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DNAmethylation predicts adverse outcomes
of coronary artery disease

Min Qin 1,2,3,4,5,6,13, Xiaoxue Tian1,2,7,13, Qili Wu1,2, Qian Zhu 1,2, Meiling Yu1,2,8,
Xianhong Fang9, Xiaoping Chen10, Chen Liu11, Bin Zhang9, Hanping Li2,
Xipei Wang5, Cuiping Pan6,12 & Shilong Zhong 1,2,5

Adverse outcomes including myocardial infarction (MI) and stroke render
coronary artery disease (CAD) a leading cause of death worldwide. DNA
methylationmarkersmay alert such adversity ahead of the events.We profiled
DNAmethylation of blood leukocytes in 933 Chinese CAD patients with up-to-
13-year follow-up from three centers, identifying 70 differentially methylated
sites (DMPs) associated with future death. These DMPs correlated with
inflammation markers, left ventricular functions and high-density lipoprotein
cholesterol, and impacted gene expression in immune response and cellular
scenesence. Notably, cg25563198 and cg25114611 were discovered to regulate
FKBP5, whose upregulation persisted duringMI and stroke. Fkbp5 knockout in
male mice partially rescued MI by reducing infarct size and improving heart
function, confirming its critical function. Finally, our prognostic model of 10
methylation sites and 5 clinical features outperformed clinical models. Our
study highlights the value of DNAmethylation in predicting prognosis in CAD
and provides tools for clinical translation.

Coronary artery disease (CAD) is life-threatening and represents a
universal leading cause of death. Studies of the last century suggested
a 15-year survival rate of 48–70%1,2. Despite the remarkable ameliora-
tion in the recent 30 years in managing its clinical risk factors and the
secondary and tertiary preventions, CAD is associatedwith 17.8million
annual deaths worldwide3. Beyond mortality, other major adverse

cardiovascular events (MACE) include myocardial infarction (MI),
stroke, and revascularization, casting a heavy burden to the healthcare
system. Identifying patients with greater risk of poor prognosis
enables closer medical supervision and therefore opportunities for
better clinical outcomes. Numerous genetics-based research reported
novel targets and tools for predicting adverse outcomes in CAD
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patients. Indeed, CAD has an estimated heritability of 38–66% for
incidence4 and 38–57% for mortality5. However, towards which direc-
tion it progresses ismultifactorial determined by the combined effects
of genetic and environmental factors, therefore we reason that con-
sidering multiple layers of information, such as genetics and epige-
netics, will better identify patients susceptible to poor prognostic
outcomes.

DNA methylation on CpG (cytosine-phosphate-guanine) dinu-
cleotides reflects both genetic regulation and environmental influ-
ence, enabling exploration of their integrated effects on diseases6.
Epigenome-wide association studies (EWAS) suggested DNA methyla-
tion as a feasible biomarker for CAD. Two recent large-scale EWAS
surveyed multiple cohorts of various ancestries and collectively
reported 85 DNA methylation sites in blood leukocytes to be asso-
ciated with incident CAD or MI7,8. Comprehensive studies also report
association between DNA methylation and the risk factors of CAD
including aging9, smoking10, blood lipids11, inflammation12,
hypertension13, and diabetes mellitus (DM)14. Furthermore, initial
EWAS studies identified strong signals thatpredicted all-causedeathof
cardiovascular diseases15,16, albeit its biological mechanisms remained
to be explored. As such, DNAmethylation indicates not only the risk of
CAD incidence but also its progression.

Here, we profiled DNA methylation of blood leukocytes in 933
Chinese CAD patients at baseline and interrogated its association with
future death, in up to 13 years of follow-up. We aimed to discover
differentially methylated CpG positions (DMPs) which serve as bio-
markers for predicting the CAD prognosis. Furthermore, we inferred
molecular mechanisms that drive CAD progression. Our results sug-
gest that DNAmethylation of blood leukocytes are robust biomarkers
and provide rich insights into the prognosis of CAD.

Results
Baseline characteristics
We adopted a two-stage multicenter design for studying DNA methy-
lation related to CAD prognosis (Fig. 1a). Initially, over 5000 CAD
patients were enrolled in a medical center in China and followed for
medical outcomes, from which 405 patients were selected by the
nested case-control study design to forma discovery set for this study.
In a follow-up period of up to 13 years, 217 deaths were recorded. For
the validation set, we enrolled 528 CAD patients from three medical
centers in China. In about three years after enrollment, 25 deaths were
recorded. In both study sets, patients in the death group were older
and had a lower rate of aspirin use, and higher blood levels of aspartate
aminotransferase (AST) and creatinine (Table 1).

Differentially methylated CpGs associated with CAD prognosis
We profiled DNA methylation of blood leukocytes collected at enroll-
ment (baseline) via the Illumina Infinium MethylationEPIC 850K
BeadChip. After stringent quality control, 733,737 high-quality CpG
probes in the discovery set and 738,366 probes in the validation set
were obtained (Supplementary Fig. 1). Subsequently, through COX
survival model-based EWAS, using sex, age, smoking status, percuta-
neous coronary intervention, heart failure, hypertension, arrhythmia,
hyperlipidemia, type 2 diabetes and medications as covariates, a total
of 333 DMPs were initially identified in the discovery set to be asso-
ciated with death (PFDR <0.05) (Fig. 1b and Supplementary Fig. 2A).
Most of these were hypermethylation (Supplementary Fig. 2B). Nota-
bly, 54% of them (180/333) have been recorded in the EWAS Catalog17

and EWAS Atlas18 to be associated with a variety of traits and disorders
(Supplementary Table 1), including Crohn’s disease and inflammatory
bowel disease (38 DMPs), smoking (36 DMPs), drinking (18 DMPs),
aging (14 DMPs), weight or body mass index14,19 (8 DMPs), death risk20

(5 DMPs), andC-Reactive Protein (2DMPs)12. In the validation set, 70 of
theDMPswere replicatedwith consistent directions of effect (P <0.05,
Table 2). Noteworthily, 2 DMPs (cg25114611 and cg25563198) mapped

to FKBP5 (FK506 binding protein 5) were significantly associated with
the death risk of CAD20, among which cg25114611 was also reported to
be associated with acute MI21.

Pathways and mediating phenotypes inferred by DMPs
Half of the 70 DMPs reside in gene regulatory elements (Supplemen-
tary Fig. 3). Overlap with histone modification chromatin immuno-
precipitation (ChIP) peaks and the 15 chromatin states in Roadmap22

revealed strong enrichment of enhancers specific to bloodmonocytes,
adipocytes, myoepithelial cells, fibroblasts, left ventricle, and right
atrium (P <0.05, Fig. 2a, b), most of which are characteristic of the
heart and cell types known to play critical roles inCAD.Given that both
DNA methylation and RNA transcription in blood were distinct from
solid organs23, our results suggest that DNAmethylation in leukocytes
carried pathophysiological features.

By annotating the 70DMPs to the nearest genes, weuncovered 69
prognosis genes. These genes were enriched for phosphorylation in
signal transduction, stress response, apoptosis, and inflammatory
response (Fig. 2c). Separately, we associated the DMPs to nearby
enhancers (<=2500bp)24 and their target genes via a chromatin inter-
action model, Association by Contact (ABC)25. As such, 53 of the 70
DMPs (75.7%) were connected to 468 genes (Supplementary Fig. 4A),
which confirmed a strong enrichment in inflammatory response and
senescence (Supplementary Fig. 4B). Notably, the two DMPs of FKBP5,
cg25563198 and cg25114611, were mapped to a super-enhancer
reported active in CAD relevant tissues, such as blood, lymphoid,
adipose tissue, heart ventricle, and aorta26. By ABC model, this super-
enhancer connects with >50 genes, including FKBP5, which are
strongly enriched for senescence (Supplementary Fig. 4C). Further-
more, through enhancer-cell type specificitymapping,we inferred that
the function of the DMPs could be most strongly enriched in mono-
cytes and dendritic cells (Supplementary Fig. 5).

We further verified the association of theDMPswith inflammation
and lipids using clinical measurements (Fig. 2d). A strong connection
to inflammation markers was observed, particularly those involving
platelets, i.e., systemic immune-inflammation index (SII), fibrinogen
(FIB), and platelet-lymphocyte ratio (PLR). SIImeasures the proportion
of platelets and neutrophils among the lymphocytes27, fibrinogen is an
index for chronic low-grade inflammation28, andPLR serves asamarker
for acute inflammation and prothrombotic status29. Furthermore, we
observed that a significant proportion of theDMPs (19 out of 70DMPs,
27%) displayed associations with high-density lipoprotein cholesterol
(HDLC) levels in both discovery and validation sets (P <0.05, Fig. 2d),
but not with low-density lipoprotein cholesterol (LDLC), total choles-
terol (TC), or triglycerides (TG). The association directions of these 19
DMPs are consistently opposite to HDLC and death (Supplementary
Fig. 6), i.e., they are all positively associated with death risk and
negatively associated with HDLC levels, in line with the protective role
of HDLC (a proxy for “good cholesterols”) in cardiovascular outcomes.
Finally, associations between the DMPs and left ventricle (LV) function
were found, including its ejection fraction (LVEF) and mass
index (LVMI).

Contribution of genetic regulation on DNA methylation
Methylation can be regulated genetically by methylation quantitative
trait loci (meQTL), thus providing a tool for investigating how genetics
influences CAD prognosis. We queried the DMPs against a meQTL
dataset derived from 3523 East Asians30. Notably, a large proportion of
the DMPs (53/70, 76%) were paired with over 7000 meQTLs from East
Asians (Supplementary Fig. 7A, B). Indeed, compared with all CpGs on
the array, the DMPs were enriched for both cis (n = 42, P < 0.0001) and
trans meQTLs (n = 31, P <0.0001, all identified trans-meQTLs resided
on chromosomes distinct from their target CpGs), although most
associations were weak (Supplementary Fig. 7C, D). Strikingly,
cg16500036, closest to AUTS2, which encodes for Activator of
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Transcription andDevelopmentalRegulator, was associatedwithmore
than 1000 cis-meQTLs. The two DMPs for FKBP5, cg25563198 and
cg25114611, had the largest number of trans-meQTLs (Supplementary
Fig. 7E). These results suggest that the important prognosis geneswere
regulated genetically.

Contribution of DNA methylation on gene expression
To validate the impact of DMPs on gene expression, we conducted
expression quantitative traitmethylation (eQTM) analysis. 54.4%DMPs
(37/68) correlated with expression levels of their proximal genes
(Pearson correlation, P < 0.05, Supplementary Table 2), with amajority

(25/37) displaying an inverse correlation between the methylation
levels and gene expression levels. The strongest correlations were
observed for cg19526450 with ARHGAP26 transcript (cor = −0.49,
P = 4.81E-25) and cg26869211 with USP32 transcript (cor = −0.41,
P = 2.50E-17).

DNA methylation levels of the two DMPs for FKBP5, cg25114611
and cg25563198, were inversely correlated with the expression level
of FKBP5 (Fig. 3a, b). From published transcriptome31,32, we confirmed
that the expression of FKBP5 was significantly elevated in the per-
ipheral blood of MI patients (Fig. 3c) and stroke patients (Fig. 3d).
Strikingly, FKBP5 was upregulated in nearly all cell types of the heart

Adverse outcomes
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Fig. 1 | Epigenome-wide association studies on DNA methylation and CAD
adverseoutcomes. a Studydesign. Patients in thediscovery and the validation sets
were enrolled from one and three medical centers in China, respectively. The
sample size for discovery and validation cohorts were 405 and 528, respectively.
Baseline characteristics were collected during enrollment. DNA methylation of
peripheral blood leukocytes was measured by Illumina MethylationEPIC 850K
BeadChip. Differential methylation sites associated with death were identified,
prognostic risk models were built, and lastly, biologicalmechanismswere inferred.
This graph was created in BioRender. Pan, C. (2025) https://BioRender.com/

mao524f. In the boxplot of panels, hinges indicate the 25th, 50th, and 75th per-
centiles, whiskers indicate 1.5× interquartile ranges. b EWAS of death performed in
the discovery set. Red line and blue line mark the P-value thresholds, with the
former from Bonferroni correction, and the latter from false discovery rate cor-
rection. CADcoronary arterydisease, PLRplatelet-lymphocyte ratio, FIBfibrinogen,
SII systemic immune-inflammation index, HDLC high-density lipoprotein choles-
terol, LVEF left ventricular ejection fraction, LVMI left ventricular mass index, DMP
differential methylation probe, TF transcriptional factor, IL interleukin.
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tissue with MI progression, as demonstrated in the single-cell tran-
scriptome of myogenic (nonischemic zone), ischemic (MI lesion
zone), and fibrotic (advanced MI tissue zone) regions of the
heart33 (Fig. 3e).

Downregulation of FKBP5 improves left ventricular functions
and reduces inflammation responses
Our findings collectively suggest that FKBP5 plays a critical role in
CAD prognosis. To further investigate its role in MI, a severe out-
come of CAD, we generated the knockout (KO) mice of Fkbp5−/− and
subjected them to either sham surgery (KO-sham) or myocardial
ischemia/reperfusion (KO-MI/R) injury surgery (Supplementary
Fig. 8 and Supplementary Table 3). First, we verified that the Fkbp5
expression level was significantly upregulated in wild-type (WT)
mice with MI/R surgery compared with WT-sham mice using RT-
qPCR (Fig. 4a). Reducing the Fkbp5 expression did not seem to cause
difference in heart functions in the sham surgery groups, as no
difference was observed by echocardiography between the WT-
sham and the KO-sham mice (Fig. 4b–d). Next, we verified that the
MI/R surgery successfully induced MI, as LVEF and LV fractional

shortening (LVFS) were significantly reduced in the WT-MI/R com-
pared with the WT-sham mice (Fig. 4b–d). Furthermore, cross-
comparison revealed that knocking out of Fkbp5 exerted a protec-
tive effect against MI, as LVEF and LVFS were significantly increased
in the KO-MI/R mice compared with the WT-MI/R (Fig. 4b–d).
Additionally, Evans Blue/TTC staining showed that the infarct size in
KO-MI/R was significantly reduced compared with WT-MI/R mice
(Fig. 4e–g). The immune marker PLR was significantly lower in MI/R
mice with Fkbp5−/− compared with that in WT-MI/R mice (Fig. 4h),
consistent with our previous finding that in patients with lower level
of inflammation, hypermethylation of FKBP5 were found, which was
indicative of lower expression of FKBP5 (Fig. 2d). Our results con-
firmed an essential role of FKBP5 in MI.

Taken together, we propose that hypomethylation, such
as those on cg25114611 and cg25563198, leads to higher expression
of FKBP5, which plays critical roles in driving the poor
prognosis of CAD. Downregulating Fkbp5 was shown in mouse
models to improve the LV dysfunction caused by myocadiac injury,
suggesting the potential of FKBP5 in treating and improving CAD
outcomes.

Table 1 | Baseline characteristics of participants in the discovery and validation cohorts

Characteristics Discovery cohort Validation cohort

Survival
(N = 188)

Death
(N = 217)

P-value Survival
(N = 503)

Death
(N = 25)

P-value

Demographic data

Age (year) 62.7 ± 9.4 70.02 ± 9.82 1.67E-13 61.89 ± 9.52 69.36 ± 9.89 3.10E-04

Male 133 (70.74) 165 (76.04) 2.75E-01 369 (73.36) 19 (76) 9.52E-01

Medical history

Diabetes mellitus 58 (30.85) 82 (37.79) 1.74E-01 145 (28.83) 7 (28) 7.20E-01

Hypertension 100 (53.19) 146 (67.28) 5.21E-03 287 (57.06) 18 (72) 1.17E-01

Heart failure 61 (32.45) 132 (60.83) 2.10E-08 229 (45.53) 13 (52) 3.88E-01

Arrhythmia 10 (5.32) 30 (13.82) 7.05E-03 44 (8.75) 4 (16) 1.01E-01

Current smoking 59 (31.38) 80 (36.87) 2.92E-01 144 (28.63) 7 (28) 1.00E +00

Biomedical measurements*

ALT, U/L 26.75 ± 14.06 39.53 ± 75.78 2.46E-02 27.27 ± 14.72 23.4 ± 77.6 4.44E-01

AST, U/L 26.47 ± 12.66 45.96 ± 83.88 1.83E-03 27.62 ± 12.9 67.42 ± 85.75 6.36E-05

LDLC, mmol/L 2.74 ± 0.94 2.55 ± 0.97 4.60E-02 2.71 ± 0.94 2.77 ± 0.96 7.89E-01

HDLC, mmol/L 1 ± 0.26 0.95 ±0.27 6.58E-02 1.01 ± 0.27 1.02 ± 0.26 9.13E-01

Triglyceride, mmol/L 1.65 ± 1.36 1.5 ± 1.03 2.10E-01 1.86 ± 1.33 1.48 ± 1.05 3.82E-01

ApoA, g/L 1.09 ±0.26 1.01 ± 0.29 5.24E-03 1.16 ± 0.29 1.16 ± 0.26 9.22E-01

TC, mmol/L 4.43 ± 1.15 4.24 ± 1.18 1.06E-01 4.31 ± 1.14 4.34 ± 1.18 9.44E-01

LPA, mg/dL 235.67 ± 227.07 366.56 ± 379.82 2.38E-04 290.1 ± 232.1 248.94 ± 382.65 5.96E-01

CK, U/L 117.13 ± 154.52 197.08 ± 571.22 7.22E-02 132.03 ± 150.49 534.46 ± 584.71 7.52E-05

CKMB, U/L 7.57 ± 6.65 12.19 ± 29.3 4.12E-02 18.64 ± 6.51 10.25 ± 29.98 4.70E-01

Creatinine, μmol/L 83.92 ± 26.79 142.36 ± 153.39 3.98E-07 91.91 ± 25.21 142.42 ± 156.78 5.78E-04

Glucose, mmol/L 6.64 ± 2.86 7.12 ± 3.45 1.36E-01 6.08 ± 2.79 6.33 ± 3.52 6.34E-01

Medication**

Aspirin 183 (97.34) 200 (92.17) 4.04E-02 444 (88.27) 16 (64) 6.17E-03

Clopidogrel 177 (94.15) 208 (95.85) 5.62E-01 409 (81.31) 16 (64) 1.64E-01

PPI 94 (50) 126 (58.06) 1.08E-01 322 (64.02) 14 (56) 7.96E-01

ACEI 83 (44.15) 117 (53.92) 5.12E-02 250 (49.7) 9 (36) 5.14E-01

BB 166 (88.3) 180 (82.95) 1.79E-01 408 (81.11) 17 (68) 2.74E-01

CCB 68 (36.17) 99 (45.62) 5.36E-02 146 (29.03) 8 (32) 4.73E-01

Surgical history

PCI 125 (66.49) 160 (73.73) 0.138 345 (68.59) 13 (52) 3.62E-01

Data are shown asmean ± standarddeviation or n (%).P-values were calculated usingMann-WhitneyU test for non-normally distributed continuous variables and theChi-squared test for categorical
variables.
ALT alanine aminotransferase,ASTaspartate aminotransferase, LDLC low-density lipoprotein cholesterol,HDLChigh-density lipoprotein cholesterol,ApoA apolipoprotein A, TC total cholesterol,LPA
Lipoprotein (a), CK creatine kinase, CKMB creatine kinase MB, PPI proton pump inhibitors, ACEI angiotensin-converting enzyme inhibitors, BB β-blockers, CCB calcium channel blockers, PCI
Percutaneous coronary intervention.
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Prognostic models for death in CAD
Based on the 15 DMPs that showed epigenome-wide Bonferroni sig-
nificance in the discovery set, we selected ten DMPs with the biggest
effects, as measured by the variance importance value (VIMP) in a
random survival forest algorithm based on bootstrap resampling of
1000 repetitions, to construct prognosis models of death in CAD
(Supplementary Fig. 9). Subsequently, usingCOX regression algorithm
and 1000 times cross-validation, ourmodel based on the 10DMPs (the
CG model) achieved an area under the curve (AUC) of 0.71 (Fig. 5a).
When combining two common risk factors of cardiovascular diseases,
i.e., age and sex, the updated model achieved an AUC of 0.81. We also

built prognosticmodels basedon themediatingphenotypes. Although
not all the clinical features were equally powerful in predicting the
adverse outcomes (Supplementary Fig. 10A–C), we found that the
Ensemble model combining the 10 DMPs, sex, age, fibrinogen, HDLC,
and LVEF achieved an AUC of 0.83 (Fig. 5a), which was a significant
increase compared with the clinical model that include only sex, age,
fibrinogen, HDLC, and LVEF (ΔAUC=0.034, P = 3.95E-07). Notably, the
Ensemblemodel could also identify CAD patients who survived severe
adverse events such as coronary revascularization, stroke, and myo-
cardial infarction (Fig. 5b), suggesting it indeed captured the essential
signals of prognosis. When applying our prognosis model to the
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Fig. 2 | Characteristics of DMPs and mediated phenotypes of CAD poor prog-
nosis. a Enrichment of tissue and cell types by referencing to the histone mod-
ification peaks, H3K36me3 (a mark for near transcription termination site) and
H3K4me1 (a mark for active enhancers). b Enrichment of tissue and cell types by
enhancers and transcription start sites, referencing to the 15 chromatin states in
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values were presented. Significant correlations (P <0.05) were marked by *. Linear
regression was used to identify the relationship between DMPs and clinical phe-
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independent validation set, a good stratification of the patients by the
presence or absence of future death event was observed (Figs. 5c and
4d), albeit there was a drop of 10% in sensitivity and 4% in specificity in
this independent validation (P < 3 × 10−4, Table 3).

Age is a known strong risk factor for CVD. Observing the chron-
ological age predicted closely to the CG models, we explored the
performance of several DNA methylation clocks34–37 for predicting
death in CAD patients. DNA methylation clocks have been shown to
better represent one’s aging status. Indeed, most clock models
achieved better prediction than the chronological age models for
death (Supplementary Fig. 10D) and performed equally well or even
better than the CG prognostic models. As these clocks comprised
dozens tohundreds ofCpGsites, one to twoorders ofmagnitudemore
than the maximal 10 CpG sites in our models, our CG prognostic
models are more succinct and specific.

Discussion
In this study, we analyzed about 733,000DNAmethylation sites in 933
Chinese CAD patients for their association with death. Our prognostic
model based on 10 DMPs and numerous clinical features reached AUC
of 0.83, could be validated in an independent set of patients, and
performed superior to the models solely built on clinical features.

A strong association with platelets-involved inflammation, the
functions of the left ventricle, andHDLCwasobserved. As platelets and
cholesterol were essential components of thrombosis, our results
suggest that early thrombo-inflammation and heart contraction mal-
function mediated the adverse outcomes in CAD. Notably, HDL parti-
cipates in reverse cholesterol transport, interacts with platelets, and
exerts an antithrombotic function by suppressing the coagulation
cascade and stimulating clot fibrinolysis38. The observations that (1)
DMPs were associated strongly with HDLC but not other lipids and (2)

HDLC displayed better predictability in adverse outcomes than other
lipids suggest that the ability to remove cholesterol, rather than its
accumulation, was more relevant to CAD adverse outcomes. A recent
study discovered that LDLC, compared to the inflammation index
C-reactive protein, was less effective in predicting future cardiovas-
cular events anddeath39. Our study suggests thatHDLC, not LDLC,may
be a more relevant predictor. Therefore, our methylation study may
inspire new research for clinical translation.

A total of 70 DMPs were replicated in both patient sets to be
associated with future death in CAD. Given that many of these DMPs
have been reported in European ancestry-centric studies to be
associated with autoimmune and cardiovascular risk-related traits,
as recorded in the EWAS Catalog and EWAS Atlas, our DMPs are
functionally relevant and possess generalizability across popula-
tions. We note that 76% of these DMPs were located on or near
enhancers (<= 2500 bp), indicating a tight connection to gene
expression, particularly those genes in premature senescence and
inflammation. We observed cell type specificity per the regulatory
elements that the DMPs overlapped with, particularly enhancers,
and discovered the DMPs were prone to occur in regions char-
acteristic of heart traits. Interestingly, the characteristic premature
senescence and inflammation signals were robust in monocytes and
dendric cells, warranting further studies. Furthermore, we observed
a significant genetic regulation of the DMPs, with a striking pro-
portion (76%) of the DMPs mapped to known meQTLs. Important
prognosis genes such as FKBP5 and AUTS2 own the largest number
of meQTLs for their DMPs. The fact that 10 s to 1000 s of meQTLs
regulating one single DMP, each with a weak strength, indicated that
the trickling of little genetic signals had mounted to significant
epigenetic outcomes, which resembled polygenic models in com-
plex traits40.
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Fig. 3 | Association between cg25114611/cg25563198, FKBP5 gene expression
and disease risk. a The correlation between DNA methylation level of cg25114611
and FKBP5gene expression inwholeblood (n = 391). Light green shading represents
the 95% confidence intervals. b The correlation between DNA methylation level of
cg25563198 and FKBP5 gene expression in whole blood (n = 391). Light green
shading represents the 95%confidence intervals.a,b P-valueswere calculated using
a two-sided Pearson’s correlation coefficient assays. c Differential expression ana-
lysis of FKBP5 gene between normal and myocardial infarction participants in
peripheral blood (ncontrol = 10, nMI = 7). In the boxplot of panels, hinges indicate the

25th, 50th, and 75th percentiles, whiskers indicate 1.5× interquartile ranges.
d Differential expression analysis of FKBP5 gene between control and ischemic
stroke participants in peripheral blood (ncontrol = 24, nStroke = 39). In the boxplot of
panels, hinges indicate the 25th, 50th, and 75th percentiles, whiskers indicate
1.5× interquartile ranges. c, d P-values were calculated using a two-sided Wilcoxon
test. e Gene expression of FKBP5 in various cell types as the disease progression of
myocardial infarction in heart tissue. MI myocardial infarction. Source data were
provided as a Source Data file.
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Among the 69 prognosis genes we identified, most displayed
subtle expression changes at the occurrence of adverse outcomes,
such as ischemic stroke and myocardial infraction. This can be attrib-
uted to the nature of this study that the biomarkers were discovered at
the baseline and mainly served as early alarms. They represent pro-
ceeding events months to years before the occurrence of the adverse
outcomes. That said, however, several prognosis genes such as FKBP5
and AUTS2 displayed drastic expression changes during the adverse
events and occurred repetitively as the most significant findings along
various analyses.

FKBP5 is an immunophilin protein that binds to immunosup-
pressive drugs. In our study, FKBP5 had numerous DMPs associated
with inflammation markers and heart functions. One of them is
cg25114611, which has been reported in acute MI21, death risk20,
inflammatory bowel disease41, Crohn’s disease42, maternal BMI43, and
diabetes mellitus44. FKBP5 expression was reported to be significantly
altered in dilated cardiomyopathy after heart transplantation and
suggested as a prognostic marker45. In our analysis of MI and ischemic
stroke, FKBP5 appeared as a most highly regulated gene. Its elevation
in the MI lesion site wasmost drastic in both innate immune lymphoid
cells and adipocytes of the epicardial fat of the left ventricle. These
results align with the recent finding that DNA demethylation led to
increased expression of FKBP5, which in turn promoted NF-κB signal-
ing in immune cells, resulting in a proinflammatory response and
increased cardiovascular risk46. For AUTS2, its genetic variation was
reported in blood pressure47, bodymass index47, type 2 diabetes48, and
mild heart defects49. This ample evidence strongly supports the roles
that these prognosis genes play in CAD progression.

Importantly, our study contributes to the growing evidence that
DNA methylation sites not only illuminate mechanistic changes in
disease pathology but also serve as predictive biomarkers for clinical
outcomes. For example, Zhang et al. identified a panel of DNA
methylation markers in peripheral blood that robustly predicted all-
cause mortality in large prospective cohorts, with some CpGs located
in genes linked to inflammation and cardiometabolic regulation16.
Similarly, Chybowskaet al. constructed EpiScores basedon45proteins
to predict cardiovascular risks independently of traditional clinical
factors50. While prior studies have explored the predictive value of
DNAmethylation markers for the onset of cardiovascular diseases, i.e.
focusing on primary prevention, our study specially addresses treat-
ment outcomes. We present streamlined models comprising just only
10 DMPs that effectively forecast prognostic risks in CAD, targeting
secondary prevention. Compared to models that incorporate hun-
dreds of methylation sites, our concise model enhances feasibility for
clinical translation.

There are several limitations in our study. First, most adverse
events occurred to our CAD patients were within the first 5 years of
ascertainment, therefore our study captured signals for short-term to
intermediate timespan. Given a longer interrogation time, the DMPs
predicting longer-term adversity will be better uncovered. Second,
methylation profiling often comeswith strong batch effects, therefore,
our two sets of patients cannot be simply combined for a larger EWAS
test, thus limiting the discovery power. Under this constriction, we
adopted a “discover and replicate” strategy to ensure thatour reported
DMPs were replicated. Third, the relatively small number of death
cases in the validation set may limit the statistical power of our study.
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ventricular ejection fraction, LVFS left ventricular fractional shortening, AAR: area
at risk, INF infarct size, LV left ventricular, PLR platelet-lymphocyte ratio. Data are
presented by mean ± SD for each group. Statistical significance was performed by
two-way ANOVA with Šídák’s test for multiple comparisons. ns no significance,
*P <0.05, **P <0.01, ***P <0.005, ****P <0.0001. Source data were provided as a
Source Data file.
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Nevertheless, the consistent effect sizes observed between the dis-
covery and validation sets strengthen our confidence in the robustness
of our findings. Future research of larger prospective cohorts is war-
ranted for confirm these findings. Fourth, although 850K EPIC array
could assess CpGmethylation genome-wide, many CpG sites were not
probed and therefore leaves a large room for future discovery of
prognostic markers. Finally, our murine model employed a full Fkbp5
knockout, whichoffers clearmechanistic insight but represents amore
extreme perturbation than the modest epigenetic downregulation
observed in human cohorts. Still, the protective phenotype in knock-
out mice provides converging evidence that downregulation of FKBP5
is mechanistically linked to ameliorated myocardial injury.

To conclude, our study displays the value of leveraging DNA
methylation of peripheral blood in predicting future adverse events in
CAD patients. Further studies are warranted to investigate the roles of
the methylation sites, genes, pathways, and mediating phenotypes
implicated in our study for a mechanistic understanding of the CAD
adverse outcomes.

Methods
Study design
This studywas approved by theMedical Research Ethics Committee of
Guangdong Provincial People’s Hospital, Xiangya Hospital, Central
South University and The First Affiliated Hospital of Sun Yat-Sen Uni-
versity (approval number: GDREC2017071H, 201701012, and 2017024)

and complied with the Declaration of Helsinki. All patients provided
written informed consents.

We recruited over 5000CADpatients fromGuangdong Provincial
People’s Hospital between January 2010 to December 2017, and by a
nested case-control study design, selected 405 patients therein to
form the discovery set. For the validation set, 528 patients were
recruited from2017 to 2018 from threemedical centers in two areas of
China, namely Guangdong Provincial People’s Hospital, First Affiliated
Hospital of Sun Yat-sen University, and Xiangya Hospital of Central
SouthUniversity51. All participants were identified by either a history of
coronary artery bypass graft operation or a new diagnosis by coronary
angiography tohave≥50%obstruction inminimally onemaincoronary
artery, as assessedby the luminal diameter. The inclusion criteriawere:
(1) aged over 30 years old, (2) no history of renal transplantation or
dialysis, (3) no cirrhosis, (4) not pregnant nor breastfeeding, (5) no
malignancy, (6) no history of haemodialysis; (7) no history of thyroid
problems, not using antithyroid drugs nor thyroid hormone medica-
tion in the past week, and (8) completed the follow-up surveys.

Sample and information collection at baseline
Participants were admitted to the hospitals, and after overnight fast-
ing, blood samples were drawn at 7AM in the morning. Clinical
laboratory tests were performed, and detailed clinical surveys,
including medical history, family history, smoking status, and medi-
cation intake, were collected.
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Counts of platelets and circulating leucocytes, including white
blood cell (WBC), monocytes, lymphocytes, and neutrophils, were
estimated using an automated blood cell counter (LH780; Beckman
Coulter, Brea, CA, USA). Plasma fibrinogen levels weremeasured using
a clot-based turbidimetric detection system. Lymphocyte-monocyte
ratio (LMR)was calculated as the ratio of lymphocyte count (*109 /L) to
monocyte count (*109 /L). Neutrophil-lymphocyte (NLR) ratio was
calculated as the ratio of neutrophil count (*109 /L) to lymphocyte
count (*109 /L). Platelet-lymphocyte ratio was calculated as the ratio of
platelet count (*109 /L) to lymphocyte count (*109 /L). System immune-
inflammation index was calculated using SII = platelet count × neu-
trophil count/lymphocyte count. Echocardiography was used to
determine the function and structure of the left ventricle at the time of
the baseline. Left ventricular ejection fraction was evaluated by two
cardiologists using the modified Simposon’s rule with the Philips iE33
color Doppler ultrasound diagnostic system. Left ventricular mass
index was calculated as left ventricular mass (g) / body sur-
face area (m²).

All patients were followed up by telephone every six months by
medical staff for inquiring the occurrences of all-cause death orMACE,
with the latter defined as nonfatal myocardial infarction, coronary
revascularization, stroke, and death.

DNA extraction from blood leukocytes
Whole blood was collected in EDTA-K2 anticoagulant tubes and
immediately separated into plasma and hemocyte by centrifuging at
1000 g for 10min at 4 °C. Genomic DNAwas extracted fromhemocyte
and transferred to cryopreservation tubes, which were stored at
−80 °C for subsequent experiments.

Genome-wide DNA methylation profiling and data
preprocessing
DNA quality was assessed by ultraviolet spectrophotometer (Thermo
Scientific, NanoDrop 2000). Briefly, about 500ng of DNA was treated
with sodium bisulfite for converting unmethylated nucleotide C to U,
using the EZ DNA Methylation Kit (Zymo Research). After the con-
version, methylation levels of more than 850,000 CpG sites were
quantified using the Illumina Infinium MethylationEPIC BeadChip,
which was run on an Illumina iScan Systems according to the manu-
facturer’s standard protocol. DNA methylation profiling was serviced
by Genenergy Inc. The experimental operator was blind to the group
information and randomly assigned the samples to different chips and
plates.

Raw signal intensities of DNAmethylation were stored in.idat files
and imported to the R software using the “ChAMP” package52. Analysis
was performed separately for the discovery set and the validation set.
Methylation level of each probe, i.e., beta value, was defined as Meth/
(Meth +Unmeth + 100), whereMethwas the signal intensity of theCpG
site in methylated form and Unmeth was that in unmethylated form.
Beta values ranged from 0 to 1, with a larger value indicating a higher
level of methylation. Probes were excluded if meeting one of the fol-
lowing criteria: (1) detection P-value >= 0.01, (2) bead count <3 in at
least 5% of samples, (3) DNA methylation occurring to non-CpG dinu-
cleotides, (4) aligning to multiple locations53, (5) located on chromo-
some X or Y. In total, 733,638 probes in the discovery set and 738,366
probes in the validation set were retained.

The qualified probes were normalized with the BMIQmethod54 to
correct for signal bias caused by type-I and type-II probes on the array.
Next, we used the method in Houseman et al.55 to estimate relative
proportions of blood cells, including CD8 lymphocytes, CD4 lym-
phocytes, natural killer cells, B cells, monocytes, and granulocytes. We
also leveraged 224 positive control probes to evaluate the impact of
technical confounders, which were generally referred to as batch
effects, on the DNA methylation values. Briefly, we computed the
principal components (PCs) of these positive control probes andTa
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assessed the association between the first 20 PCs and several technical
parameters, including the indices for bisulfite conversionbatch, plates,
sample wells, and chip. Methylation residuals were then obtained via
linear regression, with independent variables set as the beta value of
each probe and dependent variables set as age, sex, smoking status,
estimated white-blood-cell proportions, and the top 10 PCs of the
positive control probes.

Epigenome-wide association analysis
Cox regression-based survival analysis was employed to explore the
association between each methylation residual and the trait, i.e., all-
cause death. We performed such EWAS for the discovery set and the
validation set, respectively. In each EWAS, we adjusted for age, sex,
smoking status, percutaneous coronary intervention, arrhythmia,
heart failure, hypertension, hyperlipidemia, and diabetes mellitus, and
medication intake including β-receptor blocker, angiotensin convert-
ing enzyme inhibitors, calcium channel blocker, proton pump inhi-
bitor, clopidogrel, statin, and aspirin. A strict epigenome-wide
significance threshold by Bonferroni correction was set as
P < 6.83 × 10−8 and a moderate threshold by Benjamin & Hochberg
correctionwas set as PFDR < 0.05. The differentiallymethylated sitewas
considered validated when the association showed a consistent
direction of effect in both sets and obtained a PFDR < 0.05 in the dis-
covery set and P < 0.05 in the validation set.

Construction of prognostic models for death
Prognosis models were constructed based on the discovery set and
tested in the validation set. In the discovery set, DMPs passing the
Bonferroni-corrected epigenome-wide significance threshold were
pruned by a random survival forest approach56 (feature pruning), and
those retainedwere fit by themultivariate Cox regression to derive the
final model (weight tuning). For ‘feature pruning’, variable importance
value (VIMP) was calculated using the out of bag data based on per-
mutation with bootstrap resampling by 1000 repetitions. The top 10
DMPs with the largest VIMP, which denoted the contribution of each
input feature to the model, were retained. For ‘weight tuning’, the
retainedDMPswere fit bymultivariate Cox regression in the R package
“survival”. To derive robustAUC (the area under the receiver operating
characteristic curve) values, we adopted a process of 80:20 data split
and 1000 times cross-validation. The final model was obtained by
combining all patients in the discovery set. For constructing models
with both DMPs and clinical features, we repeated the same process
described above by inputting both the DMPs and the selected clinical
features to the Cox regression. The enhancements in model perfor-
mance and discrimination were assessed by comparing the AUC value
and conducting a likelihood ratio test.

The models were evaluated in the validation set by means of
Kaplan-Meier curves and the difference of prediction risk scores
between death and survival groups. Wilcoxon test was used to assess
whether the prediction scores between the two groups of patients, i.e.,
with and without death events, were significantly different. Sensitivity
and specificity of the models were computed using the Con-
fusionMatrix function from the R package “caret”.

Prognosis models of six inflammatory indices, four blood lipids,
two left ventricular indices, and four DNA methylation clocks for
predicting death in CADwere constructed byCox regression using the
R package “survival”. AUC values were computed.

Characterizing genomic features of DMPs
Genomic locations of DMPs were annotated by Annovar57. Overlap
with regulatory elements was assessed against the ENCODE Encyclo-
pedia version 5 (ENCODE5) cCRE catalog58, including insulators, pro-
moters, distal enhancers, and proximal enhancers. Enrichment against
tissue- and cell type-specific regulatory elementswas performedbased
on histonemodification chromatin immunoprecipitation peaks (ChIP)

(H3K4me1, H3K4me3, H3K27me3, H3K36me3, H3K9me3, and
H3K27ac marks) and regions of 15 chromatin states across 299 cell
types and tissues from Roadmap Epigenomics22,59 using eFORGE v2.0
(https://eforge.altiusinstitute.org/).

Target gene predictions
Target genes impacted by the DMPs were predicted by two methods.
For one, the annotation file provided by Illumina was queried, which
assigned each CpG site to its nearest gene. For the other, the activity-
by-contact (ABC) model developed by Nasser et al.25 was referenced,
which identified active enhancers in a particular cell type and pre-
dicted their target genes based on chromatin states and their three-
dimensional contacts. To identify the ABC enhancers that overlapwith
DMPs, we adopted the locus annotation approach by Zhang K et al.24

by looking up the ±2500bp surrounding regions of the DMPs and
overlapping themwith the ABC enhancers of 131 human cell types. We
adopted the original ABC score thresholds, i.e., ≥0.015 for distal
element-gene connections and ≥0.1 for proximal promoter-gene con-
nections, to define DMP – enhancer – target gene connections.

Differential gene expression analysis in myocardial infarction
and stroke
Single-nucleus RNA sequencing data from 19 patients with acute MI as
cases and four non-transplanted heart donors as controls were
obtained from Kuppe et al.33 These included a total of 191,795 nuclei
from 31 tissue samples, including ten major cardiac cell types. We
performed differential gene expression analysis between the MI
patients and controls, as well as among three tissue zones, namely
myogenic, ischemic, and fibrotic zones. We also assessed differences
between groups by cell types. Wilcoxon tests implemented in the
FindMarkers function of the R package “Seurat” were used. Genes
passing the Bonferroni-corrected P-value of 0.05 were considered
differentially expressed. Bulk RNA sequencing of peripheral blood
from patients of MI31 and patients of ischemic stroke32 were obtained.
Differential gene expression analysis was performed between patients
and controls using the R package “limma”.

meQTLs for the DMPs
Relationship between CpG sites andmethylation quantitative trait loci
in the East Asian population60 was queried to obtain overlap with the
DMPs. cis-meQTL was defined as within 1 Mbp of the methylation site.
trans-meQTLwas defined as >5Mbp away from themethylation site or
located on a different chromosome than the methylation site. meQTL
enrichment in the DMPs versus in all probes tested by the EPIC array
was compared using Wilcoxon test in the R software.

Expression quantitative trait methylation analysis
The relationships between 70 prognosis-associated DMPs and the
expression of their nearby or targeted gene were evaluated to deter-
mine whether these DMPs were expression quantitative trait methy-
lation. The DNAmethylation level of the 70 DMPs were available from
the whole blood of 391 participants of the Progression of Early Sub-
clinical Atherosclerosis (PESA) study (GSE220622), and the mRNA
expression levels of their nearby or targeted genes were extracted
from the same 391 participants of PESA study (GSE221615). Genes not
detected in the PESA studywereextracted fromanother transcriptome
dataset with 340 samples from the Grady Trauma Project (GSE58137),
and the DNA methylation data of the corresponding samples were
obtained from GSE72680. cg21223135 was excluded because it failed
quality control in the DNA methylation analysis, and cg06872019 was
also excluded because its target gene LINC01066 was not detected in
both of the transcriptome datasets. Pearson correlation test was used
to evaluate the relationshipbetween the levels ofDNAmethylation and
gene expression. A two-sided P < 0.05 was considered statistically
significant.
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Animal knockouts
All experiments were randomized, and all animal experiments com-
plied with the guidelines from directive 2010/63/EU of the European
Parliament and were approved by the Animal Care and Use Com-
mittee of Guangdong Provincial People’s Hospital (number KY2023-
1002-01). All experimental mice were maintained in a standard
laboratory environment, with 70% relative humidity, 22 °C, and a
12:12- hour light–dark cycle. Both strains of Fkbp5 knockout (KO) and
wild-type (WT) control mice weremale, with a C57BL/6 J background,
and were purchased from Cyagen Biological Co., LD (Suzhou, China).
Briefly, the KO mice were generated using a conventional CRISPR/
Cas9-mediated deletion of exon3 in the Fkbp5 gene. Homozygous KO
mice (Fkbp5–/–) were born from a heterozygous (Fkbp5+/–) intercross
and used for phenotypic analyses in parallel with WT littermates as a
control group.

Myocardial ischemia-reperfusion model
A total of 32malemice aged 8-12weekswere included in this study and
randomly assigned to myocardial ischemia-reperfusion (MI/R) group
or shamsham-operated group. Throughout the entire procedure,mice
were placed on a thermostatically controlled heating pad maintained
at 37 °C. Anesthesia was induced using 1% sodium pentobarbital, and
themicewere subsequently intubated and ventilated using aMiniVent
rodent ventilator (Harvard Apparatus) throughout the surgical pro-
cedure. Ventilation parameterswere set at a tidal volumeof 250μL and
a respiratory rate of 150 breaths per minute, in accordance with stan-
dard murine physiology under anesthesia. In the MI/R group, a long-
itudinal incision approximately 1–1.5 cm in length was made along the
3rd-4th intercostal spaceon the left side of the sternum. Subsequently,
the left anterior descending (LAD) coronary artery was ligatedwith 7-0
silk suture. Ischemia was confirmed by observing blanching and
hypokinesia of the anterior wall of left ventricle, along with ST-
segment elevation on electrocardiogram. After 30minutes of the
sustained ligation, the coronary artery was released for reperfusion by
removing the filament for 24h, which resulted in a rapid restoration of
pink color to the affected myocardium. During these post-surgical
steps, nomedicationwas given.Mice in the shamgroupunderwent the
same surgical steps without ligating the LAD coronary artery. The
surgical success rate was 100%, with no perioperative mortality
observed in either the KO or WT control groups.

Echocardiography evaluation
For echocardiography, using 1.0–1.5% isoflurane (Sigma-Aldrich, St
Louis, USA) to anesthetize all experimental mice. Echocardiographic
evaluation was performed using a Visual Sonics Vevo 2100 (Visual-
Sonics, Toronto, Canada) with a linear probe working at a frequency
of 40MHz. After anesthesia, the hair on the anterior chest was
trimmed, and the mice were placed on a heating pad to maintain
body temperature at 37 °C. Two-dimensional targeted M-mode tra-
jectories were recorded from the parasternal short-axis view at the
level of the mid-papillary muscle and the parasternal long-axis view
at the level just below the papillary muscle. Heart rate and the left
ventricular parameters including left ventricular end-systolic
volume (LVESV), left ventricular end-diastolic volume (LVEDV),
left ventricular internal dimension at end-diastole (LVIDd), and
left ventricular internal dimension at systole (LVIDs) were
analyzed based on M-mode recordings. The data are presented as
the average of measurements of three consecutive beats. LVEF was
calculated as LVEF = (LVEDV-LVESV)/LVEDV×100%61 and LV frac-
tional shortening (FS) was calculated as FS = (LVIDd-LVIDs)/
LVIDd×100%61, respectively.

Evans Blue/TTC staining
Evans blue-triphenyltetrazolium chloride (TTC) double-staining was
performed to assess myocardial infarct size in four mice randomly

selected from the KO-MI/R and WT-MI/R groups, respectively. At 24 h
after reperfusion injury,micewere re-anesthetized and the LADwas re-
tightened from the original ligation to occlude the artery. A small
incision was thenmade in the right atrial appendage and injected with
2% Evans Blue dye (Solarbio, Beijing, China) via the left ventricular
apex. After adequate dye perfusion, hearts were excised, rinsed in cold
PBS to remove excess dye, and embedded in a cardiac slicing mold.
Hearts were snap-frozen in the mold at −20 °C for 20min, then sec-
tioned transversely into 5–6 slices of equal thickness. Following this,
the slices were incubated in 2% TTC (Solarbio, Beijing, China) for 15-
20min at 37 °C. The heart slices were then transferred to 4% paraf-
ormaldehyde (Servicebio, Wuhan, China) for 4 h prior to imaging. A
stereo-microscope (ECLIPSE, Nikon, Japan) was used to observe
staining and take images of the stained slices. Thepercentageof infarct
area was calculated using Image Pro-Plus 6.0 software. Blue staining
represents non-ischemic and normally perfused myocardium, red
staining represents viable myocardium within ischemic areas, and the
white area represents infarcted myocardium within high-risk areas
(INF). The area at risk (AAR) was calculated as the sumof red andwhite
regions, and the infarct size was expressed as the percentage of white
area relative to the AAR (INF/AAR).

RT-PCR quantification of Fkbp5 mRNA
Total RNA was extracted from cardiac tissue with TRIzol Reagent (Life
Technologies, USA) according to the manufacturer’s instructions. Gene-
specific primers were used to amplify Fkbp5 (5_-GGTTTTGGAG
AAGCCGGGAA-3_ and 5_-CAGCCTGCGTCAGCTTTTCT-3_) and GAPDH
(5_-GGCCTTCCGTGTTCC-3_ and 5_-CGCCTGCTTCACCACCTTC-3_). The
extracted RNAwas reverse-transcribed into cDNAwith the PrimeScript™
RT Master Mix (TaKara), and RT-qPCR was carried out using the SYBR
Premix Ex Taq™ II (TaKara), with GAPDH as the internal control. All the
RT-qPCR analyses were performed on an Applied Biosystems StepO-
nePlus Real-Time PCR System, according to the manufacturer’s proto-
col. The experiment was repeated three times as independent
experiments.

Statistical tests
Baseline demographic and clinical characteristics were presented as
mean ± standard deviation for continuous variables and counts (%) for
categorical variables. Cox regression-based survival analysis was
employed for assessing the association between the features and
outcomes. Linear regression was used to explore the relationships
between DMPs and six inflammatory markers, four blood lipids and
two left ventricular indices. Enrichment analysis of biological pathways
was carried out by R package “enrichR” and terms with a P-value
smaller than0.05was considered as significant. Unless stated, P-values
derived from multiple tests were corrected by methods of FDR or
Bonferroni correction. Wilcoxon test was used to assess if the differ-
ence of continuous variables between two groups were statistically
significance. For counts, chi-square tests were used. Animal experi-
mental data were presented as mean± standard error (SE) and were
performed statistical analysis with Graph Pad Prism 9 (San Diego, CA).
Student’s t-test was used to evaluate the statistical difference between
two groups, and two-wayANOVAwith Šídák’s testwas used tomultiple
comparisons as appropriate.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
article, its Supplementary Information files, and from the corre-
sponding author upon reasonable request. Publicly available datasets
used in this study include: Gene regulatory elements from the
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ENCODE5 catalog (https://www.encodeproject.org/). Enhancer–gene
predictions by ABC models from the Engreitz Lab (https://www.
engreitzlab.org/abc/). CpG sites associated with diseases and traits
from the EWASCatalog (http://www.ewascatalog.org/) and EWASAtlas
(https://ngdc.cncb.ac.cn/ewas/atlas). meQTL summary statistics from
Pan-mQTL (https://www.biosino.org/panmqtl/home). Expression
quantitative trait methylation data from the GEO database
(GSE220622, GSE221615, GSE58137, and GSE72680). Single-nuclei RNA
sequencing data of myocardial infarction patients from the Zenodo
data archive (https://zenodo.org/record/6578047). Blood-derived
bulk RNA sequencing data from the GEO database (GSE61144 and
GSE16561). DNA methylation age estimations (GrimAge, Hannum,
Horvath, and PhenoAge clocks) calculated using the DNA Methylation
Age Calculator (https://dnamage.genetics.ucla.edu/home). Due to
restrictions related to patient informed consent and institutional
policies of the three participating medical centers, the Illumina EPIC
DNAmethylation data generated in this study are subject to controlled
access. These data are available from the corresponding author upon
reasonable request (contact: gdph_zhongsl@gd.gov.cn and
zhongsl@hotmail.com). Requests will be reviewed and responded to
within approximately two weeks. Data will be shared for non-
commercial academic research purposes only, under a data use
agreement that ensures compliance with patient confidentiality and
institutional regulations. Source data are provided with this paper.

Code availability
Most analysis were carried out by R. Code used to infer confounders
for DNA methylation data, EWAS analysis, and construct prognostic
model with 5-folds 1000 times cross-validation is available at (https://
github.com/qinmin23/DNA-methylation-of-prognosis-of-CAD). Image
Pro-Plus 6.0 software was used to calculated the percentage of
infarct area.
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