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Bionic hands can replicate many movements of the human hand, but our
ability to intuitively control these bionic hands is limited. Humans’ manual
dexterity is partly due to control loops driven by sensory feedback. Here, we
describe the integration of proximity and pressure sensors into a commercial
prosthesis to enable autonomous grasping and show that continuously shar-
ing control between the autonomous hand and the user improves dexterity
and user experience. Artificial intelligence moved each finger to the point of
contact while the user controlled the grasp with surface electromyography. A
bioinspired dynamically weighted sum merged machine and user intent.
Shared control resulted in greater grip security, greater grip precision, and less
cognitive burden. Demonstrations include intact and amputee participants
using the modified prosthesis to perform real-world tasks with different grip
patterns. Thus, granting some autonomy to bionic hands presents a transla-
table and generalizable approach towards more dexterous and intuitive
control.

Commercially available bionic hands can now replicate many move-
ments and grip patterns of our innate biological hands'. However,
controlling a multiarticulate bionic hand is not an easy or intuitive task;
individuals with hand amputation abandon these commercially avail-
able bionic hands at an alarming rate**, often citing poor control®” and
cognitive burden®’ as primary reasons.

Most commercial prostheses are controlled using pattern recog-
nition or dual-site control that requires the user to select among pre-
determined grip patterns, often with a fixed force output. In contrast,
our native hands are capable of seamlessly transitioning between
numerous grip patterns and generating a wide range of forces uniquely

tailored to individual objects. This dexterity is made possible by an
intricate neural encoding of hand control in terms of joint position'*™%
Ideally, prosthesis users could similarly control the individual position
of each prosthetic digit to generate any arbitrary grasp and exert any
desired force. However, simultaneous and proportional control of
multiple degrees of freedom is difficult to achieve; as the number of
degrees of freedom increases, errors compound, cognitive burden
grows, and task performance decreases"'*.

How, then, does the brain fluidly control the human hand, which
features over 20 biomechanical degrees of freedom™'¢? One approach
taken by the human nervous system is to simplify higher-level control

"Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA. 2Department of Biomedical Engineering, University of Utah,
Salt Lake City, UT, USA. ®Department of Orthopedics, University of Utah, Salt Lake City, UT, USA. “Department of Physical Medicine and Rehabilitation,
University of Utah, Salt Lake City, UT, USA. ®Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA. ®Department of Mechanical
Engineering, University of Utah, Salt Lake City, UT, USA. < e-mail: marshall.trout@utah.edu; jacob.george@utah.edu

Nature Communications | (2025)16:10418


http://orcid.org/0000-0002-7725-8056
http://orcid.org/0000-0002-7725-8056
http://orcid.org/0000-0002-7725-8056
http://orcid.org/0000-0002-7725-8056
http://orcid.org/0000-0002-7725-8056
http://orcid.org/0000-0001-9434-416X
http://orcid.org/0000-0001-9434-416X
http://orcid.org/0000-0001-9434-416X
http://orcid.org/0000-0001-9434-416X
http://orcid.org/0000-0001-9434-416X
http://orcid.org/0000-0003-3882-7946
http://orcid.org/0000-0003-3882-7946
http://orcid.org/0000-0003-3882-7946
http://orcid.org/0000-0003-3882-7946
http://orcid.org/0000-0003-3882-7946
http://orcid.org/0000-0001-6216-931X
http://orcid.org/0000-0001-6216-931X
http://orcid.org/0000-0001-6216-931X
http://orcid.org/0000-0001-6216-931X
http://orcid.org/0000-0001-6216-931X
http://orcid.org/0000-0001-5918-4316
http://orcid.org/0000-0001-5918-4316
http://orcid.org/0000-0001-5918-4316
http://orcid.org/0000-0001-5918-4316
http://orcid.org/0000-0001-5918-4316
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-65965-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-65965-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-65965-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-65965-9&domain=pdf
mailto:marshall.trout@utah.edu
mailto:jacob.george@utah.edu
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-65965-9

by reducing the dimensionality of the movements on a task-by-task
basis'>""*. Another approach is to utilize cutaneous feedback to
automate lower-level grasping capabilities like the slip-detection
reflex’* %, These biological tactics rely on multimodal sensory feed-
back from the environment - visual and somatosensory.

To this end, one biomimetic approach to make bionic arms more
dexterous and intuitive would be to leverage multimodal sensors to
aid with some aspects of manual dexterity, thereby offloading some of
the cognitive demand to the bionic armitself. Indeed, researchers have
used optical sensors to preposition robotic hands**?, force sensors to
guide force output®*?, and even acoustic sensors to detect and pre-
vent slip*. These prior works demonstrate that even a single sensing
modality can improve functional outcomes on specific tasks in con-
trolled environments. However, among all of these works, there is a
distinct lack of testing with users performing real-world tasks with
physical prostheses. Additionally, the algorithms used to leverage
multimodal sensor data to offload aspects of dexterity are often task-
specific and unable to generalize to the diversity of objects and grasps
seen in the real world.

One common approach is to develop a semi-autonomous pros-
thesis where control switches between the human user and an
autonomous machine controller. For example, Zhuang et al. devel-
oped an autonomous machine controller that moved the individual
fingers of a virtual prosthesis to maximize finger contact with virtual
objects®. The human user controlled the prosthesis with surface
electromyography (EMG) to initiate initial contact with the object, at
which point the autonomous controller would take over and move the
digits autonomously to create a multidigit grasp with a fixed force
output. Although this approach was shown to improve grip stability
and functional performance, it results in a single fixed force being
applied to all objects, making it unlikely to generalize to broader
activities of daily living. Indeed, Zhuang et al. noted this limitation and
hypothesized that continuously sharing control between the human
and machine, rather than toggling, would improve functionality and
make the control more intuitive for the user®.

To this end, another common approach to share control between
a human and a machine is to blend the human control and the machine
control using a simple linear coefficient, 3. Under this approach, the
prosthesis position is determined by human control multiplied by 3
plus the machine control multiplied by (1-B). For example, Dantas et al.
used this approach with a virtual prosthesis to demonstrate improved
control on a virtual target touching task®’. However, this approach
requires the machine to be able to consistently provide a meaningful
goal, not just under controlled conditions when triggered by the user.
Indeed, Dantas et al. punted this issue by simply setting the machine
goal equal to the location of the virtual target. It remains an open
question as to how an autonomous machine could use real-world
sensors to provide a meaningful control signal to users at all times
across a range of tasks.

Here, we build on these past works by incorporating multimodal
sensors, capable of detecting both proximity and pressure, into the
fingertips of a commercial prosthetic hand for generalizable and
translational use. We also establish a new autonomous closed-loop
machine controller for the physical prosthesis to enhance grasping
precision and stability. Importantly, to support generalizability, we
introduce a novel shared control framework that continuously blends
human and machine intent throughout the grasp, such that the human
remains in control at all times while still receiving subtle assistance
from the machine. In stark contrast to prior works, we show that this
shared control framework allows the machine to assist the user with a
variety of real-world tasks and grasps that demand unique positions
and force contributions from each digit. Importantly, as a further
demonstration of generalizability and translational potential, we
demonstrate greater grip precision, improved grip security, and
reduced cognitive burden through a series of experiments with

multiple intact-limb participants and four transradial amputees using a
physical prosthesis. These results serve as proof-of-concept that
sharing control between the user and an autonomous machine can
provide immediate functional benefits while decreasing the cognitive
cost of using a prosthetic hand. As such, this work constitutes an
important step towards more intuitive and dexterous control of mul-
tiarticulate bionic arms and has broad implications for prosthetic and
robotic arms.

Results

Multi-modal finger-tip sensors allow for zero-force contact
detection

Our innate biological fingertips are innervated by a dense network of
sensory afferents that can detect even the gentlest interactions with
our environment. Our sense of touch also enables instinctive motor
actions that enhance our dexterity. However, given the delay asso-
ciated with cutaneous reflexes*, our dexterity is not simply due to
sensory feedback®. Indeed, our dexterity is also made possible in part
due to internal models in the brain that simulate and anticipate hand-
object interactions, and that update with experience over time*.

In contrast, most commercial prostheses are not sensorized and
cannot provide the user with the feedback necessary for efficient
motor planning and learning. To bridge this gap, we developed a
multimodal sensor for bionic hands capable of “seeing” and “feeling”
objects. We developed a printed circuit board (PCB) in the shape of a
fingertip that contained an infrared proximity sensor (VCNL4010,
Vishay Semiconductor) and a barometric pressure sensor (MS5637-
02BAO03, TE Connectivity) (Fig. 1A). We then encased the PCB in sili-
cone in a form factor that mimicked the removable fingertips of a
widely used commercial prosthesis (TASKA Hand, TASKA; Fig. 1B). The
fingertips of the prosthesis were then replaced with our custom sen-
sors to provide wireless proximity and pressure data from each digit in
real-time (Fig. 1C).

As an initial test of the sensors, a cotton ball with essentially no
weight was dropped onto the fingertip while recording the proximity
and pressure readings (Fig. 1D). A sudden rise in the proximity sensor
reading corresponded with the cotton falling onto the sensor, vali-
dating the ability to detect proximity. The steady-state elevated
proximity signal validated the ability to also use proximity as a near-
zero force contact signal. Being able to detect near-zero force contact
is crucial if one wishes to emulate the precision and dexterity of the
intact human hand, as our hand control is based heavily on feedback
from highly tuned mechanoreceptors that encode subtle and fast
deformations in the skin®. Finally, increasing proximity and pressure
data when applying external force to the cotton ball validated the
ability to detect external forces on the hand. Further testing demon-
strated that the proximity sensor had a range of 0-1.5cm, and the
pressure sensor embedded in the silicon could measure up to 35N
(Supplementary Fig. 1). Additionally, the use of pressure sensors
embedded in silicone enable the sensors to detect forces applied in
different directions, as opposed to load cells that only accurately
measure force in specific directions®.

Machine control grasps objects with minimal force

With our native hands, we are exquisitely proficient at exerting just
enough pressure on an object to grasp it”. In contrast, commercial
prostheses tend to select among predetermined grasps and flex until
reaching a preset position or motor current, regardless of the situation
or object being grasped. To address this, we developed an autono-
mous grasping controller that automatically grasps objects with
minimal force using the embedded proximity and pressure sensors as
feedback (Fig. 2A). Once an object was detected as being in proximity
to a finger, that digit moved toward the object until pressure was
detected, at which point the digit would hold its position. To retain
control over the bionic hand and ensure participants could still release
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Fig. 1| Sensorized fingertips can detect pressure and proximity. A An infrared
light sensor and a barometric pressure sensor were embedded into a PCB to
measure object proximity and force, respectively. B The PCB was housed within a
custom-molded fingertip. C The fingertip was then retrofitted into a commercial
prosthetic hand. D The embedded sensors can detect intricate interactions with
objects, such as a piece of cotton falling onto the hand. The proximity signal (red)
rapidly increases as the cotton falls and approaches the hand. The proximity signal
then remains high, indicating contact even though the cotton produces a near-zero
force on the hand. As additional force is applied to the cotton, both the pressure
signal (blue) and the proximity signal increase as the silicone fingertip deforms.
Note that the proximity signal increases before the pressure sensors as increasing
force is applied, and the pressure signal continues to increase once the proximity
signal has saturated. Images and data updated and adapted from ref. 36.

objects, participants enabled and disabled the autonomous controller
by contracting their extrinsic hand flexors or extensors, respectively.
We evaluated the performance of this autonomous “machine”
controller against a more traditional myoelectric “human” control
strategy on a fragile-object transfer task®**. This fragile-object task
requires an individual to generate enough grip force to pick up and
transfer the object, while also minimizing their grip force to avoid
“breaking” the object (Fig. 2B). To ensure the human control was
capable of producing the variable force necessary to complete the
task, the comparative “human” control benchmark was a one degree-
of-freedom (DOF), myoelectric proportional controller. To this end, a
modified Kalman filter*® was used to regress the kinematic position of
the thumb using surface electromyography (SEMG) measured at the
forearm using a compression sleeve with embedded electrodes®.
Under machine control, the hand successfully detected the object
and moved the fingers to the point of making contact and exerting

measurable pressure before stopping (Fig. 2C). Relative to human
control, machine control reduced the normalized pressure measured
by the sensor embedded in the hand (53 +24% vs. 40 +13%; p < 0.001;
generalized linear model; Fig. 2E), suggesting the machine exerted less
force on the object. This is further supported by the fact that, with
machine control, participants were more successful at transferring the
fragile object over the barrier without breaking (23 +21% vs. 99 + 3%;
p <0.001; permutation test; Fig. 2D).

We also surveyed the participants on the subjective workload
required for machine and human control after the fragile-object
transfer task using the NASA Task Load Index (TLX)*’. As expected,
participants reported less subjective workload with machine control
(70.70 £20.93 vs. 21.15 + 7.72; p < 0.01; permutation test; Fig. 2F).

Surprisingly, machine control resulted in a greater physical bur-
den to the user, as indicated by greater mean absolute sSEMG activation
(0.34+£0.13 pV vs. 0.62 £ 0.18 uV; p <0.001; generalized linear model;
Fig. 2G). This is likely attributed to the binary sEMG threshold used to
toggle the machine control on and off; consistently turning on and off
the machine control with distinct muscle contractions during quick
transfers requires more energy than proportional control, which uses
small muscle activation to produce gentle forces.

From a practical perspective, this experiment demonstrates that
multimodal sensors can be embedded into a commercial prosthesis to
create a semi-autonomous prosthesis capable of automating dexter-
ous tasks like fragile object manipulation. However, as noted in the
introduction and in prior works*’, simply toggling between human and
machine control limits the user to a single fixed force output deter-
mined by the machine. Thus, although this is a compelling proof of
concept that a machine can aid in a dexterous task, it is unlikely to
generalize to real-world use, where different objects demand different
forces. To this end, we next explored how control of a bionic hand
could be continuously shared between the human and machine to
enable more generalizable control and translatable control.

Control is shared between the user and the autonomous
bionic hand

Although the autonomous machine control presented in the previous
section outperformed human control, it prevented the user from
intentionally modulating their grip force. Similarly, prior work using
embedded sensors to minimize grip force provided only one set of
target forces for applying pressure on grasped objects™. In contrast,
our native hands produce different grip forces for different tasks:
heavy and slippery objects are gripped with more force than are light,
high-friction ones®. Thus, user-modulated forces are vital to make
autonomous control applicable to a wide range of manual activities™.

To this end, we developed a novel shared control framework that
continuously merges human and machine intent. Our framework is
inspired by the intact biological hand’s ability to seamlessly conform to
an object, as opposed to prosthesis users who rely on their vision to
properly grasp objects*’. The shared control framework leverages a
machine controller to conform each independent finger to make
minimal-force contact with an object (Supplementary Fig. 3, Supple-
mentary Video 1) while allowing the human user to modify the grasp
about the point of contact by controlling the position of each digit
decoded from surface EMG. By continuously sharing control, the
human maintains the ability to regulate their grasp while offloading the
conformation of the prosthetic hand around a given object to the
machine. Importantly, the human user controls each independent digit
simultaneously and proportionally, a task which would otherwise be
error-prone and cognitively burdensome without machine assistance
(Fig. 3A)*0*,

In contrast to prior works that toggle between human and
machine control*°, or use a fixed proportion of human and machine
control>**, our shared control framework uses a dynamically weighted
sum of human and machine control that is dependent on the relative
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Fig. 2 | Machine control outperforms human control of bionic hand. A The
machine control algorithm attempted to make contact with the object while
minimizing the fingertip pressure. Participants engaged the machine controller by
activating their flexors. If the proximity sensor detected an object, then the thumb
would flex until contact was detected, at which point the thumb’s position was held
constant. Participants could then release the object by activating their extensors.
B Three intact-limb participants with no prior myoelectric control experience
attempted to move a fragile object over a barrier using human control or machine
control. Participants needed to minimize the force exerted on the object to avoid
“breaking” it. C With machine control (dashed lines), participants were able to
successfully grasp the object without breaking it. Once proximity was detected
(red), the hand advanced toward the object to produce a minimal amount of
pressure (blue). Participants struggled to grip the object gently when using human
control (solid lines), which resulted in sudden contact with the object and an
immediate increase in pressure. D Machine control resulted in significantly greater

success on the fragile-object task (permutation test; p < 0.001). E The normalized
pressure exerted on the thumb sensor was also significantly less for machine
control (generalized linear model; p <0.001). F Participants also reported sig-
nificantly less subjective workload via the NASA TLX survey when using the
machine control (permutation test; p < 0.001). G However, machine control
resulted in significantly greater physical effort (generalized linear model;

p <0.001). Violin plots represent the distribution of the data; black bars indicate the
median. Data from three intact-limb participants. Sample sizes are: 12 success rates
per condition (4 repeated measures per participant); 118 pressure readings for
machine control and 119 pressure readings for human control (aggregate of all
attempts from all participants); 6 TLX scores (2 repeated measures per participant);
and 118 sEMG MAYV averages for machine control and 119 sEMG MAV averages for
human control (aggregate of all attempts from all participants). * denotes p < 0.01;
** denotes p < 0.001. All statistical tests are two-sided.

position of each digit (Fig. 3B). The control of the hand is shared
continuously such that neither the machine nor human is entirely in
control of the hand and the human'’s control becomes more precise as
the machine moves to contact smaller objects. For example, when an
autonomous digit contacts a small object at 75% of its range of motion,
the human’s intent is then remapped to the remaining 25% range of
motion, thereby quadrupling the effective precision (Fig. 3C). Since we
naturally exert only the minimum amount of force necessary to hold an
object securely with our native hands®, we further amplified human
precision by mapping human intent exponentially to the remaining
kinematic range of motion (Supplementary Fig. 4). Such control is
consistent with our endogenous recruitment of motor neurons*®. This
shared control framework was used for all the following experiments.
No parameters were tuned per experiment or object; the same fra-
mework was explored across multiple grips and tasks to quantify
generalizability and translatability.

To establish a machine controller that can autonomously conform
the grasp to objects (Supplementary Fig. 3, Supplementary Video 1),
we trained a multilayer perceptron (MLP) to estimate the kinematic
distance to an object on a digit-by-digit basis using the embedded
proximity and pressure sensors (Supplementary Fig. 4). The MLP
predicted kinematic distance with high accuracy throughout the entire

kinematic range of the sensors. The MLP predictions were then low-
pass filtered and added to the current position of each digit to serve as
the machine intent such that the machine goal corresponds to the
position at which the fingertip would make contact with the observed
object (Fig. 3B). Both the proximity sensors and the pressure sensors
are used to detect when contact is made, at which point the machine
goal is frozen until contact is broken.

Human intent was the output of a modified Kalman filter*° used to
regress the kinematic position of each digit using surface EMG". The
Kalman filter has been used extensively to proportionally control
prosthetic hands with multiple independent DOFs***, but control
becomes jittery, error-prone, and cognitively burdensome when con-
trolling multiple DOFs simultaneously'***. The resultant shared control
allows for quick and precise position control of each digit individually,
such that the user can produce a wide range of forces on a given object
(Fig. 3D). Allowing the user to control the position of the hand, in
contrast to directly controlling force output, is consistent with the
brain’s natural position-based encoding scheme for the hand*.

Shared control improves grip precision
As an initial validation of our shared controller, we had participants
repeat the fragile-object transfer task described before
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Fig. 3 | Machine assistance using shared control. A Proportional position control
of multiple digits is difficult to achieve with surface EMG alone, as small changes in
the digit’s position (dashed line) can cause rapid changes in the grip force (blue
line). B The shared control algorithm continuously combines human (u,) and
machine controllers (uy,) to compute the position (us) for each digit using a
dynamically weighted sum. Neither controller is ever completely in control of the
hand, as the controllers are continuously shared. Machine control was an MLP that
estimated the distance to make contact with an object from proximity data. Human
control was the movement about the contact point as decoded from surface EMG.
Human control was modified by an exponential function to enhance precision
about the contact point. C If no object is detected, the shared control output is
based solely on the human control. The box and hashmarks show the range and
precision of the human contribution (red) being remapped exponentially to
enhance shared control precision. When an object is within proximity, the

Response

machine’s contribution (blue) moves the digit to make contact. The human con-
tribution is then remapped to the remaining range of motion, enabling users to
make fine adjustments to their grasp. D With shared control, the user extends their
grasp as they reach towards the object (0 to 1s). The machine then moves the digit
to the object, and the user attempts to lift the object while making zero-force
contact, but is unable (-1to 2 s). The user then tightens the grasp around the object
(-2 to 55). It is important to note that the shared control algorithm continuously
blends the user’s intent with the autonomous hand, rather than in a sequential
manner. E To validate the shared control algorithm, intact limb participants com-
pleted fragile-object transfer and holding tasks, and transradial amputee partici-
pants completed a fragile-object holding task. F All participants also completed a
detection response task (DRT) alongside each primary task, which consisted of
pressing a button in response to a randomly timed vibrotactile stimulus.

(Supplementary Video 2). This time, however, we embedded a strain
gauge into the “fragile” object***° to track the cumulative force exerted
on the object by the hand (Fig. 4A). Measuring the grip force enabled
us to analyze the range of grip forces under shared or human control,
rather than just whether the participant exceeded a predetermined
force. Grip force measurements from the “fragile” object were used

solely for analysis purposes and were not used by the controller in any
way. A diverse range of forces exerted on the object would imply the
user can still modulate their grip force, and improved performance on
the task would suggest the machine is still meaningfully contributing,.

As expected, forces recorded during the task showed participants
were able to produce a wide range of grip forces under shared control
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Fig. 4 | Shared control improved grip precision during fragile-object

transfer task. A Six intact-limb participants with no prior myoelectric control
experience completed a fragile-object transfer task***°. Using a prismatic precision
pinch, the participants attempted to transfer an instrumented object over a barrier
as many times as possible in two minutes without “breaking” the object by
exceeding a force threshold. B Example data from the thumb as one participant
completed the fragile-object task begins with the participant extending their fin-
gers (dashed line) to wrap around the object (-0 to 0.55s), and then flexing their
fingers to grasp the object (-0.5 to 1s). Once the object was within proximity of the
fingers, the machine control (dotted line) provided a steady offset to the shared
output (solid line) so the fingers maintained contact with the object (-1s onward).
Shared control smoothed the grip force (blue) as the fingers worked in parallel to
transfer the object (1.5 to 3 s). C Shared control resulted in significantly greater
success (permutation test; p = 0.004). D Shared control also resulted in

D Shared Control

significantly lower peak forces (generalized linear model; p < 0.001). E We mea-
sured the average transfer rate of each trial for 12 measures per control strategy.
F Cognitive load, as measured by a DRT, was not significantly different between
human and machine control. G There were no significant differences in physical
effort (i.e., muscle activation). Violin plots represent the distribution of the data;
black bars indicate the median. Data from six intact-limb participants. Sample sizes
are: 12 success rates per condition (2 repeated measures per participant); 222 peak
forces for human control and 199 peak forces for shared control (aggregate of all
attempts from all participants); 12 transfer rates per condition (2 repeated mea-
sures per participant); 398 DRT response times for human control and 460 DRT
response times for shared control; 12 SEMG MAV averages per condition (2 repe-
ated measures per participant). ** denotes p < 0.01; ** denotes p < 0.001. Numerical
results are found in Supplementary Table 1. All statistical tests are two-sided.

(Fig. 4B). Participants approached the object while opening their hand,
and then grasped around the object. Once the object was in proximity
to the digits, the machine automatically adjusted its target position to
the exact joint position necessary to make contact with the object. This
stabilized the user’s grip around the object, effectively offloading the
positioning of the digits to the machine and allowing the user to focus
exclusively on the force they intended to produce. Indeed, we
observed multiple events in which the user’s intent to minimize force
on the object would have resulted in dropping or breaking the object,
but the machine’s contribution to the shared control maintained a
secure grip on the object (Fig. 4B). In comparison, user’s attempting
the task with human control struggled to successfully transfer the
object without breaking or dropping it as relatively small changes in
the decoded position resulted in large changes in the grasp force
(Supplementary Fig. 5A).

Relative to human control, shared control resulted in greater task
performance, implying the machine contribution improved grip pre-
cision. As opposed to human control, shared control increased the
participant’s success rate when transferring the fragile object without
dropping it or exceeding the break threshold (59 +23% vs. 89 +10 %;
p<0.01; permutation test; Fig. 4C). Participants produced a similar
variety of forces under shared control and human control (Fig. 4D), but
they tended to use less force under shared control, in line with the task
requirements (9.68+4.95N vs. 7.60+3.53N; p<0.001; generalized
linear model; Fig. 4D). Participants transferred the object at a similar

rate under each control strategy (10.08 +2.87 transfers per min vs.
9.04 +2.92 transfers per min.; p = 0.07; permutation test; Fig. 4E).

Shared control improves grip security

When grasping an object, we instinctively maximize the contact area
with the object while minimizing our grip force to ensure a stable and
efficient grasp™. Importantly, our native hands regulate grip force on a
digit-by-digit basis with millisecond precision®. In contrast, commer-
cial prostheses typically move all digits in synchrony, following a
predetermined trajectory to form a specific grasp. This ‘robotic’
motion results in an unequal distribution of pressure across the digits
and an unstable grip.

We therefore sought to next validate the grip security afforded by
our shared controller on a holding task with a larger spherical object
(Fig. 5A). With our native hands, we tend to grasp small rectangular
fragile objects, like those used in our fragile-object transfer tasks, with
a prismatic precision pinch, often involving only two digits (e.g., the
thumb and index)*’. In contrast, for large spherical objects, we typically
employ a spherical power grasp involving all of the digits®. Thus, a
holding task® involving a large ball assesses performance on the
opposite end of the grasping spectrum, and similar improvements in
performance would support the potential of the shared controller to
generalize across a variety of activities of daily living.

To this end, intact-limb participants were provided with control of
each digit individually and were tasked to pick up and hold a large ball
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Fig. 5| Shared control improved grip security and reduced cognitive burden on
a holding task. A Six intact-limb participants with no prior myoelectric control
experience completed a holding task®. Participants attempted to pick up a sphe-
rical ball with a power circular grasp and hold it for two minutes without dropping
it. Participants had independent control of the thumb, index, middle, and ring
fingers. All other parameters were the same. B Example data from the thumb during
the holding task with shared control. The participant began by extending their
fingers (dashed line) to wrap around the object (-0.5 to 1s), and then flexed their
fingers to grasp the object (-1 to 1.75s). Once the object was within the grasp, the
machine control (dotted line) provided a steady offset to the shared output (solid
line) so the fingers made contact with the object (-1.75 s onward). Shared control
effectively maintained a stable grip even when the human contribution varied and
decreased over time (-2.5 to 6 s). With shared control, participants dropped the ball
significantly less (permutation test; p = 0.037; C) and were able to hold the ball

DShared Control

continuously for significantly longer (permutation test; p = 0.039; D). Participants
tended to have more fingers making contact with the object (E), although this effect
was not statistically significant. Shared control resulted in significantly less cogni-
tive burden (generalized linear model; p = 0.016; F). Participants tended to exert
less physical effort when using shared control, although this effect was not statis-
tically significant (G). Violin plots represent the distribution of the data; black bars
indicate the median. Data from six intact-limb participants. Sample sizes are: 12
drop counts per condition (2 repeated measures per participant); 12 maximum hold
times per condition (2 repeated measures per participant); 12 average number of
finger measurements per condition (2 repeated measures per participant); 398 DRT
response times for human control and 468 DRT response times for shared control;
12 SEMG MAV averages per condition (2 repeated measures per participant). *
denotes p < 0.05. Numerical results are found in Supplementary Table 1. All sta-
tistical tests are two-sided.

for two minutes (Supplementary Video 3). With shared control, parti-
cipants would approach the ball while opening their hand, and then
grasp the ball. As the digits came into proximity to the ball, the
machine automatically adjusted its target position and continued to
make positional adjustments for each digit as the participant fatigued
or adjusted their grip over time (Fig. 5B). Such adjustments are con-
sistent with the biological corrections in grip force seen in all phases of
lifting and grasping an object”. However, the same degree of control
of the four independent digits was not observed with human control,
as noise and cross-talk between sEMG channels make precise, stable
control difficult (Supplementary Fig. 6).

Relative to human control, shared control resulted in greater grip
security. When using shared control, participants were less likely to
drop the ball (2.33+3.50 drops vs. 0.25+0.45 drops; p <0.05; per-
mutation test; Fig. 5C). and were able to hold the ball longer without
dropping it (54.01+£46.02s vs. 77.61+45.47 s; p<0.05; permutation
test; Fig. 5D). Participants also tended to have more fingers making
contact with the ball, although this was not statistically significant
(2.40+0.48 fingers vs. 2.73+0.65 fingers; p=0.28; permutation
test; Fig. S5E).

Shared control reduces cognitive burden
Activities of daily living often involve dividing attention between
multiple simultaneous subtasks; for example, holding a jar while

twisting off its lid. As such, a top priority for prosthesis users is less
attention-demanding control®. To this end, we had participants com-
plete a secondary detection response task (DRT) while performing the
fragile-object transfer task and the holding task. The DRT provides a
simple yet sensitive measure of cognitive resource allocation based on
response time to a stimulus®, and has also been used to assess the
cognitive load of prostheses™.

For the holding task, shared control resulted in less cognitive
demand than human control. Participants had significantly faster
response times on the secondary DRT when using shared control
(046+0.26s vs. 0.40+0.26s; p<0.05; generalized linear model;
Fig. 5F). While there are limited research studies using the DRT to
quantify the cognitive burden of using a myoelectric hand*®, research
into the effects of cognitive load on driving indicates that a change of
50 ms in the response times corresponds to a noticeably more difficult
task, as human response times to the tactile DRT generally range from
approximately 300 ms to 1s”°. Without an additional task, the
response time to the DRT was measured to be 250 ms (Supplementary
Fig. 7). Given this, the measured decrease of 60 ms corresponds to a
29% decrease in cognitive burden with respect to the range of
response times when using shared control, which is similar to the 30%
decrease in cognitive load observed when switching from completing
a task with a 1-DOF bionic hand to an intact hand (Supplementary
Fig. 7). Shared control also resulted in less muscle activity, although

Nature Communications | (2025)16:10418


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-65965-9

A B

Flexion

Thumb Position

---Human Contribution —Shared Output

Over-

== Grip Force
achine Contribution ---Break Force

Correction Stabilization

Grip Force (N)

Intermediate
Tripod Grasp

Time (s)
Grip Security + Precision Burden

. . D E F w. G
L1120 25 _xx 25 ® 25 160
[0} —~ —

£ £ 20 20 220 2 120
= < =
i 815 -- 815 R >

° o o b3 s 80
T . 10 5 10 c 1.0

40 S o

) 2 a 40
= = 5 5 o 0.5 s

(o)) O Q L
20 0 0 X o ol

D Human Control

Fig. 6 | Shared control improves grip security, enhances grip precision, and
reduces cognitive burden for amputee participants. A Four participants with
transradial amputations completed a fragile-object holding task. Participants
attempted to hold an instrumented object as securely as possible for two minutes
without exceeding a grip force threshold. Participants used an intermediate tripod
pinch to complete the task. B Example data from the thumb as one participant
completed the fragile-object holding task. The participant began the task by flexing
(dashed line) to grasp the object (-0 to 15s). In this case, the participant exerted too
much force (blue line), “breaking” the object (-1to 2.5 s). In response to the auditory
feedback, the participant substantially reduced their grip force, but, in combination
with the machine controller, maintained contact (dotted line). The shared output
was able to maintain enough force to avoid dropping the object (-2.5 to 3.5 s). With
shared control, participants held the object for significantly longer (permutation
test; p=0.002; C while exerting significantly less force on the object (generalized

D Shared Control

linear model; p < 0.001; D). They also tended to drop the object less frequently,
although this effect was not statistically significant (E). Additionally, shared control
significantly reduced the cognitive burden of the participants, as indicated by faster
response times on the secondary DRT (generalized linear model; p <0.001; F).
Shared control and human control required similar levels of physical effort (G).
Violin plots represent the distribution of the data; black bars indicate the median.
Data from four transradial amputee participants. N =14 trials per condition (repe-
ated measures per participant shown in Table 1); 14 maximum hold times per
condition; 226 average forces for human control and 140 average forces for shared
control; 270 DRT response times for human control and 313 DRT response times for
shared control; 14 SEMG MAV averages per condition (repeated measures per
participant shown in Table 1). ** denotes p < 0.01; ** denotes p < 0.001. Numerical
results can be found in Supplementary Table 1. All statistical tests are two-sided.

this was not statistically significant (60.16 +29.57 puV vs. 46.96 + 8.95
uV; p =0.17; permutation test; Fig. 5G).

No significant differences were observed for cognitive or physical
burden for the previously discussed fragile-object task (Fig. 4F and 4G;
p>0.05). This may be due to the time-based component of the task;
transfers are performed so quickly that the user stays engaged
throughout the entire task, making the contributions from the
machine more subtle.

Shared control improves grip security and precision for upper
limb amputee participants
Having validated the shared controller with intact-limb participants on
two tasks involving different grips and forces, we next sought to vali-
date the shared controller with upper-limb amputees. To reduce
experimental time and document performance on yet another grip, we
had four transradial amputees perform a fragile-object holding task, in
which they picked up and held an instrumented fragile object***° using
an intermediate tripod pinch® for up to two minutes (Fig. 6A). The
force regulation used in this task is akin to that used when holding a
plastic cup of water without dropping or crushing it. The amputee
participants also completed the secondary DRT during the fragile-
object holding task to measure cognitive load.

Relative to human control, shared control resulted in greater grip
security and greater grip precision. Participants were able to hold the
object without dropping or breaking it for a longer duration with

shared control (7.81+12.33 s vs. 51.56 +45.0' s; p<0.01; permutation
test; Fig. 6C). Participants were still able to produce a wide range of
grip forces with shared control, but their average grip force was lower
when using shared control (14.86 +4.54 N vs. 9.74 +4.27 N; p< 0.001;
generalized linear model; Fig. 6D). The participants also dropped the
object less with shared control, although this was not statistically sig-
nificant (9.64 + 6.46 drops vs. 4.64 + 4.88 drops; p = 0.10; permutation
test; Fig. 6E).

Shared control also reduced the cognitive burden of the
amputee participants. Response times to the secondary DRT were
significantly lower when using shared control (0.74+0.41s vs.
0.62 +0.38s; p<0.001; generalized linear model; Fig. 6F). This 120-
ms change in their response times corresponds to a 24% decrease in
cognitive burden by using shared control. To frame this change with
respect to other real-world scenarios, a 120-ms improvement was
also observed when drivers operated their car radio at a standstill
versus operating their radio while driving®. A comparison between
the intact-limb and amputee participant’s response times indicates
that the amputee participants were slower to respond than the
intact-limb participants (Supplementary Fig. 8), which could be
attributed to the different task, or to their amputation or age. Con-
sistent with the results from the intact-limb participants, we
observed no difference in physical burden between the control
strategies (49.89 + 43.28 uV vs. 45.89 +39.0 uV; p = 0.54; permutation
test; Fig. 6G).
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Fig. 7 | Shared control supports activities of daily living. Participants completed
various ADLs with and without shared control. Shared control was particularly
helpful for tasks that involved a precise grasp and grip force, including lifting a
disposable cup to their mouth without crushing it using a power grasp (A), moving
an egg without breaking it using a tripod grasp (B), and picking up a sheet of paper
without crinkling it using a pinch grasp (C). One participant also attempted to drink
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out of a disposable cup six times with both control algorithms (D). Under shared
control, the participant successfully lifted the cup to their mouth and set it back on
a table four times, but was unable to do so a single time with human control alone.
E No significant differences were observed in the time it took for the participant to
make a grasp that they felt confident in and lift the cup up to their mouth.

Shared control generalizes to activities of daily living

An important concern with controlled laboratory experiments is
whether the tasks used to assess the performance of the prosthesis are
ecologically valid. For example, do improvements in manipulating
fragile objects and holding oddly shaped objects translate to improved
performance on activities of daily living (ADLs)? Inherent to that
question is whether the shared controller can generalize to new and
diverse conditions, as would be experienced with ADLs. We evaluated
this by having the participants complete a variety of ADLs with shared
control and human control (Supplementary Video 4). Improvements
are difficult to quantify with ADLs, but the participants noted that
shared control was particularly helpful for tasks involving precise hand
positioning and force regulation. Three tasks stood out: bringing a
disposable cup to their mouth, transferring an egg between two plates,
and picking up a piece of paper (Fig. 7). Each of these tasks corre-
sponded to one of the grasps used in the prior experiments. Drinking
from the disposable cup used a power grasp (Fig. 5A), moving the egg
used a tripod grasp (Fig. 6A), and moving the piece of paper was
completed with a pinch grasp (Fig. 4A). One participant specifically
noted that these tasks were incredibly difficult, if not impossible, with
human control, but that shared control made the tasks reasonable.
Indeed, with only human control, participants repeatedly broke/
dropped the egg, crushed/dropped the cup, and crinkled/dropped the

piece of paper; under shared control, they were able to consistently
complete all the tasks (Supplementary Video 4).

Occupational therapists often rate amputee patients’ perfor-
mance on activities of daily living using subjective graded scales. For
example, the Activities Measure for Upper-Limb Amputees (AM-ULA)
scores amputees on 5 categories: extent of completion, speed of
completion, movement quality, skillfulness, and independence.
Although the activities completed with AM-ULA are not well-suited for
next-generation prostheses capable of a delicate touch®**%*, the rate
and speed of completion score criteria are quantitative and can easily
be applied to other activities of daily living. To this end, we quantified
the speed and success rate of one participant as they completed six
trials of the drinking task with disposable cups, during which they
attempted to pick up the cup from the table, bring it to their mouth
and mime a sip, and then return it to the table. This real-world activity
of daily living is considerably difficult. These common cups break with
approximately 7 N; in contrast, the fragile holding task required the
amputees to maintain forces below 15N. Under human control, the
participant crushed the cups in five out of the six trials and dropped it
twice (Fig. 7D). However, with shared control, the participant suc-
cessfully completed the task four out of the six times. No significant
difference in the task speed was observed; the participant took
9.67 £3.27s to make a grasp and lift the cup to their mouth with
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human control, and only 7.60 +2.59 s with shared control (p=0.26;
unpaired t-test; Fig. 7E).

Discussion

This work introduces a generalizable framework for enhancing the
performance of bionic arm users through embedded multimodal
sensors and autonomous control. We show generalizability through a
variety of different grasps and tasks and facilitate translation through
integration with a widely used commercial prosthesis and by validating
the system with four amputees, a sizable cohort for the transradial
population. Indeed, this work represents the first demonstration of
shared control with multiple amputee participants using a physical
prosthesis. Importantly, we show enhanced performance both in
terms of physical and cognitive function; participants had better grip
security, enhanced grip precision, and reduced cognitive burden with
no increase in physical burden.

These results build on prior sensorized autonomous bionic arms
by leveraging distributed multimodal sensors within a commercial
prosthesis. In contrast to camera-based systems* %, our distributed
proximity sensors require substantially less power for operation and
data analysis. Prostheses should ideally operate continuously for an
entire day; greater power requirements led to larger, heavier batteries,
and weight is a critical priority for prosthesis adoption®. Distributed
proximity sensors also provide more robust operating conditions.
With a single camera, users must take time to methodically approach
objects to ensure the camera has a line of sight to determine the
position of each digit®. In contrast, a distributed system provides
several viewing angles and allows each digit to operate independently
of the others.

In principle, the shared control algorithm presented here could
operate with only a single modality that detects contact via fingertip
pressure sensors already available in commercial hand prostheses"**,
However, in practice, the multimodal configuration provided more
robust control, given that sensor data is often non-ideal in the real
world. Using pressure sensors alone requires the machine control to
operate entirely in a reactive manner. The pressure sensors would
need to be sampled at a much faster rate than the actuation speed of
the prosthesis to ensure the machine stops quickly enough to provide
near-zero contact force. In practice, this was not feasible due to the
users’ desire to operate the prosthesis quickly, the momentum of the
prosthesis once in motion, the delays associated with power-efficient
sensor readings, and wireless communication. In contrast, the feed-
forward nature of the infrared sensors allows for a more seamless
blending of the human and machine intent. Additionally, the infrared
sensors have the added benefit of initiating movement on their own to
maximize the number of digits making contact with the object. Com-
bined, the multimodal infrared and pressure sensors provide both a
feedforward and a feedback approach to ensure robust operation.
With this in mind, the fingertip sensor modules used in this work have
been designed to be retrofitted onto different commercial prosthetic
hands, providing a straightforward means to translate the shared
control algorithm®®.

Nevertheless, even the most advanced sensorized autonomous
bionic arms are unlikely to capture a user’s intent perfectly. Prosthesis
agency, the sense that you are the author of your actions, is an
important factor for prosthesis design®>’. To this end, shared control
has the potential to maintain a strong sense of agency while offloading
some of the cognitive burden of grasping. Here, we introduce a new
shared control framework that uses a dynamically weighted sum to
allow simultaneous and independent contributions from the user and
the autonomous bionic arm. This approach was inspired by biological
grasping that maximizes contact area while limiting grasping forces®®.
This is a demarcation from prior works that toggle between human and
machine control?*°, or use a fixed proportion of human and machine
control>*. Our decision to pursue dynamic weighting was guided by

several failed attempts to leverage these past frameworks and past
literature that suggested that continuously sharing control would
improve performance®. Toggling between human and machine con-
trol requires the machine to be able to operate autonomously at a level
greater than that of a user. Given the variety of objects grasped and
forces exerted in daily activities, this framework fails when attempting
to generalize across multiple tasks. Indeed, the most complete shared
control work to date noted this critical problem®. The alternative,
sharing some fixed proportion of control between the human and user,
also failed to generalize well because it requires the machine to be
consistently useful across a range of conditions. From our experience,
fixed support from a machine designed to enhance grip security and
grip precision (a challenge for modern prostheses) ultimately hindered
performance on simple tasks (that would not otherwise be a challenge
for modern prostheses). The dynamic framework introduced here
allows for generalizable control by ensuring the user maintains agency
over the bionic arm at all times.

One could imagine a few scenarios where the shared control fra-
mework proposed in this work might impede functionality; for
example, when the machine control either lags or precedes the
human’s intent. In theory, the machine controller could lag behind the
human’s intent or fail to detect an object if the line of sight to all of the
digits is limited. In this event, the user will have decreased precision
until contact is made, at which point the machine’s goal will update,
and the shared control scheme will operate as usual. In theory, it is also
possible for the machine controller to precede the human’s intent. For
this to happen, the user would have to reach for an object and sur-
round the object with the prosthetic fingers, but not desire to grasp it.
This scenario is uncommon and unusual in activities of daily living,
where grasping and reaching are performed simultaneously®’. Never-
theless, in this event, the machine would attempt to move the fingers
closer to the object to make initial near-zero contact with the object.
Then the user could still achieve their intent, but would have to exert
more physical and cognitive effort. Given the rarity and minimal
impact of the machine lagging or preceding the human’s intent, we
believe the shared control framework presented here provides a
generalizable approach towards offloading some of the cognitive
burdens of dexterous control while maintaining user autonomy and
robust performance when working with non-ideal sensor data in the
real world. These examples provide a rough baseline for how the sys-
tem might behave under relatively simple conditions. However, the
impact of more complex sensorimotor tasks, like opening a bottle cap
or tying shoelaces remains an important question worthy of future
research.

We demonstrated that the shared control framework can gen-
eralize to a variety of objects and grip patterns common in activities of
daily living. Indeed, the tasks performed mimicked standard clinical
tasks to assess patient functionality. For example, the fragile-object
transfer task is effectively a more difficult version of the box and blocks
tasks, and the holding tasks with different-shaped objects are similar to
portions of the Southhampton Hand Assessment Procedure’®. How-
ever, this does not necessarily mean that shared control will generalize
well to everyday real-world use. A long-term at-home clinical trial,
along with modern clinical assessments, like the Activities Measure for
Upper Limb Amputees (AMULA)”, is necessary to validate real-world
generalizability and to demonstrate improvements in independence
and quality of life. Such a study could also answer questions regarding
the impact of shared control on prosthesis adoption and learnability.

Shared control resulted in immediate improvements in functional
and cognitive performance in naive users. An important question
remains as to whether shared control can provide similar, or even
greater, benefits to experienced users. As a simple first-order assess-
ment of learning, we explored the change in performance for human
control and shared control between the first and last experimental
blocks of the fragile-object transfer task, holding task, and fragile-
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holding task (Supplementary Fig. 9). No learning took place under
shared control; there were no significant differences for any of the
tasks. Under human control, no learning took place for the holding
task or fragile-holding task, but there was a significant improvement in
success rate on the fragile object transfer task. Given the timeframe of
the tasks performed herein, we suspect that the limited learning that
did take place would mostly be attributed to task familiarization.
Future work should explore long-term motor learning associated with
shared control. Shared control could potentially improve motor
learning, as decreased cognitive burden is associated with an increase
in motor skill acquisition’”. In contrast, the machine contribution
could also act as an additional hidden variable within the user’s internal
model that impedes learning’*. Regardless of long-term outcomes, the
short-term benefit of enhanced dexterity and reduced cognitive load
could potentially improve prosthesis adoption during the critical
golden window after amputation’.

Among the amputee patients, shared control provided similar
benefits to those who used a myoelectric prosthesis and those who
used a body-powered prosthesis. Future work should explore the
impact of shared control among myoelectric and body-powered users
with a greater number of patients. Shared control is most straight-
forwardly applicable to myoelectric users since shared control could
be readily implemented into commercial multiarticulate bionic arms
like the TASKA hand used in this study. However, the ability of shared
control to reduce the cognitive load of controlling a multiarticulate
bionic arm may also make myoelectric control more appealing to
patients who would have otherwise opted for a body-powered pros-
thesis. Although there are many differences between body-powered
and myoelectric prostheses (e.g., weight), body-powered prostheses
are often considered to require less attention, and this is a major
contributing factor in prosthesis selection’. Indeed, body-powered
prostheses require less training time’” and provide residual sensory
feedback that has been hypothesized to reduce cognitive and visual
demand’®. Given that shared control can reduce the cognitive demand
of a myoelectric prosthesis, future work should explore the ability of
shared control to reduce prosthesis abandonment among myoelectric
users, as myoelectric prostheses have yet to improve prosthesis
adoption over body-powered alternatives’.

Commercial myoelectric prostheses are usually controlled in an
open loop with no explicit feedback. The few commercial prostheses
with feedback typically use motor current to indirectly estimate and
limit exerted force. However, there is a recognizable trend of more
commercial bionic hands becoming more sensorized with multiple
pressure sensors across the hand"***. Embedded pressure sensors
allow for faster reactions and gentler forces and maintain functionality
during passive interactions in which the motors are not active. As
sensor arrays become more common in commercial bionic hands,
shared control work will become more relevant and impactful. Related
work has shown that integrated force sensors can also close the loop
by driving haptic feedback provided directly to a user®**’***, The pre-
sent work complements these related works by demonstrating another
value of integrating force sensors into prostheses.

Commercial myoelectric prostheses are also typically controlled
using either pattern recognition®® or dual-site control’*??, both of
which require the user to sequentially select among grip patterns with
a fixed force output”. In contrast, here we demonstrate simultaneous
and proportional control of each digit in real-time. By eliminating the
need to sequentially switch between grip patterns, simultaneous and
proportional control has been shown to improve performance relative
to pattern recognition for a 3-DOF prosthesis’. Simultaneous and
proportional control of more than 3 DOFs has been achieved pre-
viously using a modified Kalman filter*’. Indeed, a modified Kalman
filter has been used to control up to 10 DOFs*, deployed on compu-
tationally limited hardware® 7, and used to complete various activities
of daily living®*°%. Although promising, it is recognized that the

performance and intuitiveness of simultaneous and proportional
control algorithms decrease as the number of controllable DOFs
increases, and this is also true for the modified Kalman filter”. In the
present work, we demonstrate the ability of shared control to enable
simultaneous and proportional control of a greater number of DOFs
while decreasing the overall cognitive burden.

An important question remains as to whether the shared control
framework employed herein can be readily extended to other, more
traditional, control strategies like pattern recognition or dual-site
control. Explicit validation is required, but in theory, both pattern
recognition and dual-site control could benefit from the shared con-
trol framework outlined here. Parallel dual-site control of multiple
DOFs” is akin to the modified Kalman filter, and we would likely see
similar improvements in grip security, grip precision, and cognitive
load. In the case of pattern recognition, the shared control framework
could increase grip security and/or precision by helping maintain digit
contact and distributing forces more equally among the active DOFs,
but would likely have minimal impact on cogpnitive load. Future shared
control frameworks with pattern recognition in mind could leverage
the embedded sensors to inform grip selections, which, if done well,
could improve the speed and reduce the cognitive demand of coor-
dinated multi-gesture tasks.

The Southampton Hand was one of the first prostheses to utilize
integrated sensors to regulate grip force’. The Southampton Hand
was controlled by the user toggling a “touch” mode in which the hand
would move towards an object and stop upon force feedback. The user
would then regain control to trigger a subsequent increase or decrease
in grip force as needed. In contrast, the present work leverages
proximity sensors to optimize grip configuration and force prior to
making contact and blends human and machine intent for precise
position control rather than toggling between the human and machine
for iterative refinement. During experiments with the Southampton
Hand, researchers observed that participants had to dedicate less
attention to using the Southampton Hand compared to a conventional
myoelectric hand'®. Since then, other research has detected a
decrease in cognitive load when using shared control via the NASA TLX
survey”®. The present work also builds on these past works by quan-
tifying a reduction in cognitive load through a nonsubjective metric,
the detection-response task. Notably, the detection response task used
in the present work provides an objective measure of cognitive load,
establishing a benchmark for the intuitiveness of prosthetic control
strategies. More intuitive control may ultimately increase prosthesis
usage, given that poor and unintuitive control are primary reasons for
abandonment®.

Methods

Human testing

Nine intact-limb participants (22.3 +2.40 years old; 44% female) and
four participants with transradial amputations (45.75 + 14.36 years old;
100% male) were recruited for this study. The intact limb participants
were 89% right-hand dominant, and the amputee participants were
100% right-hand dominant before amputation. Table 1 contains further
details about the amputee participant population. None of the intact
limb participants had any prior experience controlling myoelectric
devices. Informed consent, experiment protocols, and patient image
collection were carried out in accordance with the University of Utah
Institutional Review Board (IRB 00098851), the Department of the
Navy Human Research Protection Program, and the Declaration of
Helsinki.

Signal acquisition

Surface electromyography (SEMG) was collected from the participants
using 32 sEMG electrodes. SEMG was sampled at 1kHz and filtered
using the Summit Neural Interface Processor (Ripple Neuro Med LLC).
SsEMG signals were band-pass filtered with a lower cutoff frequency of
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Table 1| Participant Information

Age Gender Handedness Pre-Amputation Amputation Years since Amputation Prosthesis at Home
47 Male Right Bilateral transradial 14 Body-powered hook
62 Male Right Right transradial 30 Body-powered hook
28 Male Right Right Transradial 4 Myoelectric

47 Male Right Right Transradial 1 Myoelectric

22 Male Right None N/A N/A

24 Female Right None N/A N/A

18 Female Left None N/A N/A

23 Female Right None N/A N/A

21 Female Right None N/A N/A

22 Male Right None N/A N/A

22 Male Right None N/A N/A

22 Male Right None N/A N/A

27 Male Right None N/A N/A

15Hz (sixth-order high-pass Butterworth filter) and an upper cutoff
frequency of 375 Hz (second-order low-pass Butterworth filter). Notch
filters were applied at 60, 120, and 180 Hz. Differential SEMG signals
were calculated for all possible pairs of channels, resulting in 496
differential pair recordings*’. The mean absolute value (MAV) was then
calculated for the 32 single-ended and 496 differential recordings at
30 Hz using an overlapping 300-ms window*’. SEMG was measured
using a 32-channel, dry electrode compression sleeve for intact-limb
participants* and from 32 adhesive electrodes (Nissha Medical Tech-
nologies) placed in a grid pattern on the residual forearm for amputee
participants. The embedded fingertip sensors were sampled at 30 Hz
and passed through a median filter with a time window of 3 samples.

Sensorized fingertips

The sensorized fingertips (Point Designs, Broomfield, CO, USA) con-
tained a barometric pressure sensor (MS5637-02BA03, TE Con-
nectivity) and a proximity sensor (VCNL4010, Vishay
Semiconductor)®. The proximity sensors operate by emitting a spe-
cific wavelength of infrared light and measuring the intensity of any
reflections. The sensors are mounted in a plastic housing and
embedded in silicone. The proximity sensor is capable of detecting
surfaces up to 1.5cm away. The pressure sensor embedded in the
silicone is capable of reliably detecting forces less than 1N and up to
30N (Supplementary Fig. 1). Each of the fingertip sensors commu-
nicates with a central microcontroller (ESP32, Espressif, Shanghai,
China) mounted on the back of the prosthetic hand. The housing of the
fingertip sensors was designed in multiple form factors to fit different
commercial bionic hands, but only the TASKA form factor was used in
this work.

Bionic hand interface

For intact-limb participants, the sensorized bionic hand was mounted
to a bypass socket that was worn on the left arm'®, For amputee par-
ticipants, the sensorized bionic hand was mounted to an adaptable 3D-
printed functional test socket'®. After applying the sEMG electrodes,
the residual limb was wrapped using a self-adherent wrap to apply
compression and manage cables. The adaptable socket was then
placed over the wrapped electrodes and secured by wrapping an
elastic bandage around the socket to provide compression and around
the bicep of the upper arm to prevent slipping. All participants used a
left-handed TASKA hand (TASKA, Christchurch, New Zealand).

Initial fragile transfer task with autonomous machine control
To assess how incorporating information from the sensorized finger-
tips might affect bionic arm control, three intact limb participants

completed a fragile-object transfer task with a mechanical fragile
object'® (Fig. 2B). The fragile-object transfer test is a derivative of the
widely used box and blocks test of hand dexterity'® in which the
participants must limit the grip force applied to the block. The fragile-
object test provides additional information beyond the box and blocks
test and has been used extensively to validate the fine dexterity of
prostheses®*'%1%_ The transfer task involved picking up a single fragile
object and translating it over a barrier without exceeding a pre-
determined grip force. Once the object was broken, dropped, or suc-
cessfully transferred, or if the trial timed out, then the trial was ended,
and the object was reset. Participants had up to 45seconds to com-
plete the trial with a verbal warning when 15 seconds remained. The
barrier was 62.5mm tall.

The mechanical fragile object consisted of a steel plate, a steel
lever, a magnet that held the steel lever in place, and a weight. When
grasped above the holding force of the magnet, the fragile object
would “break,” and the lever would emit a clicking sound. The break
force could be adjusted by sliding the magnet along the lever. The
object weighed 496 g.

Each of the three intact-limb participants completed the fragile
object transfer task using a prismatic precision pinch grasp with
human control and with autonomous machine control. Autono-
mous machine control was engaged when the participant flexed and
disengaged when the participant extended their hand. When
autonomous machine control was engaged, the fingers would close
when a surface was detected by the proximity sensors and stop
when contact was detected via the pressure sensors (Fig. 2A). A
proximity measurement of 30 indicated that an object was detec-
ted, and a pressure measurement of 30 indicated that contact had
been made.

The experiment consisted of the participants completing two
blocks of the fragile object transfer task with each control scheme, for
a total of four blocks, in a pseudo-randomized counterbalanced for-
mat. Each block consisted of 10 trials. After the second block of each
control scheme, participants completed the NASA TLX survey. Each
participant completed the experiment twice, once with a break force
of 19N and another with 17 N (Supplementary Fig. 2). Data from the
two experiments were aggregated. The pressure readings from the
fingertips from each trial and the success rate from each block were
recorded as measures of grip precision. Due to the unitless nature of
the pressure sensors, pressure measurements were normalized by the
maximum recorded value for each participant. The SEMG MAV was
recorded and averaged across channels and each trial as a measure of
physical exertion, and the NASA TLX served as a measure of perceived
workload.
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Shared control algorithm
Machine control. The machine control algorithm predicts the kine-
matic position of each digit in real time using proximity and pressure
values from a sensorized prosthetic hand. A left-handed TASKA hand
was retrofitted with fingers containing pressure and infrared proximity
sensors (Point Designs LLC, Lafayette, CO, USA) (Fig. 1A)**'””. A mul-
tilayer perceptron (MLP) was designed with a single hidden layer to
predict object distance from the proximity and pressure sensors'”’.
Training data for the MLP was collected by oscillating each digit
towards and away from 3D-printed objects. The ground-truth distance
from the object for the training data was computed by measuring the
kinematic position of the finger upon initial contact with the object
(i.e., when pressure was first recorded) and then retroactively using the
difference between that kinematic contact position and the current
position to determine the current distance to the object

The machine's position goal was the predicted kinematic position
of each digit that would result in contact with the object, computed as
the sum of the current position of the digit and the predicted distance
to the object. A first-order lowpass filter with a cutoff frequency of
90 Hz was used to smooth the resulting predicted kinematic position
for the machine goal, u,, (Fig. 1B). The digits would only move to u,, if
the proximity sensors exceeded three times the standard deviation of
their noise. A proximity measurement of 30 indicated that an object
was detected. This threshold was implemented to prevent the machine
control from responding to random noise. Once contact was detected,
the machine predictions were frozen until the grasp was released to
prevent undesired jitter. Contact was defined as the pressure mea-
surement exceeding 30 or the proximity measurement exceeding
1000 (Supplementary Fig. 1A and B). By developing the machine
controller around achieving contact, rather than modulating force,
there is no dependence upon the range of the proximity or pressure
sensor beyond the detection of contact. The respective thresholds
were set such that the fingers would touch a given object but not exert
ameasurable force on it. u,, was limited to a range of -1 to +1, where -1
represents maximum digit extension, and +1 represents maximum
digit flexion.

Human control. The human position goal, u;,, was computed using a
modified Kalman filter (MKF)*°. The MKF was trained to correlate
SEMG features measured from the forearm to kinematic positions.
Training data was collected as the participants actively attempted to
move their (intact or amputated) hand alongside preprogrammed
movements of the prosthesis. Preprogrammed movements consisted
of both flexion and extension for the thumb, index, middle, ring, and
pinky fingers. Participants completed four trials of flexion and four
trials of extension for each digit. The resultant MKF provided the user
with proportional position control of all five digits on the TASKA hand.
SEMG features used for estimating motor intent consisted of the 300-
ms smoothed mean absolute value (MAV) of 528 sEMG channels (32
single-ended channels and 496 calculated differential pairs) calculated
at 30 Hz. To reduce computation complexity, the 528 sEMG features
were down-selected to 48 sEMG features via Gram-Schmidt
orthogonalization**'%, The human position goal, u,,, was limited to a
range of —1to +1, where —1 represents maximum digit extension, and +1
represents maximum digit flexion. A nonlinear, latching filter was
applied to the human position goal to limit jitter and smooth the
human intent for the ADL assessment**.

Shared control. We aimed to develop a shared-control algorithm that
continuously blends human and machine control. Unlike prior work,
where control of the hand was toggled between human and machine
control’®?, the shared-control law is fixed®’, or the grip force is
limited®, the shared-control algorithm we present in this paper uses
machine control to modify human control dynamically while still
allowing the human to modify the grip force'”. The motivation for this

design stems from the idea that the machine controller should con-
tinuously assist the human operator with the grasp, but never be in
complete control of the hand.

The shared control framework was designed such that the
machine control would conform each digit to the surface of a detected
object. If no object was detected, then the user had full control of the
hand, enabling them to flex the fingers towards an object if the sensors
failed to detect the surface. Once the machine controller detected the
object, it would move the fingers to make contact with the surface and
hold its position. The user could then flex and extend the grasp about
the point of contact to make a tighter or more relaxed grasp. The
mathematical implementation of this design is explained below.

Control of each DOF was shared between the human position
goal, u;,, and the machine position goal, u,,. The shared goal, u,, was
computed as the following:

e 1
tn) a1

U=y, +(1- @

This effectively attenuates the human’s control of the hand in
proportion to the machine’s control output. The human control signal
is also modified by a normalized exponential to give the user greater
precision during small movements in exchange for less precision
during large movements. The exponential attenuation was imple-
mented to assist the user in making finer motions and to limit the user
from over-flexing. The damping parameter o was set to o =3 for intact
limb participants, such that a human position goal of 0.5 would be
remapped to approximately 0.2. Preliminary data indicated that a
more aggressive scaling could further improve control, so for amputee
participants, @ was set to o = 4, remapping a human position goal of 0.5
to approximately 0.1 (Supplementary Fig. 4C). The scaling factor was
increased to o= 7 for the ADL testing.

Because shared control is only useful for grasping, a kinematic
threshold was used to disable the shared-control algorithm during
extension®. For example, if the MKF predicted that the human was
attempting to extend to a position greater than 75% of the extension
range, shared control was disabled to allow fluid hand opening. To
return to the shared-control state, the user had to flex 1% of the flexion
range. The 1% threshold was chosen so that shared control would be
effectively re-enabled as soon as the user stopped opening the hand.
This aided the participant in releasing the object without altering the
evaluation of the shared controller’s performance during grasping and
gave the user the ability to extend DOFs if u,, =1.

Cognitive and physical burden

To determine the cognitive burden associated with each control
strategy, we measured cognitive load with a secondary tactile
detection-response task (DRT) that the participant simultaneously
completed while using the prosthesis®>'°*"'°, The DRT requires the
participant to push a button with their intact or contralateral hand in
response to a small vibrating motor on their collarbone. The bilateral
amputee had the button secured to their hip and pressed it using their
residual limb. Both the response rate (i.e., how often they respond to
the vibratory stimuli) and response time (i.e., how long it takes to press
the button after the vibratory stimulus) are used as direct measures of
cognitive load. In accordance with ISO 17488:2016, vibrations were
applied according to a Gaussian probability distribution function with
a mean of three seconds and a variance of two seconds. The response
rate to the DRT has been correlated with increased cognitive load and
task difficulty® . In a separate experiment, the baseline response
times to the tactile DRT without an additional task were measured to
be approximately 250 ms (Supplementary Fig. 3). In driving tasks,
average response times vary with task difficulty, ranging from baseline
to approximately 800 ms, where a ceiling effect is observed®’.
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We also analyzed the shared control’s effect on the physical bur-
den of using the bionic hand. The mean absolute value of the SEMG
magnitude was used to measure the user’s physical effort (muscle
activity). This measure included all 32 electrodes on the user’s forearm
or residual limb.

Fragile transfer task with shared control

Six intact-limb participants completed a fragile-object transfer task
with the Electronic Grip Gauge (EGG)®°. The EGG consists of a weighted
3D-printed block containing a load cell and accelerometer to measure
grip force and lift force, respectively. Similar to the mechanical fragile
object, the EGG would emit a sound when the grip force exceeded a
threshold. As opposed to the pass-fail nature of the mechanical fragile
object used to evaluate the autonomous controller, the EGG provides
time series data, allowing for a deeper analysis of how different control
schemes might affect grip force, such as analyzing the average or peak
grip forces.

During the fragile-object task, participants used a prismatic pre-
cision pinch grasp to pick and transfer the object over a barrier as
many times as possible in 120 seconds without dropping or “breaking”
the object by exceeding a grip force of 17 N. Data collected from the
experiment involving the autonomous controller (Supplementary
Fig. 2) indicated that the break force should be set to 17 N rather than
19 N to make the task more difficult. Participants also completed the
detection response task (DRT) as a secondary task during the
experiment®®**""°, In order to properly measure cognitive load, the
DRT and fragile-object transfer task needed to be run continuously
rather than on a per-trial basis**. Each participant completed two trials
of the fragile object transfer task using human control and two trials
using shared control in a pseudo-randomized counterbalanced for-
mat. Participants were given up to 1 minute to practice before each
experimental block. The number of times the participants broke or
dropped the EGG from each trial, the number of successful transfers
from each trial, and the grip force during each grasp attempt were
recorded as measurements of motor precision. The DRT response time
was recorded as a metric of cognitive burden, and the average SEMG
activation during the trial was recorded as a metric of physical burden.

Holding task

To assess the shared controller’s ability to assist with gross, prolonged
movements, six intact-limb participants completed a holding task in
which they were instructed to use the prosthesis to pick up a 3D-
printed sphere and hold it for two minutes without dropping it. Par-
ticipants controlled four independent DOFs for this task: the thumb,
index, middle, and ring fingers. The pinky finger was not sensorized
and was linked to the control of the ring finger. The participants were
instructed to pick the object up using a power circular grasp as quickly
as possible and to pick it back up as quickly as possible if, at any point,
they dropped it. Each participant completed two 120-second trials of
the holding task using human control and two 120-second trials of
shared control in a pseudo-randomized counter-balanced format to
prevent order effects such as fatigue or learning. Participants were
given up to 1 minute to practice before each experimental block. Par-
ticipants also completed the DRT as a secondary task during the
experiment. The number of times the object was dropped, and the
average number of fingers used when grasping (determined by non-
zero pressure sensor data), were recorded as measures of grip security.
Contacting an object with more digits results in a more secure grasp®.
The response times to the DRT were recorded as a measure of cogni-
tive burden, and the average sEMG activation during the trial was
recorded as a metric of physical burden.

Fragile holding task
Four amputee participants completed a novel fragile holding task in
which they were instructed to use the prosthesis to pick up the EGG

and hold it for two minutes without dropping or breaking it°°. Due to
limited time with the amputee participants, the fragile holding task was
designed to measure grip precision and grip security simultaneously,
as a combination of both the aforementioned fragile object transfer
task and the holding task. Exceeding a grip force of 15N resulted in a
sound notifying the participant to lower their grip force. Participants
were instructed to prioritize holding the instrumented object and
secondarily prioritize keeping their grip force in the given range. An
intermediate tripod grasp was used for the holding task. In this man-
ner, the participant’s ability to maintain a precise, constant grip could
be evaluated by a single task requiring less time from the amputee
participants.

Each participant completed two 120-second trials of the holding
task using human control and two 120-second trials of shared control
in a pseudo-randomized counter-balanced format to prevent order
effects such as fatigue or learning. Participants were given up to
15 minutes to practice before each experimental block. The additional
practice time enabled participants to learn how to use the shared and
human control, as both control schemes were different from the
direct-drive control that many of them were familiar with. If partici-
pants felt comfortable with the given control scheme, then they could
forgo the remainder of their practice time. Participants 1 and 2 com-
pleted the task twice, and participants 3 and 4 completed the task only
once due to limited availability. The number of times the EGG was
dropped during a trial and the time spent holding the EGG were
recorded as measures of grip security. The average force exerted
during each grasp attempt and the maximum amount of time holding
the EGG within the given force threshold were recorded as metrics of
grip precision. Only grasp attempts greater than one second long were
analyzed to remove any measured forces of the participant bumping
into the object before grasping it. The response times to the DRT were
recorded as a measure of cognitive burden, and the average sEMG
activation during the trial was recorded as a metric of physical burden.

Drinking task

A single amputee participant completed six trials of a simulated
drinking task with shared control, followed by six trials with human
control to assess the validity of shared control for activities of daily
living (ADLs). The participant attempted to pick up a disposable foam
cup off a table, bring it to their mouth, mime a sip, and return the cup
to the table without crushing or dropping it. The cups broke under a
compressive force of approximately 7 N. The amount of time it took
the participants to pick up the cup and bring it to their mouth was
recorded as a metric of speed. Additionally, an experimenter noted if
the participant crushed or dropped the cup throughout each trial as a
metric of success. The participant was allowed to practice for 5min-
utes with each controller before the respective trials.

Statistical methods

Descriptive statistics, including mean and standard deviation (SD) for
continuous variables, and frequency and percentage for categorical
variables, were calculated for participant demographics and outcome
variables. In order to examine the effect of shared control on each
outcome variable, a generalized linear model with a permutation test
of the coefficient of intervention was fit to the data on the outcome
variables with < 30 total observations™ ", Specifically, a permutation
test was performed by enumeration of all possible distinct permuta-
tions or using 10,000 Monte Carlo permutations, depending on the
total number of observations. An exact Monte Carlo p-value for the
coefficient of intervention was calculated in each model. A permuta-
tion test was used for these variables since it does not assume a par-
ticular distribution of residuals and since it is specifically suitable for
the analysis of data with a smaller sample size as long as sufficient
permutations can be obtained. Meanwhile, the outcome variables with
> 30 total observations were analyzed using a generalized linear model
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with the robust or sandwich estimator of variance, allowing for het-
eroscedastic residuals™™. All models were adjusted for participant,
trial, difficulty (if used in data collection), and block (if used in data
collection), by using these variables as fixed-effect covariates. All sig-
nificance tests were conducted as two-sided tests, with an a level of
0.05 for statistical significance.

Data availability

All data required to evaluate the conclusions in the paper are pre-
sented in the main manuscript and/or the Supplementary Materials.
Any additional requests for information can be directed to and will be
fulfilled by the corresponding authors. Source data are provided with
this paper.
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