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% Check for updates Adverse outcomes including myocardial infarction (MI) and stroke render

coronary artery disease (CAD) a leading cause of death worldwide. DNA
methylation markers may alert such adversity ahead of the events. We profiled
DNA methylation of blood leukocytes in 933 Chinese CAD patients with up-to-
13-year follow-up from three centers, identifying 70 differentially methylated
sites (DMPs) associated with future death. These DMPs correlated with
inflammation markers, left ventricular functions and high-density lipoprotein
cholesterol, and impacted gene expression in immune response and cellular
scenesence. Notably, cg25563198 and cg25114611 were discovered to regulate
FKBPS, whose upregulation persisted during Ml and stroke. Fkbp5 knockout in
male mice partially rescued MI by reducing infarct size and improving heart
function, confirming its critical function. Finally, our prognostic model of 10
methylation sites and 5 clinical features outperformed clinical models. Our
study highlights the value of DNA methylation in predicting prognosis in CAD
and provides tools for clinical translation.

Coronary artery disease (CAD) is life-threatening and represents a
universal leading cause of death. Studies of the last century suggested
a 15-year survival rate of 48-70%"* Despite the remarkable ameliora-
tion in the recent 30 years in managing its clinical risk factors and the
secondary and tertiary preventions, CAD is associated with 17.8 million
annual deaths worldwide®. Beyond mortality, other major adverse

cardiovascular events (MACE) include myocardial infarction (MI),
stroke, and revascularization, casting a heavy burden to the healthcare
system. Identifying patients with greater risk of poor prognosis
enables closer medical supervision and therefore opportunities for
better clinical outcomes. Numerous genetics-based research reported
novel targets and tools for predicting adverse outcomes in CAD
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patients. Indeed, CAD has an estimated heritability of 38-66% for
incidence® and 38-57% for mortality’. However, towards which direc-
tion it progresses is multifactorial determined by the combined effects
of genetic and environmental factors, therefore we reason that con-
sidering multiple layers of information, such as genetics and epige-
netics, will better identify patients susceptible to poor prognostic
outcomes.

DNA methylation on CpG (cytosine-phosphate-guanine) dinu-
cleotides reflects both genetic regulation and environmental influ-
ence, enabling exploration of their integrated effects on diseases®.
Epigenome-wide association studies (EWAS) suggested DNA methyla-
tion as a feasible biomarker for CAD. Two recent large-scale EWAS
surveyed multiple cohorts of various ancestries and collectively
reported 85 DNA methylation sites in blood leukocytes to be asso-
ciated with incident CAD or MI"®. Comprehensive studies also report
association between DNA methylation and the risk factors of CAD
including aging’, smoking®, blood lipids", inflammation®,
hypertension®”, and diabetes mellitus (DM). Furthermore, initial
EWAS studies identified strong signals that predicted all-cause death of
cardiovascular diseases™®, albeit its biological mechanisms remained
to be explored. As such, DNA methylation indicates not only the risk of
CAD incidence but also its progression.

Here, we profiled DNA methylation of blood leukocytes in 933
Chinese CAD patients at baseline and interrogated its association with
future death, in up to 13 years of follow-up. We aimed to discover
differentially methylated CpG positions (DMPs) which serve as bio-
markers for predicting the CAD prognosis. Furthermore, we inferred
molecular mechanisms that drive CAD progression. Our results sug-
gest that DNA methylation of blood leukocytes are robust biomarkers
and provide rich insights into the prognosis of CAD.

Results

Baseline characteristics

We adopted a two-stage multicenter design for studying DNA methy-
lation related to CAD prognosis (Fig. 1a). Initially, over 5000 CAD
patients were enrolled in a medical center in China and followed for
medical outcomes, from which 405 patients were selected by the
nested case-control study design to form a discovery set for this study.
In a follow-up period of up to 13 years, 217 deaths were recorded. For
the validation set, we enrolled 528 CAD patients from three medical
centers in China. In about three years after enrollment, 25 deaths were
recorded. In both study sets, patients in the death group were older
and had alower rate of aspirin use, and higher blood levels of aspartate
aminotransferase (AST) and creatinine (Table 1).

Differentially methylated CpGs associated with CAD prognosis

We profiled DNA methylation of blood leukocytes collected at enroll-
ment (baseline) via the Illumina Infinium MethylationEPIC 850 K
BeadChip. After stringent quality control, 733,737 high-quality CpG
probes in the discovery set and 738,366 probes in the validation set
were obtained (Supplementary Fig. 1). Subsequently, through COX
survival model-based EWAS, using sex, age, smoking status, percuta-
neous coronary intervention, heart failure, hypertension, arrhythmia,
hyperlipidemia, type 2 diabetes and medications as covariates, a total
of 333 DMPs were initially identified in the discovery set to be asso-
ciated with death (Pgpr<0.05) (Fig. 1b and Supplementary Fig. 2A).
Most of these were hypermethylation (Supplementary Fig. 2B). Nota-
bly, 54% of them (180/333) have been recorded in the EWAS Catalog”
and EWAS Atlas™® to be associated with a variety of traits and disorders
(Supplementary Table 1), including Crohn’s disease and inflammatory
bowel disease (38 DMPs), smoking (36 DMPs), drinking (18 DMPs),
aging (14 DMPs), weight or body mass index'*"” (8 DMPs), death risk*
(5 DMPs), and C-Reactive Protein (2 DMPs)™. In the validation set, 70 of
the DMPs were replicated with consistent directions of effect (P < 0.05,
Table 2). Noteworthily, 2 DMPs (cg25114611 and ¢g25563198) mapped

to FKBPS (FK506 binding protein 5) were significantly associated with
the death risk of CAD*°, among which cg25114611 was also reported to
be associated with acute MI*.

Pathways and mediating phenotypes inferred by DMPs

Half of the 70 DMPs reside in gene regulatory elements (Supplemen-
tary Fig. 3). Overlap with histone modification chromatin immuno-
precipitation (ChIP) peaks and the 15 chromatin states in Roadmap?
revealed strong enrichment of enhancers specific to blood monocytes,
adipocytes, myoepithelial cells, fibroblasts, left ventricle, and right
atrium (P<0.05, Fig. 2a, b), most of which are characteristic of the
heart and cell types known to play critical roles in CAD. Given that both
DNA methylation and RNA transcription in blood were distinct from
solid organs?, our results suggest that DNA methylation in leukocytes
carried pathophysiological features.

By annotating the 70 DMPs to the nearest genes, we uncovered 69
prognosis genes. These genes were enriched for phosphorylation in
signal transduction, stress response, apoptosis, and inflammatory
response (Fig. 2c). Separately, we associated the DMPs to nearby
enhancers (<=2500 bp)** and their target genes via a chromatin inter-
action model, Association by Contact (ABC)*. As such, 53 of the 70
DMPs (75.7%) were connected to 468 genes (Supplementary Fig. 4A),
which confirmed a strong enrichment in inflammatory response and
senescence (Supplementary Fig. 4B). Notably, the two DMPs of FKBPS,
€g25563198 and cg25114611, were mapped to a super-enhancer
reported active in CAD relevant tissues, such as blood, lymphoid,
adipose tissue, heart ventricle, and aorta®. By ABC model, this super-
enhancer connects with >50 genes, including FKBPS, which are
strongly enriched for senescence (Supplementary Fig. 4C). Further-
more, through enhancer-cell type specificity mapping, we inferred that
the function of the DMPs could be most strongly enriched in mono-
cytes and dendritic cells (Supplementary Fig. 5).

We further verified the association of the DMPs with inflammation
and lipids using clinical measurements (Fig. 2d). A strong connection
to inflammation markers was observed, particularly those involving
platelets, i.e., systemic immune-inflammation index (SIl), fibrinogen
(FIB), and platelet-lymphocyte ratio (PLR). SIl measures the proportion
of platelets and neutrophils among the lymphocytes?”, fibrinogen is an
index for chronic low-grade inflammation®, and PLR serves as a marker
for acute inflammation and prothrombotic status®. Furthermore, we
observed that a significant proportion of the DMPs (19 out of 70 DMPs,
27%) displayed associations with high-density lipoprotein cholesterol
(HDLC) levels in both discovery and validation sets (P < 0.05, Fig. 2d),
but not with low-density lipoprotein cholesterol (LDLC), total choles-
terol (TC), or triglycerides (TG). The association directions of these 19
DMPs are consistently opposite to HDLC and death (Supplementary
Fig. 6), i.e., they are all positively associated with death risk and
negatively associated with HDLC levels, in line with the protective role
of HDLC (a proxy for “good cholesterols”) in cardiovascular outcomes.
Finally, associations between the DMPs and left ventricle (LV) function
were found, including its ejection fraction (LVEF) and mass
index (LVMI).

Contribution of genetic regulation on DNA methylation

Methylation can be regulated genetically by methylation quantitative
trait loci (meQTL), thus providing a tool for investigating how genetics
influences CAD prognosis. We queried the DMPs against a meQTL
dataset derived from 3523 East Asians®’. Notably, a large proportion of
the DMPs (53/70, 76%) were paired with over 7000 meQTLs from East
Asians (Supplementary Fig. 7A, B). Indeed, compared with all CpGs on
the array, the DMPs were enriched for both cis (n =42, P<0.0001) and
trans meQTLs (n=31, P<0.0001, all identified trans-meQTLs resided
on chromosomes distinct from their target CpGs), although most
associations were weak (Supplementary Fig. 7C, D). Strikingly,
cgl6500036, closest to AUTS2, which encodes for Activator of
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Fig. 1| Epigenome-wide association studies on DNA methylation and CAD
adverse outcomes. a Study design. Patients in the discovery and the validation sets
were enrolled from one and three medical centers in China, respectively. The
sample size for discovery and validation cohorts were 405 and 528, respectively.
Baseline characteristics were collected during enrollment. DNA methylation of
peripheral blood leukocytes was measured by Illumina MethylationEPIC 850 K
BeadChip. Differential methylation sites associated with death were identified,
prognostic risk models were built, and lastly, biological mechanisms were inferred.
This graph was created in BioRender. Pan, C. (2025) https://BioRender.com/
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mao524f. In the boxplot of panels, hinges indicate the 25th, 50th, and 75th per-
centiles, whiskers indicate 1.5x interquartile ranges. b EWAS of death performed in
the discovery set. Red line and blue line mark the P-value thresholds, with the
former from Bonferroni correction, and the latter from false discovery rate cor-
rection. CAD coronary artery disease, PLR platelet-lymphocyte ratio, FIB fibrinogen,
SII systemic immune-inflammation index, HDLC high-density lipoprotein choles-
terol, LVEF left ventricular ejection fraction, LVMI left ventricular mass index, DMP
differential methylation probe, TF transcriptional factor, IL interleukin.

9 13

Transcription and Developmental Regulator, was associated with more
than 1000 cis-meQTLs. The two DMPs for FKBPS, c¢g25563198 and
cg25114611, had the largest number of trans-meQTLs (Supplementary
Fig. 7E). These results suggest that the important prognosis genes were
regulated genetically.

Contribution of DNA methylation on gene expression

To validate the impact of DMPs on gene expression, we conducted
expression quantitative trait methylation (eQTM) analysis. 54.4% DMPs
(37/68) correlated with expression levels of their proximal genes
(Pearson correlation, P < 0.05, Supplementary Table 2), with a majority

(25/37) displaying an inverse correlation between the methylation
levels and gene expression levels. The strongest correlations were
observed for cgl9526450 with ARHGAP26 transcript (cor=-0.49,
P=4.81E-25) and ¢g26869211 with USP32 transcript (cor=-0.41,
P=2.50E-17).

DNA methylation levels of the two DMPs for FKBPS, cg25114611
and cg25563198, were inversely correlated with the expression level
of FKBPS (Fig. 3a, b). From published transcriptome®**, we confirmed
that the expression of FKBP5 was significantly elevated in the per-
ipheral blood of MI patients (Fig. 3c) and stroke patients (Fig. 3d).
Strikingly, FKBPS was upregulated in nearly all cell types of the heart
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Table 1 | Baseline characteristics of participants in the discovery and validation cohorts

Characteristics Discovery cohort Validation cohort

Survival Death P-value Survival Death P-value

(N=188) (N=217) (N=503) (N=25)
Demographic data
Age (year) 62.7+9.4 70.02+9.82 1.67E-13 61.89£9.52 69.36 +9.89 3.10E-04
Male 133 (70.74) 165 (76.04) 2.75E-01 369 (73.36) 19 (76) 9.52E-01
Medical history
Diabetes mellitus 58 (30.85) 82 (37.79) 1.74E-01 145 (28.83) 7(28) 7.20E-01
Hypertension 100 (53.19) 146 (67.28) 5.21E-03 287 (57.06) 18 (72) 1.17E-01
Heart failure 61(32.45) 132 (60.83) 2.10E-08 229 (45.53) 13 (52) 3.88E-01
Arrhythmia 10 (5.32) 30 (13.82) 7.05E-03 44 (8.75) 4(16) 1.01E-01
Current smoking 59 (31.38) 80 (36.87) 2.92E-01 144 (28.63) 7 (28) 1.00E+00
Biomedical measurements*
ALT, U/L 26.75+£14.06 39.53+75.78 2.46E-02 27.27+14.72 23.4+77.6 4.44E-01
AST, U/L 26.47 +12.66 45.96 +83.88 1.83E-03 27.62+12.9 67.42+85.75 6.36E-05
LDLC, mmol/L 2.74+0.94 2.55+0.97 4.60E-02 2.71+0.94 2.77+0.96 7.89E-01
HDLC, mmol/L 1+£0.26 0.95+0.27 6.58E-02 1.01£0.27 1.02+0.26 9.13E-01
Triglyceride, mmol/L 1.65+1.36 1.5+1.03 2.10E-01 1.86+1.33 1.48+1.05 3.82E-01
ApoA, g/L 1.09+0.26 1.01+£0.29 5.24E-03 116+£0.29 116+£0.26 9.22E-01
TC, mmol/L 4.43+1.15 424118 1.06E-01 4.31+1.14 4.34+118 9.44E-01
LPA, mg/dL 235.67 +227.07 366.56 +379.82 2.38E-04 290.1+232.1 248.94 + 382.65 5.96E-01
CK, U/L 11713 £154.52 197.08 £571.22 7.22E-02 132.03 £150.49 534.46 £584.71 7.52E-05
CKMB, U/L 7.57+6.65 1219+29.3 4.12E-02 18.64 +6.51 10.25+29.98 4.70E-01
Creatinine, pmol/L 83.92+26.79 142.36 +153.39 3.98E-07 91.91+25.21 142.42 +156.78 5.78E-04
Glucose, mmol/L 6.64+2.86 7.12+3.45 1.36E-01 6.08+2.79 6.33+£3.52 6.34E-01
Medication**
Aspirin 183 (97.34) 200 (92.17) 4.04E-02 444 (88.27) 16 (64) 6.17E-03
Clopidogrel 177 (94.15) 208 (95.85) 5.62E-01 409 (81.31) 16 (64) 1.64E-01
PPI 94 (50) 126 (58.06) 1.08E-01 322 (64.02) 14 (56) 7.96E-01
ACEI 83 (44.15) 117 (53.92) 5.12E-02 250 (49.7) 9(36) 5.14E-01
BB 166 (88.3) 180 (82.95) 1.79E-01 408 (81.11) 17 (68) 2.74E-01
CCB 68 (36.17) 99 (45.62) 5.36E-02 146 (29.03) 8(32) 4.73E-01
Surgical history
PCI 125 (66.49) 160 (73.73) 0.138 345 (68.59) 13 (52) 3.62E-01

Data are shown as mean + standard deviation or n (%). P-values were calculated using Mann-Whitney U test for non-normally distributed continuous variables and the Chi-squared test for categorical

variables.

ALT alanine aminotransferase, AST aspartate aminotransferase, LDLC low-density lipoprotein cholesterol, HDLC high-density lipoprotein cholesterol, ApoA apolipoprotein A, TC total cholesterol, LPA
Lipoprotein (a), CK creatine kinase, CKMB creatine kinase MB, PPl proton pump inhibitors, ACEl angiotensin-converting enzyme inhibitors, BB (3-blockers, CCB calcium channel blockers, PCI

Percutaneous coronary intervention.

tissue with MI progression, as demonstrated in the single-cell tran-
scriptome of myogenic (nonischemic zone), ischemic (MI lesion
zone), and fibrotic (advanced MI tissue zone) regions of the
heart> (Fig. 3e).

Downregulation of FKBP5 improves left ventricular functions
and reduces inflammation responses

Our findings collectively suggest that FKBP5 plays a critical role in
CAD prognosis. To further investigate its role in MI, a severe out-
come of CAD, we generated the knockout (KO) mice of FkbpS™” and
subjected them to either sham surgery (KO-sham) or myocardial
ischemia/reperfusion (KO-MI/R) injury surgery (Supplementary
Fig. 8 and Supplementary Table 3). First, we verified that the Fkbp5
expression level was significantly upregulated in wild-type (WT)
mice with MI/R surgery compared with WT-sham mice using RT-
gPCR (Fig. 4a). Reducing the Fkbp5 expression did not seem to cause
difference in heart functions in the sham surgery groups, as no
difference was observed by echocardiography between the WT-
sham and the KO-sham mice (Fig. 4b-d). Next, we verified that the
MI/R surgery successfully induced MI, as LVEF and LV fractional

shortening (LVFS) were significantly reduced in the WT-MI/R com-
pared with the WT-sham mice (Fig. 4b—-d). Furthermore, cross-
comparison revealed that knocking out of FkbpS5 exerted a protec-
tive effect against M, as LVEF and LVFS were significantly increased
in the KO-MI/R mice compared with the WT-MI/R (Fig. 4b-d).
Additionally, Evans Blue/TTC staining showed that the infarct size in
KO-MI/R was significantly reduced compared with WT-MI/R mice
(Fig. 4e-g). The immune marker PLR was significantly lower in MI/R
mice with FkbpS”~ compared with that in WT-MI/R mice (Fig. 4h),
consistent with our previous finding that in patients with lower level
of inflammation, hypermethylation of FKBPS were found, which was
indicative of lower expression of FKBPS (Fig. 2d). Our results con-
firmed an essential role of FKBPS in MI.

Taken together, we propose that hypomethylation, such
as those on ¢g25114611 and ¢g25563198, leads to higher expression
of FKBP5, which plays critical roles in driving the poor
prognosis of CAD. Downregulating FkbpS was shown in mouse
models to improve the LV dysfunction caused by myocadiac injury,
suggesting the potential of FKBP5 in treating and improving CAD
outcomes.
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Fig. 2 | Characteristics of DMPs and mediated phenotypes of CAD poor prog-
nosis. a Enrichment of tissue and cell types by referencing to the histone mod-
ification peaks, H3K36me3 (a mark for near transcription termination site) and
H3K4mel (a mark for active enhancers). b Enrichment of tissue and cell types by
enhancers and transcription start sites, referencing to the 15 chromatin states in
RoadMap Epigenomics. Enh: Enhancer, TxWk: Weak transcription. a, b Statistical
enrichment analysis was performed using a binomial test against an array-specific
background. ¢ Enrichment of Gene Ontology terms among the prognosis genes.
The P-value was computed from the Fisher exact test. d Association of the DMPs
with inflammation indices, lipids, and heart functions. Scaled methylation beta
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values were presented. Significant correlations (P< 0.05) were marked by *. Linear
regression was used to identify the relationship between DMPs and clinical phe-
notypes with age, sex, smoking, and percutaneous coronary intervention adjusted.
WBC whole plasma cell count, LMR: lymphocyte-monocyte ratio, NLR neutrophil-
lymphocyte ratio, PLR platelet-lymphocyte ratio, FIB fibrinogen, SII systemic
immune-inflammation index, LDLC low-density lipoprotein cholesterol, HDLC
high-density lipoprotein cholesterol, CHOL total cholesterol, TRIG triglycerides,
LVEF left ventricular ejection fraction, LVMI left ventricular mass index. Source data
were provided as a Source Data file.

Prognostic models for death in CAD

Based on the 15 DMPs that showed epigenome-wide Bonferroni sig-
nificance in the discovery set, we selected ten DMPs with the biggest
effects, as measured by the variance importance value (VIMP) in a
random survival forest algorithm based on bootstrap resampling of
1000 repetitions, to construct prognosis models of death in CAD
(Supplementary Fig. 9). Subsequently, using COX regression algorithm
and 1000 times cross-validation, our model based on the 10 DMPs (the
CG model) achieved an area under the curve (AUC) of 0.71 (Fig. 5a).
When combining two common risk factors of cardiovascular diseases,
i.e., age and sex, the updated model achieved an AUC of 0.81. We also

built prognostic models based on the mediating phenotypes. Although
not all the clinical features were equally powerful in predicting the
adverse outcomes (Supplementary Fig. 10A-C), we found that the
Ensemble model combining the 10 DMPs, sex, age, fibrinogen, HDLC,
and LVEF achieved an AUC of 0.83 (Fig. 5a), which was a significant
increase compared with the clinical model that include only sex, age,
fibrinogen, HDLC, and LVEF (AAUC = 0.034, P=3.95E-07). Notably, the
Ensemble model could also identify CAD patients who survived severe
adverse events such as coronary revascularization, stroke, and myo-
cardial infarction (Fig. 5b), suggesting it indeed captured the essential
signals of prognosis. When applying our prognosis model to the
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Fig. 3 | Association between cg25114611/cg25563198, FKBPS gene expression
and disease risk. a The correlation between DNA methylation level of cg25114611
and FKBPS gene expression in whole blood (n = 391). Light green shading represents
the 95% confidence intervals. b The correlation between DNA methylation level of
€g25563198 and FKBPS gene expression in whole blood (n =391). Light green
shading represents the 95% confidence intervals. a, b P-values were calculated using
a two-sided Pearson’s correlation coefficient assays. ¢ Differential expression ana-
lysis of FKBPS gene between normal and myocardial infarction participants in
peripheral blood (n¢ontrol = 10, Ny = 7). In the boxplot of panels, hinges indicate the
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d Differential expression analysis of FKBPS gene between control and ischemic
stroke participants in peripheral blood (Ncontrol = 24, Nsroke = 39). In the boxplot of
panels, hinges indicate the 25th, 50th, and 75th percentiles, whiskers indicate

1.5x interquartile ranges. ¢, d P-values were calculated using a two-sided Wilcoxon
test. e Gene expression of FKBPS in various cell types as the disease progression of
myocardial infarction in heart tissue. Ml myocardial infarction. Source data were
provided as a Source Data file.

independent validation set, a good stratification of the patients by the
presence or absence of future death event was observed (Figs. 5¢c and
4d), albeit there was a drop of 10% in sensitivity and 4% in specificity in
this independent validation (P<3 x10™, Table 3).

Age is a known strong risk factor for CVD. Observing the chron-
ological age predicted closely to the CG models, we explored the
performance of several DNA methylation clocks*™ for predicting
death in CAD patients. DNA methylation clocks have been shown to
better represent one’s aging status. Indeed, most clock models
achieved better prediction than the chronological age models for
death (Supplementary Fig. 10D) and performed equally well or even
better than the CG prognostic models. As these clocks comprised
dozens to hundreds of CpG sites, one to two orders of magnitude more
than the maximal 10 CpG sites in our models, our CG prognostic
models are more succinct and specific.

Discussion

In this study, we analyzed about 733,000 DNA methylation sites in 933
Chinese CAD patients for their association with death. Our prognostic
model based on 10 DMPs and numerous clinical features reached AUC
of 0.83, could be validated in an independent set of patients, and
performed superior to the models solely built on clinical features.

A strong association with platelets-involved inflammation, the
functions of the left ventricle, and HDLC was observed. As platelets and
cholesterol were essential components of thrombosis, our results
suggest that early thrombo-inflammation and heart contraction mal-
function mediated the adverse outcomes in CAD. Notably, HDL parti-
cipates in reverse cholesterol transport, interacts with platelets, and
exerts an antithrombotic function by suppressing the coagulation
cascade and stimulating clot fibrinolysis®*. The observations that (1)
DMPs were associated strongly with HDLC but not other lipids and (2)

HDLC displayed better predictability in adverse outcomes than other
lipids suggest that the ability to remove cholesterol, rather than its
accumulation, was more relevant to CAD adverse outcomes. A recent
study discovered that LDLC, compared to the inflammation index
C-reactive protein, was less effective in predicting future cardiovas-
cular events and death®. Our study suggests that HDLC, not LDLC, may
be a more relevant predictor. Therefore, our methylation study may
inspire new research for clinical translation.

A total of 70 DMPs were replicated in both patient sets to be
associated with future death in CAD. Given that many of these DMPs
have been reported in European ancestry-centric studies to be
associated with autoimmune and cardiovascular risk-related traits,
as recorded in the EWAS Catalog and EWAS Atlas, our DMPs are
functionally relevant and possess generalizability across popula-
tions. We note that 76% of these DMPs were located on or near
enhancers (<=2500bp), indicating a tight connection to gene
expression, particularly those genes in premature senescence and
inflammation. We observed cell type specificity per the regulatory
elements that the DMPs overlapped with, particularly enhancers,
and discovered the DMPs were prone to occur in regions char-
acteristic of heart traits. Interestingly, the characteristic premature
senescence and inflammation signals were robust in monocytes and
dendric cells, warranting further studies. Furthermore, we observed
a significant genetic regulation of the DMPs, with a striking pro-
portion (76%) of the DMPs mapped to known meQTLs. Important
prognosis genes such as FKBP5 and AUTS2 own the largest number
of meQTLs for their DMPs. The fact that 10 s to 1000 s of meQTLs
regulating one single DMP, each with a weak strength, indicated that
the trickling of little genetic signals had mounted to significant
epigenetic outcomes, which resembled polygenic models in com-
plex traits*.
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Fig. 4 | Downregulation of FkbpS improves left ventricular functions. a Relative
FkbpS mRNA expression in heart tissue of wild-type and FkbpS”~ mice (n =3 for each
group, N =3 experiments, *P = 0.018, **P = 0.007). b Representative echocardio-
gram images of wild-type and FkbpS”~ mice with sham or myocardial ischemia-
reperfusion operation. ¢ Left ventricular ejection fraction in wild-type and FkbpS™
mice with sham or myocardial ischemia-reperfusion operation (Nwr-sham = 7, Nko-
sham = 7, Nwr-myr = 10, Ngo-mir = 8, ****P < 0.0001). d Left ventricular fractional
shortening in wild-type and FkbpS”~ mice with sham or myocardial ischemia-
reperfusion operation (Nwr-sham = 7, Nko-sham = 7, Nwr-myr = 10, Nko-mr =8,

**p =0.0002, *P = 0.008). e Representative images of heart sections by TTC/
Evans Blue staining depicting the infarcted area. f, g Cardiac injury was evaluated by

the ratio of infarct size (INF) to area at risk (AAR) (nwr-myr =4, Nko-myr =4,

*P =0.029). h Platelet-to-lymphocyte ratio of wild-type and FkbpS”~ mice with sham
or myocardial ischemia-reperfusion operation (Nwt.sham = 6, Nko-sham = 6, NWT-MI/

R =6, Ngo-mr =5, **P =0.0003, *P = 0.039). WT wild type, KO knockout, LVEF left
ventricular ejection fraction, LVFS left ventricular fractional shortening, AAR: area
at risk, INF infarct size, LV left ventricular, PLR platelet-lymphocyte ratio. Data are
presented by mean = SD for each group. Statistical significance was performed by
two-way ANOVA with Sidak’s test for multiple comparisons. ns no significance,
*P<0.05, *P<0.01, **P<0.005, **P< 0.0001. Source data were provided as a
Source Data file.

Among the 69 prognosis genes we identified, most displayed
subtle expression changes at the occurrence of adverse outcomes,
such as ischemic stroke and myocardial infraction. This can be attrib-
uted to the nature of this study that the biomarkers were discovered at
the baseline and mainly served as early alarms. They represent pro-
ceeding events months to years before the occurrence of the adverse
outcomes. That said, however, several prognosis genes such as FKBPS
and AUTS2 displayed drastic expression changes during the adverse
events and occurred repetitively as the most significant findings along
various analyses.

FKBPS is an immunophilin protein that binds to immunosup-
pressive drugs. In our study, FKBP5 had numerous DMPs associated
with inflammation markers and heart functions. One of them is
cg25114611, which has been reported in acute MI?, death risk®,
inflammatory bowel disease”, Crohn’s disease*?, maternal BMI*, and
diabetes mellitus**. FKBP5 expression was reported to be significantly
altered in dilated cardiomyopathy after heart transplantation and
suggested as a prognostic marker®. In our analysis of Ml and ischemic
stroke, FKBP5 appeared as a most highly regulated gene. Its elevation
in the Ml lesion site was most drastic in both innate immune lymphoid
cells and adipocytes of the epicardial fat of the left ventricle. These
results align with the recent finding that DNA demethylation led to
increased expression of FKBPS, which in turn promoted NF-kB signal-
ing in immune cells, resulting in a proinflammatory response and
increased cardiovascular risk*®. For AUTS2, its genetic variation was
reported in blood pressure®’, body mass index*’, type 2 diabetes*®, and
mild heart defects*’. This ample evidence strongly supports the roles
that these prognosis genes play in CAD progression.

Importantly, our study contributes to the growing evidence that
DNA methylation sites not only illuminate mechanistic changes in
disease pathology but also serve as predictive biomarkers for clinical
outcomes. For example, Zhang et al. identified a panel of DNA
methylation markers in peripheral blood that robustly predicted all-
cause mortality in large prospective cohorts, with some CpGs located
in genes linked to inflammation and cardiometabolic regulation™.
Similarly, Chybowska et al. constructed EpiScores based on 45 proteins
to predict cardiovascular risks independently of traditional clinical
factors®®. While prior studies have explored the predictive value of
DNA methylation markers for the onset of cardiovascular diseases, i.e.
focusing on primary prevention, our study specially addresses treat-
ment outcomes. We present streamlined models comprising just only
10 DMPs that effectively forecast prognostic risks in CAD, targeting
secondary prevention. Compared to models that incorporate hun-
dreds of methylation sites, our concise model enhances feasibility for
clinical translation.

There are several limitations in our study. First, most adverse
events occurred to our CAD patients were within the first 5 years of
ascertainment, therefore our study captured signals for short-term to
intermediate timespan. Given a longer interrogation time, the DMPs
predicting longer-term adversity will be better uncovered. Second,
methylation profiling often comes with strong batch effects, therefore,
our two sets of patients cannot be simply combined for a larger EWAS
test, thus limiting the discovery power. Under this constriction, we
adopted a “discover and replicate” strategy to ensure that our reported
DMPs were replicated. Third, the relatively small number of death
cases in the validation set may limit the statistical power of our study.
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Fig. 5 | Prognostic models for CAD adverse outcomes. a ROC curves of the
prognostic models of death as constructed based on the discovery set. CG refers to
the selected 10 DMPs for model construction. The Ensemble model is composed of
10 DMPs + sex + age + FIB + HDLC + LVEF, and the clinical model is composed of sex
+ age + FIB + HDLC + LVEF. b Prediction scores when applying the prognostic
models of death to the discovery set, with patients categorized by different clinical
outcomes (Nyo adverse outcome = 160, Nrevascularization = 34, Nstroke = 27, Ny =26,

Npeath = 158). ¢ Kaplan-Meier curves when applying the Ensemble model to the
validation set. Patients having all the modeling features were considered.

d Prediction scores in the validation set, with patients categorized by clinical out-
comes (Nsyrvival = 503, Npeach = 25). b, d In the boxplot of panels, hinges indicate the
25th, 50th, and 75th percentiles, whiskers indicate 1.5 interquartile ranges. The
two-sided P-values were calculated by Kruskal-Wallis test. FIB fibrinogen, HDLC
high-density lipoprotein cholesterol, LVEF left ventricular ejection fraction.

Nevertheless, the consistent effect sizes observed between the dis-
covery and validation sets strengthen our confidence in the robustness
of our findings. Future research of larger prospective cohorts is war-
ranted for confirm these findings. Fourth, although 850 K EPIC array
could assess CpG methylation genome-wide, many CpG sites were not
probed and therefore leaves a large room for future discovery of
prognostic markers. Finally, our murine model employed a full FkbpS
knockout, which offers clear mechanistic insight but represents a more
extreme perturbation than the modest epigenetic downregulation
observed in human cohorts. Still, the protective phenotype in knock-
out mice provides converging evidence that downregulation of FKBP5
is mechanistically linked to ameliorated myocardial injury.

To conclude, our study displays the value of leveraging DNA
methylation of peripheral blood in predicting future adverse events in
CAD patients. Further studies are warranted to investigate the roles of
the methylation sites, genes, pathways, and mediating phenotypes
implicated in our study for a mechanistic understanding of the CAD
adverse outcomes.

Methods

Study design

This study was approved by the Medical Research Ethics Committee of
Guangdong Provincial People’s Hospital, Xiangya Hospital, Central
South University and The First Affiliated Hospital of Sun Yat-Sen Uni-
versity (approval number: GDREC2017071H, 201701012, and 2017024)

and complied with the Declaration of Helsinki. All patients provided
written informed consents.

We recruited over 5000 CAD patients from Guangdong Provincial
People’s Hospital between January 2010 to December 2017, and by a
nested case-control study design, selected 405 patients therein to
form the discovery set. For the validation set, 528 patients were
recruited from 2017 to 2018 from three medical centers in two areas of
China, namely Guangdong Provincial People’s Hospital, First Affiliated
Hospital of Sun Yat-sen University, and Xiangya Hospital of Central
South University®. All participants were identified by either a history of
coronary artery bypass graft operation or a new diagnosis by coronary
angiography to have >50% obstruction in minimally one main coronary
artery, as assessed by the luminal diameter. The inclusion criteria were:
(1) aged over 30 years old, (2) no history of renal transplantation or
dialysis, (3) no cirrhosis, (4) not pregnant nor breastfeeding, (5) no
malignancy, (6) no history of haemodialysis; (7) no history of thyroid
problems, not using antithyroid drugs nor thyroid hormone medica-
tion in the past week, and (8) completed the follow-up surveys.

Sample and information collection at baseline

Participants were admitted to the hospitals, and after overnight fast-
ing, blood samples were drawn at 7AM in the morning. Clinical
laboratory tests were performed, and detailed clinical surveys,
including medical history, family history, smoking status, and medi-
cation intake, were collected.
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Counts of platelets and circulating leucocytes, including white
blood cell (WBC), monocytes, lymphocytes, and neutrophils, were
estimated using an automated blood cell counter (LH780; Beckman
Coulter, Brea, CA, USA). Plasma fibrinogen levels were measured using
a clot-based turbidimetric detection system. Lymphocyte-monocyte
ratio (LMR) was calculated as the ratio of lymphocyte count (*10° /L) to
monocyte count (*10° /L). Neutrophil-lymphocyte (NLR) ratio was
calculated as the ratio of neutrophil count (*10° /L) to lymphocyte
count (*10° /L). Platelet-lymphocyte ratio was calculated as the ratio of
platelet count (*10° /L) to lymphocyte count (*10° /L). System immune-
inflammation index was calculated using SII = platelet count x neu-
trophil count/lymphocyte count. Echocardiography was used to
determine the function and structure of the left ventricle at the time of
the baseline. Left ventricular ejection fraction was evaluated by two
cardiologists using the modified Simposon’s rule with the Philips iE33
color Doppler ultrasound diagnostic system. Left ventricular mass
index was calculated as left ventricular mass (g) / body sur-
face area (m?).

All patients were followed up by telephone every six months by
medical staff for inquiring the occurrences of all-cause death or MACE,
with the latter defined as nonfatal myocardial infarction, coronary
revascularization, stroke, and death.

DNA extraction from blood leukocytes

Whole blood was collected in EDTA-K2 anticoagulant tubes and
immediately separated into plasma and hemocyte by centrifuging at
1000 g for 10 min at 4 °C. Genomic DNA was extracted from hemocyte
and transferred to cryopreservation tubes, which were stored at
-80 °C for subsequent experiments.

Genome-wide DNA methylation profiling and data
preprocessing

DNA quality was assessed by ultraviolet spectrophotometer (Thermo
Scientific, NanoDrop 2000). Briefly, about 500 ng of DNA was treated
with sodium bisulfite for converting unmethylated nucleotide C to U,
using the EZ DNA Methylation Kit (Zymo Research). After the con-
version, methylation levels of more than 850,000 CpG sites were
quantified using the Illumina Infinium MethylationEPIC BeadChip,
which was run on an Illumina iScan Systems according to the manu-
facturer’s standard protocol. DNA methylation profiling was serviced
by Genenergy Inc. The experimental operator was blind to the group
information and randomly assigned the samples to different chips and
plates.

Raw signal intensities of DNA methylation were stored in.idat files
and imported to the R software using the “ChAMP” package®. Analysis
was performed separately for the discovery set and the validation set.
Methylation level of each probe, i.e., beta value, was defined as Meth/
(Meth + Unmeth +100), where Meth was the signal intensity of the CpG
site in methylated form and Unmeth was that in unmethylated form.
Beta values ranged from O to 1, with a larger value indicating a higher
level of methylation. Probes were excluded if meeting one of the fol-
lowing criteria: (1) detection P-value >= 0.01, (2) bead count <3 in at
least 5% of samples, (3) DNA methylation occurring to non-CpG dinu-
cleotides, (4) aligning to multiple locations®, (5) located on chromo-
some X or Y. In total, 733,638 probes in the discovery set and 738,366
probes in the validation set were retained.

The qualified probes were normalized with the BMIQ method** to
correct for signal bias caused by type-1 and type-Il probes on the array.
Next, we used the method in Houseman et al.”® to estimate relative
proportions of blood cells, including CD8 lymphocytes, CD4 lym-
phocytes, natural killer cells, B cells, monocytes, and granulocytes. We
also leveraged 224 positive control probes to evaluate the impact of
technical confounders, which were generally referred to as batch
effects, on the DNA methylation values. Briefly, we computed the
principal components (PCs) of these positive control probes and
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assessed the association between the first 20 PCs and several technical
parameters, including the indices for bisulfite conversion batch, plates,
sample wells, and chip. Methylation residuals were then obtained via
linear regression, with independent variables set as the beta value of
each probe and dependent variables set as age, sex, smoking status,
estimated white-blood-cell proportions, and the top 10 PCs of the
positive control probes.

Epigenome-wide association analysis

Cox regression-based survival analysis was employed to explore the
association between each methylation residual and the trait, i.e., all-
cause death. We performed such EWAS for the discovery set and the
validation set, respectively. In each EWAS, we adjusted for age, sex,
smoking status, percutaneous coronary intervention, arrhythmia,
heart failure, hypertension, hyperlipidemia, and diabetes mellitus, and
medication intake including B-receptor blocker, angiotensin convert-
ing enzyme inhibitors, calcium channel blocker, proton pump inhi-
bitor, clopidogrel, statin, and aspirin. A strict epigenome-wide
significance threshold by Bonferroni correction was set as
P<6.83x10°® and a moderate threshold by Benjamin & Hochberg
correction was set as Prpg < 0.05. The differentially methylated site was
considered validated when the association showed a consistent
direction of effect in both sets and obtained a Prpr < 0.05 in the dis-
covery set and P< 0.05 in the validation set.

Construction of prognostic models for death

Prognosis models were constructed based on the discovery set and
tested in the validation set. In the discovery set, DMPs passing the
Bonferroni-corrected epigenome-wide significance threshold were
pruned by a random survival forest approach®® (feature pruning), and
those retained were fit by the multivariate Cox regression to derive the
final model (weight tuning). For ‘feature pruning’, variable importance
value (VIMP) was calculated using the out of bag data based on per-
mutation with bootstrap resampling by 1000 repetitions. The top 10
DMPs with the largest VIMP, which denoted the contribution of each
input feature to the model, were retained. For ‘weight tuning’, the
retained DMPs were fit by multivariate Cox regression in the R package
“survival”. To derive robust AUC (the area under the receiver operating
characteristic curve) values, we adopted a process of 80:20 data split
and 1000 times cross-validation. The final model was obtained by
combining all patients in the discovery set. For constructing models
with both DMPs and clinical features, we repeated the same process
described above by inputting both the DMPs and the selected clinical
features to the Cox regression. The enhancements in model perfor-
mance and discrimination were assessed by comparing the AUC value
and conducting a likelihood ratio test.

The models were evaluated in the validation set by means of
Kaplan-Meier curves and the difference of prediction risk scores
between death and survival groups. Wilcoxon test was used to assess
whether the prediction scores between the two groups of patients, i.e.,
with and without death events, were significantly different. Sensitivity
and specificity of the models were computed using the Con-
fusionMatrix function from the R package “caret”.

Prognosis models of six inflammatory indices, four blood lipids,
two left ventricular indices, and four DNA methylation clocks for
predicting death in CAD were constructed by Cox regression using the
R package “survival”. AUC values were computed.

Characterizing genomic features of DMPs

Genomic locations of DMPs were annotated by Annovar®’. Overlap
with regulatory elements was assessed against the ENCODE Encyclo-
pedia version 5 (ENCODES) cCRE catalog®®, including insulators, pro-
moters, distal enhancers, and proximal enhancers. Enrichment against
tissue- and cell type-specific regulatory elements was performed based
on histone modification chromatin immunoprecipitation peaks (ChIP)

(H3K4mel, H3K4me3, H3K27me3, H3K36me3, H3K9me3, and
H3K27ac marks) and regions of 15 chromatin states across 299 cell
types and tissues from Roadmap Epigenomics*** using eFORGE v2.0
(https://eforge.altiusinstitute.org/).

Target gene predictions

Target genes impacted by the DMPs were predicted by two methods.
For one, the annotation file provided by Illumina was queried, which
assigned each CpG site to its nearest gene. For the other, the activity-
by-contact (ABC) model developed by Nasser et al.” was referenced,
which identified active enhancers in a particular cell type and pre-
dicted their target genes based on chromatin states and their three-
dimensional contacts. To identify the ABC enhancers that overlap with
DMPs, we adopted the locus annotation approach by Zhang K et al.**
by looking up the +2500 bp surrounding regions of the DMPs and
overlapping them with the ABC enhancers of 131 human cell types. We
adopted the original ABC score thresholds, i.e., >0.015 for distal
element-gene connections and >0.1 for proximal promoter-gene con-
nections, to define DMP - enhancer - target gene connections.

Differential gene expression analysis in myocardial infarction
and stroke

Single-nucleus RNA sequencing data from 19 patients with acute Ml as
cases and four non-transplanted heart donors as controls were
obtained from Kuppe et al.** These included a total of 191,795 nuclei
from 31 tissue samples, including ten major cardiac cell types. We
performed differential gene expression analysis between the MI
patients and controls, as well as among three tissue zones, namely
myogenic, ischemic, and fibrotic zones. We also assessed differences
between groups by cell types. Wilcoxon tests implemented in the
FindMarkers function of the R package “Seurat” were used. Genes
passing the Bonferroni-corrected P-value of 0.05 were considered
differentially expressed. Bulk RNA sequencing of peripheral blood
from patients of MI*' and patients of ischemic stroke* were obtained.
Differential gene expression analysis was performed between patients
and controls using the R package “limma”.

meQTLs for the DMPs

Relationship between CpG sites and methylation quantitative trait loci
in the East Asian population®® was queried to obtain overlap with the
DMPs. cis-meQTL was defined as within 1 Mbp of the methylation site.
trans-meQTL was defined as >5 Mbp away from the methylation site or
located on a different chromosome than the methylation site. meQTL
enrichment in the DMPs versus in all probes tested by the EPIC array
was compared using Wilcoxon test in the R software.

Expression quantitative trait methylation analysis

The relationships between 70 prognosis-associated DMPs and the
expression of their nearby or targeted gene were evaluated to deter-
mine whether these DMPs were expression quantitative trait methy-
lation. The DNA methylation level of the 70 DMPs were available from
the whole blood of 391 participants of the Progression of Early Sub-
clinical Atherosclerosis (PESA) study (GSE220622), and the mRNA
expression levels of their nearby or targeted genes were extracted
from the same 391 participants of PESA study (GSE221615). Genes not
detected in the PESA study were extracted from another transcriptome
dataset with 340 samples from the Grady Trauma Project (GSE58137),
and the DNA methylation data of the corresponding samples were
obtained from GSE72680. cg21223135 was excluded because it failed
quality control in the DNA methylation analysis, and cg06872019 was
also excluded because its target gene LINCO1066 was not detected in
both of the transcriptome datasets. Pearson correlation test was used
to evaluate the relationship between the levels of DNA methylation and
gene expression. A two-sided P<0.05 was considered statistically
significant.
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Animal knockouts

All experiments were randomized, and all animal experiments com-
plied with the guidelines from directive 2010/63/EU of the European
Parliament and were approved by the Animal Care and Use Com-
mittee of Guangdong Provincial People’s Hospital (number KY2023-
1002-01). All experimental mice were maintained in a standard
laboratory environment, with 70% relative humidity, 22°C, and a
12:12- hour light-dark cycle. Both strains of Fkbp5 knockout (KO) and
wild-type (WT) control mice were male, with a C57BL/6 ) background,
and were purchased from Cyagen Biological Co., LD (Suzhou, China).
Briefly, the KO mice were generated using a conventional CRISPR/
Cas9-mediated deletion of exon3 in the FkbpS gene. Homozygous KO
mice (FkbpS”") were born from a heterozygous (FkbpS*") intercross
and used for phenotypic analyses in parallel with WT littermates as a
control group.

Myocardial ischemia-reperfusion model

A total of 32 male mice aged 8-12 weeks were included in this study and
randomly assigned to myocardial ischemia-reperfusion (MI/R) group
or sham sham-operated group. Throughout the entire procedure, mice
were placed on a thermostatically controlled heating pad maintained
at 37 °C. Anesthesia was induced using 1% sodium pentobarbital, and
the mice were subsequently intubated and ventilated using a MiniVent
rodent ventilator (Harvard Apparatus) throughout the surgical pro-
cedure. Ventilation parameters were set at a tidal volume of 250 pL and
a respiratory rate of 150 breaths per minute, in accordance with stan-
dard murine physiology under anesthesia. In the MI/R group, a long-
itudinal incision approximately 1-1.5 cm in length was made along the
3rd-4thintercostal space on the left side of the sternum. Subsequently,
the left anterior descending (LAD) coronary artery was ligated with 7-0
silk suture. Ischemia was confirmed by observing blanching and
hypokinesia of the anterior wall of left ventricle, along with ST-
segment elevation on electrocardiogram. After 30 minutes of the
sustained ligation, the coronary artery was released for reperfusion by
removing the filament for 24 h, which resulted in a rapid restoration of
pink color to the affected myocardium. During these post-surgical
steps, no medication was given. Mice in the sham group underwent the
same surgical steps without ligating the LAD coronary artery. The
surgical success rate was 100%, with no perioperative mortality
observed in either the KO or WT control groups.

Echocardiography evaluation

For echocardiography, using 1.0-1.5% isoflurane (Sigma-Aldrich, St
Louis, USA) to anesthetize all experimental mice. Echocardiographic
evaluation was performed using a Visual Sonics Vevo 2100 (Visual-
Sonics, Toronto, Canada) with a linear probe working at a frequency
of 40 MHz. After anesthesia, the hair on the anterior chest was
trimmed, and the mice were placed on a heating pad to maintain
body temperature at 37 °C. Two-dimensional targeted M-mode tra-
jectories were recorded from the parasternal short-axis view at the
level of the mid-papillary muscle and the parasternal long-axis view
at the level just below the papillary muscle. Heart rate and the left
ventricular parameters including left ventricular end-systolic
volume (LVESV), left ventricular end-diastolic volume (LVEDV),
left ventricular internal dimension at end-diastole (LVIDd), and
left ventricular internal dimension at systole (LVIDs) were
analyzed based on M-mode recordings. The data are presented as
the average of measurements of three consecutive beats. LVEF was
calculated as LVEF = (LVEDV-LVESV)/LVEDVx100%‘" and LV frac-
tional shortening (FS) was calculated as FS = (LVIDd-LVIDs)/
LVIDdx100%®, respectively.

Evans Blue/TTC staining
Evans blue-triphenyltetrazolium chloride (TTC) double-staining was
performed to assess myocardial infarct size in four mice randomly

selected from the KO-MI/R and WT-MI/R groups, respectively. At 24 h
after reperfusion injury, mice were re-anesthetized and the LAD was re-
tightened from the original ligation to occlude the artery. A small
incision was then made in the right atrial appendage and injected with
2% Evans Blue dye (Solarbio, Beijing, China) via the left ventricular
apex. After adequate dye perfusion, hearts were excised, rinsed in cold
PBS to remove excess dye, and embedded in a cardiac slicing mold.
Hearts were snap-frozen in the mold at —20 °C for 20 min, then sec-
tioned transversely into 5-6 slices of equal thickness. Following this,
the slices were incubated in 2% TTC (Solarbio, Beijing, China) for 15-
20 min at 37 °C. The heart slices were then transferred to 4% paraf-
ormaldehyde (Servicebio, Wuhan, China) for 4 h prior to imaging. A
stereo-microscope (ECLIPSE, Nikon, Japan) was used to observe
staining and take images of the stained slices. The percentage of infarct
area was calculated using Image Pro-Plus 6.0 software. Blue staining
represents non-ischemic and normally perfused myocardium, red
staining represents viable myocardium within ischemic areas, and the
white area represents infarcted myocardium within high-risk areas
(INF). The area at risk (AAR) was calculated as the sum of red and white
regions, and the infarct size was expressed as the percentage of white
area relative to the AAR (INF/AAR).

RT-PCR quantification of Fkbp5 mRNA

Total RNA was extracted from cardiac tissue with TRIzol Reagent (Life
Technologies, USA) according to the manufacturer’s instructions. Gene-
specific primers were used to amplify Fkbp5 (5-GGTTTTGGAG
AAGCCGGGAA-3_ and 5_-CAGCCTGCGTCAGCTTTTCT-3) and GAPDH
(5-GGCCTTCCGTGTTCC-3_and 5_-CGCCTGCTTCACCACCTTC-3). The
extracted RNA was reverse-transcribed into cDNA with the PrimeScript™
RT Master Mix (TaKara), and RT-qPCR was carried out using the SYBR
Premix Ex Taq™ Il (TaKara), with GAPDH as the internal control. All the
RT-qPCR analyses were performed on an Applied Biosystems StepO-
nePlus Real-Time PCR System, according to the manufacturer’s proto-
col. The experiment was repeated three times as independent
experiments.

Statistical tests

Baseline demographic and clinical characteristics were presented as
mean + standard deviation for continuous variables and counts (%) for
categorical variables. Cox regression-based survival analysis was
employed for assessing the association between the features and
outcomes. Linear regression was used to explore the relationships
between DMPs and six inflammatory markers, four blood lipids and
two left ventricular indices. Enrichment analysis of biological pathways
was carried out by R package “enrichR” and terms with a P-value
smaller than 0.05 was considered as significant. Unless stated, P-values
derived from multiple tests were corrected by methods of FDR or
Bonferroni correction. Wilcoxon test was used to assess if the differ-
ence of continuous variables between two groups were statistically
significance. For counts, chi-square tests were used. Animal experi-
mental data were presented as mean + standard error (SE) and were
performed statistical analysis with Graph Pad Prism 9 (San Diego, CA).
Student’s t-test was used to evaluate the statistical difference between
two groups, and two-way ANOVA with Sidak’s test was used to multiple
comparisons as appropriate.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data supporting the findings of this study are available within the
article, its Supplementary Information files, and from the corre-
sponding author upon reasonable request. Publicly available datasets
used in this study include: Gene regulatory elements from the
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ENCODES catalog (https://www.encodeproject.org/). Enhancer-gene
predictions by ABC models from the Engreitz Lab (https://www.
engreitzlab.org/abc/). CpG sites associated with diseases and traits
from the EWAS Catalog (http://www.ewascatalog.org/) and EWAS Atlas
(https://ngdc.cncb.ac.cn/ewas/atlas). meQTL summary statistics from
Pan-mQTL (https://www.biosino.org/panmqtl/home). Expression
quantitative trait methylation data from the GEO database
(GSE220622, GSE221615, GSES8137, and GSE72680). Single-nuclei RNA
sequencing data of myocardial infarction patients from the Zenodo
data archive (https://zenodo.org/record/6578047). Blood-derived
bulk RNA sequencing data from the GEO database (GSE61144 and
GSE16561). DNA methylation age estimations (GrimAge, Hannum,
Horvath, and PhenoAge clocks) calculated using the DNA Methylation
Age Calculator (https://dnamage.genetics.ucla.edu/home). Due to
restrictions related to patient informed consent and institutional
policies of the three participating medical centers, the Illumina EPIC
DNA methylation data generated in this study are subject to controlled
access. These data are available from the corresponding author upon
reasonable request (contact: gdph_zhongsl@gd.gov.cn and
zhongsl@hotmail.com). Requests will be reviewed and responded to
within approximately two weeks. Data will be shared for non-
commercial academic research purposes only, under a data use
agreement that ensures compliance with patient confidentiality and
institutional regulations. Source data are provided with this paper.

Code availability

Most analysis were carried out by R. Code used to infer confounders
for DNA methylation data, EWAS analysis, and construct prognostic
model with 5-folds 1000 times cross-validation is available at (https://
github.com/qinmin23/DNA-methylation-of-prognosis-of-CAD). Image
Pro-Plus 6.0 software was used to calculated the percentage of
infarct area.
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