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NutriSighT: Interpretable Transformer
Model for Dynamic Prediction of
Underfeeding Enteral Nutrition in
Mechanically Ventilated Patients

Mateen Jangda1, Jayshil Patel2, Akhil Vaid 1, Jaskirat Gill3, Paul McCarthy4,
Jacob Desman 1, Rohit Gupta3, Dhruv Patel3, Nidhi Kavi3, Shruti Bakare3,
Eyal Klang 1,5, Robert Freeman6, Anthony Manasia3, John Oropello 3,
Lili Chan1,5,7, Mayte Suarez-Farinas 8, Alexander W. Charney 1,
Roopa Kohli-Seth3, Girish N. Nadkarni 1,5,7,9 & Ankit Sakhuja 1,3,5,9

Achieving adequate enteral nutrition among mechanically ventilated patients
is challenging, yet critical. We develop NutriSighT, a transformer model using
learnable positional encodings to predict which patients would be underfed
(receive less than 70% daily caloric requirements) between days 3-7 of
mechanical ventilation and compared its performance against XGBoost. Using
retrospective data from two ICU databases (3284 patients from Amsterda-
mUMCdb for development and 6456 from MIMIC-IV for external validation),
we included adults mechanically ventilated for at least 72 h. NutriSighT
achieved AUROCof 0.81 (95% CI: 0.81 – 0.82) and AUPRC of 0.70 (95% CI: 0.70
– 0.72) internally. External validation yielded AUROC of 0.76 (95% CI: 0.75 –

0.76) and an AUPRC of 0.70 (95% CI: 0.69 – 0.70). In comparison, XGBoost
achieved AUROCof 0.58 (95%CI: 0.58 –0.59) and AUPRC of 0.48 (95%CI: 0.46
– 0.50). This approach may help clinicians personalize nutritional therapy in
critical care.

Optimal enteral nutrition (EN) is vital for critically ill patients requiring
mechanical ventilation to meet their metabolic needs while mitigating
complications1,2. Critical care guidelines recommend initiating early
enteral nutrition in critically ill patients, but there is heterogeneity in
the recommended caloric targets for the first week of intensive care
unit (ICU) stay. For example, the European Society of Parenteral and
Enteral Nutrition (ESPEN) advocates for underfeeding, as defined by

receipt of nutrition with less than 70% daily caloric requirements
during the first week of ICU stay, but the American Society of Par-
enteral and Enteral Nutrition (ASPEN) recommends a broader caloric
intake range of 12 to 25 kcal/kg, encompassing both underfeeding and
adequate nutrition3,4. This variation reflects the dynamic nature of
critical illness and the challenges in determining optimal nutrition
within this highly heterogenous patient population5–8. Delivering
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adequate nutrition in this population is further complicated by chal-
lenges such as gastrointestinal dysfunction, hemodynamic instability,
and frequent interruptions for procedures9–11.

The first week of critical illness is divided into two distinct phases:
the early acute period and the late acute period1,12. The early acute
period spans the 48h of critical illness and ismarked by hemodynamic
instability and acute illness response. The late acute period, spanning
days 3-7, is characterized by muscle wasting and evolving nutritional
needs though the timing of this transition likely varies amongst
patients. Common clinical practice is to start a formof restrictive dose
EN, such as trophic dose feeding, during the first 48 h and progres-
sively increase nutritional support during the late acute period tomeet
the evolving metabolic demands of critically ill patients.

However, these strategies are not personalized, and highly indi-
vidualized nature of critical illness highlights a pressing need for tools
that can dynamically identify patients likely to receive specific nutri-
tion regimens. Tools like modified NUTRIC score are available to
identify critically ill patients whomay benefit from nutritional therapy,
but do not identify patients at risk for underfeeding13. Addressing
these challenges requires innovative methods integrating diverse
clinical and temporal data to adapt nutritional interventions effec-
tively. A critical first step in this direction is to be able to identify
patients at risk of underfeeding during ICU stay. In practice, under-
feeding may result from both clinical factors and logistical factors.
While some patients may benefit from underfeeding strategies, others
may be unintentionally underfed, potentially worsening their

outcomes5,7,14–16. Without tools to identify which patients are at risk of
underfeeding in real time, clinicians are limited in their ability to tailor
interventions or conduct targeted research on personalized nutrition
strategies.

Recent advancements in artificial intelligence (AI) can address
these challenges17,18. Transformer models, known for their ability to
model sequential data are powerful tools for analyzing clinical time
series data18,19. The incorporation of learnable positional encoding18,19,
enhances the model’s ability to understand temporal relationships.
Unlike fixed positional encodings, learnable encodings enable the
model to optimally represent temporal dynamics and address com-
plex clinical scenarios, such as predicting which patients are at risk of
underfeeding18,19.

In this study, we developed and externally validated an inter-
pretable, transformer model, NutriSighT, to dynamically identify cri-
tically ill patients requiring mechanical ventilation who are at risk of
underfeeding during the late acute period of their critical illness. By
focusing on this aspect, NutriSighT aims to address key gaps in
nutritional management by offering actionable insights into patient-
specific needs.

Results
Patient characteristics
A total of 3284patients from theAmsterdamUMCdb and6456patients
from the MIMIC-IV databases met the inclusion/exclusion criteria7,16,17.
As shown in Table 1, AmsterdamUMCdb cohort had a higher

Table 1 | Patient Characteristics

AmsterdamUMCdb MIMIC-IV p-value
(n = 3284) (n = 6456)

Nutrition

Enteral Nutrition and Propofol (calories), med-
ian (IQR)

1727.66 (1192.90, 2059.41) 1307.24 (705.00, 1802.50) <0.001

Demographics

Body Mass Index in kg/m2, median (IQR) 24.84 (23.88, 27.76) 28.1 (23.98, 33.66) <0.001

Sex <0.001

Male, n (%) 2121 (64.58) 3795 (58.78)

Age in years <0.001

18-39 366 (11.15) 591 (9.15)

40-49 317 (9.65) 577 (8.94)

50-59 583 (17.75) 1161 (17.98)

60-69 801 (24.39) 1574 (24.38)

70-79 848 (25.82) 1448 (22.43)

80 + 369 (11.24) 1105 (17.12)

Height in cm <0.001

0-159 149 (4.54) 1198 (18.56)

160-169 815 (24.82) 1908 (29.55)

170-179 1220 (37.15) 2213 (34.28)

180-189 925 (28.17) 1029 (15.94)

190 + 175 (5.33) 108 (1.67)

Weight in kg <0.001

0-59 280 (8.53) 856 (13.26)

60-69 563 (17.14) 1030 (15.95)

70-79 888 (27.04) 1156 (17.91)

80-89 856 (26.07) 1030 (15.95)

90-99 416 (12.67) 834 (12.92)

100-109 138 (4.20) 617 (9.56)

110 + 143 (4.35) 933 (14.45)

Baseline characteristics are reported as median (IQR) for continuous variables or n (%) for categorical variables. Statistical comparisons between the AmsterdamUMCdb andMIMIC-IV cohorts were
performed using a two-sided Mann-Whitney U test for continuous variables and a Pearson’s Chi-squared test for categorical variables. A p-value < 0.05 was considered statistically significant. No
adjustments were made for multiple comparisons. Data are aggregated over four 4-hour periods, except nutrition, which is over 24 h.
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proportion of younger patients (11.15% vs 9.15% in 18–39 year;
p <0.001), males (64.58% vs 58.78%; p <0.001) and a lower BMI
(median 24.8 kg/m² vs 28.1 kg/m²; p <0.001). Additional character-
istics are provided in Supplementary Table 1.

Enteral nutrition
Overall daily enteral nutrition support differed significantly between
the AmsterdamUMCdb and MIMIC-IV cohorts. Patients in the
AmsterdamUMCdb dataset received a median daily EN intake of
1440.0mL (IQR: 1000.40–1723.80), compared to 756.48mL (IQR:
228.72–1199.97) in MIMIC-IV (p <0.001). This difference was also
evident in the daily caloric intake derived from EN, which was notably
higher in AmsterdamUMCdb (median: 1702.99 kcal, IQR:
1155.26–2039.66) relative to MIMIC-IV (median: 989.20 kcal, IQR:
291.74–1478.06; p < 0.001). When combining calories from EN and
propofol, AmsterdamUMCdb patients still received more daily total
calories, with a median of 1727.66 kcal (IQR: 1192.90–2059.41) com-
pared to 1307.24 kcal (IQR: 705.00–1802.50) in MIMIC-IV (p <0.001).

In contrast, MIMIC-IV patients received more daily propofol,
reflected by both a higher volume (median 31.25mL [IQR:
0.00–564.98] vs. 0.000mL [IQR: 0.00–19.20]; p <0.001) and more
propofol-derived calories (34.38 kcal [IQR: 0.00–621.48] vs. 0.00 kcal
[IQR: 0.00–21.12]; p <0.001). The observed differences in enteral
nutrition support and daily propofol usage between the Amsterda-
mUMCdb and MIMIC-IV cohorts likely reflect variations in sedation
protocols and nutritional strategies between the European and United
States healthcare systems.

The proportion of underfed patients decreased over the hospital
course in both datasets (Table 2). On day 3, 40.8% of patients in
AmsterdamUMCdb and 53.13% in MIMIC-IV were underfed. By day 7,
these proportions declined to 25.39% and 35.33%, respectively.

NutriSighT performance
The overall modeling approach of NutriSighT is shown in Fig. 1. We
evaluated NutriSighT’s performance across six days post-intubation
(Table 3, Fig. 2). On the internal test set from AmsterdamUMCdb, the
Receiver Operating Characteristic Area Under the Curve (AUROC)
started at 0.84 (95% CI: 0.83–0.84) on day 1 and was 0.73 (95% CI:
0.70–0.77) by day 6. External validation with the MIMIC-IV dataset
revealed a similar trend, with an AUROC value of 0.77 (95% CI:
0.77–0.78) on day 1 and 0.70 (95% CI: 0.69–0.71) on day 6. The model
demonstrated an overall AUROC of 0.81 (95% CI: 0.81–0.82) on the
internal test set and 0.76 (95% CI: 0.75 − 0.76) on the external valida-
tion dataset, reflecting strong discriminatory performance. The Area
Under the Precision-Recall Curve (AUPRC) was 0.70 (95% CI:
0.70–0.72) and 0.70 (95% CI: 0.69–0.70) for the internal test set and
external validation datasets, respectively. Additionally, the Brier score
on the external validation dataset was 0.21, indicating moderate
accuracy in probability predictions.

Model comparison against XGBoost
To benchmark NutriSighT’s performance, we compared it to an
XGBoost model trained using the same datasets, input structure, and
evaluation metrics. As shown in Fig. 3, NutriSighT consistently

outperformed XGBoost in both AUROC and AUPRC across all predic-
tion days on both the internal test set (AmsterdamUMCdb) and
external validation set (MIMIC-IV).

On the internal test set, XGBoost achieved anAUROCof 0.60 (95%
CI: 0.59–0.61) and an AUPRC of 0.43 (95%CI: 0.40–0.46) on day 1, and
an AUROC of 0.59 (95% CI: 0.58–0.59) and an AUPRC of 0.35 (95% CI:
0.34–0.36) on day 6. On the external validation set, XGBoost achieved
an AUROC of 0.59 (95% CI: 0.58–0.61) and an AUPRC of 0.52 (95% CI:
0.48–0.57) on day 1, and anAUROCof 0.56 (95%CI: 0.55 −0.56) and an
AUPRC of 0.39 (95% CI: 0.38–0.39) on day 6. The Brier score for the
XGBoost model on the external validation dataset was 0.24. These
results highlight the advantage of NutriSighT’s transformer-based
architecture inmodeling temporal dynamics and improving predictive
performance for underfeeding in ICU patients.

To assess the calibration of the model’s predicted probabilities
more thoroughly, we generated a calibration plot (Fig. 4), which
compare the predicted probabilities with the observed outcomes
across different probability bins. The X-axis represents the mean pre-
dicted probability of underfeeding, and the Y-axis shows the fraction
of patients who were actually underfed within each probability bin.
Figure 3 illustrates the calibration of the model on the external vali-
dation dataset. The plot shows that for probability bins below 0.5, the
model’s predictions align closely with the observed outcomes, indi-
cating good calibration in this range. However, for probability bins
above 0.5, the model tends to overestimate the risk of underfeeding.

To determine optimal cutoff points for clinical decision-making,
we further evaluated the model’s performance across various prob-
ability thresholds on the external validation data (Table 4). Sensitivity,
specificity, positive predictive value (PPV), and negative predictive
value (NPV) were calculated at thresholds ranging from 0.1 to 0.9. At a
threshold of 0.5, the model achieved a sensitivity of 75%, specificity of
61%, PPVof 58%, andNPVof 77%. As the threshold increased, sensitivity
decreased while specificity increased, illustrating the trade-off
between identifying true positives and minimizing false positives.
For instance, at a threshold of 0.7, sensitivity decreased to 50%, but
specificity increased to 83%, and PPV improved to 69%.

Feature importance
Themeanabsolute SHAP values (Fig. 5a) highlight serum sodiumas the
most influential feature across all predictions, followed by diastolic
bloodpressure (DBP),meancorpuscular volume (MCV), andpH.Other
high-ranking features includepropofol dose, temperature,WBCcount,
RBC count, and INR, indicating that the model relies heavily on seda-
tive use, physiological and laboratorymarkers. Demographic variables
like age, height andweight also contributemeaningfully to themodel’s
predictions. The patient-level SHAP heatmap (Fig. 5b) illustrates how
feature contributions change across outcome Days 3 to 7 for an indi-
vidual patient.

The temporal SHAP summary (Supplementary Fig. 2) reveals
how feature importances evolve across prediction days. Serum
sodium, DBP, MCV, and pH consistently rank as the most
important contributors across the prediction days, indicating
their stable and strong influence on model forecasts. In contrast,
the P/F ratio gains prominence in later predictions, with lower
values corresponding with higher risk of underfeeding, consistent
with the clinical pattern that more severely ill patients are often
underfed. Similarly, chloride and lactate also have dynamically
evolving feature importances, gaining greater prominence in the
predictions made later in the ICU course, with lower values linked
to a lower predicted risk of underfeeding.

Discussion
We have developed and externally validated NutriSighT, an inter-
pretable AI model using a novel transformer architecture to identify
critically ill patients at risk of underfeeding in the late acute phase of

Table 2 | Underfed Patients Over Study Timeline

Amsterdam Daily Outcomes MIMICIV Daily Outcomes

Day n Total Patients % n Total Patients %

3 1340 3284 40.80% 3430 6456 53.13%

4 1154 3275 35.24% 2210 4812 45.93%

5 847 2807 30.17% 1504 3699 40.66%

6 681 2451 27.78% 1084 2898 37.41%

7 550 2166 25.39% 808 2287 35.33%
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their illness. Themodel was trained onAmsterdamUMCdb, a European
dataset, and validated on MIMIC-IV, a US dataset, demonstrating its
ability to generalize across diverse patient populations19–22. NutriSighT
exhibited strong discriminatory performance, with robust AUROC
scores across both internal and external datasets, indicating its ability
to differentiate between patients at higher and lower risk accurately.
Additionally, NutriSighT consistently outperformed XGBoost across
both internal and external validation sets demonstrating superior
performance in capturing temporal dependencies and adapting to the

dynamic nature of ICU patient data. Calibration analysis revealed good
alignment between predicted probabilities and observed outcomes.

The time-series nature of the data makes transformer archi-
tecture well-suited for capturing temporal dependencies and com-
plex patterns18. This approach is ideal for predicting dynamic
outcomes, such as underfeeding in critically ill patients. By modeling
these temporal dynamics, NutriSighT can deliver timely and accurate
predictions that adapt to changes in patient status. NutriSighT gen-
erates predictions every 4 h, providing clinicians with actionable
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Fig. 1 | Overview of Modeling Approach.
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time windows to adjust treatment plans as necessary. The model
exhibited strong discriminative ability, as demonstrated by its AUC
values, and its AUPRC and calibration further support its potential
for clinical integration. These features enable NutriSighT to reliably
identify patients at risk for underfeeding and guide timely
interventions.

SHAP-based analysis revealed that core physiological and
laboratory features such as serum sodium, diastolic blood pressure,
MCV, and pH consistently contributed to underfeeding predictions.
While these features remained influential throughout the ICU stay,
others like the P/F ratio, chloride, and lactate gained importance in
later predictions, reflecting the model’s dynamic adjustment to evol-
ving clinical conditions. This individualized interpretability under-
scores NutriSighT’s ability to integrate both stable and time-sensitive
information. It is important to note, however, that while SHAP values
provide patient- and time-specific insights, they donot imply statistical
associations23,24.

Despite the critical role of enteral nutrition in mechanically ven-
tilated patients, optimizing feeding strategies remains a challenge17.
Prior studies have yielded inconsistent results on the impact of dif-
ferent feeding strategies in these patients, highlighting the complexity
of optimizing nutritional interventions. For example, an observational
study of over 2700mechanically ventilated patients in 167 ICUs where
most patients were underfed, found that an increase of 1000 kcal/day
was associated with lower 60-day mortality and increased number of
ventilator free days5. Lower mortality8,14,15 and shorter duration of
mechanical ventilation6 with isocaloric nutrition has also been shown
in other studies. Conversely, other studies have found either no dif-
ferences in ventilator-free days, mortality, or infectious complications
between the two nutritional strategies16, or found longer time to
readiness for ICU discharge among patients receiving isocaloric
nutrition7. These conflicting results likely reflect the heterogeneity of
critically ill patients, highlighting the challenges of applying a one-size-
fits-all approach to nutrition.

These discrepancies underscore the need for personalized nutri-
tion approaches, particularly in the late acute phase of critical illness,
when patient conditions and metabolic needs evolve rapidly. Nutri-
SighT addresses this need by dynamically identifying patients who are
likely to be underfed in the late acute phase. By providing a precise
identification of these patients, NutriSighT can guide more persona-
lized interventions and enrich clinical trials that explore the efficacy of
tailored nutritional regimens. Furthermore, NutriSighT lays the
groundwork for further research into barriers to implementation and
strategies to personalize nutrition in this vulnerable patient
population.

It is important to acknowledge that feeding decisions are influ-
enced not only by patient physiology but also by clinician judgment,
which may incorporate local protocols alongside many of the same
parameters usedbyNutriSighT. Clinicians in the ICUare often required
to make rapid decisions based on vast and fragmented streams of
information25. In this context, NutriSighT can serve as a valuable
decision-support tool by providing systematic and timely identifica-
tion of patients at risk of underfeeding. The fact that the model draws
on features already used in clinical reasoning, enhances transparency
and fosters clinician trust.

NutriSighT is designed to be a real-time risk prediction tool that
can continuously evaluate patients and predict the likelihood of
underfeeding during their ICU stay. It can, thus, flag patients at risk for
underfeeding well in advance, providing clinicians an actionable win-
dow to evaluate the reasons for underfeeding and adjust feeding
strategies as necessary. For example, early in the ICU course, if a
patient is identified to be at risk for underfeeding onday3 but not after
that, the clinician may decide to continue the current management
plan. However, if a patient is identified to be at risk for persistent
underfeeding, the clinician may consider changing the enteral nutri-
tion formulation or switching to parenteral nutrition.

This study has some limitations. First, as a retrospective
analysis, it is subject to inherent biases, including selection bias
and potential confounding factors, which may affect the inter-
pretation of results and limit real-world applicability. Addition-
ally, training and validation of NutriSighT on Western ICU
databases (AmsterdamUMCdb and MIMIC-IV) could further limit
generalizability to settings with different clinical practices or
resource constraints. Although NutriSighT demonstrated strong
generalizability across both internal and external validation
datasets, local retraining or fine-tuning may be required to
accommodate differences in patient populations, nutritional
protocols, and ICU workflows, particularly in low-resource or
geographically diverse settings. Prospective multicenter valida-
tion is therefore essential to assess effectiveness in real-time
clinical settings. Successful real-world deployment will also
require seamless integration into electronic health record sys-
tems, with careful attention to embedding the model within
existing clinical workflows in a manner that promotes clinician
acceptance and minimizes alert fatigue. Similar implementation
challenges have been addressed in prior deployments of clinical
decision support tools, providing valuable insights for the inte-
gration of NutriSighT into routine care26,27. However, it showed
good generalizability as supported by its strong performance
across both internal and external validation datasets. Notably, the

Table 3 | Model Performance Summarized by Day

Internal train Internal test External validation

AUROC (95% CI)

Day 1 (Timesteps 1–6) 0.87 (0.86, 0.87) 0.84 (0.83, 0.84) 0.77 (0.77, 0.78)

Day 2 (Timesteps 7–12) 0.86 (0.86, 0.87) 0.84 (0.82, 0.84) 0.77 (0.77, 0.78)

Day 3 (Timesteps 13–18) 0.88 (0.87, 0.88) 0.82 (0.81, 0.83) 0.76 (0.77, 0.78)

Day 4 (Timesteps 19–24) 0.86 (0.86, 0.87) 0.80 (0.78, 0.81) 0.76 (0.76, 0.76)

Day 5 (Timesteps 25–30) 0.84 (0.83, 0.84) 0.75 (0.73, 0.77) 0.74 (0.73, 0.74)

Day 6 (Timesteps 30–36) 0.80 (0.78, 0.81) 0.73 (0.70, 0.77) 0.70 (0.69, 0.71)

AUPRC (95% CI)

Day 1 (Timesteps 1–6) 0.78 (0.77, 0.78) 0.74 (0.72, 0.76) 0.73 (0.73, 0.73)

Day 2 (Timesteps 7–12) 0.78 (0.78, 0.79) 0.73 (0.71, 0.75) 0.73 (0.73, 0.73)

Day 3 (Timesteps 13–18) 0.77 (0.77, 0.78) 0.71 (0.69, 0.73) 0.71 (0.70, 0.71)

Day 4 (Timesteps 19–24) 0.74 (0.73, 0.75) 0.63 (0.60, 0.65) 0.65 (0.65, 0.66)

Day 5 (Timesteps 25–30) 0.69 (0.68, 0.70) 0.57 (0.54, 0.61) 0.62 (0.61, 0.63)

Day 6 (Timesteps 30–36) 0.58 (0.56, 0.60) 0.53 (0.48, 0.57) 0.55 (0.54, 0.57)
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Brier score on the external validation set was 0.21 suggesting that
its predicted likelihoods are reasonably well-calibrated to the
actual outcomes. Second, like many studies in this field, caloric
requirements are estimated using guideline recommendations
rather than indirect calorimetry, as latter were unavailable. While
this could introduce inaccuracies, it reflects real-world clinical
practice where indirect calorimetry is rarely used, thereby
enhancing the generalizability of our findings. Future prospective

studies incorporating direct calorimetry data may provide deeper
insights and further validate the model’s utility. Third, although
this study focuses on dynamically identifying patients likely to be
underfed, addressing the broader spectrum of nutritional risk
including underfeeding, overfeeding, or interruptions in feeding
requires further exploration. We also used a guideline-based
threshold to define underfeeding, which, while consistent with
current practice, does not account for individualized energy
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Fig. 2 | Model performance on internal test and external validation. Plots a and b correspond to the AUROC and AUPRC on the training data on which the model was
developed, while plots c and d correspond to the internal test set, and plots e and f correspond to the external validation set.
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needs. Future studies are needed to develop patient-specific tar-
gets that better reflect the diverse metabolic demands of criti-
cally ill patients. This work represents an important step forward
by paving the way for more nuanced approaches to personalized
nutritional strategies in critically ill patients. Additionally, our
focus in this study was specifically on identifying patients at risk
of underfeeding as defined by receipt of inadequate nutrition
during days 3–7 of mechanical ventilation. However, this repre-
sents only one aspect of nutritional management in critically ill
patients, and future studies should explore the role of AI to
optimize the balance of carbohydrates, proteins, and fats in their
nutritional support. Finally, the observed decline in model

performance from day 1 to day 6 may be partly due to the
decreasing sample size, as fewer patients remain on mechanical
ventilation over time. In addition, evolving patient metabolic
demands, changes in clinical trajectory, shifts in feature impor-
tance, and the expanding context window length could influence
the model’s predictive accuracy at later time points. With a
smaller number of patients later in the ventilation period, the
model has fewer data points to make predictions, which can lead
to a slight decrease in performance. Despite this, the model still
demonstrates strong performance overall, highlighting its ability
to identify at-risk patients early and throughout the ventilation
period. Future work should investigate adaptive learning or data
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Fig. 3 | Performance comparison against XGBoost model. Performance of the
NutriSighT (red) and baseline XGBoost (blue) models in predicting underfeeding
over the first six days ofmechanical ventilation. The top row showsperformanceon
the internal test set, while the bottom row shows performance on the external
validation set. Panels on the left display the Area Under the Receiver Operating

Characteristic Curve (AUROC), and panels on the right display the Area Under the
Precision-Recall Curve (AUPRC). Solid lines represent themeanperformanceacross
all prediction tasks for a given day, and the corresponding shaded areas represent
the 95% confidence intervals, calculated via bootstrapping.
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augmentation techniques to mitigate performance decline and
enhance stability.

In conclusion, we developed NutriSighT, an interpretable trans-
formermodel designed to identifymechanically ventilated, critically ill
patients likely to only be underfed. NutriSighT has the potential to
facilitate timely nutritional interventions in critically ill patients. Future
studies should focus on integrating this model into trial designs to
identify high-risk patients and optimize their nutritional strategies.

Methods
The study protocol was approved by the Institutional Review Board
(IRB) at the Icahn School of Medicine at Mount Sinai under protocol
number STUDY-20-00338. All research was performed in accordance
with all relevant ethical regulations. Informed consent was waived by
IRB because the study used de-identified, publicly available data from
the MIMIC and AmsterdamUMCdb database.

Data sources
In this retrospective study we utilized data from two independent ICU
datasets- the Amsterdam University Medical Centers Database
(AmsterdamUMCdb) and the Medical Information Mart for Intensive
Care IV (MIMIC-IV v2.2) (Fig. 1).

AmsterdamUMCdb is a highly granular ICU dataset from the Eur-
opean Union, containing deidentified electronic health records of ICU
patients from the Amsterdam University Medical Centers in the
Netherlands20. It includes admission data spanning 2003 to 2016 and
encompasses approximately 1 billion data points including demo-
graphics, vital signs, laboratory tests andmedications fromover 20,000
ICU admissions. In contrast, MIMIC-IV is a United States based, single-
center, de-identified database comprising electronic health records
data from over 70,000 ICU admissions at the Beth Israel Deaconess
Medical Center, with ICU admissiondata ranging from2008 to 201921,22.
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Fig. 4 | NutriSighT Calibration Curve.

Table 4 | Model Threshold Testing

Threshold Sensitivity Specificity PPV NPV

0.1 0.97 0.18 0.46 0.88

0.2 0.89 0.37 0.51 0.83

0.3 0.85 0.48 0.55 0.81

0.4 0.81 0.54 0.56 0.80

0.5 0.75 0.61 0.58 0.77

0.6 0.65 0.71 0.62 0.73

0.7 0.50 0.83 0.69 0.69

0.8 0.35 0.93 0.78 0.66

0.9 0.13 0.98 0.85 0.61
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Study population
We included patients 18 years or older who were mechanically venti-
lated in the ICU for at least 72 h. Patients receiving total parenteral
nutrition or peripheral parenteral nutrition during the ventilation event
were excluded.We also excludedpatientswithmissing height orweight
data, or ambiguous data regarding tube feeds that did not allow us to
calculate the amountof tube feeds administered (Supplementary Fig. 1).

Outcomes
Themain aimof this studywas to identify patients likely tobeunderfed
on a given day between days 3-7 of mechanical ventilation among ICU

patients. Predictions were censored to the day prior if a patient was
extubated, died, or transferred out of the ICU.

Consistentwith the recommendations of theAmericanSociety for
Parenteral and Enteral Nutrition (ASPEN) guidelines11, we estimated
caloric requirements using weight-based equations adjusted accord-
ing to the patient’s Body Mass Index (BMI) as below:

• For patients with BMI< 30kg/m²: 25 kcal per kilogram of actual
body weight per day.

• For patients with 30 ≤BMI ≤ 50 kg/m²: 11 kcal per kilogram of
actual body weight per day.

Fig. 5 | SHAP Plots. a The mean absolute SHAP value plot. b Patient-level SHAP
heatmap showing how feature contributions to underfeeding predictions evolve
across outcome Days 3–7. Each column reflects predictions made up to that day,
highlighting dynamic, feature-specific shifts over time. For this patient, diastolic
blood pressure (DBP), serum sodium, and height were consistently influential, with
lower sodiumandDBP levels associatedwith underfeeding predictions. International
Normalized Ratio (INR) showed dynamic importance, contributing more strongly to
predictions for Days 3–5 but less so for Days 6–7, suggesting diminishing relevance
over time. A similar temporal shift is seen with lorazepam, which gained importance
over time, with its absence corresponding to isocaloric nutrition predictions, con-
sistent with the clinical expectation that less sedated patients are typically less ill and

more likely to receive adequate feeding. BMI Body Mass Index, SpO2 Peripheral
Oxygen Saturation, PaO2/FiO2 Ratio of Partial Pressure to fractional inspired oxygen,
MCHC Mean Corpuscular Hemoglobin Concentration, MCV Mean Corpuscular
Volume, RBC Red Blood Cell, RDW Red Cell Distribution Width, WBC White Blood
Cell, INR International Normalized Ratio, PTT Partial Thromboplastin Time, ALT
Alanine Aminotransferase Activity, ALP Alkaline Phosphatase, AST Aspartate Ami-
notransferase, CK (CPK)CreatineKinaseActivity, CK-MBCreatineKinase-MBActivity,
LD (LDH) Lactate Dehydrogenase Activity, BP Blood Pressure, Na Sodium, DBP-I
InvasiveDiastolic Blood Pressure, HRHeart Rate, K Potassium, BIL-I Indirect Bilirubin,
SBP-NI Non-Invasive Systolic Blood Pressure, MBP-I Invasive Mean Blood Pressure,
NEE Norepinephrine Equivalent Doses, SBP-I Invasive Systolic Blood Pressure.
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• For patients with BMI > 50 kg/m²: 22 kcal per kilogram of
adjusted body weight per day.

• For BMI > 50 kg/m², adjusted body weight (kilogram) was calcu-
lated as28,29:

• Females: 45.36 + 2.27 × (Height (cm) − 152.4)
• Males: 48.08 + 2.72 × (Height (cm) − 152.4)

Underfeeding was defined as receipt of less than 70% of the cal-
culated caloric requirements on a given day17,30, with caloric intake
determined by a combination of enteral nutrition and propofol.

Feature extraction
We extracted a comprehensive set of features from the Amsterda-
mUMCdb and MIMIC-IV databases to capture the clinical character-
istics of ICU patients. The features were chosen based on clinical
relevance and routine availability in ICU workflows to support real-
world applicability of themodel26. Thedatawas collected starting from
the time of ICU admission or the time of intubation, if the latter
occurred after ICU admission. It continued for up to 7 days after the
start of mechanical ventilation, with earlier censoring in the case of
extubation, death, or transfer out of the ICU. The features included
demographics, vital signs, laboratory results, medications adminis-
tered, enteral nutrition, fluid intake, and fluid output. Demographics
included age, sex, height, weight, and body mass index (BMI). Vital
signs included heart rate, systolic and diastolic blood pressures, mean
arterial pressure, respiratory rate, and temperature. Laboratory results
included oxygen saturation and PaO₂/FiO₂ ratio, pH, base excess,
lactate, sodium, potassium, chloride, anion gap, hemoglobin, hema-
tocrit, mean corpuscular volume, mean corpuscular hemoglobin
concentration, red blood cell count, white blood cell count, platelet
count, red cell distribution width, international normalized ratio,
partial thromboplastin time, alanine aminotransferase, aspartate ami-
notransferase, alkaline phosphatase, indirect bilirubin, lactate dehy-
drogenase, amylase, creatine kinase, CK-MB, blood urea nitrogen and
creatinine.We also included data regardingmedications administered,
such as vasopressors (in norepinephrine equivalent doses), sedatives
and analgesics (lorazepam, morphine, propofol), and prokinetics
(erythromycin and metoclopramide)31. We further extracted the
amount of enteral nutrition administered and calories delivered by
enteral nutrition and propofol.

Data pre-processing
To capture the temporal changes during each patient’s ICU stay, we
structured the data into 4-hour time intervals, starting from the timeof
ICU admission or the time of intubation, if the latter was after ICU
admission and ending at the earlier of extubation or 7 days after
intubation. Clinical variables were summed or averaged within each
time interval as appropriate.We excluded featureswithmore than40%
missingness to ensure data quality and reliability, following standard
practices in data analysis32. Outliers were identified and excluded
based on clinical expertise, removing data points that were physiolo-
gically implausible or indicative of measurement errors.

Consistent with standard methods for handling missing data in
these datasets, we used forward fill imputation for all features (except
formedications administered, fluid intake, and enteral nutrition which
were treated as zero when missing) and applied k-nearest neighbor
(k-NN) imputation (k = 5) to fill in any remaining missing values33–35.

As AmsterdamUMCdb provides age, height, and weight in pre-
defined subgroups (Table 1),we applied a similar approach inMIMIC-IV
and encoded them using one-hot encoding to transform them into a
binary format suitable for the model. Continuous variables were
standardized using z-score normalization to ensure that all features
contributed equally to the model training and to facilitate the con-
vergence of the optimization algorithm. This step transformed the
variables to have a mean of zero and a standard deviation of one,

reducing the risk of features with larger numerical ranges dominating
the learning process.

Model development
At the core of NutriSighT’s functionality is its capability of making
predictions at every 4-hour interval. At each timestep, the model
updates its assessment based on the most recent patient data and
predicts the feeding status separately for Days 3, 4, 5, 6, and 7. These
predictions are censored up to the day before the earliest occurrence
of extubation, death, or discharge from the ICU, ensuring that the
predictions remain relevant to the patient’s current clinical trajectory.

Themodel input comprises sequential data structured into 4-hour
intervals, spanning up to seven days of mechanical ventilation. Each
input sequence has a shape 36 ×62 (the number of 4-hour time bins
over 6 prediction days by the number of clinical features). Traditional
transformer models use fixed sinusoidal positional encodings to
incorporate the order of input sequences18. However, we implemented
a learnable positional encoder, which allows the model to learn opti-
mal positional representations during training36. This approach adds
trainable positional embeddings to the input sequences, enabling the
model to better capture temporal dynamics and improve performance
on sequential tasks.

NutriSighT is comprised of four stacked Transformer Encoder
Blocks, each featuring multi-head self-attentionmechanisms with four
heads and a head size of 512. This architecture handles sequential data
by capturing long-range dependencies through self-attention, enhan-
cing themodel’s ability to discern complex temporal patterns inherent
in clinical data18,19. Following the self-attention layers, dropout layer
normalization are applied. Following the transformer encoder layers,
the model integrates a series of Multi-Layer Perceptron (MLP) Layers
with 312, 64, and 48 units, respectively. Each dense layer is accom-
panied by dropout (35%) and L2 regularization (10-5). The final output
layer employs a sigmoid activation function, generating probabilistic
predictions for each outcome day.

These strategies were employed to prevent overfitting and opti-
mize convergence, ensuring that NutriSighT effectively generalizes to
unseen data. The combination of transformer architecture, learnable
positional encodings, and robust regularization techniques enables
NutriSighT to deliver accurate and timely predictions, thereby facil-
itating personalized nutritional interventions in the ICU setting.

Rolling prediction framework
The prediction schedule followed a dynamic, rolling approach as
below (Fig. 6):

• Days 1 and 2: Predicted feeding status for each day fromDay 3 to
Day 7, with prediction updated every 4 h.

• Day 3: Predicted for each day from Day 4 to Day 7, updated
every 4 h.

• Day 4: Predicted for each day from Day 5 to Day 7, updated
every 4 h.

• Day 5: Predicted for Days 6 and 7, updated every 4 h.
• Day 6: Predicted for Day 7, updated every 4 h.

This approach ensured continuous updates, allowing clinicians to
adapt nutritional strategies proactively. By predicting multiple days
ahead at each timestep, themodel supports better planning and timely
interventions.

Training and validation
We split the AmsterdamUMCdb dataset into a training set (80%), an
internal validation set (10%), and an internal test set (10%). The internal
validation set was used during training to prevent overfitting and tune
hyperparameters. To address class imbalance, we employed class
weighting, a technique that adjusts the contribution of each class to the
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loss function during training37. Specifically, we calculated class weights
inversely proportional to the frequency of positive and negative out-
comes, assigning higher weights to the minority class and lower
weights to themajority class. Bymodifying the loss function in thisway,
the model was encouraged to pay greater attention to under-
represented outcomes. This approach reduced the risk of the model
disproportionately favoring the majority class and thus helped the
model learn patterns associated with both outcomes more effectively.

We trained the model using the Adam optimizer with a
learning rate of 5×10⁻⁶ and applied early stopping and learning
rate reduction callbacks to prevent overfitting and optimize
training time. To ensure that the performance was clinically
meaningful, we evaluated the model on the internal test set and
external validation set using metrics sensitive to class imbalance,
such as precision and recall. These metrics reflect the model’s
ability to not only classify patients accurately but also to reliably
identify those at highest risk, thereby enhancing the real-world
utility of our predictive framework.

Comparison against XGBoost
To benchmark NutriSighT’s performance, we developed an XGBoost
model using the same datasets and evaluation framework. We trained
one XGBoostmodel per timestep, using cumulative data from all prior
timesteps. This ensured both models operated on equivalent input
information at each timestep, preserving temporal consistency.
XGBoost was trained using the same datasets as NutriSighT, with the
AmsterdamUMCdbused for training and as an internal test cohort, and
MIMIC-IV as the external validation dataset.

Model performance was assessed using AUROC and AUPRC,
identical to NutriSighT, enabling a direct comparison with NutrSighT.
By maintaining these consistent training and evaluation procedures,
we aimed to ensure that the comparison between NutriSighT and
XGBoost was meaningful.

Statistical analysis
We assessed model performance using several statistical metrics to
evaluate its predictive accuracy and generalizability. The Receiver
Operating Characteristic Area Under the Curve (AUROC) was used to
evaluate the model’s ability to discriminate between patients who
would andwouldnot be underfed. TheAreaUnder the Precision-Recall
Curve (AUPRC) was calculated to assess the trade-off between preci-
sion and recall.

To assess feature importance and provide insight into the
decision-making process of NutriSighT, we employed SHAP (SHapley
Additive exPlanations) values23,24. SHAP offers a model-agnostic

framework that attributes the contribution of each input feature to a
specific model output. We provide 3 specific SHAP visualizations: 1)
Mean absolute SHAP values that summarize global feature importance
across all patients and all predictions, 2) Temporal SHAP summary that
shows how contributions of the top 20 features evolve across pre-
diction days during the ICU stay, 3) Patient-level SHAP heatmaps that
illustrate day-by-day changes in the top 10 contributing features for a
representative patient.

To evaluate the calibration of themodel’s predicted probabilities,
we computed the Brier score and generated calibration plots, which
visually assess how closely predicted probabilities align with actual
outcomes across probability bins. Comparative statistical analyses
were conducted using the Mann-Whitney U test for continuous vari-
ables and the chi-squared test for categorical variables. The trained
model was externally validated on the MIMIC-IV dataset to assess its
generalizability across different patient populations and clinical set-
tings. This external validation ensured that themodel’s performance is
robust and applicable to diverse ICU environments.

Software
We performed all analyses in Python 3.10 using: pandas 2.2.2, numpy
1.26.4, TensorFlow 2.17.1, scikit-learn 1.6.0, XGBoost 1.7.4, matplotlib
3.8.0, seaborn 0.13.2, and SHAP.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets analyzed in this study are publicly available resources.
The Medical Information Mart for Intensive Care (MIMIC-IV) database
(version 2.2) is available on the PhysioNet repository at https://
physionet.org/content/mimiciv/2.2/. Access to this dataset requires
user registration and completion of a recognized human subjects
research training course. The Amsterdam University Medical Centers
Database (AmsterdamUMCdb) is available to researchers upon request
at https://amsterdammedicaldatascience.nl/, by registering at the
Amsterdam Medical Data Science portal, completing required data
protection training, agreeing to the data use agreement, and submit-
ting a brief research proposal that explains the intended analyses.
Access may be granted to qualified researchers (academic, clinical, or
non-profit) for ethically approved projects. All data supporting the
findings described in this manuscript are available in the article and in
the Supplementary Information and from the corresponding author
upon request. Source data are provided with this paper.
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Code availability
The code used for the analysis in this study is available on GitHub at
https://github.com/mjangda3/NutriSighT.
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