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Metabolomics of saliva, serum, and urine for
pathogenesis, diagnosis, and prognosis in
gestational diabetes mellitus

Qi Wu 1,6, Yihui Wu1,6, Shuqi Zhu1,6, Yibo Tang1, Lixia Zhang1,2, Jiayue Tang1,
Qi Chen1, Luyao Hu1, Pingya Zhu3, Xuliang Fu3, Jianghai Chang3, Sheng Cao3,
Danqing Chen1,4 & Zhaoxia Liang 1,4,5

Gestational diabetes mellitus (GDM) is a common metabolic disorder in
pregnancy, but the underlying mechanism has not been fully clarified. Using
metabolomic profiling of second-trimester saliva, serum, and urine, we iden-
tify 54 metabolites altered in GDM that converge on key metabolic pathways.
Fifty GDM biomarkers independently associated with abnormal maternal
glucose and insulin resistance are selected to construct GDM discriminant
models (internal test AUC: 0.868; real-world test: 0.796). These GDM bio-
markers are also associated with clinical profiles and adverse outcomes,
thereby predicting maternal and neonatal risks (internal test AUC: 0.764 and
0.838; real-world test: 0.726 and 0.792, respectively). Eleven GDM biomarkers
are already altered in the first trimester, which can be used for the early pre-
diction of GDM (internal test AUC: 0.767; real-world test: 0.744). In this work,
changes and interactions of metabolites in saliva, serum, and urine in the
second trimester are first identified in GDM, providing insights into its
pathogenesis and potential early prediction and prevention strategies.

Gestational diabetes mellitus (GDM) is a metabolic disorder char-
acterized by increased insulin resistance and islet β-cell dysfunction,
resulting in hyperglycemia first recognized in pregnancy1. GDM is one
of the most common complications of pregnancy, with a global pre-
valence as high as 14.0%2. It has been shown that GDM is associated
with adverse maternal and neonatal outcomes, such as preeclampsia,
cesarean section, preterm delivery, macrosomia, and stillbirth3,4. Fur-
thermore, the metabolic abnormalities underlying GDM may persist
from pregnancy to the postpartum period, increasing the long-term
risks of obesity, diabetes, cardiovascular disease, and other metabolic
diseases for both the mother and infant5. Therefore, early prediction
and prognostic assessment are essential for pregnant women with
GDM. Although studies have proposed several metabolic pathways
that may contribute to insulin resistance and GDM onset, such as

amino acid metabolism disorder6, mitochondrial dysfunction7, oxida-
tive stress8, etc, the underlying metabolic pathogenesis remains con-
troversial and insufficiently explored, warranting further investigation.

Metabolomics is the qualitative or quantitative analysis of water-
soluble small molecule metabolites (MW< 1000Da), which directly
reflects the activities that are occurring or have occurred in the body.
Compared to other omics, metabolomics is characterized by the
characteristics of easy detection, showing functional information in
biological pathways, and common study techniques. Therefore, it is
now widely used in GDM research9. As the metabolome is the final
downstream product of gene transcription, it can reflect some epige-
netic and genetic interactions in the pathogenesis of GDM10. Metabo-
lomics can also characterize normal physiological and pathological
states, and thus identify underlying biological phenomena associated
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with GDM9. Several studies have demonstrated significant alterations
in metabolites in the serum, plasma, urine, feces, and breast milk of
pregnant women with GDM in comparison with healthy pregnant
women. These alterations were involved in the disorder of multiple
metabolic pathways in GDM, such as amino acids, carbohydrates,
lipids, and purines11–13. Although these studies demonstrated the uni-
versality and diversity of metabolomics in GDM, they were only per-
formed in single biofluid samples (most commonly plasma or serum),
making it difficult to obtain a more holistic view of metabolic changes
in GDM from multiple perspectives.

Saliva is a biofluid sample that can be obtained noninvasively, and
it is suitable for human metabolomics studies due to its high water
content, limiting interference from lipid molecules14. Thousands of
molecules that reflect biological metabolism can be extracted from
saliva, which has therefore been used to explore the occurrence and
development of diseases15. A salivary metabolomics study showed a
significant increase in the acetic acid level in type 1 diabetes16. Our
group also found disturbances of amino acid metabolism, the tri-
carboxylic acid cycle, and purine metabolism in the saliva of patients
with type 2 diabetes using nanostructure-assisted laser desorption/
ionization time-of-flight mass spectrometry (NALDI-TOF-MS)17. The
advantages of this technique for reliable and high-throughput meta-
bolic profiling have been reported18,19, but there have been no studies
on the salivary metabolomics of GDM. To date, only one study, which
included nine cases of GDM, has used LC-MS/MS-based untargeted
metabolomic analysis to explore differences in salivary metabolites
and their association with gingivitis20. However, due to the small
sample size, its results need to be further verified. Studies are required
to examinewhether themetabolic profile is altered in the saliva, aswell
as whether the metabolic profiles of saliva, serum, and urine are cor-
related in pregnant women with GDM.

In this observational study, we compare the metabolic profiles of
saliva, serum, and urine between GDM and non-GDM patients in the
second trimester using NALDI-TOF-MS for the first time. The changes
and interactions of metabolites are analyzed to explore the metabolic
characteristics and pathogenesis of GDM. GDMbiomarkers are further
identified to construct GDM discriminant models and adverse out-
come prediction models. In addition, first-trimester changes in these
GDM biomarkers and their association with the risk of GDM are also
investigated.

Results
Baseline characteristics
A flow diagram of the study protocol is shown in Fig. 1. The baseline
characteristics of the cohort 1 and cohort 2 are shown in Table 1. No
significant differenceswere observed inmaternal age, gravidity, parity,
education status, body mass index (BMI), and gestational weeks (GW)
at sample collection between GDM and non-GDM patients in each
cohort. However, family history of diabetes, blood glucose, including
fasting blood glucose (FBG), blood glucose after 1 h (1h-BG), blood
glucose after 2 h (2h-BG), and HbA1c, and homeostasis model assess-
ment of insulin resistance (HOMA-IR) were significantly higher in GDM
patients than in non-GDM patients (P < 0.05).

Altered metabolic profiling of second-trimester multivariate
samples in GDM
Metabolic profiles of quality control (QC) samples were analyzed,
which demonstrated the stability and reliability of the detection plat-
form (Supplementary Fig. 1). In saliva, serum, and urine, 370 metabo-
lites were identified, of which 14 were present in all three samples
(Supplementary Fig. 2).

To explore the changes in metabolic profiles of second-trimester
multivariate samples in GDM, differentially expressed metabolites
were initially identified in the cohort 1 and verified in cohort 2 (see
Supplementary Data for secondary identification). The metabolites in

saliva, serum, and urine significantly differed between GDM and non-
GDM patients. In both the cohort 1 and cohort 2, seven saliva meta-
bolites (e.g., oxalacetic acid, pimelic acid, 2-naphthol were decreased;
L-glutamine, dimethylethanolamine, and taurine were increased., 40
serum metabolites (e.g., L-3-hydroxykynurenine, jasmonic acid, L-
homocystine were decreased; lysylglycine, 1-salicylate glucuronide,
and asymmetric dimethylarginine were increased., and seven urine
metabolites (e.g., taurine, pyridoxamine, and thiodiacetic acid were
decreased) were significantly altered, known as differential metabo-
lites. These differentialmetabolites were enriched in alanine, aspartate
and glutamate metabolism, cysteine and methionine metabolism,
pyrimidine metabolism, and other metabolic pathways, which
may synergistically lead to glucose metabolism disorders in GDM
(Fig. 2 and Supplementary Fig. 3).

The common changes and interactions of differential metabolites
in saliva, serum, and urine of GDM patients were also analyzed. Of the
above 54 differentialmetabolites, taurinewas significantly increased in
saliva but decreased in urine, whereas 5-methylfuran-2-carboxylic acid
was significantly decreased in both serum and urine of GDM patients;
no differential metabolites were found in both saliva and serum
(Fig. 3a and 3b). Moreover, correlation analysis between differential
metabolites of saliva, serum, and urine showed that six saliva meta-
bolites, 20 serummetabolites, and five urine metabolites were related
to each other. In saliva, the L-glutamine level was significantly asso-
ciated with ten serum metabolites, whereas dimethylethanolamine
was positively associated with five serum metabolites. Serum bisnor-
biotin was negatively associated with the saliva oxalacetic acid and
four urine metabolites. Urine xanthine was significantly associated
with eight serum metabolites (Fig. 3c).

GDM biomarkers from second-trimester multivariate samples
associated with abnormal maternal glucose values and insulin
resistance in GDM
To identify GDMbiomarkers, we analyzed the associations between 54
differential metabolites and oral glucose tolerance test (OGTT) glu-
cose values and HOMA-IR. Six differential metabolites in saliva, 37 in
serum, and seven in urine demonstrated significant associations with
at least one index among FBG, 1h-BG, 2h-BG, and HOMA-IR, and were
regarded as GDM biomarkers. There were 16, 44, 45, and three meta-
bolites in the multivariate samples associated with FBG, 1h-BG, 2h-BG,
and HOMA-IR, respectively. However, only serum tyrosol 4-sulfate was
positively associated with all OGTT glucose values and HOMA-IR,
whereas 14 serum metabolites (e.g., asymmetric dimethylarginine,
lysylglycine, malic acid, pyrrole-2-carboxylic acid, tyramine-O-sulfate,
5-methylfuran-2-carboxylic acid, mevalonic acid) were associated with
all three OGTT glucose values (Fig. 4).

Models based on GDM biomarkers constructed to distinguish
GDM and non-GDM
Utilizing the 50 GDM biomarkers, we constructed seven discriminant
models to evaluate their abilities to distinguish betweenGDMandnon-
GDM. A total of three metabolite features in saliva, eight in serum,
three in urine, ten in saliva and serum, eight in saliva and urine, ten in
serum and urine, and 13 in multivariate sample metabolomics were
screened out to construct the seven discriminant models (Supple-
mentary Table 1). Among them, GDM discriminant model constructed
with multivariate samples exhibited superior performance, achieving
an area under the receiver operating characteristic curve (AUC) value
of 0.868 (95% confidence interval [CI], 0.781–0.955), with sensitivity
and specificity of 82.9% and 80.0%, respectively. Notably, models
constructed using binary noninvasive samples (saliva and urine)
demonstrated better diagnostic performance (AUC value, 0.836, 95%
CI, 0.738–0.933) than those constructed with single invasive samples
(serum, AUC value, 0.779, 95%CI, 0.670–0.888) (Fig. 5a). The GDM
discriminant model constructed using multivariate samples was
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further verified externally in the cohort 3, achieving an AUC value of
0.796 (95%CI, 0.695–0.897) with sensitivity of 80.0% and specificity of
75.8% (Fig. 5b).

The predictive ability of GDM biomarkers for prognostic
risk of GDM
The associations between the above 50 GDM biomarkers and
adverse outcomes and clinical profiles in GDM are shown in Fig. 6a
and Supplementary Fig. 4. This indicates that GDM biomarkers in
serum were mainly associated with maternal uric acid levels and
fetal head circumference at GW 30-32 and 36-38, as well as the risks
of cesarean section and neonatal hyperbilirubinemia. GDM bio-
markers in saliva were mainly associated with maternal FBG at GW
36-38 and the risk of neonatal hypoglycemia, whereas GDM bio-
markers in urine were mainly associated with maternal systolic
blood pressure at GW 36-38. Notably, several GDM biomarkers, such
as L-glutamine, bisnorbiotin and thiodiacetic acid, were associated
with multiple adverse outcomes or clinical profiles. To further
explore the predictive utility of GDM biomarkers in the prognosis of
GDM, we screenedmetabolite features and constructed two adverse
outcome prediction models (Supplementary Table 2). Both adverse
maternal and neonatal outcome prediction models showed good
performance, with AUC values of 0.764 (95%CI, 0.579–0.950) and
0.838 (95%CI, 0.696–0.978) in the internal test set (Fig. 6b), as well
as 0.726 (95%CI, 0.627-0.826) and 0.792 (95%CI, 0.720–0.863) in the
external test set, respectively (Fig. 6c).

GDM biomarkers altered in the first trimester and associated
with the risk of GDM
In this study, we also examined another prospective cohort (cohort 4)
to determine whether the above 50 GDM biomarkers were altered
in the first trimester in GDM patients. In total, 11 metabolites
including one GDM biomarker in saliva, nine in serum, and one in
urine were significantly altered as early as the first trimester in GDM
(Fig. 7a). We compared the average abundances of these 11 bio-
markers in GDM and non-GDM in the first and second trimesters, and
found that they showed consistent change trends from the first to
second trimester in both groups (Supplementary Fig. 5). Compared to
non-GDM, six biomarkers increased in both the first and second tri-
mesters in GDM patients: dimethylethanolamine in saliva; and asym-
metric dimethylarginine, lysylglycine, malic acid, tyramine-O-sulfate,
uridine in serum (Fig. 7b). Further correlation analysis suggested
that the increases in saliva dimethylethanolamine (odds ratio [OR],
2.97, 95% CI, 1.85–4.91), serum asymmetric dimethylarginine (OR, 1.25,
95% CI, 1.00–2.33) and serum tyramine-O-sulfate (OR, 3.58, 95% CI,
1.07–13.05) levels in the first trimester were closely related to the
increased risk of GDM in the second trimester (Fig. 7c). In order to
better evaluate the utility of these GDM biomarkers in early
diagnosis of GDM, an early prediction model for GDM was also con-
structed using 11 metabolite features in multivariate samples (Sup-
plementary Table 3), with AUC values of 0.767 (95%CI, 0.611–0.923) in
the internal test set and 0.744 (95%CI, 0.655–0.822) in the external test
set (cohort 5) (Fig. 7d).

Pregnant women with any biofluid sample
collected at GW 24-28

n=1241
Saliva n=1018, serum n=1127, urine n=714

Metabolic disorders:
Metabolic pathway
Integrative analysis

Follow up until delivery

Pregnant women with any biofluid
sample collected at GW 9-13

n=425
Saliva n=341, serum n=396, urine n=383

Follow up until OGTT

The alteration of GDM biomarkers
in the first trimester

1:1 Matching for maternal age, BMI and GW

Pregnant women with all three biofluid samples
GDM n=50

Non-GDM n=197

According to OGTT

The unqualified biofluid samples were excluded*
Saliva n=136, Serum n=89, Urine n=24

The unqualified biofluid samples were excluded*
Saliva n=73, Serum n=21, Urine n=4

Pregnant women with incomplete samples were excluded
n=173

The second-trimester cohort The first-trimester cohort

1:1 Matching for maternal age, BMI and GW

Pregnant women with 1-2 biofluid samples
GDM n=173

Saliva n=104, serum n=116, urine n=58
Non-GDM n=821

Saliva n=531, serum n=675, urine n=385

100 are recruited in the cohort 2
GDM n=50

Non-GDM n=50

319 are recruited in the cohort 1
GDM n=173

Saliva n=104, serum n=116, urine n=58
Non-GDM n=146

Saliva n=104, serum n=116, urine n=58

Screening for differential metabolites Verify differential metabolites

GDM biomarkers:
Correlation analysis for

OGTT and HOMA-IR

Diagnostic efficiency:
GDM discriminant model

Prognostic prediction:
Outcome prediction model

Early diagnosis:
GDM prediction model

100 are recruited in the cohort 4
GDM n=50

Non-GDM n=50

Pregnant women with all three biofluid samples
GDM n=50

Non-GDM n=202

143 second-trimester pregnant women with all
three biofluid samples are recruited in the cohort 3

GDM n=33
Non-GDM n=110

External testing

167 first-trimester pregnant women with all three
biofluid samples are recruited in the cohort 5

GDM n=44
Non-GDM n=123

External testing

The real-world cohort

Fig. 1 | Flow diagram of the study protocol. *Saliva mixed with gingival bleeding or other conditions was excluded (normal samples should be transparent and clear).
Additionally, serum showing hemolysis and urine showing redness were excluded.
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Discussion
In this prospective nested case-control study, we combined the
metabolic profiles of multivariate samples (saliva, serum, and urine)
acquired by high-throughput mass spectrometry to comprehensively
investigate the metabolic characteristics of GDM for the first time. We
identified 54 metabolites that were altered in the second trimester in
GDM;we found that differentialmetabolites in saliva, serum, and urine
interact with each other and jointly participate in metabolic pathway
disruption, ultimately leading to GDM. Based on these observations,
50 second-trimester GDM biomarkers independently associated with
abnormal maternal glucose values and insulin resistance in GDM were
identified. The combination of GDM biomarkers in multivariate sam-
ples could better distinguish GDM patients from non-GDM patients,
and could also effectively predict the occurrence of adverse maternal
and neonatal outcomes in GDM. We also found that several GDM
biomarkers were altered as early as the first trimester and were closely
related to the risk of GDM, which could also be an important tool for
early prediction of GDM.

Abnormalities of various metabolites in biological samples are
central to the disturbance of metabolic pathways observed in GDM10,
offering a better understanding of is pathogenesis. Previous studies
have found that amino acid metabolism disorders influence GDM
onset by contributing to insulin resistance21. However, some studies
have indicated that theremight be a bidirectionalmechanismbetween
them. Zakaria et al. 22 demonstrated that insulin resistance could lead

to an increase in branched-chain amino acids, which activated the
mTOR signaling pathway, thereby aggravating insulin resistance and
continuous accumulation of branched-chain amino acids. Our study
also found significant fluctuations in various amino acids and their
derivatives, which were mainly enriched in alanine, aspartate, and
glutamate, and cysteine andmethionine as well as in the D-amino acid
metabolism. Specifically, increased glutamine may indicate that the
compensatory mechanism of gluconeogenesis has been activated by
insulin resistance. Meanwhile, changes in sulfur-containing amino
acids and in D-amino acids influence insulin secretion regulation23,
further affecting insulin sensitivity. This is evidenceof thebidirectional
mechanism between amino acid metabolism and insulin resistance.
Furthermore, we also observed significant disruptions in several key
metabolites of the tricarboxylic acid cycle: oxaloacetic acid and
pimelic acid levels in saliva decreased, while malic acid level in serum
increased, implying a blockage in mitochondrial energy metabolism,
which can lead to insulin resistance7. Oxidative stress is also con-
sidered closely related to insulin resistance in GDM, but further evi-
dence at the metabolic level is still needed24. The significant decrease
in serum homocysteine and urine pyridoxamine was detected in our
study could result in cells being exposed to a more intense oxidative
stress environment and impair the body’s antioxidant reserves25. Thus,
we speculate that disruption of mitochondrial energy metabolism,
downstream metabolic network imbalance, and impaired antioxidant
defense mechanisms may jointly drive the development of insulin

Fig. 2 | Differential metabolites and key metabolic pathways of second-
trimestermultivariate samples in GDM. a Venn diagram showed that seven saliva
metabolites, 40 serummetabolites, and seven urine metabolites were significantly
altered in both the cohort 1 and cohort 2, which were considered differential
metabolites. b Diagram of metabolic pathway disorder mechanism. Arrows indi-
cated the flow of differentialmetabolites. Blue nodes representedmetabolites with

significant changes in saliva, red nodes represented metabolites that have sig-
nificantly changed in serum, and yellow nodes represented metabolites with sig-
nificant changes in urine. The arrows next tometabolite names indicate their trend
of change in GDM. The dark blue nodes represented key metabolites of metabolic
pathways that can act as mediators linking differential metabolites. Source data
were provided as a Source Data file.
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resistance in GDM. In addition, we found associations among L-gluta-
mine, bisnorbiotin, xanthine and other differential metabolites in
multivariate samples; they jointly play important roles in the dis-
ordered metabolism within GDM. Our study revealed both similarities

and heterogeneity in metabolic information in different biofluid sam-
ples. Similarity may result from abnormally expressed metabolites in
tissues circulating through blood into other biofluid samples. Notably,
oralmicroorganismsmay significantly alter salivarymetabolite profiles
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Fig. 3 | Interactions of differential metabolites from second-trimester multi-
variate samples in GDM. a Venn diagram of differential metabolites in second-
trimester multivariate samples showed one common differential metabolite in
saliva and urine, one common differential metabolite in serum and urine, but no
common differential metabolites in saliva and serum. b Boxplots showed relative
intensities of common differential metabolites in GDM (red, n = 50) and non-GDM
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(Q3) percentiles, and the whiskers extended to 1.5×IQR. Each point represented an
individual sample. Statistical significance between groups was assessed using the

two-sided Mann-Whitney U test with Benjamini-Hochberg FDR correction.
*P <0.05, **P <0.01. c Correlation analysis of differential metabolites in saliva,
serum, and urine indicated that six saliva metabolites, 20 serum metabolites, and
five urine metabolites were related to each other. Blue nodes represented differ-
ential metabolites in saliva, red nodes represented differential metabolites in
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indicated the negative correlations, and purple arrows indicated the positive cor-
relations. Source data were provided as a Source Data file.
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through their role in disease pathogenesis26, while renal impairment
can disrupt urinary metabolic profiles27. Overall, our study supple-
ments and expands the current understanding of the pathogenesis of
GDM at the level of multivariate samples and metabolites. However,
further experiments are needed to elucidate the potential metabolic
mechanisms involved and their causal relationships.

The diagnostic gold standard for GDM is OGTT performed at GW
24-28, which is also an external manifestation of the abnormal glucose

metabolism in GDM. Insulin resistance is widely recognized as an
important pathogenic mechanism in GDM. Therefore, as GDM bio-
markers, we identified differential metabolites related to OGTT values
and HOMA-IR. Intriguingly, we found that most GDM biomarkers were
associated with abnormal post-loading glucose, whereas only a few
were associated with FBG. This distinction may be explained by dif-
ferences in pathogenesis. A high FBG is thought to be associated with
hepatic insulin resistance and early reduced insulin secretion, whereas
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Fig. 5 | GDMdiscriminantmodel constructedusing selected features fromGDM
biomarkers. a Seven discriminant models were constructed using selected fea-
tures from GDM biomarkers in saliva, serum, and urine. Their performances in the
internal test set were shown. The optimal GDM discriminant model was con-
structed from multivariate samples with an AUC value of 0.868 (95%CI,
0.781–0.955), followed by the binary samples models (saliva+serum: 0.842

[0.744–0.940], saliva+urine: 0.836 [0.738–0.933], serum+urine: 0.861
[0.761–0.956]) and the single sample models (saliva: 0.773 [0.605–0.942], serum:
0.779 [0.670–0.888], urine: 0.747 [0.565–0.928]).b In the external test set, theAUC
value of GDM discriminant model constructed with saliva, serum, and urine was
0.796 (95%CI, 0.695–0.897). Source data were provided as a Source Data file.
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pregnant women with high post-loading glucose are more likely to
have muscle insulin resistance and more severe pancreatic β-cell dys-
function in GDM28,29. Several GDM biomarkers, such as asymmetric
dimethylarginine, lysylglycine, and tyramine-O-sulfate, were simulta-
neously correlated with FBG, 1h-BG, and 2h-BG. It was notable that
these GDM biomarkers were also found in the first-trimester serum,
and were therefore highly likely to be key factors in the pathogenesis
of GDM. Based on these GDM biomarkers, we developed the dis-
criminantmodels forGDMwithAUCvalues of 0.868 in the internal test
set and 0.796 in the real-world cohort, demonstrating relatively high
diagnostic efficacy. SinceOGTT in pregnant women is time-consuming
and can cause adverse events such as nausea and stress30, our models
could improve patients’ comfort and convenience. At the same time,
more metabolic information can be obtained from the multivariate
samples to better distinguish between GDMand non-GDM, in both our
study and previous reports. Serum metabolites can distinguish GDM
with an AUC value of 0.7731, while the model based on gut microbiota
has an AUC value of 0.8432. Wang X et al. reported a combinatorial

marker panel with urine and fecal metabolites that could identify GDM
with higher accuracy than separate metabolic biomarkers11. More
interestingly, the efficiency of our model based on the metabolomics
of noninvasive samples (saliva and urine) was higher than that of one
based on a single invasive sample (serum), although the addition of
serum further enhanced the model performance. This implies the
possibility of a shift towards using non-invasive samples for GDM
diagnosis in the future, although validation of our approach in larger
cohorts and more advanced model-building methods are necessary.

Metabolic characteristics may not only affect the physiological
state during pregnancy but also have a profound impact on pregnancy
outcomes in GDM. We found that GDM biomarkers in saliva, serum,
and urine from GW 24-28 were correlated with clinical characteristics,
including blood glucose and fetal growth in the third trimester, as well
as the occurrence of adverse outcomes, such as cesarean section,
neonatal hyperbilirubinemia and neonatal hypoglycemia. Previous
studies have also shown that maternal metabolites may be potential
biomarkers for predicting adverse outcomes in GDM patients33,34, as
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tively. Pairwise associations were assessed using two-sided t-tests with FDR
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our study confirms. We utilized GDM biomarkers from multivariate
samples to construct the models that effectively predict the occur-
rence of adverse maternal and neonatal outcomes. The predictive
efficacy of thesemodels was also verified in a real-world cohort, which
was not previously achieved. Our results suggest thatGDMbiomarkers

can help to explain the relationships of GDM and its complications. A
novel combination of metabolic biomarkers may be a promising
alternative method that can not only be used to diagnose or screen
pregnantwomenathigh risk ofGDMbut also serve as a reliable tool for
predicting the prognosis ofGDM. Early intervention could improve the
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health of GDM mothers and their infants at the source. Of course,
further large-scale and prospective cohort studies incorporating more
maternal and neonatal outcomes are warranted to clarify the causal
relationship between these metabolic alterations and adverse
outcomes.

GDM does not occur or progress suddenly. The disturbed meta-
bolism and abnormal clinical manifestations may occur before the
clinical diagnosis35,36. In our study, we validated 11 GDM biomarkers
that also differed between the GDM and non-GDM groups in the first
trimester. These GDM biomarkers showed consistent trends before
and after a clinical diagnosis of GDM; some showed greater changes in
amplitude during the second trimester than during the first trimester,
suggesting the appearance of a metabolic disorder as early as the first
trimester. As is known to all, GDM typically clinically diagnosed during
middle or late pregnancy, by which time these metabolic disorders
have already damaged the body; it is therefore necessary to screen for
and diagnose GDM as early as possible. Thus, we performed correla-
tion analysis to identify GDM biomarkers that could facilitate early
diagnosis of GDM, and discovered for the first time that a high level of
saliva dimethylethanolamine in the first trimester was associated with
an increased risk of GDM. Besides,multiplemetabolites in serum in the
first trimester can also be used for early GDM screening37,38, consistent
with our findings. We found that asymmetric dimethylarginine and
tyramine-O-sulfate in serum in the first trimester were positively
associated with GDM. It was reported that pregnant women with GDM
had elevated asymmetric dimethylarginine levels39, which were closely
related to glucose tolerance deterioration40 and endothelial
dysfunction41. Detection of these GDM biomarkers in first-trimester
pregnant women could be used to predict the occurrence of GDM to
some extent. The early prediction model for GDM constructed using
these first-trimester GDM biomarkers also confirmed this potential.
However, the performance of the early prediction model was inferior
to that of the GDM discriminant model using second-trimester GDM
biomarkers. Since metabolomics reflects biological activities that are
currently occurring or have already occurred9, some metabolic bio-
markers may be involved in the pathogenesis of GDM only in the first
trimester. This was not fully explored in our study and requires further
investigation in subsequent studies. In addition, the AUC values of our
predictive models constructed using metabolomics were similar to
that of the traditional clinical risk factors42,43, especially in the real-
world cohort. Taking into account affordability and convenience, the
current clinical application values of these metabolic biomarkers may
not be superior to clinical factors. In the future, we plan to utilize
metabolomics in early pregnancy to provide more comprehensive
information on metabolism in GDM, which will also advance the
diagnostic window and allow early diagnosis and intervention.

This study had several unique advantages, including its large
sample prospective design, inclusion of real-world cohorts for external
testing, application of NALDI-TOF-MS, first identification of GDM bio-
markers from saliva, and comprehensive exploration of the roles of
GDM biomarkers from multivariate samples in the diagnosis and
prognostic assessment of GDM. However, the study still had some
limitations. First, all three samples were not always collected from the
same participants (e.g., cohort 1), but we validated differential meta-
bolites and performed subsequent analyses in all three-sample cohorts
(cohort 2–5) to minimize confounding bias. In addition, samples
should ideally be collected longitudinally from the same participants,
from the first trimester to the second trimester, which will be possible
in our future studies. Second, this was a single-center study conducted
in a hospital. However, this center is the leading obstetrics and gyne-
cology hospital in China, and it accepts pregnant women from all of
Zhejiang Province and elsewhere in China, so the population is
representative. Of course, deficiencies in racial/ethnic diversity are still
unavoidable, and future multicenter studies in different countries are
required tobetter explore themetabolic characteristicsofGDM.Third,

although we adjusted for some clinical factors, such as whether
pregnant women with GDM had received any intervention, and whe-
ther their blood glucose levels were well-controlled, there were still
some unknown factors. Future studies can conduct detailed subgroup
analyses, such as GDM subtypes (A1 vs A2) and BMI stratification,
which will be of clinical relevance and generalization. Furthermore,
postpartum follow-up can also provide us with more comprehensive
information. Finally, this study could not demonstrate causal rela-
tionships between GDM biomarkers and GDM and its adverse out-
comes; further animal or cell experiments are needed to explore how
GDM biomarkers affect the onset of GDM and its complications.

In conclusion, metabolomics analyses in saliva, serum, and urine
samples were performed for the first time to explore the metabolic
characteristics of GDM frommultiple perspectives and to identify new
metabolic biomarkers. These GDM biomarkers revealed possible
mechanisms underlying the pathogenesis of GDM; they also have the
potential to predict the risk andprognosis ofGDM.Although they have
not shown significant superiority over those straightforward and
affordable methods in clinical application, our findings provide a new
research direction for understanding the pathogenesis of GDM, aswell
as early diagnosis and prediction of prognosis, which are important for
efforts to improve health in mothers with GDM and their infants.

Methods
Study design and population
This prospective nested case-control study was derived from the
ongoing observational study “Clinical Study of a New Technology
System for Early Diagnosis and Screening of GDM Based on Multio-
mics” (NCT05386927). The study population consisted of pregnant
women treated at the Women’s Hospital School of Medicine Zhejiang
University according to the inclusion and exclusion criteria: (1)
maternal age was 20-49 years; (2) singleton pregnancy; (3) complete
clinical data; (4) OGTT was completed at GW 24-28; (5) any biofluid
samples of saliva, serum, or urine were collected as required; (6)
routine prenatal examinations and gave birth in our hospital; (7)
excluded women with diseases that affect metabolic function or even
threaten the life of the mother and fetus before pregnancy, such as
diabetes, heart disease, liver and kidney disease, etc; 8) excluded
fetuses with a known deformity or genetic defect. The study was
approved by the hospital ethics committee (IRB-20210293-R) and
China’s Ministry of Science and Technology (2022SQCJ4524), and
written informed consent was obtained from all participants.

The second-trimester cohort included 1241 pregnant women,
whose biofluid samples (saliva, serum or urine) were collected on the
same day as the 75 g OGTT during GW 24-28. They were divided into
GDMand non-GDMgroups according to results of OGTT, with FBG, 1h-
BG, and 2h-BG levels of 5.1, 10.0, and 8.5mmol/L, respectively44. After
excluding unqualified biofluid samples, 173 GDM and 821 non-GDM
patients with 1-2 biofluid samples, and 50 GDM and 197 non-GDM
patients with all three biofluid samples were included. With 1:1
matching for maternal age, BMI, and GW at sample collection, the
saliva, serum, and urine sets (cohort 1) consisted of equal numbers of
GDM and non-GDM patients, with 104, 116, and 58, respectively, were
performed to screen for differential metabolites. And the cohort 2
consisted of 50 each GDM and non-GDM patients, with saliva, serum,
and urine samples, were established to verify and analyze differential
metabolites, identify GDM biomarkers and determine their diagnostic
and prognostic ability. In addition, we conducted a real-world cohort
of 143 pregnant women in the second trimester, with all three biofluid
samples used as an external test set (cohort 3). These patients were
examined at baseline, followed until delivery, and their clinical data
and adverse outcomes were collected.

We also recruited 425 pregnant women in the first trimester
whose biofluid samples were collected during GW 9-13; these women
were followed until the OGTT. The inclusion and exclusion criteria and
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methods used for sample collection and matching were the same as
those for the second-trimester cohort. Accordingly, the cohort 4
consisted of 50 each GDM and non-GDM patients with first-trimester
saliva, serum, and urine samples, were performed to investigate first-
trimester changes in GDM biomarkers and their potential for early
diagnosis. Another 167 pregnant women in the first trimester, with all
threebiofluid sampleswere also included in cohort 5 as an external test
set to evaluate the real-world model performance.

Sample collection
Biofluid samples were collected on the same day as the OGTT during
GW 24-28 or in the first trimester at GW 9-13. Saliva was collected as
previously described17. Briefly, saliva was collected between 7:30 a.m.
and 11:30 a.m. using a specific device called SalivaGetinTM after an
overnight fast. Prior to collection, volunteers rinsed their mouths with
purified water and waited for 5minutes to minimize residual water.
Unstimulated saliva (~0.5mL) was then collected by passive drooling
into a SalivaGetinTM device. The sample was then passed through the
device’s integrated dual-layer membrane to remove oral debris and
bacteria, and subsequently stored at -80 °C in a sterile tube. Saliva
mixed with gingival bleeding or other conditions were excluded
(normal samples should be transparent and clear). Serum samples
were collected from participants following an overnight fast between
7:30 a.m. and 11:30 a.m. Blood was drawn from the arm vein into
vacuum tubes and allowed to clot at room temperature for
30–60minutes. Subsequently, the samples were centrifuged at
3000 rpm for 5minutes to separate the serum. The clear supernatant
was carefully harvested, and the cellular precipitate was discarded. All
processed serum samples were immediately frozen and stored at
-80 °C until further metabolomic analysis. Serum showing hemolysis
was excluded. The midstream of first-morning urine was collected by
the pregnant women themselves in the morning using sterile con-
tainers. Immediately after collection, the samples were transported on
ice to the laboratory. Upon arrival, they were centrifuged at 8000 rpm
for 10minutes at 4 °C to remove cellular debris. The resulting super-
natant was then transferred to a newpolypropylene tube and stored at
−80 °C until use. Urine showing redness was excluded.

Clinical data collection
Pregnant women in the second-trimester cohort underwent a
baseline examination at enrollment; clinical data were collected,
including maternal age, gravidity, parity, education, family history
of diabetes, OGTT values, HbA1c, and fasting insulin levels. HOMA-IR
was calculated by fasting insulin (μU/dL) × fasting blood glucose
(mmol/L)/22.5. These women were followed; blood pressure (sys-
tolic and diastolic), blood glucose (fasting blood glucose and
HbA1c), blood lipids (total cholesterol, triglyceride, and high- and
low-density lipoprotein), liver function (aspartate aminotransferase
and alanine aminotransferase), kidney function (creatinine, urea,
and uric acid), and other clinical indicators were determined at GW
30-32 and GW 36-38. These indicators were tested in the hospital’s
biochemical laboratory according to clinical requirements. Ultra-
sound data pertaining to fetal growth at GW 30-32 and GW 36-38
were also collected, including biparietal diameter, femur length,
head circumference, and abdominal circumference, all of which
were measured by senior physicians in the ultrasound department.
We also collected data on adverse maternal outcomes (pregnancy-
induced hypertension, pre-eclampsia, premature rupture of mem-
branes, fetal distress, cesarean section, premature birth) and neo-
natal outcomes (large for gestational age, admission to neonatal
intensive care unit, neonatal hyperbilirubinemia, neonatal respira-
tory distress syndrome, neonatal septicemia, neonatal hypoglyce-
mia, neonatal intracranial hemorrhage) as judged by obstetricians
and neonatologists. In addition, blood glucose levels (both fasting
and post-meal) during hospitalization were collected to valuate

glucose control for GDM, as well as drug intervention (including
insulin and metformin) and gestational weight gain.

Sample metabolite extraction
Saliva. The salivary metabolome was extracted using a protein pre-
cipitation (PPT) method. An aliquot of 40μL of acetonitrile/methanol
(1:1) solution was first added to 20μL of saliva sample, thawing on ice,
and the mixture was shaken at 1500 rpm for 5min and centrifuged at
8045 × g for 10min. The supernatant was transferred to a fresh cen-
trifuge tube, and 5μL of ultrapurewaterwas added. Then, 0.8μL of the
mixture was deposited onto the Met-Si Array® chip (Well Healthcare
Technologies Co., Ltd) via the liquid handing platform (ASSIST PLUS,
INTEGRA, Switzerland). Samples were subsequently dried for
30–40min under the controlled humidity of 40–50% for further MS
detection.

Serum. The serum metabolome was extracted using a sequential
protocol involving PPT followed by liquid-liquid extraction method.
Serum samples were thawed on ice, and 20μL of serum sample was
mixed with 80μL of acetonitrile/methanol (1:1) solution. The mixture
was shaken at 1500 rpm for 5min and centrifuged at 8045 × g for
10min. Then, 15μL of the supernatant was transferred to a fresh cen-
trifuge tube for subsequent extraction and regarded as solution A.
Subsequently, 50μL of ultrapure water was added to the remaining
mixture, sonicated for 10 s, and then shaken (1500 rpm, 5min) and
centrifuged (8045 × g, 10min) after the addition of 150μL of methyl
tert-butyl ether solution to divide the mixture into upper and lower
layers. Then, 50μL of the upper solutionwas removed anddried under
a stream of nitrogen gas to obtain a dry powder, which was then
resuspended by adding 10μL of IPA/H2O (1:1) solution and vortex
mixed for 15 s. Subsequently, 5μL of the resuspended solution was
mixed with 5μL of solution A and shaken at 1500 rpm for 5min. Then,
0.8μL of themixturewas deposited onto theMet-Si Array® chip by the
automatic liquid handing platform and dried for 30-40min under the
controlled humidity of 40–50% for further MS detection.

Urine. The urinary metabolome was extracted using a tip-contact
extractionmethodwithout the use of organic solvents18. After thawing
on ice, a 20-μL aliquot of urine was dropped onto the ITO glass. Then,
the nanostructured surface of a 4mm × 4mm FEP@VSiNWs chip was
brought into contact with the surface of the solution and maintained
for 20min to extract the metabolites. After extraction, the residual
urine droplet was further removed under a streamof nitrogen gas. The
obtained chips were preserved in a desiccator for further MS
detection.

Metabolite detection and identification by NALDI-TOF-MS
In this study, metabolomic detection and analysis were performed on
saliva, serum and urine samples. QC samples of saliva, serum and urine
were prepared by pooling equal volumes from 50 individual samples.
Blank controls were ultrapure water samples which have passed
through the sample pretreatment process in the same way as a bio-
logical sample but with no biological sample included. Metabolites
from individual saliva, serum, and urine samples as well as QC and
blank samples were extracted and deposited onto the Met-Si Array®

chip45 (Well Healthcare Technologies Co., Ltd, China) and FEP@V-
SiNWs chip46, which were placed onto custom-made plates and inser-
ted into a matrix-assisted laser desorption/ionization (MALDI)-TOF/
TOF mass spectrometer (Autoflex Max, Bruker Daltonics, USA) for
metabolite profiling. Autoflex Max mass spectrometer was equipped
with a 355-nm Nd:YAG laser (pulse energy < 500 μJ, pulse width 3 ns).
The diameter of the laser spot was set to 80–100 μm. The relative laser
energywas set to 55%–63%of themaximumenergy. The ions produced
by a 100-ns pulse ion extraction were subjected to an electric field of
19.18 kV (ion source 1) and 16.92 kV (ion source 2), and analyzed in
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reflective negative mode. The generated spectra were obtained after
1250 laser shots of the spot over the mass range of 50–400Da, fol-
lowing MS calibration. Metabolic profiling of cohort samples was car-
ried out in an automatic batchmode. MS/MS fragmentation of salivary
features was performed using the LIFT mode. Each analytical batch
comprised 96 samples, including 88 individual samples, 4 QC samples,
and 4 blank controls. All individual samples were prepared without
technical replicates (n = 1) and analyzed following a randomized order.

Metabolite characteristic fragmentation information was
acquired by mass-to-charge ratio (m/z) values of primary MS spectra
and fragment ions of MS/MS spectra by the Autoflex Max MS spec-
trometer. The data were used to search the Human Metabolome
Database (HMDB, http://www.hmdb.ca/) for matching features to
identify metabolite molecules. The relative error of the primary mass
spectrometrym/z valueswas set to 50ppm.Annotationofmetabolites
was restricted exclusively to the [M-H]⁻ and [M-H₂O-H]⁻ adduct ions.

Data analysis
The metabolomics raw data were first exported as ASCII data in the
flexanalysis software (ver. 3.4, Bruker Daltonics Inc.). Then they were
processed using a custom-developed software called as HJ Cloud®

(Well-healthcare Technologies Co., Ltd, HangZhou, China, Software
Copyright Registration No. 2022SR1403956). The processing steps
included smoothing, baseline correction, intensity normalization,
alignment, peak detection, and peak binning. The total ion current
method was applied for the intensity normalization. A total of 1667
peaks with S/N> 6, which was expressed in over 80% of the samples
was selected. After peak annotation using HMDB database, the mole-
cular matrix including the normalized intensities of each metabolite
was subjected to all statistical analyses with R software (http://www.R-
project.org, ver. 4.3.1) unless otherwise noted. Continuous and cate-
gorical variables were compared using the t-test and chi-square ana-
lyses as appropriate. The cubic spline method was used for data
normalization; log transformation and min-max scaling were imple-
mented for data standardization. To evaluate the differences between
groups, principal component analysis and orthogonal partial least
squares discriminant analysis were performed using the stats and ropls
packages. Differential metabolites were sorted using the Mann-
Whitney U test and false discovery rate (FDR) correction. Correlation
analysis was based on Spearman’s correlation analysis. Linear regres-
sion models were constructed with the lme4 package to address cov-
ariate influences, including family history of diabetes, HbA1c, drug
intervention, glucose control, and gestational weight gain, in the cor-
relation analysis between GDM biomarkers and adverse outcomes.
LightGBM algorithm and weighted voting ensemble approach were
performed to construct GDM discriminant models, adverse outcome
prediction models and early prediction model for GDM, which were
tuned and optimized by five-fold cross-validation in the training set
(70%). Feature selection was performed based on LightGBM’s built-in
feature importance scores, which quantify the contribution of each
variable to model prediction. To retain the most clinically relevant
predictors, features with importance scores below a predefined
threshold were excluded. The performance was analyzed in the inter-
nal test set (30%) and the cohort 3 or cohort 5 external test sets based
on the AUC. Hierarchical clustering analysis and visualization were
conducted using the pheatmap package. ORs and CIs were calculated
using the stats package. Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis was performed using the cluster Profiler
package. Metabolic pathways were analyzed on the KEGG and Meta-
boAnalyst website. In all analyses, P < 0.05 was considered to indicate
statistical significance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The metabolomics datasets generated in this study have been depos-
ited in the Metabolomics Workbench database under accession code
ST004139, ST004140, ST004141. Processed data matrices and meta-
data are provided in the Supplementary Information. Source data are
provided with this paper. Raw MALDI-TOF/MS files (including mzML
formats) can be accessed upon request to the Metabolomics Work-
bench Data Access Committee. Prospective users must: (1) register for
aMetabolomicsWorkbench account and agree to its data-use policies;
(2) submit a brief research proposal outlining aims and required
datasets; (3) obtain any necessary ethics or institutional approvals for
secondary use of human data; (4) agree to sign a Data Use Agreement
specifying confidentiality and proper citation of the data; and (5)
perform all analyses within the Metabolomics Workbench cloud
environment or a local secure computing environment approved by
the Data Access Committee. For more information: https://www.
metabolomicsworkbench.org. Source data are provided with
this paper.

Code availability
The analysis and modeling in this paper used R v.4.4.0 and the
tidyverse v.1.3.2, caret 6.0-94, glmnet 4.1-8, ggplot2 v.3.5.1, lightgbm
v.4.5.0, magrittr v.2.0.3, pROC v.1.18.5, stats 4.4.0 R packages, all
of which are freely available. Code [https://zenodo.org/records/
17438713?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6Ijk2YzZiNWMzLTdjY
mEtNGZiZS1hMTY0LWE0OTU4MWQ5YmNkOCIsImRhdGEiOnt9LC
JyYW5kb20iOiI4NmFjNDAyM2NmOTY1OTgyZTIzNDM4MTc4Nzgw
M2Y2ZCJ9.oUr2KzPHxU-yhvqOOimXr68aBtWzW5RPkVs0qiuJpOICu
MpZO9rV1unPN1XWoT2qWkAvMx0ufE2Sjv6jPlFytw].
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