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Excitons dominate the optoelectronic response of many materials. Depending
on the time scale and host material, excitons can exhibit free diffusion,
phonon-limited diffusion, or polaronic diffusion, and exciton transport often
limits the efficiency of optoelectronic devices such as solar cells or photo-
detectors. We demonstrate that topological excitons exhibit enhanced diffu-
sion in all transport regimes. Using quantum geometry, we find that
topological excitons are generically larger and more dispersive than their tri-
vial counterparts, promoting their diffusion. We apply this general theory to
organic polyacene semiconductors and show that exciton transport increases
up to fourfold when topological excitons are present. We also propose that
non-uniform electric fields can be used to directly probe the quantum metric

of excitons, providing a rare experimental window into a basic geometric
feature of quantum states. Our results provide a new strategy to enhance
exciton transport in semiconductors and reveal that mathematical ideas of
topology and quantum geometry can be important ingredients in the design of
next-generation optoelectronic technologies.

Excitons, Coulomb-bound electron-hole pairs, dominate the optoe-
lectronic response of a multitude of semiconductors'>. Prominent
examples include organic** and low-dimensional®® semiconductors,
each a vast and versatile family of compounds which host excitons with
large binding energies that can reach hundreds of milielectronvolts*’.
The formation, dynamics, lifetime, and transport of excitons dictate
the efficiency of a host of technological applications, from solar
cells'®" and light-emitting diodes'", to biosensors'", From a material
perspective, the chemical and structural diversity available in the
design of organic and low-dimensional semiconductors allows fine-
tuning of the electronic and excitonic properties for customised
device applications'.

Despite their promise, one of the key limitations of organic
semiconductors is the low mobility of excitons’”'®, For example, low
exciton mobility has been shown to inhibit the efficiency of organic
semiconductor based solar cells” since excitons decay before being
extracted. As another example, in some organic systems the fission of
optically active singlet excitons into pairs of optically inactive triplet
excitons could help boost efficiency beyond the Shockley-Queisser
limit", but the diffusion of these triplets is even slower than that of
singlets'®, and again exciton transport is a limiting factor. Other

schemes, such as organic co-crystals?®” and organic-inorganic
interfaces®2*, again suffer from exciton mobility limitations.

In this work, we propose topology as a new avenue to enhance
exciton transport. The topology of electrons is well-established>,
leading to remarkable transport properties such as quantum Hall
phenomena®. A natural question to ask is whether topological ideas
can be extended to excitons, which are starting to be explored in two-
dimensional van der Waals layered materials®**, organic
semiconductors®, and idealised models®*. In this context, a recent
remarkable result concerns the topologically-induced non-trivial Rie-
mannian geometry of exciton wavefunctions. Specifically, it has been
demonstrated that exciton quantum geometry, phrased in terms of the
quantum metric®®*, provides a lower bound on the centre-of-mass
spread £ of excitons®:

2p2
2, a Pexc )
> exc
¢z e,
where a is the lattice parameter of the crystal and Pe,. is an excitonic
topological invariant protected by crystalline inversion symmetry*™',
The relationship between topology, quantum geometry, and exciton
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properties is general and can be applied to different topological
invariants in different dimensions and in different material platforms*°.
For example, in a one-dimensional setting, exemplified by organic
polyacenes™**?, the excitonic topology can be characterised through
a topological invariant P, € 7Z,, associated with the first Stiefel-
Whitney characteristic class w, € 7, that reflects the unorientability of
an excitonic band***4,

Qualitatively, the bound in Eq. (1) implies that topological exci-
tons are more delocalised, and can be larger, than their trivial coun-
terparts. In this work, we exploit this key insight to demonstrate that
topological excitons exhibit enhanced transport compared to their
trivial counterparts. We demonstrate enhanced exciton transport in all
regimes, ranging from free exciton diffusion at femtosecond time-
scales to phonon-limited and polaronic diffusion at longer picosecond
timescales. We also illustrate these general results in a family of organic
polyacene crystals, where we find that topological excitons exhibit a
four-fold increase in their transport compared to their trivial coun-
terparts. Overall, our work establishes topology as a new avenue for
improving optoelectronic technologies.

Results

Topological excitons: model and materials

To explore the role of topology on exciton transport, we focus on a
one-dimensional system that has recently been predicted to host
topological excitons®. In this setting, single-particle electron proper-
ties are described by the Su-Schrieffer-Heeger (SSH) model*>*¢:

_ i
H= —tlzc&jc&j—tZZc;ﬂ'ch’ﬁ h.c., 2
J J

with c; i/ being the creation/annihilation operators for the elec-
trons at sublattices A, B, in unit cell j, and alternating hopping para-
meters & and . The topological phase realising topological edge
states corresponds to ¢, > t;, and the trivial phase corresponds to
6 < t145,46‘

From these single-particle electron and hole states, we then
describe the exciton properties using the Wannier equation®***,
which directly incorporates the electron-hole Coulomb interaction.
The solution of the Wannier equation yields exciton bands £, asso-
ciated with exciton states |(p§’é°>, where vis the band index and Q is the
exciton centre-of-mass momentum. We also introduce |uZf ) as the
cell-periodic part of the excitonic Bloch state |5 ) = e/® luSs ), where
R = (re + ry)/2 is the centre-of-mass position of the exciton, w1th elec-
tron position r and hole position ry,. The topology of excitons in one-
dimensional centrosymmetric semiconductors can be captured by a
7, invariant Pey, which can be directly obtained from the excitonic
states™.

A material realisation of this model is provided by polyacene
chains composed of n-ring acene molecules, where n=3, 5,7, linked by
a carbon-carbon bond on the central carbon atoms. lllustrative
examples, polyanthracene (n = 3) and polypentacence (n = 5), are
shown in Fig. 1. These polyacenes exhibit a topologically trivial exciton
phase with P, = O for n = 3, and a topological phase with Pe,. =1 for
n =5, 7%. Following our previous work®, we found that the excitons
inherit their non-trivial topology from the underlying electronic
topologies rather than through interaction effects®. The quasi-1D
nature of these crystals and the weak dielectric screening of organic
molecules lead to large excitonic binding energies, which, combined
with the large band gaps, ensures that these topological excitons
dominate the optical response.

We emphasise that the model and materials described above are
for illustrative purposes only, and the key findings of this work are
generally applicable to the transport of topological excitons in any
material and dimension. When extending to higher dimensions and
more complex structures, finding accurate tight-binding models will

become more challenging. However, established first-principles com-
putational tools for electronic Wannierisation such as those regularly
employed to describe electronic topology®, will still be sufficient here.
We also point out that recent advances in excitonic Wannierisation*®
could assist in the calculations presented here, from fully first-
principles methods.

Throughout this work, we do not consider the role of defects or
interfaces, which would lead to additional scattering mechanisms*’ or,
if pronounced enough, localised states®*=2, We assume a sufficiently
large and clean system such that the optoelectronic behaviour is
determined by the bulk excitons. Interestingly, some recent studies
have shown defect-induced enhancements to electronic geometry*’,
and how these could translate to the exciton picture will be the topic of
future work.

Free exciton propagation
Upon photoexcitation, excitons diffuse freely at femtosecond
timescales®*°. The exciton diffusion constant is given by (see SM):

- 1 az E”Q HY v
Df¢ﬁ<mf> h;;A g5, 3)

where E,q is the exciton energy dispersion for band v, A‘Q'”:E 2(Q) —
E (Q) is the energy difference between the pair of exciton bands u and
v, and g&(Q)= aouexc|u§§)<u5§°\60u§’g> is the excitonic multiband
quantum metric. The exciton diffusivity in Eq. (3) has two contribu-
tions: the first term arises from the energy dispersion, and the second
term arises from the quantum geometric properties of the associated
exciton states. In other SSH systems, such as polyacetylene, it has been
shown that photoexcited excitons decay quickly into dark excitonic
states with long lifetimes™. In experiments, the exciton diffusion can
be observed over time scales longer than the typical radiative decay
timescales of bright excitons, due to both the presence of long-lived
dark states and the presence of a decreasing but still observable
population of bright states™.
We next show that the geometric term in the exciton diffusivity of
Eq. (3) leads to enhanced transport for topological excitons. Starting
with the flat band limit, the contribution from the exciton energy
dispersion vanishes, as 8°E,o/0Q” = 0. Therefore, the exciton diffusion
comes entirely from the geometric contribution. The geometric con-
tribution scales according to A% 0 8xn(Q) I/A”” (see SM), and in the
flat band limit, focusing on the lowest exciton band, we can approx-
imate the geometric contribution to the diffusivity as
D,.,~% Z;m 1{8%(Q)), where 4 is the smallest Q-independent gap
from the band. We can then define the Brillouin zone average quantum
metric (g%,(Q)) associated with exciton band v by tracing over the
interband contributions according to (g%,(Q)) =3_,.,(8x(Q)), and we
obtain that the diffusivity in the flat band limit amounts to:

y1~h@u%® @)

Using the bound &> exc from Eq. (1), and noting that the exciton
centre-of-mass spread lS related to the metric according to
€ = (gz1(Q))*, we identify a lower bound on the geometric contribu-
tion to the exciton diffusivity:

exc ( 5)

Therefore, diffusive exciton transport in the lowest exciton band is
directly impacted by the underlying exciton topology: the geometric
contribution to the exciton diffusivity exhibits a lower bound for
topological excitons (Pe.=1) but no bound for trivial excitons
(Pexc=0). This is a direct consequence of the lower bound on the
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Fig. 1| Topologically enhanced exciton transport. Topologically-enhanced dif-
fusive transport of excitons (blue/red) with inversion symmetry-protected topo-
logical Z,invariant Pey. in the presence of phonons (wiggly orange lines). Due to
exciton-phonon interactions, the propagating excitons in topological excitonic
band can be scattered, dephased, and the diffusive transport of the excitons can be
further altered with non-uniform electric fields introducing a controllable forcing.
We show that non-trivial excitonic quantum geometry can be manifested in all
these transport features.

exciton centre-of-mass spread, as determined by quantum geometry,
which makes topological excitons larger and therefore facilitates
diffusion. In some organic materials, exciton transport is driven by
long-range dipole-mediated hopping®™ due to the absence of band-
driven transport and strong molecular dipoles. Crucially, our findings
state that the lower bound sets a minimum diffusivity on the band-
driven exciton transport in these materials, provided the excitons are
topological, meaning that the exciton transport will also be enhanced
even in systems where the hopping transport would otherwise
dominate. In the polyacene chains, the Wannier-like nature of the
excitons means these longer range exciton transfers are negligible.

Moving to the general dispersive case, both topological and trivial
excitons will have equivalent contributions from the band dispersion
to the diffusivity. Therefore, we can generally claim that topological
excitons in the diffusive regime exhibit enhanced transport compared
to their trivial counterparts.

To numerically illustrate the above results, we consider poly-
pentacene as an example of a material hosting topological excitons
with ¢, > t;. We construct an initial exciton wavepacket, formed around
the photoexcitation spot, and we calculate the subsequent exciton
diffusion that leads to the spatial spread depicted in Fig. 2a. To test the
importance of the topology-bound geometric contribution, we also
consider the scenario in which the values of the hopping parameters
are swapped, so that ¢, < t; and we are in the trivial regime. The cor-
responding exciton diffusion is depicted in Fig. 2b. The two scenarios
have the same band dispersion, leading to the same first termin Eq. (3).
However, the topological exciton diffuses more rapidly, a con-
sequence of the geometric term in the diffusivity, which is bounded
from below for topological excitons. These results explicitly demon-
strate that exciton diffusion is enhanced in polypentacene driven by
the underlying exciton topology.

More generally, Fig. 2c presents the diffusion constant as a func-
tion of ¢, and ¢; allowing us to demonstrate the wide applicability of our
results. For any pair {t;, &}, if & > ; (topological excitons), then the
diffusion constant is significantly larger than for the equivalent pair
with & > ¢ (trivial). When ¢ and ¢, are significantly different, the
resulting diffusivities can differ by several orders of magnitude. The
band contribution to the diffusion for topological and trivial excitons
is equivalent (Fig. 2d), peaking at t; - t,, where the electron and exciton
band structures become most dispersive. In contrast, the geometric
contribution is distinctly larger for the topological excitons compared
to trivial ones (Fig. 2e). Non-zero topological transport in the flat band
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Fig. 2 | Enhanced free exciton diffusion. Free diffusion of (a) topologically non-
trivial (Topo.) and (b) trivial (Triv.) excitons. The diffusivity of topologically non-
trivial excitons is bounded from below by the excitonic 7, invariant. Parameters for
n=5 polypentacene are used, with the DFT predicted combination of intracell (¢,)
and intercell (¢,) hoppings employed in (a) while the order is flipped in (b), to
directly ascertain the impact of topology. ¢ Exciton diffusion constant as a function
of t; and &, with &, > ¢; (¢, < ;) representing topological and trivial excitons
respectively®. Breakdown of the contribution to the exciton diffusion, shown in (c),
by (d) exciton band dispersion and (e) exciton geometry (Geo.).

limit can be seen by comparing the t; = O or ¢, = 0 limit in Fig. 2d-e for
the topological and trivial excitons, respectively. Additional material-
specific data is shown in the Supplemental Material (SM) Fig. S1, which
further elucidates the importance of the geometric contribution,
particularly for polyheptacene, which has a significantly flatter band
structure.
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Fig. 3 | Non-uniform electric fields. a Schematic of non-uniform electric field,
VE(R)%0, on a polypentacene crystal. The quantum metric of the topological
exciton leads to a larger force due to the electric field (orange) compared to the
trivial case. b Electric field induced tuning of the exciton group velocity 7, of the
lowest exciton band for different values of ¢, and fixed ¢; = 0.33 eV. Our extracted
value of ¢, for polypentacene from DFT is 0.52 eV. The solid coloured lines (purple
to red) show the exciton group velocity with an applied electric field while the
dashed lines show the corresponding velocity in the absence of an applied electric
field. The velocity plots with increasing ¢ are offset by 0.5 eV for clarity.

Exciton transport in non-uniform electric fields
We next explore driven exciton transport under non-uniform electric
fields, which we demonstrate can be used to directly probe the exciton
quantum geometry. The exciton group velocity (v,q) associated with
band v is given in one dimension by (see Methods):

(w,0) = (1) — Z%aa (gm)) (- VeE®), )

Hv
HEY AQ

where (v7,) is the free exciton group velocity and Vz£(R) is the applied
electric field gradient which couples to the electron-hole distance (r).
According to Eq. (6), the total exciton group velocity has a
contribution from the free exciton group velocity (v%,), and a
contribution from the quantum metric derivatives. In one dimension,
the latter can be described by the Christoffel symbols
M (Q) = 19,8%(Q). Overall, an exciton moving in a non-uniform
electric field experiences a force, leading to either acceleration or
deceleration of the exciton, and a modulation of the exciton group
velocity.

The geometric contribution to the exciton group velocity in Eq.
(6) depends on the energy difference A’é” between bands y and v. This

dependence can be suppressed by increasing dielectric screening, for
example through strongly polar substrates, such that A‘é” ~ A can be
made approximately uniform over the exciton Brillouin zone. In this
regime, the non-linear exciton transport in non-uniform electric fields
is directly given by the quantum geometric Christoffel symbols.

In Fig. 3a, we schematically show the impact of an applied non-
uniform electric field on exciton transport, where topological excitons
experience an enhanced transport. Quantitatively, we calculate the
exciton group velocity for polypentacene numerically using Eq. (6),
and additional calculations where we vary t, freely are shown. For
simplicity we set the electric field gradient to be constant Vi£(R)=0.1
V/nm?. Figure 3b shows the excitonic group velocity (v,q) modulated
by a non-uniform electric field (coloured, shaded) at different values of
t; for a fixed value 5= 0.3 eV. The group velocity v, in the absence of an
external field is shown with the dashed lines. In the trivial regime,
(V,q) =~ (USQ) due to the vanishing quantum metric, g§x ~ 0, and van-
ishing variations thereof, I'Yy ~ 0. The topological regime (¢, > &)
shows a more complex behaviour. At small finite Q, the exciton dif-
fusion is slowed down by the electric field with (U,,Q)<<(USQ) and even
shows an opposite sign. At larger Q, the force induced by the non-
uniform electric field on the topological excitons becomes larger,
leading to a huge enhancement of the excitonic group velocity. This
effect is most significant for ¢, reasonably close to ¢ within the range
t, < 0.5 eV. For larger t,, the quantum metric contribution shrinks,
owing to the smaller excitons® such that the group velocity with and
without electric field begins to converge again, see the red
curve Fig. 3b.

Qualitatively, the distinct response of topological and trivial
excitons under a non-uniform electric field can again be related to their
different centre-of-mass localisations and relative sizes. Trivial exci-
tons have a smaller size, and therefore are less subject to electric field
gradients. The quantum metric in the momenta conjugate to the
relative electron-hole position r, and the centre-of-mass coordinates R,
precisely reflect the corresponding spreads and localisations of
excitons® (see Methods).

Phonon-limited exciton diffusion

Following free exciton diffusion at femtosecond timescales, excitons
experience phonon-limited diffusion at picosecond timescales®*°. In
this regime, the exciton diffusion is given by:

Dph:z

Qv I-VQ

(V%)) e EvalksT
— )

where v, is the exciton group velocity, I, is the exciton-phonon
scattering rate, E,q is the exciton band energy, kg is the Boltzmann
constant, T is temperature, and Z is the partition function. The role
that topology and quantum geometry play on phonon-limited exciton
diffusion depends on the interplay between the exciton group velocity
and exciton-phonon scattering rates featuring in Eq. (7).

Starting with the exciton group velocity, topological excitons
exhibit enhanced velocity magnitudes (see Methods):

1
(Vo) = U0)* + ?Z |A P Q). ®)

VL

Here, the second term represents the geometric contribution that
enhances the squared magnitude of the group velocity of topological
excitons.

In terms of exciton-phonon scattering rates, the key microscopic
quantities are the exciton-phonon scattering matrix elements D%/
which describe the scattering from an initial exciton (v, Q) into a final
exciton (u, Q + g) mediated by a phonon (8, g) of momentum g and
energy hwgg. In turn, the exciton-phonon matrix elements can be
written in terms of individual electron-phonon scattering matrix
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Fig. 4 | Topology-enhanced phonon-mediated transport in polyacene chains.
a-b Exciton-phonon matrix elements resolved in initial Q and final Q' excitonic
centre-of-mass momentum in Polypentacene. ¢ Phonon-induced exciton dephas-
ing as function of initial momentum Q at 50 K (orange) and 300 K (blue) in poly-
pentacene. The trivial and topological exciton dephasings are shown by the solid
and dashed lines, respectively. d Phonon-mediated exciton diffusion for trivial
(blue) and topological (pink) excitons in polypentacene (Pent) as a function of
temperature (Temp). For comparison, we show the phonon-mediated exciton dif-
fusion for polyheptacene (Hept) for trivial (red) and topological (orange) excitons.

elements g7, modulated by the exciton envelope function (see
Methods). The electron-phonon scattering matrix elements describe
the scattering from an initial electron (hole) (n, k) into a final electron
(hole) (m, k + g), mediated by a phonon (8, g). Topological electrons
were previously found to significantly contribute to the electron-
phonon coupling underpinned by g;("q"ﬁ through electronic quantum
geometric terms®. As a consequence, topological electrons enhance
exciton-phonon coupling matrix elements DZVqB' and we confirm this
numerically as shown in Fig. 4a-b.

The preceding discussion implies that topological electrons will
enhance the resulting exciton-phonon scattering matrix elements, but
not all topological electrons lead to topological excitons. Topological
excitons can arise from obstructed electrons and holes®, and in this
scenario the topology-enhanced electron-phonon scattering matrix
elements will result in topologically enhanced exciton-phonon matrix
elements. These, in turn, will lead to enhanced exciton-phonon scat-
tering rates /,o. However, unobstructed electrons and holes can also
give rise to topological excitons due to the electron-hole envelope

contribution®?*, In this second scenario, there is no enhancement of
the electron-phonon scattering matrix elements, resulting in topolo-
gical excitons that exhibit no enhancement in the exciton-phonon
scattering rates /.

Overall, we end up with two scenarios. In the first scenario, the
diffusion of topological excitons is enhanced when the underlying
electrons and holes are trivial, driven by the topologically-driven
enhancement of the exciton group velocity v,,. In the second scenario,
corresponding to topological excitons with underlying topological
electrons and holes, both the exciton group velocity v,q and the
exciton-phonon scattering rates I, are enhanced. The diffusivity of
Eq. (7) depends on the ratio v,qo/lq, and therefore the diffusion of
topological excitons in this scenario may be enhanced or suppressed.
In the numerical example below, the enhancement of the group
velocity dominates and the topological excitons exhibit enhanced
transport.

To illustrate these results numerically, we consider the topologi-
cal excitons in polyacenes. Polyacenes exhibit topological excitons
with underlying topological electrons and holes. This is the only
regime we can explore as there are no known material candidates
hosting topological excitons with underlying trivial electrons and
holes. In Fig. 4a-b, we show the exciton-phonon scattering matrix
elements from an initial state Q to a final state Q' for polypentacene
(t, > t;) and compare it to the trivial counterpart where the values of the
hopping parameters are swapped (&, < &;). We use dimensionless units,
as we are interested in the impact of the topology rather than the
absolute values of the matrix elements. We observe different couplings
for different momenta, depending on the topology associated with the
Zak phases of the electronic and hole states comprising the excitons,
with the peak intensities being dictated by the quantum geometry of
individual electrons and holes, as well as their momentum-dependent
interaction. We find that the Q/Q  dependence on the exciton-phonon
coupling is the same in both the trivial and topological case, however,
the magnitude is significantly enhanced in the topological case, as
expected from the discussion above.

One way to probe the impact of phonon scattering is via the
exciton dephasing I'o = Y ,/,,o. When Q = 0, the dephasing corresponds
to the non-radiative lifetime of the lowest exciton state. In Fig. 4c, we
present the calculated exciton dephasing as a function of momentum
at 50 K (orange) and 300 K (blue) for polypentacene (solid lines) and
its trivial counterpart (dashed lines). The dephasing depends on the
population of phonons, which increases as a function of temperature.
As such the dephasing at 300 K is significantly larger than that at 50 K.
Irrespective of temperature, the dephasing is larger in the topological
case, which can be understood by the larger magnitude of the exciton-
phonon matrix elements of the topological regime compared to the
trivial one. The excitonic dispersions themselves are almost identical,
so any density of states effects in the allowed scattering channels® are
approximately equivalent for both trivial and topological exciton
dephasing. As a result, the same qualitative features are observed in
the dephasing curves for both topological and trivial exictons at high
and low temperatures. An initial increase in the dephasing can be
observed at small Q, characterised by the emission of acoustic pho-
nons scattering back to the Q = O state or at larger temperatures,
absorption of phonons. This gives rise to a distinct bump feature*
between Q = 0.1 nm™ and Q = 0.5 nm™. At around Q = 0.8 nm, the
exciton energy difference compared to Q = 0 nm™ corresponds to the
optical phonon energy. As a result intraband optical phonon relaxation
becomes possible leading to a sharp increase in the dephasing. At
larger momentum Q such relaxation remains possible, however, the
exciton density of states at higher-momentum states is lower, leading
to an overall decrease in the dephasing. At very large Q > 3 nm’, the
exciton band flattens (cosine-like) leading to an increase in the exci-
tonic density of states and a corresponding increase in scattering
channels. As a result, peak is seen in the 300 K dephasing at Q=4.7
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polaron shift is observed in both cases. ¢ Schematic of reduced transport of
exciton-polarons compared to bare excitons. d Ratio of free exciton to exciton-
polaron group velocities in polypentacene at 300K for trivial (Triv.) and topological
(Topo.) regimes, shown in green and red, respectively. The blue region indicates
mass enhancement and slower exciton-polarons while the pink region indicates
mass reduction and faster excitons.

nm’, but an equivalent peak is not present in the 50 K results as the
thermal occupation of optical phonons is very small in the latter case.

We further calculate the phonon-limited exciton diffusion coeffi-
cients using Eq. (7) and report the results in Fig. 4d. In this example, the
competition between the geometric contribution to the excitonic
group velocity and to the enhanced exciton-phonon coupling leads to
an overall enhancement of the diffusion in the topological regime.
Taking solely the band contribution to the exciton velocity, the
increased exciton-phonon dephasing associated with topological
excitons leads to topological excitons diffusing about four times more
slowly than trivial excitons at all temperatures, see Fig. S1. However,
taking the exciton band geometry into account, leads to an increase in
the exciton group velocity at low Q in both the trivial and topological
regime. While a fairly modest increase in the case of trivial excitons, the
vastly enhanced exciton metric in the topological regime leads to a
large increase in the exciton group velocity of the low Q, and yet highly
populated, Q = O states. As a result the exciton diffusion is much larger
in the topological regime, even despite the enhanced exciton-phonon
coupling which increases the scattering term. The temperature
dependence in Fig. 4d reflects this interpretation, with low tempera-
tures corresponding to an increase in the relative population of low
momentum excitons which have a large group velocity enhancement.
The reduced exciton-phonon coupling at low temperatures adds to
this behaviour and we observe a monotonic decrease in the exciton
diffusion in both trivial and topological excitons. To demonstrate the
generality of the topological enhancement to the phonon-mediated
exciton transport, we also compare the trivial and topological regime
for polyheptacene. Due to the flatter bands, the exciton transport is
reduced in both regimes. For the real topological system, the raw
diffusion values at room temperature (300 K) are 1.76 cm*/s and 0.44

cm?/s for polypentacene and polyheptacene, respectively. In contrast,
the trivial states have diffusion constants of 0.61 cm?/s and 0.103 cm?/s
for bond-reordered polypentacene and polyheptacene, respectively.
Here, the topological diffusion constant at room temperature is
around 3 times larger than the trivial case for polypentacene, com-
pared to around 4.5 for polyheptacene. This difference stems from the
larger percentage contribution of the geometric to the excitonic group
velocity due to the flatness of the exciton band. This suggests that
geometry of the excitons, rather than the geometry of the electron-
phonon coupling, is the dominant practical factor for the transport
enhancements. Given the characteristic energy scales driving these
phenomena, we expect analogous effect interplays in the other
optoelectronic systems realising dynamics dominated by excitons.

Polaronic effects

When the interaction between excitons and phonons becomes suffi-
ciently large, excitons can become localised by the lattice®>®,
becoming heavier and undergoing slower transport. These exciton-
polarons have been studied extensively®* ¢, and are particularly rele-
vant in organic systems where their formation hinders the already
limited energy transfer across organic optoelectronic devices®’. Hence,
understanding the transport of excitons in this strong coupling regime
is crucial.

We calculate the exciton band dispersion for polypentacene as
renormalised by exciton-polarons at 300K by treating the exciton-
phonon interaction self-consistently (see Methods). The renormalised
exciton-polaron dispersion for polypentacene is shown in Fig. 5a, with
the trivial counterpart shown in Fig. 5b. In both cases, polaron for-
mation results in an energy shift and in a decrease in the group velo-
city, but notably the topological exciton-polaron exhibits a larger
energy shift and a larger reduction in velocity with a correspondingly
increased mass, which we attribute to the topology-driven increase in
the exciton-phonon interactions. Figure 5d shows the ratio of the free
excitonic to the polaronic group velocities. We find the usual low-
momentum decrease of the exciton-polaron velocity (Vexe/Ugxc-pol > 1)
in both the trivial (green) and topological (red) cases, corresponding
to a polaron velocity around 70% of that of the free exciton.

Experimentally, the formation of exciton polarons will lead to a
redshift of the excitonic resonance energy®® in the spectrum of
absorbed/emitted light on a picosecond timescale. Importantly, the
band topology of the exciton-polarons is the same as that of the bare
excitons, and we note that at large Q the topological exciton-polaron
bands are close in energy but do not cross, analogous to the bare
exciton case. Our results show that the band contribution to the
polaron velocity is reduced in the topological case, however, the same
metric contribution to the exciton transport holds, given that the
polaron bands do not cross and possess the same underlying metric.

Discussion
Overall, our results show that the topologically-bounded localisation
properties of excitons dramatically affect their transport properties.
Compared to their trivial counterparts, topological excitons sustain
faster transport. The enhanced transport of topological excitons is
expected to be experimentally trackable in the polyacenes”, where the
underlying electronic topology has already been observed. Experi-
mentally, the dynamics of exciton transport can be visualised with
time-resolved photoluminescence’*’ or with transient absorption’’.
We show that topological excitons also experience stronger
electron-phonon coupling-driven exciton-phonon coupling, com-
pared to their trivial counterparts. This observation respects the
expected enhancement of electron-phonon coupling of the con-
stituent electrons and holes that host non-trivial quantum geometry®’.
As discussed earlier, the stronger exciton-phonon coupling experi-
enced by topological excitons results in higher dephasing rates, but we
find that these are not sufficient for the topological excitons to violate

Nature Communications | (2025)16:11448


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-66276-9

the original quantum geometric bounds of the free exciton propaga-
tion, as compared to the trivial excitons. Similarly, the metric-
enhanced transport of topological excitons still persists in the
polaronic regime. These findings, accounting for the presence of
physical effects present in all semiconducting materials, show that our
diagnosis of quantum geometric manifestations on excitons should
persist under experimental conditions.

Finally, we stress that the exciton transport properties and the
associated exciton quantum geometry and topology can be controlled
using an appropriate dielectric environment®, chemical modifications,
and temperature, which modifies the population of the exciton (and
phonon) states. Therefore, our findings provide a general quantum
mechanical formalism and mathematical insights to theoretically
understand the experimentally controllable geometric manifestations
due to excitonic topologies, as reflected in the discussed excitonic
transport in semiconductor materials.

We have demonstrated that the transport of topological
excitons is significantly enhanced compared to that of trivial
excitons. This discovery arises from the lower bound that the
centre-of-mass excitonic quantum geometry sets on the exciton
localisation, making topological excitons larger and therefore
more mobile. We have shown that enhanced topological exciton
transport holds in sub-picosecond free transport regime and in
the picosecond phonon-limited and polaronic transport regimes.
Additionally, we have illustrated these discoveries in a family of
polyacene organic semiconductors. Our results are general, and
we expect that exciton topology can be exploited to enhance the
transport properties of a wide variety of semiconductors for
applications in optoelectronic devices.

Methods

Exciton quantum geometry

We consider an exciton state associated with exciton band v and
centre-of-mass momentum Q:

exc> Z‘/)yq(k)elkr|uk+Q/z>|u k+Q/2> 9)

where ¢,q(k) is the envelope function capturing the electron-hole
correlation, r = r. — 1y, is the relative electron-hole distance with the
associated relative momentum k, and |uy , o /22 and |u", , o 1) are the
single-particle electron and hole states. Exploiting translational
symmetry, we can also write the exciton state as:

Wia)=e

where R= is the centre-of-mass coordinate, and the exciton state
satisfies Bloch’s theorem with the cell-periodic part given by:

IQ Rluexc>

Q) 10)

retr,

exc\ —
lusg)=e

—iQR Zeik-rlpr(k)|u§+Q/2>qulk+Q/2>~ 1n
K

The quantum Riemannian geometry associated with exciton
states was originally introduced in ref. 35. The quantum geometric
tensor in the centre-of-mass coordinates (R); ~ i0g, is given by:

95" (@)= (Do UK 11— P,o)ldg uss ), 12)

where P,,Q =|usy ) (ucg | is a projector onto the exciton band of inter-
est. Its real part, the quantum metric, is given by:

(055101 — Po)0g sk ) + (D0 u%§11 — P,g)Idg %)
; ,
13)

&5 Q)=

and it relates to the centre-of-mass spread of excitons ((R—(R))?).
Importantly, the relation between the exciton spread and the quantum
metric can be exploited to reconstruct the exciton quantum metric in
transport experiments that involve freely propagating and driven
excitons, as we show in the main text.

Free exciton diffusion
In the free diffusive regime, following Fick’s second law, the temporal
and spatial evolution of the exciton density can be expressed as:

px 0= 14)

No exp { (x lez) } )
\J2n@Dt+o2) (22D 0i)

where Nj is the initial number of generated excitons in excitonic band
v, and for well-localised excitons we have 02 ~ &2, where x,; and oyp;
are the initial excitation centre and broadening, respectively.

In the following, we show that the exciton diffusivity D, in band v
is fully captured by the centre-of-mass quantum metric of the excitons
2x(Q). By mapping the quantum dynamics of free excitons in the dif-
fusive regime to Fokker-Planck Gaussian propagation in one spatial
dimension, we obtain that 02(t) = 0%, +2D,t, with D, = W — (g% (Q)).
The full derivation is detailed in the Supplemental Materlal (SM), but
briefly, we map the density time-evolution equation to the
Focker-Planck equation, in order to connect the diffusivity to the
effective excitonic mass m,. Furthermore, we utilise the
Hellmann-Feynman theorem to derive the relation between the
effective excitonic mass (m,) and the quantum-geometry in the centre-
of-mass momentum space. As a result, we find that the diffusivity of

excitons in band v is given by:

a2 VQ

where E,q is a dispersion of band v, and the averages are taken with
respect to the Brillouin zone spanned in the Q momentum space
parameter (see also SM).

as)

23 (M),

v

Driven exciton transport under non-uniform electric fields

We consider exciton transport driven by an external non-uniform
electric field gradient, complementary to the field gradients realisable
internally within the system”. Semiclassically, interacting electrons
and holes satisfy the equation of motion’

Kejn= — Yy, Ulre — Ty FeE(rep), (16)

where U(r. — 1) is the electron-hole interaction potential. This implies
that the centre-of-mass exciton momentum Q = k. + kj, satisfies an
equation of motion with a position-dependent external force F(R):

Q = €&y — Er)]=€elER+1/2) — ER —
= e(r) - VRE(R)=F(R).

02

In this expression, we use R = (re + r,)/2, r = ¥ — 1y, and that to first
order, ER=1/2)=ER) £ /2 - VRER) +O(r).

Physically, the quantum geometric coupling to Q can be related to
the renormalised exciton energies. Consider a perturbation coupling
to the centre of mass of the exciton AH = - R - F(R), where R is a
position operator projected onto an excitonic band. For the off-
diagonal elements, we have <tpeXC|R| e ) =i (U35 |\Vousg)- At second
order in perturbation theory, and assuming that the exciton bands are
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non-degenerate, we obtain the following energy corrections:

~ < 36C|AH| exc>
EIIQ:EVQ - Zﬁ _EuQ
=2 HnQ vQ 18)
- Z FT(R) <(pexc|R|(pexc> <¢exc|R|¢5ch> F(R)
Exo—Eng

1522 yi

which in terms of the excitonic quantum metric, we can rewrite as

Ea=Fio- Y225 Fwr),
HEU ﬂ vQ

9

for a one-dimensional system. Here, E,,Q is the excitonic energy
renormalised by the coupling to external force fields F(R). Denoting
Ny =E,q — E o and substituting F(R) =fiQ=e(r) - Vi&(R), we arrive at:

I
( ’“(Q)> (i) VeER))?,  (20)

(V)= aQE Q=

Z

‘u?ﬁy

n A
where (9,) = 194 q is the free exciton velocity.

The above result implies that varying the electric field gradient in
transport experiments allows the reconstruction of the derivatives of
the exciton quantum metric. As mentioned in the main text, in the flat-
band limit A, ~ A, the Christoffel symbols I, = 19,85v(Q)” can be
directly accessed with this strategy. It should be noted that the size of
the exciton, given by the average of the relative electron-hole coor-
dinate (r), must be known to assess the magnitude of the net force F(R)
due to the electric field gradient Vz£(R). Correspondingly, we compute
the average size of the exciton that is relevant for the semiclassical
equation of motion directly from the envelope function:

= [oo drrig,o(n)I?, where g,o(r) is a Fourier transform of ¢,q(k)*.

From the perspective of quantum geometry, we note that the
derivatives of the quantum metric defining the Christoffel symbols can
be in principle arbitrarily high due to the envelope contributions to the
excitonic quantum metric®, resulting in a nearly step-like character for
8%X(Q) in the presence of singular non-Abelian Berry connections.
Such singular behaviours of non-Abelian excitonic Berry connection
are only to be expected for topological excitons. In the trivial phases
with vanishing topological invariants, the Berry connection can be
chosen to be globally smooth.

Exciton group velocity

The group velocity term featuring in the phonon-limited exciton dif-
fusion and in the exciton-polaron diffusion has a quantum geometric
contribution. To derive it, we use a resolution of the identity in terms
of excitonic states, 1= |u,o){U,ql, and find that:

Vi) = P <uuQ|(aQH Q)2|“ua>
= %Z,,<”uo|aoHo|UVQ><”uQ|aQHo|”uQ>
2
= hiz (aQEIIQ) + hll Zz/¢y<u[10|aQH(Q)|uuQ>
<uVQ|aQH<Q>IuﬂQ>
+ 3l P8 (Q),

@y

X

(Vo)

with A”” E,q — E,q, which allows the multiband exciton quantum
metric elements g%(Q) to modify the phonon-mediated diffusion via
interband velocity matrix elements. Intuitively, the latter determine
the variance of the velocity operator. On substituting the exciton

Exciton-phonon coupling

In this section, we consider the connection between exciton-phonon
coupling (EXPC) matrix elements’ and quantum geometry. The
electron-phonon coupling (EPC) Hamiltonian can be written as:

A~ ~ 7 Al
H Z gkm;[iamk+qank (bﬁ,q+bﬂ,—q)'
k,m,n,q,B

el-ph = (22)

where a(” is the annihilation (creation) operator for an electron in band n
and momentum k. Similarly, b;;q is the annihilation (creation) operator
for a phonon with mode 8 and momentum g. The coupling between
electrons and phonons is quantified by the general interband matrix
elements g,’("t;z,]. The EPC matrix elements g;"‘;:,f for electron-phonon
scattering between bands m and n, in terms of electron Bloch states read:

| h
gl’(”qnﬁ = m<umk|aqH|unk+q>r

where H=3"E;|;)(¢;| is the many-body Hamiltonian of the system
combining the electron and phonon degrees of freedom, |¢;) are the
many-body ground and excited eigenstates with energies E;, and M is
the ionic effective mass. In the case of the polyacenes, the effective
mass is dominated by the heavier carbon atoms.

To make our discussion concrete, we will consider a two-band
model a conduction band ¢ and a valence band v. This regime is
applicable to the polyacene chains discussed in the main text. Corre-
spondingly, we define gy s = 8iap and gyqs = 8iap- We further define
a pair operator basis as:

(23)

At A AT ~ A F A a ~F
Aoig@ek= Y ProgiPric ueg@u=D PriidPrr (24
I I

and we rewrite the electron-phonon coupling in this basis as:

e . RN .
Haph= > (gkqﬂcPkH],IPl,k +gkqﬁuPl,k+qu,l> (bﬂ,q +bﬁ,—q>- (25)
K18

We can then rewrite the Hamiltonian in the exciton basis:

ut oov (2 ~F
Hex_ ph = Z QqﬁXQ+qXQ<bﬂ:q+bﬂr—q)'

1 . 1
Z (gkqﬁc‘pawu( —5Q* §q> Ya, <k - §Q>

1 1 . 1
~erbe-a(k+ 50-30)00. (k+50) ).

where the electron-phonon coupling (EPC) matrix elements gigs,
reflect the quantum geometry of the underlying electrons and holes®.
Contributions to ExPC explicitly originate from the free-particle EPC
matrix elements (gxys,) and from the overlaps of excitonic envelope
functions gq(k) governed by the excitonic quantum geometry that was
defined in the previous section. In the excitons considered in our work,
PYqo(k) is almost identical for both inverse ratios &/t, and t,/t;, yet the
EPC part, gkqs,, changes significantly. To understand this relation, we
note that by considering the Hamiltonian derivatives d,H within a
Gaussian approximation for effective hopping parameters t;(x) under
a phonon displacement of magnitude x, £;(x)=t;e" ¥ following
Ref. 61, the geometric contributions to EPC matrix elements can be
approximated as:

(26)

ngﬂ

@7)

quantum metric-dependent <”sz> for Dy, we observe that the geo 2 v, elec

geometric contribution enhances the phonon-mediated diffusion of 18kapol ~ 2Mw Zgy q+... ) 28)
the topological excitons.
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In the above, consistently with Ref. 61, we recognise the presence and
the significance of an electronic multiband quantum metric
gfj“’ elecky=Re <ak u1-P 110k Ui ), With P = |ty )( Uyl a projector
onto the electronic band wnth indéx H. On combmmg wnth the ExPC
equation, this demonstrates the importance of quantum metric con-
tributions to the exciton-phonon coupling, in particular contributed
by the electronic quantum metric. Importantly, the electrons with the
non-trivial topological invariant, will significantly contribute with the
highlighted geometric terms to the enhancement of both EPC and
ExPC in the topological (obstructed) electronic phase.

In the calculations for exciton dephasing, diffusion, and polaron
shift, we define realistic values of y for acoustic and optical phonons
according to previous calculations/experiments on oligoacene
semiconductors*, obtaining realistic values for the exciton linewidths.
We note, however, that our focus is primarily on the relative difference
between different transport phenomena in topological and trivial
regimes rather than predicting the absolute values.

Exciton-polaron formation
The full Hamiltonian describing a system hosting excitons and pho-
nons can be written as

H=Hey 0+ Hpno+Hex pn- 29)
To describe the impact of phonons on the excitonic properties, we
define a new polaronic Hamiltonian which absorbs the impact of the
exciton-phonon coupling into the single-particle energies. Following
Ref. 65, we define a polaronic transformation:

1
D (—b _
Q; WP\E,qrg — Enq +hitdgs P 1

(30)
1 ~ Ut ~
+ b XX
EuQ+q Q hw ) e+q7Q
which allows us to rewrite the Hamiltonian as:
~ 1
H:Hex,O+th,O _E [S'Hex—ph]' (31)

On solving the commutator, we arrive at the following Hamiltonian:

Z Dhgasl”

Qav.B

I:I:Hex,o +th,
(32)

b 5
! + Mg Xaxh,
Eqrqg—Enqthag  Eg.q—Euq— g

Here, ng describes the population of phonons in mode  and momen-
tum g, which we model using a Bose-Einstein distribution assuming a
thermalised phonon bath®%, The Hamiltonian A can be solved for the
phonon-interaction corrected excitonic envelopes (ZJ”Q(k) on achieving
self-consistency with the calculated self-energies o, the associated
dephasing rates I',, =Im X, and the given exciton-phonon interaction
matrix elements D’“’ Namely, we have £ uq =Euq — Re Lo, with:

ReX, = — Ilm Y |D‘(‘2’:”3
0B
<EI/Q+(]

n? g1 ng
Q+fzwqﬂ+|l'Q+160 Eyg—hwgg+ilg+idg )
(33)
We observe a clear polaron shift, as shown in Fig. 5 of the main text,
and a minor renormalisation of the excitonic effective mass. The
excitonic mass renormalisation arises from the Feynman diagrams

1/Q+q -

associated with the coupling of the virtual phonon cloud to the
excitons7§ Finally, on differentiating the polaron-renormalised band
energy £,q, we obtain:

1. -

<l~}yQ) =
the polaron-renormalised exciton group velocities (D,o). Here,
implicitly, the derivatives of the matrix elements D‘&ﬁ entering the
self-energy 2, that satisfies a self-consistency condition, allow the
excitonic quantum geometry to affect the renormalised exciton
transport in the presence of a phonon cloud.

Having considered the effects of the virtual phonons on the
exciton masses and velocities, we moreover consider an expectation
value (U uQ> Analogously as in the main text, this quantity enters the
phonon-mediated diffusivity that accounts for a polaron shift Dph,
which is mediated by the temperature-dependent scattering of
exciton-polarons from the thermally-populated phonons:

~2 :
- <U1/Q> e PEq
Dyn=2_ o, 2

with thermodynamic = k%r and Z a partition function for exciton-
polaron states. Using a derivation analogous to that in Eq. (21) for the
group velocity of excitons, we find that for the polaronic states we can
write:

35)

Z A 284,

AL

© uQ (36)

with AQ = uQ E ,q- Which allows the renormalised multiband exciton
quantum metric elements g%/(Q) to modify the phonon-mediated
diffusion via interband velocity matrix elements. Intuitively, the latter
determine the variance of the renormalised velocity operator. On
substituting the exciton quantum metric-dependent (Dle) for Dph, we
observe that the geometric contribution enhances the phonon-
mediated diffusion of the topological exciton-polarons.

Finally, we note that in the presence of exciton-polaron
corrections®’®, the topology of excitons remains unaltered. Further-
more, the transport in the presence of a non-uniform electric field
qualitatively overlaps with the calculation which did not involve the
renormalisation with phonons. We show the corresponding results in
Fig. 5 of the main text.

Data availability

All datasets for the plots of this study are available upon request to the
authors. All data is reproducible using the equations and input para-
meters outlined in the manuscript.

Code availability
All codes and associated data are reproducible with information in the
manuscript. All first-principles calculation input files are available upon
request to the authors.
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