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% Check for updates Unprotected B-fluoroamines are important motifs in synthetic chemistry,

offering versatility for the development of B-fluorinated nitrogen-containing
compounds. Existing methods to these motifs require tedious operations and
suffer from low efficiencies, which has prevented their use in biologically
active molecules, such as drug discovery and positron emission tomography
(PET) radiotracer development. Herein, an iron-catalyzed three-component
aminofluorination of alkenes using a hydroxylamine reagent and EtzN - 3HF is
reported, offering a direct entry to unprotected [3-fluoroamines. Both aryl and
unactivated alkenes are compatible, and the mild conditions along with a short
reaction time enable its application in alkene aminoradiofluorination. The
synthetic utility of this methodology is demonstrated by diverse follow-up
derivatizations, efficient access to drug candidate LY503430, and the radio-
synthesis of ['*|F]KP23, a cannabinoid subtype 2 (CB2) PET radioligand.
Mechanistic investigations reveal a radical pathway involving ferryl amino and
aziridinium intermediates, and highlight the dual roles of Et3N - 3HF as both
fluorine source and reductive promotor.

The construction of B-fluoroamine motifs has attracted significant
attention from organic chemists over the past few decades due to their
prevalence in biologically relevant molecules, such as MK-0731 as a
kinesin spindle protein (KSP) inhibitor’, cytidine nucleoside PSI-6130
as an inhibitor of hepatitis C virus (HCV)?, KP23 as a cannabinoid
subtype 2 (CB2) receptor ligand®, and other examples*®. The incor-
poration of a fluorine atom into drug molecules is well known to
modulate physicochemical properties, such as lipophilicity, perme-
ability, pharmacokinetics, and metabolic stability, while also alter their
structural conformation”". Moreover, the fluorine atom has been

shown to attenuate the basicity of adjacent amine nitrogen atom to
further improve the performance of pharmaceutical agents (Fig. 1a)>".
Taking account of the versatility of aliphatic primary amines in
downstream transformations to diverse secondary and tertiary
amines/amides, as well as aza-heterocycles, the synthesis of unpro-
tected B-fluoroamines is of particular interest to organic chemists',
but also proves to be challenging since the —-NH, products can strongly
chelate metal catalysts and thus inhibit catalytic cycles”. Current
synthetic methods for the synthesis of unprotected fB-fluoroamines
predominantly rely on sluggish nucleophilic ring-opening of
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Fig. 1| The ubiquity and chemical synthesis of B-fluoroamines. a Widespread presence of B-fluoroamine motifs in biologically active molecules. b Intermolecular
aminative alkene difunctionalization in current stage. ¢ Iron-catalyzed amino(radio)fluorination of alkenes to synthesize unprotected B-(radio)fluoroamines (this work).

aziridines'®", reduction of a-cyano/amido or B-azido fluorides®?, and

deprotection of B-fluoro amines/amides®**. However, these approa-
ches require specially engineered precursors and suffer from low
overall efficiencies.

The intermolecular aminofluorination of alkenes offers a stream-
lined access to B-fluoroamines by simultaneously introducing N and F
atoms across abundant feedstocks (Fig. 1b)**?%, Considerable progress
with electronically deficient amino sources has been achieved by
Stavber”, Liu*°, Nevado®, Zhang®?, Studer®®, and among others*,
These studies employed (in situ formed) electrophilic fluorinating
reagents, while Pérez* and P. Xu*° used nucleophilic fluorides, facil-
itating the synthesis of vicinal fluoroamides. A combination of elec-
trophilic XtalFluor-E and Et;N-3HF was utilized by H. Xu*' to attenuate

the concentration of fluoride ion, leading to the production of
carbamate-protected B-fluoroamines. But the chemical reactivities of
these reactions are significantly affected by the electron-withdrawing
groups (EWGs) attached to nitrogen atoms, which limits product
diversity. Recently, Fu** and Wang*’ independently reported the alkene
aminofluorination using electrophilic amination reagents as electron-
rich amino sources to forge -fluorinated tertiary alkylamines. Unfor-
tunately, the one-step installation of a simple NH, group along with a
fluorine atom across olefins remains unknown, but is highly desirable
due to the potential for diverse derivatizations to access various [3-
fluorinated nitrogen-containing compounds. Additionally, because of
the harsh conditions or long reaction times required, the incorpora-
tion of the radionuclide *®F with a short half-life (¢, =109.8 min) and
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limited availability of sources in alkene aminofluorination has not yet
been achieved, significantly impeding the development of corre-
sponding positron emission tomography (PET) radiotracers that are
applied for medical imaging** 5.

O-protected hydroxylamines have recently emerged as key pre-
cursors for NHy-involved alkene difunctionalization*’, allowing the
sequential introduction of various functionalities (O-, Cl-, N-, Ar-) to
generate B-functionalized unprotected amines****, The major obstacle
for incorporating a fluorine atom lies in the acidic media, which would
likely promote the formation of highly electrophilic NH, species to
facilitate alkene addition, prevent undesired rearrangement of
hydroxylamine reagents to more stable N-hydroxy amides®, and
protonate the NH, unit in the product to avoid undesired chelation of
the metal catalyst”. However, acidic conditions can also diminish the
nucleophilicity of solvated fluoride ions through hydrogen
bonding®*¢, and may induce competing side reactions, such as alkene
protonation. Furthermore, to avoid the negative impact of a third
nucleophile on aziridinium formation, one-pot/two-step procedures
are often employed, as demonstrated by Lebceuf/Moran**° and
Ellman® in alkene aminoarylation and diamination, as well as Bower®
in aminative cyclization. The highly electronegative fluoride can
coordinate with transition metal complex to induce catalyst deacti-
vation, such as iron catalyst*, thus potentially interfering with direct
radical amination processes. Considering these challenges along with
its own peculiarities, the introduction of radionuclide *F into such
reactions poses even greater technical difficulties.

Herein, we report a one-step synthesis of unprotected [3-
fluoroamines from simple alkenes through a three-component ami-
nofluorination using a hydroxylamine reagent and Et;N-3HF (Fig. 1c).
Phthalocyanine-coordinated iron catalyst was employed to prevent
the coordination of fluoride, thus avoiding catalyst deactivation. The
use of EtzN-3HF is crucial, serving both as a nucleophilic fluorine
source compatible with acidic media and as a reductant that facilitated
the regeneration of active ferrous species from p-oxo diiron(lll) com-
plex to accelerate the aminofluorination reaction. This acceleration
can suppress competing side reactions and lead to a very short reac-
tion time, which, when paired with mild and air-insensitive reaction
conditions, ultimately enables alkene aminoradiofluorination under
the action of [FITMAF-HFIP, Et,N-HCI, and Et;N. The great synthetic
potential of this methodology is fully demonstrated by broad sub-
strate scope accommodating both aryl and unactivated alkenes,
excellent functional-group tolerance, as well as diverse synthesis of -
fluorinated nitrogen-containing compounds, including the efficient
synthesis of an AMPA receptor positive allosteric modulator
LY503430, and unique PET radiotracer ["®FIKP23 that targets the can-
nabinoid type 2 (CB2) receptor.

Results

Screening of reaction conditions

Our optimization investigations were initiated by combining
4-vinylbiphenyl 1a with commercially available iron phthalocyanine
(FePc; 0.1 equivalents) and hydroxylamine reagent ACONH;OTf (I; 2.5
equivalents) in acetonitrile at 40°C under an argon atmosphere
(Table 1). The choice of fluorine source played a pivotal role in the
success of this reaction (entries 1-4). Substrate 1a remained inert in the
presence of basic tetramethylammonium fluoride (TMAF), while H'-
induced alkene decomposition and a small amount of aziridine were
observed with either AgF or HF-Py, indicating a necessity of fast ami-
nofluorination process. Delightedly, when Et;N-3HF was employed, the
desired aminofluorination reaction to B-fluoroamine 2a occurred,
albeit with a low yield of 23% (Note: although the unprotected f3-
fluoroamine product is stable and separable, to facilitate the purifica-
tion of this polar compound, a simple subsequent Boc-protection was
conducted). Replacement of FePc with other types of iron salts, such as
Fe(OTf),, FeSO,, and Fe(acac),, resulted in complete suppression of

the reaction probably due to fluoride-induced catalyst deactivation
(entries 5-7)*. While external ligands have been shown to improve the
catalytic activity of iron catalysts®, a combination of FeSO, with 2,2"-
bipyridine or 2,2":6”,2"-terpyridine failed in this reaction (entries 8 and
9). Further screening of reaction solvents revealed that THF gave a very
low yield of only 5%, while the use of highly polar and nonnucleophilic
hexafluoroisopropanol (HFIP) completely disrupted the reaction
(entries 10 and 11). In contrast, reactions conducted in DCM or CHCI;
provided significantly improved yields of 54% and 50%, respectively
(entries 12 and 13). Optimizing the reaction temperature resulted in a
modestly enhanced yield of 60% at 30 °C, and increasing the amount
of Et3N-3HF from 4.0 to 8.0 equivalents showed minimal impact on the
reaction outcome (entries 14-17). Subsequently, several bench-stable
hydroxylamine reagents were screened (entry 18)*’. The reactions with
PivONH;OTf II°®*° and TsONH;OTf III”° yielded results comparable to
that obtained with I, whereas only trace amounts of the desired pro-
duct were observed with commodity chemical HONH;CI IV”, Notably,
the use of 4-NO,-BzONH;OTf V’* afforded 2a in 73% yield. The reaction
could be conducted open to air with only a slight reduction in yield to
71%, demonstrating its operational simplicity (entry 19, adopted as the
standard reaction conditions). Extending the reaction time to 3 h did
not further improve the yield, and a control experiment excluding the
iron atom proved ineffective (entries 20 and 21).

Substrate scope and derivatization

With the optimized reaction conditions in hand, we next investigated
the substrate scope. As shown in Fig. 2, both styrene and its derivatives
bearing either electronically neutral (-Me, -Pr, -‘Bu) or donating
(-OMe, -OPh, -OBz) substituents were efficiently converted to pro-
ducts 2b-2j in good yields. It is worth noting that the reaction time for
2h was shortened to 15 min as prolonged stirring time led to gradual
product decomposition, likely due to the instability of the electron-
rich benzylic C-F bond under acidic conditions. Among substrates
containing EWGs, F-, Cl-, Br-, and MeO,C-substituted styrenes pro-
duced 2k-2q in good to moderate yields, while only trace amounts of
product 2r were detected with the strongly electron-deficient —CF;
group likely due to slow electrophilic addition. Moreover, both di- and
sterically encumbered tri-substituted styrenes were well tolerated to
furnish B-fluoroamines 2s-2w. This reaction showed an excellent
functional group tolerance towards chlorine atoms, azido groups,
esters, C-C triple/double bonds, and even unprotected hydroxyl
groups (2x-2ac), providing valuable synthetic handles for further
manipulations. The 1,1-disubstituted alkenes were also found to be
suitable reaction partners, and the corresponding products 2ad-2af
bearing tertiary carbon-fluorine stereocentres were obtained. Addi-
tionally, the aminofluorination reaction was extended to internal
alkenes. In the case of cyclic internal alkene (2ag), an unusual cis-
isomer dominated the product distribution (cis:trans =7:1), while for
acyclic internal alkene, a complete lack of stereoretention (2ah, a
mixture containing two diastereomeric pairs in a ratio of 1:1) was
observed. These results indicate a stepwise mechanism (for a detailed
discussion, see Part 2 of Supplementary Information). Other arylalk-
enes, such as 2-vinylnaphthalene and 2-vinylbenzo[b]thiophene, were
smoothly converted into the corresponding vicinal fluoroamines 2ai
and 2aj. Importantly, this protocol was not limited to arylalkenes;
unactivated alkenes were also successfully employed to deliver
2ak-2ao0 in moderate yields with partial recovery of the starting
materials. However, the reaction of mono-substituted unactivated
alkene, e.g., 1-octene, failed probably due to the slow addition of
N-centered radical to olefin 1 system that led to the decomposition of
highly active radical species, and about 80% alkene substrate was
recovered. To showcase the synthetic potential of this methodology in
late-stage functionalization of biologically relevant molecules, the
alkenes derived from natural products and pharmaceuticals, including
estradiol (2ap), lithocholic acid (2aq), oxaprozin (2ar), ibuprofen
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Table 1 | Optimization of the reaction conditions®

+ - + -
AcO—NHj + OTf (I, 60%)  TsO—NHj -« OTf (lll, 55%)

[Fe] (0.1 eq) F . _ . _
/©/\ + _ [F1(4.0 eq) NH, PivO—NH; « OTf (Il, 48%) HO—NHz+Cl  (IV, trace)
+ RO—NH; X
Ph solvent, 40 °C (o)
o -
Ph O/NH3 - OTf
1a (1.0 eq) (2.5 eq) 2a
O,N (V, 73%)

Entry [Fe] Fluorine source [NH,] source Solvent Yield of 2a°

FePc TMAF | CH3CN N.D.
2 FePc AgF | CHsCN N.D.
3] FePc HF-Py | CH3CN trace
4 FePc EtsN-3HF | CH3CN 23%
5 Fe(OTf), EtaN-3HF 1 CH3CN N.D.
6 FeSO, EtsN-3HF 1 CHCN N.D.
7 Fe(acac), EtN-3HF 1 CHiCN N.D.
8° FeSO, + bipyridine EtzN-3HF | CH3CN N.D.
9° FeSO, +terpyridine EtsN-3HF 1 CH3CN N.D.
10 FePc EtsN-3HF | THF 5%
" FePc EtsN-3HF | HFIP N.D.
12 FePc EtsN-3HF | DCM 54%
13 FePc EtsN-3HF 1 CHCly 50%
144 FePc EtgN-3HF | DCM 60%
15°¢ FePc EtsN-3HF | DCM 45%
16¢ FePc EtsN-3HF (2.0 eq) 1 DCM 43%
17 FePc EtsN-3HF (8.0 eq) 1 DCM 61%
18¢ FePc EtsN-3HF 1n-v DCM see in the graph
194f FePc EtsN-3HF \" DCM 71% (73%)"
20949 FePc EtsN-3HF v DCM 68%
214 Pc EtsN-3HF Y, DCM N.D.

Reaction conditions: hydroxylamine reagent (I ~ V) (0.75 mmol) was added into a mixture of alkene 1a (0.30 mmol), [Fe] (0.03 mmol), and [F] (1.2 mmol) in DCM (2.0 mL) at 40 °C, and the reaction was

allowed to proceed under N, for 30 min
®Yield of isolated product after Boc protection
°Addition of external ligand (0.03 mmol)

9At 30 °C

°At 50 °C

fOpen to air

9For 3h

"lsolated yield without Boc protection

(2as), diacetone-D-galactose (2at), phenylalanine (2au), and vanillyla-
cetone (2av) were subjected to the optimized reaction conditions.
Notably, these reactions worked well without the need for pre-
protection of polar ~OH or -NH groups.

The utility of this methodology for the assembly of valuable
nitrogen-containing molecules is demonstrated in Fig. 3. The reac-
tion of 2a with thiophosgene followed by H-ClI elimination furnished
the B-fluorinated isothiocyanate 3. Secondary amines and amides
4-7 were synthesized via reductive alkylation, N-H insertion across
an in situ formed benzyne intermediate, copper-catalyzed Ullman
coupling, or dehydration condensation. Through nucleophilic sub-
stitution reactions of 2a, fluorinated tertiary amines and amides 8-10
were obtained. -Fluoroamine 2a could also undergo Paal-Knorr
reaction, four-component Debus-Radziszewski reaction, or
Leuckart-Wallach/intramolecular condensation sequence to deliver
various B-fluorinated aza-heterocycles, including pyrrole 11, imida-
zole 12, and lactam 13. Moreover, following the protection of the
primary amine moiety as the corresponding amide, a subsequent
Bischler-Napieralski cyclization produced dihydroisoquinoline 14,

while an intramolecular C(sp?)-H amidation/defluorination sequence
afforded indole 15 (Fig. 3a). By integrating the newly developed
alkene aminofluorination with a condensation reaction with thio-
carbimidazole 16, an efficient route to fluorothiourea compounds 17
and 18 with potent anti-HIV activity has been established. This
streamlined approach significantly simplifies the previous four-step
synthetic route (Fig. 3b)”.

The practicability of this reaction then enables a concise synthesis
of LY503430 (Fig. 3c), a potential therapeutic agent for Parkinson’s
disease’. The preparation of racemic LY503430 by Eli Lilly needs more
than 8 steps”, while 14 steps are necessary for enantioselective
synthesis’®. Our approach commenced with commercially available 4’
acetyl-biphenyl-4-carboxylic acid. Amidification with methylamine
followed by Wittig olefination afforded terminal alkene 20. The key
alkene aminofluorination step furnished unprotected B-fluoroamine
21 in 68% yield. Final installation of a sulfonyl group onto the NH,
moiety yielded LY503430. This route features both step economy
(4 steps) and high efficiency (30% overall yield), and no tedious pro-
tection/deprotection sequence is involved.
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Fig. 2 | Substrate scope. Standard conditions: hydroxylamine reagent
V (0.75 mmol) was added to a mixture of alkene 1 (0.30 mmol), FePc (0.03 mmol),
and Et3N-3HF (1.2 mmol) in DCM (2.0 mL) at 30 °C, and the reaction was stirred

open to air for 30 min. The drs were determined according to *H NMR. * Yield of
isolated product after Boc protection. °For 15 min. “In DCE at 80 °C. %Yields of
recovered alkenes given in the brackets.

Mechanistic studies

To gain insight into the underlying reaction mechanism, a series of
control experiments were undertaken. The addition of 2,2,6,6-tetra-
methyl-1-piperidinyloxy (TEMPO) completely suppressed the

formation of B-fluoroamine 2a (Fig. 4a). A radical clock experiment
using vinylcyclopropane 22 generated ring-opening product 23 in 65%
yield (Fig. 4b). These results suggested an involvement of nitrogen-
centered radicals. Competition reactions were performed by treating
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Fig. 3 | Representative derivatization. a Diverse synthesis of nitrogen-containing compounds. b A concise synthesis of fluorothiourea compounds. ¢ Efficient access to

drug candidate LY503430.

mixed alkenes (1:1) with 1.2 equivalents of hydroxylamine reagent V,
and B-fluoroamines 2b and 2g dominated the reaction outcomes,
respectively, indicating an electrophilic addition process strongly
favoring electron-rich olefin moieties (Fig. 4c, more details in Supple-
mentary Information). The addition of methanol led to both the

aminofluorination (2a) and aminooxygenation (24) products, with the
latter likely arising from the nucleophilic ring-opening of a putative
aziridinium intermediate by methanol (Fig. 4d). Furthermore, the
formation of aziridinium intermediate was directly confirmed by ESI-
MS analysis after conducting the reaction for just 3 min (Fig. 4e).
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Fig. 4 | Control experiments. a Radical trapping experiment. b Radical clock experiment. ¢ Competing reactions. d Trapping of the aziridinium intermediate. e Direct
detection of aziridinium intermediate by ESI-MS. f Stereoconvergence in B-fluoroamine formation. g Investigation of Et;N-3HF as a reductant.

Additionally, the use of either E- or Z-3-methyl styrene 1ah consistently
produced B-fluoroamine 2ah as a mixture containing two diaster-
eomeric pairs in an approximately 1:1 ratio. The complete loss of ste-
reoinformation is indicative of a stepwise mechanism involving a long-
lived carbon-centered radical or carbocation intermediate (Fig. 4f)”. In
addition to serving as a nucleophilic fluorine source, EtzN-3HF was
found to play a special role (Fig. 4g). The addition of 2.0 equivalents of
Et;N reinitiated the aminofluorination reaction with HF-Py, offering 2a
in 25% yield; but further increasing the amount to 10 equivalents
invalidated the reaction, likely due to a significant alteration in the
acidity of reaction media. Moreover, after mixing EtzN-3HF with com-
mercially available FePc for 30 min, Et,NH was detected by ESI-MS
analysis (see Supplementary Fig. 2). These findings indicated that
Et;N-3HF might function as a reductant to accelerate the amino-
fluorination reaction.

To further elucidate the reaction mechanism, particularly the role
of Et;N-3HF, density functional theory (DFT) calculations have been
performed. The previously proposed facile oxidation of FePc to the u-
oxo diiron complex ((FePc),0) in the presence of air is confirmed to be
thermodynamically favorable (Fig. 5a)’. This oxidation process has

also been supported by ESI-MS, which detects the (FePc),O complex
(see Supplementary Fig. 3). That means the commercially available
FePc would be easily oxidized in part before manipulation. Addition-
ally, the decomposition of (FePc),0 into PcFe-OH and PcFe-F species,
mediated by HF (with Et;N-3HF simplified as Et;N-HF)”’, is calculated to
be exergonic (see Supplementary Fig. 5) and further validated by ESI-
MS analysis (see Supplementary Fig. 4). However, these ferric iron
species ((FePc),0, PcFe-OH, and PcFe-F) are found to be inactive
toward the hydroxylamine reagent V due to the high activation bar-
riers (>35.0 kcal/mol) for N-O bond cleavage (Fig. 5b)®. In contrast,
computational studies reveal that the ferrous FePc complex shows
significantly higher reactivity, with a low activation barrier of 16.3 kcal/
mol for hydroxylamine activation (see Supplementary Fig. 6). There-
fore, it is proposed that EtzN acts as a reductant to convert these
unreactive ferric iron species (PcFe-OH and PcFe-F) into the cataly-
tically active ferrous in situ (Fig. 5c). Specifically, PcFe-F is reduced to
FePc by abstracting a-hydrogen atom of Et;N, accompanied with the
formation of HF and «-amino carbon-centered radical (INT1). Sub-
sequent radical rebound with PcFe-OH affords hemiaminal INT2 and
FePc®.. Notably, alternative direct single-electron transfer from Et3N to
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Fig. 5 | Mechanistic investigations. a Thermodynamic data for the formation and
decomposition of diiron complex. b Activation of hydroxylamine reagent by dif-
ferent iron species. ¢ Free energy profile for the reduction of Fe" to Fe" by Et;N.

d Free energy profile for the iron-catalyzed aminofluorination of alkenes, including
3D structures for the key transition states. Energies and distances are presented in
kcal/mol and angstroms (A), respectively.

either PcFe—F or PcFe-OH is calculated to be highly endothermic (see
Supplementary Fig. 7). With the assistant of HF, INT2 readily decom-
poses to acetaldehyde and Et,NH, the latter of which has been detec-
ted by ESI-MS (see Fig. 4g). The overall process is both kinetically
feasible (AG*=26.4 kcal/mol) and thermodynamically favorable (AG =
-40.3 kcal/mol). These results clearly demonstrate that EtzN-3HF can
significantly facilitate the reductive regeneration of the active ferrous
catalyst, thus effectively minimizing side reactions and accelerating
the aminofluorination reaction.

On the basis of our previous studies®?, a plausible reaction path-
way is proposed in Fig. 5d. After the activation of the hydroxylamine
(TS3), the in situ formed iron-amido intermediate (INT3) first experi-
ences an electronic reconfiguration to form a ferryl amino inter-
mediate (INT4), which, though less stable, is more electrophilic and
somewhat distinct from typical iron-nitrenoid species*~>***%_ This
ferryl species subsequently engages in a reaction with styrene via TS4
(AG*=10.2 kcal/mol), where it receives an electron from the alkene and

reduces itself to a ferric species. The resulting benzylic radical inter-
mediate (INT5) then easily undergoes cyclization to form a stable
aziridinium intermediate (INT6) with a calculated activation barrier of
AG”=14.1kcal/mol. Nucleophilic addition of EtzN-3HF to INT6 via TS6
(AG"=17.5kcal/mol) finally affords aminofluorination product P.
Notably, the anti-addition of EtzN-3HF for linear alkenes, while syn-
addition for cyclic internal alkene (consistent with 2ag in Fig. 2) have
been calculated to be favorable (see Supplementary Fig. 8). Overall,
these steps are downhill processes and kinetically feasible with acti-
vation barriers less than 17.5 kcal/mol.

Radiochemistry

Having successfully demonstrated the utility of the cold amino-
fluorination method, a modified synthetic protocol was developed for
the direct aminoradiofluorination of alkenes to afford unprotected -
radiofluoroamines. Fluorine-18 is typically produced by bombarding
80 (oxygen-18) enriched water with protons in a cyclotron using the
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Fig. 6 | Representative examples for the synthesis of B-radiofluoroamines.
Standard radiofluorination reaction conditions involved the addition of [**F]
TMAF-HFIP and Et;N (0.2 equiv.) in an 8:1 DCM: HFIP solution (0.4 mL) to a solid
mixture containing alkene (0.025 mmol), hydroxylamine reagent V (2.5 equiv.),
FePc (0.1 equiv.), and Et,NH-HCI (0.25-0.5 equiv.) at 30 °C. The reaction was

allowed to proceed for 30 min. Amine products were characterized and quantified
as their Boc-protected derivatives by radio-TLC and/or analytic radio-HPLC.
Radiochemical conversions (RCCs) determined for crude reaction mixtures are
shown. A decay-corrected (d.c.) radiochemical yield (RCY) is provided for substrate
['*F]2a.

80(p,n)'®F reaction, where the amount of F generated from a
cyclotron is in the sub-nanomole range. This makes *F the limiting
reagent in radiochemical reactions® ‘. Consequently, reagents con-
taining multiple labile fluorine atoms, such as Et3N-3HF, should be
avoided to prevent isotopic dilution. After screening alternate condi-
tions using 4-vinylbiphenyl 1a as a model substrate (for a detailed
discussion, see Supplementary Table 2), the combination of HFIP*>*”
as a hydrogen bonding agent that mediates fluoride nucleophilicity
and provides a source of labile protons, TMAF as the fluoride ion
source, Et,NH-HCI as reaction additive, and Et3N as the reductant was
found to be a suitable alternative to Et;N-3HF. Under the re-optimized
cold reaction conditions, 1a was successfully converted to 2a and
isolated as its Boc-protected derivative in 25% yield.

Manual radiochemical reaction optimization based on model
substrate 1a was then carried out (Supplementary Table 3). Compar-
able radiochemical conversions (RCCs) were observed at 0.05 and

0.025 mmol reaction scales, with the latter scale preferable for routine
radiotracer production on automated radiosynthesis platforms. The
reaction with 1.0 equivalent of Et,NH-HCI resulted in a RCC of 10%.
Reducing the loading to 0.5 or 0.25 equivalents improved the RCCs to
16% and 15%, respectively. Adjusting the reaction volume from 0.3 to
0.5mL made little effect on the RCC, so 0.4 mL was chosen for its
enhanced solubility compared to 0.3mL at the 0.025mmol scale.
Under optimized conditions (0.025 mmol 1a, 0.1 equiv FePc, 2.5 equiv
V, 0.25-0.5 equiv Et,NH-HCI, 0.2 equiv Et3N, 0.4 mL 8:1 DCM: HFIP with
3-10 mCi ["®*FITMAF-HFIP), the desired B-radiofluoroamine [**F]2a was
obtained with a RCC of 16%. Using this method, B-radiofluoroamine
['®F]2a was synthesized and isolated using analytical HPLC with a
decay-corrected radiochemical yield (RCY)’® of 2% and molar activity
of 42.13 GBg/nmol.

A comparable substrate scope to the cold aminofluorination
protocol was explored under the optimized radiofluorination
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conditions. For the purposes of evaluating substrate scope, crude
reaction mixtures were analyzed and their relative RCCs are discussed.
All the alkene substrates were successfully labeled with moderate
RCCs ranging from 5 to 16%, including those adjacent to electronically
deficient, neutral, or electron-rich aromatic ring systems with a diverse
array of functional groups. Di- or tri-substituted arylalkenes, as well as
fused aromatic ring systems, were also well-tolerated. Complex alkene
substrates derived from natural products and pharmaceuticals, such as
oxaprozin and ibuprofen were able to be labeled, showcasing the
viability of this method for late-stage ®F-incorporation into drug
molecules. As proof-of-concept for the (pre)clinical relevance of this
method, the manual radiosynthesis of ['*FIKP23 was achieved (Fig. 6).
Previous attempts to prepare [F]KP23 through nucleophilic sub-
stitution of its chloro-precursor with [®F]KF/K;,,/K,CO3 in DMF,
DMSO, or CH;CN were unsuccessful”. This is attributed to the poor
leaving group ability of the chloride in 25. Although attempts were
made to prepare tosyl- and mesyl- derivatives, these intermediates did
not afford the desired KP23 due to the spontaneous displacement of
the superior leaving groups by nitrogen to afford an aziridinium ion
pair. This ion pair then immediately collapses in the presence of
chloride-ion to reform a stable chloride derivative. In contrast, the
present protocol converted commercially available styrene (1b) to [*F]
B-fluoroamine 2b and subsequently coupled it with acyl chloride (12) in
a one-pot, two-step reaction without the need for intermediate pur-
ification of [*F]B-fluoroamine (2b), affording [**F]KP23 with a RCC of
11%. [*®F]KP23 was purified through analytical HPLC with molar activity
of 1.68 GBg/nmol.

Discussion

An iron-catalyzed three-component aminofluorination of alkenes with
a hydroxylamine reagent and Et;N-3HF has been developed under mild
reaction conditions, providing a straightforward access to unpro-
tected B-fluoroamines from readily available feedstocks. This metho-
dology shows a broad substrate scope, ease of operation in air, and
excellent functional group tolerance, making it a practical protocol for
late-stage functionalization of biologically relevant molecules. The
versatility of the resulting primary amine moiety further enables the
creation of structurally diverse vicinal fluorinated nitrogen-containing
derivatives, including a step-economic and efficient synthesis of
pharmaceutical LY503430. Detailed mechanistic investigations reveal
a radical reaction pathway involving aziridinium intermediates, with
Et;N-3HF functioning as both a suitable nucleophilic fluorine source
and a reductant that regenerates active ferrous species from p-oxo
diiron(lll) complex to significantly accelerate the aminofluorination
reaction. Furthermore, the dual roles of Et;N-3HF can be substituted
with a combination of ["FITMAF-HFIP, Et,N-HCI, and Et;N, facilitating
the adaptation of this methodology to radiochemistry for the direct
aminoradiofluorination of a diverse range of alkene substrates. This
radiochemical transformation has been employed in the radio-
synthesis of fluorine-18 labeled KP23, a PET radioligand for the CB2
receptor for which no other successful synthesis had been reported.
This aminofluorination approach is poised to serve as a robust fra-
mework for both drug development and advancement of PET imaging
probe, offering significant potential for applications in the drug dis-
covery and radiochemistry communities.

Methods

Standard reaction conditions

Hydroxylamine reagent 4-NO»-BZONH;OTf V (249 mg, 0.75 mmol, 2.5
equiv.) was added to a plastic centrifuge tube charged with alkene 1a
(54.1mg, 0.30 mmol, 1.0 equiv.), FePc (17.0 mg, 0.03 mmol, 0.1 equiv.),
EtsN-3HF (196 pL, 1.2 mmol, 4.0 equiv.), and CH,Cl, (2.0 mL). The
mixture was stirred open to air at 30 °C (oil bath) for 30 min. Upon
completion, the reaction was quenched with EtzN (0.5mL) at 0°C.
Direct purification by flash column chromatography (DCM/MeOH =

20:1 as eluent) afforded B-fluoroamine 2a as a yellow oil (47.1mg,
0.22 mmol, 73%).

Data availability

The authors declare that all data supporting the findings of this
research are available within the article and its Supplementary Infor-
mation. Cartesian coordinates of the calculated structures are avail-
able from the Supplementary Data 1. Any further relevant data are
available from the corresponding authors on request.
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