt the hydrophobic interaction of the β-sheets, and the mutation
LEU30PHE is chosen to disrupt the central α-helix as well as the tight
packing between the α-helix and the β-sheets. These residues are
flagged as important in the analysis above and have been shown in
mutation experiments to play a role in the stabilization of the folded
state71,78.

In Fig. 7a we show the 2-body relevance contribution difference
between the mutated states (LEU30PHE in the upper right and
ILE4ASN in the lower left half) and thewild-type folded state. Replacing
the identities of hydrophobic Isoleucine by polar Asparagine of about
the same size at position 4 introduces a strong destabilization of all
contacts with hydrophobic residues in neighboring sheets, as is also
visualized in panel c. In the crystal structure of NTL9, LEU30 is tightly
packed between the α-helix and the β-sheets and mutation studies
suggest that even a small change in side-chain size has a destabilizing
effect71. Indeed, replacing the identity of Leucine 30 by the bigger
Phenylalanine in our CG model induces a destabilization of the entire
α-helix (see Fig. 7a, b). Interestingly, thedisruption also has an effecton
contacts inside the β13 sheet that do not directly involve the mutated
residue, indicating that themodel has indeed learned non-trivialmany-
body interactions. These findings further corroborate the ability of the
CG model to learn amino-acid specific interactions in a Cα-only
representation.

Discussion
In this work, we propose an extension of GNN-LRP to interpret the
effective energy of machine learned CG models by dissecting it into
interactions between sub-components of the systems. We have shown
on the application to CG fluids that the learned interactions are phy-
sicallymeaningful and consistent even if differentMLarchitectures are
used. The explanations provided by GNN-LRP indicate when multi-
body interactions are required to recover the thermodynamics of the
fine-grained system, showing the suitability of this higher-order
explanation method to CG NNPs. Moreover, the multi-body rele-
vance contributions show that the different ML models have learned
similar physically relevant interatomic interactions, indicating that
these models effectively learn the same underlying potential energy
surface. Additionally, GNN-LRP can uncover some small model arti-
facts invisible through plain MD simulation. We also showed that plain
multi-body decomposition allows one to reach only the first one of
these three conclusions, outlining the usefulness of GNN-LRP for
explaining the NNP output. The application of this idea on an CG-NNP
of a protein allows us to disentangle the strength of the different
interactions between residues. It can also be used to evaluate the effect

Fig. 6 | Snapshots of folded NTL9 with the most relevant 2- and 3-body inter-
actions learned by the coarse-grainedmodel. Panels a and b show the five most
important 2- and 3-body interactions respectively. Blue lines indicate stabilizing
interactions (negative relevance) and red lines destabilizing interactions

(positive relevance). Darker color shades indicate stronger interaction strength
(darker blue/red lines corresponds to stronger repulsive/attractive interactions).
Visualizations generated with PyMOL110.

Article https://doi.org/10.1038/s41467-025-65863-0

Nature Communications |         (2025) 16:9898 7

www.nature.com/naturecommunications


of mutations in the model and shows that bottom-up Cα-based CG
NNPs capture amino-acid specific interactions without explicit repre-
sentation of the side-chains.

These results provide reassurance that bottom-up CG NNPs
indeed learn physically relevant terms by approximating the many-
body potential ofmean-force associatedwith the integration of part of
the degrees of freedom53. We note that the methods introduced are
model agnostic and can be used in general to interpret
machine learned potentials of different systems at different
resolutions.

This work suggests that CG NNPs can be trusted because of their
ability to learn physically relevant terms, providing a strong argument
for the wider use of these potentials despite their seemingly “black-
box” nature. To this end, this work focused on previously well-studied
systems, to act as validation of the method. The next natural step will
be to apply these interpretation techniques to extract new scientific
knowledgeonpreviously unknown systems. Futurework is still needed
to refine these concepts to provide greater insight intoMLmodels and
allow researchers to bemore systematic in their choice of architecture
and functionalization. It is our hope that this work helps lay the
groundwork for better understanding the outputs of NNP models as
well as giving the coarse-graining community a way to probe these
learned many-body effects more explicitly.

Methods
Coarse-Grained Neural Network Potentials
GNNs have been proposed as a promisingmethod to learn interatomic
potentials10, and many different model architectures have been
developed in recent years79. GNNs represent the underlying atomic
details using structured graph data where nodes represent atoms and
use the idea that locality dominates the energy landscape to draw

edges between nodes if two nodes are within a pre-defined cutoff
distance. In GNNs there are generally three steps that go into produ-
cing the network output based on the input positions and node
identities: (i) a message-passing step, where neighboring nodes (con-
nected by edges) exchange information about their respective feature
values, (ii) an update step, where the node features aremodified based
on the received messages, and (iii) a final readout step, where the
features of each node are used to predict the target property10. Once
the node features are fed through the readout layer, the network can
make use of backpropagation to extract the force by taking derivatives
of the energy based on molecule positions, which can then be used to
train during force-matching or to propagate the dynamics in MD
simulations.

In this manuscript, we examine two different GNN architectures
for the effective CG energy: PaiNN57 and SO3Net58, two equivariant
message-passing architectures that mainly differ on the order of their
SO3-equivariant features (lmax = 1 for PaiNN and lmax = 2 for SO3Net).
Both preserve the basic euclidean symmetries of the system, notably
those of translation, rotation and reflection. Both architectures are
parametrized to reproduce the CG potential of mean force using the
force-matching approach18,53,59–61. Models were trained with
SchNetPack58,80 and simulations were done using the mlcg package81.
As a comparison to more classical methods, IMC is also performed
using the votca library82 with results shown in Supplementary
Section S3.

Layer-wise Relevance Propagation
LRP has emerged as a method to explain model predictions in a
post-hoc and model agnostic manner34,50,83,84. Originally, LRP has
been used to obtain first-order explanations in the form of rele-
vance attributions (also referred to as relevance scores) in the

Fig. 7 | Effect of mutations on the model prediction. Panel a shows the mean
2-body relevance difference for each amino-acid pair with respect to the wild-type
prediction, i.e. Rmut − RWT. The upper right half corresponds to the LEU30PHE and
the lower left to the ILE4ASNmutation. A red (positive) interaction corresponds to
a higher relevance in the mutated state than in the wild-type, thus a destabilized

interaction. The arrows and waves correspond to regions of the protein sequence
inside a β-sheet and an α-helix respectively. Panels b, c show an example structure
with the mutated residue highlighted in gray as well as strongest interactions
flagged by the network interpretation with colors corresponding to a. Visualiza-
tions generated with PyMOL110.
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input domain. E.g., for image classification tasks, the relevance
attributions would indicate to what extent a respective pixel is
responsible for the network decision25,34. The relevance attribu-
tions can be visualized in the input domain in form of a heat map,
where large relevance attributions highlight features of the clas-
sified object that predominantly lead to the respective decision of
the neural network34. Recently, efforts have been made to adapt
LRP and other explanation methods to regression tasks40,85,86,
such as, e.g., the prediction of atomization energies40,41.

Pixel-wise relevance attributions have contributed enormously
to a better understanding of the inner workings of neural networks.
However, in some cases, restricting explanations to first-order
(input features)may result in oversimplified explanations. Especially
for problems where the interaction between several input nodes is
considerably strong, the relevance information of higher-order
features becomes increasingly important. This is the case for the CG
systems considered in this study, where multi-body interactions are
essential22–24,87. A variety of higher-order explanation frameworks
have been introduced41,88–95. One of those methods is GNN-LRP,
which extends LRP to higher-order explanations for GNNs41,90. In the
following, we will give a brief summary of the methodology of GNN-
LRP, first describing first-order relevance propagation and then
extending it to higher-order. For an in-depth introduction, please
refer to41,83.

We begin by following the path traced by Montavon et al. in50,83.
We start with a single fully-connected layer of a neural network that
connects Nl to Nl+1 neurons. Each neuron in the l + 1 layer is a multi-
variable function f : RNl ! R, making it suitable for the relevance
decomposition described in Equation (1). Our goal is todecompose the
activity σ(wβx + b) of each neuron β∈ {1,…,Nl+1} such that it resembles
Eq. (1). We assume σðzÞ= maxð0, zÞ, which is the ReLU function. In
doing sowe can stop the Taylor expansion at the first-order, obtaining,
for a given neuron β:

σðwβx+bÞ= σðwβx
* +bÞ+

XNl

α = 1

σ0ðwβx
* +bÞwαβðxα � x*αÞ ð2Þ

Here,wαβ is the weighted connection from neuron α to β, and xα and
x*α are the components of the evaluation (or input) and expansion
point, respectively. Assuming we start with the last layer in the
neural network, we set σ(wβx + b) = Rβ, meaning relevance and
activation are synonyms in this context. Our derivation, that is exact
for a ReLU activation, is a first order approximation for other non
linear functions such as SiLU, which is employed in the models
throughout this study. Note however that since the decomposition
is not exact anymore in this case, the sum of relevances is not
equal to the total energy and we therefore do not attribute any
energy unit to the relevance scores. Next, we need to fix the
expansion point, x*. For now, the only constraint we require x* to
satisfy is wβx* + b = 0. In other words, x* should belong to the so-
called “ReLU hinge”. This allows us to ignore the constant term in the
Taylor expansion, thus simplifying it into an homogeneous linear
transformation instead of an affine one, which makes all the
calculations easier. Incorporating this assumption and computing
the derivative leads to:

RβðxÞ= σðwβx+bÞ=
XNl + 1

α = 1

Θ½wβðx� x*Þ�wαβðxα � x*αÞ ð3Þ

Where Θ is the Heaviside step function that accounts for the eva-
luation on the proper side of the plane, and the sum now incorpo-
rates the bias term b in the weight vector, mapping x* ↦ (x*, 1) and
wβ ↦ (wβ, b). In this expression, each term represents the relevance

of input α in computing the activity value of neuron β, in formulae:

RβðxÞ= σðwβxÞ=
XNl + 1

α = 1

Θ½wβðx� x*Þ�wαβðxα � x*αÞ=
X

α

Rα βðxÞ ð4Þ

If the relevance of input variable α is to be assessed, its contribution to
each neuron in the following layer needs to be taken into account and
summed together:

RαðxÞ=
XNl + 1

β= 1

Rα βðxÞ ð5Þ

Asmentioned earlier and in83, different values ofx* will lead todifferent
Rα←β(x). As a result, the expansion point, that belongs to the ReLU
hinge, can also explicitly depend on the input point, namely x*(x).
Interestingly, this allows the functional form of Rα←β(x) to be further
specified, revealing the explicit dependence on the activation (or
relevance) of neuron β (See Supplementary Section S6 for further
details).

We canobtain an iterative rule for the relevance propagation from
the last to the input layer of the neural network:

Rl
α =

X

β

qαβP
αqαβ
� Rl + 1

β , ð6Þ

where the dependence on x is omitted and qαβ quantifies the con-
tribution of neuron α to the activation of neuron β, incorporating the
effect of the choice of the expansion point x*(x). In this work, we
choose the expansion point by using the so called “generalized γ-
rule”83,96 implying a certain value for qαβ. It is an extension of the γ-rule
originally introduced by Montavon et al.83, to favor positive contribu-
tions in deep neural networks with rectifier (ReLU) nonlinearities.
Details on such rule can be found in Supplementary Section S6, as well
as a sketch of its derivations.

Since we are working with GNN architectures, the LRP approach
must be adapted accordingly using GNN-LRP. The idea is to extend the
LRP rule from a single layer transfer to the message-passing mechan-
ism of a GNN. A message-passing step is composed of an aggregation
andupdate step. The aggregation involves collecting information from
neighboring nodes by summing or averaging their features, while the
update mechanism integrates this aggregated information to update
the node’s features. The interaction between those two operations
implies that, over different message-passing steps, information per-
colates between graph nodes by progressively mixing different com-
ponents of the embedding vectors. The respective components of the
embedding vectors are again named “neurons” in this context for
consistency, but might be better known as “atomic features” to some
readers from the field of NNPs. Consequently, instead of tracing the
contribution between different layers, we should now trace the con-
tribution coming from different components (neurons) of adjacent
graph nodes weighted according to the related edge.

In contrast to the first-order node-wise relevance attributions,
GNN-LRP explains the network prediction by assigning a relevance
score to so-called “walks” inside the input graph. Each walk is a col-
lection of connected nodes of the input graph, that we shall label with
Latin indices. The length of the walks is dictated by the number of
interaction layers (message passing) in the model. E.g., a model with
two interaction layers would allow for up to 3-bodywalks. The concept
of GNN-LRP is illustrated in Fig. 1a for a model with two interaction
layers applied to anexemplary systemcomposedof fourparticles (e.g.,
CG beads). The top part of the figure shows the forward pass of a
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commonGNN starting from the feature embedding on the input graph
until the model output, while the bottom part of the figure illustrates
how the walks with their associated relevance attributions are con-
structed. Note that the connections for message-passing in the GNN
are defined by the graph structure, which is itself defined by the dis-
tance cutoff used.

Let us now describe the propagation procedure of GNN-LRP41. To
conceptually extend the rule presented in Equation (6), consider a
neuron that is part of the embedding vector, labeled with Greek indi-
ces within a fixed graph node. The relevance must be propagated
through multiple nodes, similar to how it is done with layers in a
fully connected network. At variance with this case, however, the layer
step is replaced by the walk step over a given path in the main graph,
which will be labeled by the tuple (i, j, k, … ). For instance, (i, j, k)
represents the walk that starts from graph node k and goes to node i
via node j.

Crucially the inter-node communication happens with two con-
ceptually different steps: One - the aggregation step - that leverages
the graph structure (employing link related information) but does not
mix different Greek indices (neurons), and another one - the update
step - that mixes different neurons on each node. Regarding the
aggregation step, if λijα ri � rj

� �
is the edge-related feature that depends

on the relative vector ri − r j between the graph nodes i and j, the
following propagation rule is used:

Rij
α =

λijα x
i
αP

iλ
ij
α xi

α

Rj
α : ð7Þ

Here, an entry in the node embedding xi is denoted by the neuron xi
α .

The equation above redistributes the relevance from one node to all
the neighboring ones. Note that λijα is zero for node-pairs outside the
cutoff radius, and unlike in Equation (6), we do not sum over
output nodes j. For the neuron-mixing update step we can apply
the propagation rule of Equation (6), keeping in mind that each of
the values qαβ will now depend on the two-node interaction, namely
qij
αβ. This happens as every graph node and every related neuron

(namely the components of the vector embeddings) will have their
own embedding value and therefore their own expansion point. This
results in the following propagation rule for each message-passing
step:

Rij
α =

X

β

λijα q
ij
αβP

i

P
αλ

ij
α q

ij
αβ

� Rj
β ð8Þ

With the above rule, relevance can be propagated through dif-
ferent message-passing steps and eventually be attributed to walks on
the input graph. By progressively percolating the relevance of a given
neuron in a given node Rk

α through the graph, one can construct the
relevance of the walk Rjk

α , then Rijk
α and so on, until the maximum walk

length, defined by the number of interaction blocks, is reached. Note
that Equation (8) yields the walk relevance for a specific neuron α. The
total relevance of the respective walk is given by summing over all
corresponding neurons:

Rijk =
X

α

Rijk
α : ð9Þ

In Supplementary Section S6, it is explained how the relevance attri-
butions can be computed using efficient backpropagation algorithms.
As depicted in Fig. 1, the n-body relevance can be obtained as a func-
tion of all the paths involving the sought nodes. More specifically in
this paper, we post-process the relevance of each individual walk and
aggregate it into contributions of subgraphs as explained in the
following section.

Postprocessing the Relevance
After computing the relevance for each individual walk inside the
graph, wepost-process the relevance scores to compute contributions
of pairs and triplets of beads to the total energy, as illustrated in Fig. 1b.
Indeed, since the relevance scores of individual walks are, under the
named assumptions, terms in a sum decomposition of the network
energy output, one can compute contributions to the total energy by
summing over relevance scores of different walks.

To get the 2-body contribution of a pair of distinct beads (i, j) to
the total energy, namedRij , we simply sum over the relevances of the
walks that sample only these two nodes, i.e.

Rij =
X

W2fi, jgL , i≠j
RW

ð10Þ

where L is the length of a walk (i.e. the number of interaction blocks
plus one). {i, j}L denotes all the walks of length L sampling nodes i and j
only, i.e. {(a1, …, aL)∣am ∈ {i, j} ∀ m ∈ {1, …, L}}.

Similarly, to compute the 3-body contribution for a triplet of
beads (i, j, k) to the total energy Rijk , we compute the sum of the
relevances of walks that sample only these three beads:

Rijk =
X

W2fi, j, kgL , i≠j≠k
RW

ð11Þ

where {i, j, k}L = {(a1, …, aL)∣am ∈ {i, j, k} ∀ m ∈ {1, …, L}}.

Simulation Details
All-atom Simulations. As reference data for the water and methane
models, we use atomistic (AA) simulations with a periodic methane or
TIP3Pwater box containing 125/258 atoms respectively. Only the heavy
atomswere retained under the CG coordinatemapping: C formethane
and O for water. All simulations were run in OpenMM97 with Langevin
dynamics at a temperature of 300K controlled with a damping coef-
ficient of 1 ps−1. Each system was simulated for 50 ns. For water, a 1 fs
timestep was used with both coordinates and forces saved every 1 ps.
These coordinates and forces are what are used in training the neural
network model using force-matching. For methane, a timestep of 2 fs
was employed andMDsnapshotswere saved every 2 ps. Thewater box
was initiated using the openmmtools98 testsystem WaterBox with
parameter box_edge = 2 nm. The methane box was created using
topotools99 and simulated using the parameters in Supplementary
Table S1.

Thedata used for the fast-folding variant ofNTL9 (PDB ID2HBA) is
part of the dataset used in the previous study by Majewski et al.20. For
convenience, the relevant details are briefly summed up here. NTL9
was solvated and ionized in a cubic box of side length 50Å as in Ref. 77.
ACEMD100 and GPUGRID101 were used to run MD simulations of the
system using the CHARMM22star force-field102 and the TIP3P water
model103 at 350 K. For production runs, a Langevin integrator with a
timestep of 4 fs and a friction damping constant of 0.1 ps−1 was used.
Hydrogen toheavy atombondswereholonomically constrainedwith 4
times hydrogen masses104. An MSM-based adaptive sampling
approach105 was used to enhance the sampling efficiency. From a total
of 256 μs aggregated simulation time, about 2.4 million frames were
used for training and validation.

CG Simulations. CG simulations were performed in the same way as
Husic et al.18, using Langevin dynamics with the BAOA(F)B integration
scheme. The specific parameters for each system are summed up in
Supplementary Table S2. Multiple independent simulations were run
on a single GPU for efficient sampling.
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Neural Network Training
Coarse-grained models were trained using the same CGSchNet
approach introduced in previous studies18,61 but replacing the SchNet
representation by equivariant models (PaiNN and SO3Net). In the
CGSchNet approach, a thermodynamically consistent CG potential of
mean force is learned via a reformulation of the force-matching
approach53,59,60 as a machine learning problem. The mapping operator
for the CG forces called “basic aggregated” in106 was chosen to be
consistent with the presence of hydrogen-bond constraints in the
training dataset. All training was done using SchNetPack 2.058.

For NTL9, a delta-learning approach is used where the CG energy
is decomposed into U(R; θ) = Uprior(R) + Unet(R; θ), with Uprior based
on physical intuition and where only Unet is learned during
training. The goal is to prevent bad model extrapolation in
unphysical regions of the configuration space, that inherently lack
training data.

For this protein, the prior has the form Uprior(R) = ∑bondsUbond(r) +
∑anglesUangle(θ) +∑dihedralsUdihedral(ϕ,ψ) +∑non−bondedUrep(r). Here,Ubond,
Uangle and Udihedral are the same as used in previous studies106, but the
repulsive prior is set to Urep(r) = k × ReLU((σ−r)3) with k = 20 kcal/mol
and σ set to the minimum of the corresponding distribution in the
training set, in order for its energy to be zero in the interpreted folded
structures.

All models were trained using the AdamW optimizer107 with a
learning rate of 5.10−4 and a weight decay coefficient of 0.01. The
hyperparameters for the different models are given in Supplementary
Table S3.

Data availability
Simulation data and scripts to reproduce the analysis and the plots
shown in themanuscript are accessible on zenodo under https://zenodo.
org/records/17068397. Source data are providedwith this paper and can
be found at https://box.fu-berlin.de/s/q4beCkaRHrY8Ac7. Source data
are provided with this paper.

Code availability
The codebase is available under MIT license at https://github.com/
jnsLs/gnn-lrp-cg.git108.
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