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Sub-picojoule-per-bit volitional
neuromorphic devices for precise targeting
and tracking

Yixuan Huang1,8, Qihao Sun1,8, Fuxing Dai2,8, Fang Wang 2, Xiangyu Zhou1,
Chenyu Huang2, Yanlin Wu2, Yizhe Deng3, Li Luo1, Xiao Li4,5, Chuang Li1,
Wuyang Ren 1, Aobo Ren 1, Xiao Fu2, Kai Shen 1 , Weida Hu 2 &
Jiang Wu 1,6,7

The technological revolution driven by artificial intelligence has significantly
improved the hardware performance, but energy consumption remains a
critical bottleneck. The state-of-the-art retinomorphic devices, as core com-
ponents of artificial intelligence hardware, excel in feature extraction but are
constrained by passive attention mechanisms that lack flexibility of actively
extracting additional features. Inspired by the human visual system, this work
introduces a volitional neuromorphic device with active volitional attention
regulation. By leveraging gate-voltage-tunable photoconductance to generate
adjustable differential spectral response and employing neural networks to
evaluate spectral reconstruction accuracy, the device achieves selective task
perception. Experimental results demonstrate a data compression ratio of
1.17% and an extreme information energy efficiency of 0.625 pJ/bit. This
advancement not only advances retinomorphic hardware design but also
provides a sustainable pathway for energy-efficient hyperspectral imaging and
next-generation neuromorphic computing systems.

The current landscape of technological revolution, featured by the
astonishing achievements of artificial intelligence (AI) technologies, is
ushering in a groundbreaking epoch1–3. State-of-the-art AI hardware,
rooted in the classic Von Neumann architecture, showcases unpar-
alleled performance but at a considerable energy cost4–6. For instance,
cutting-edge H100 GPUs are projected to consume over 13 terawatt-
hours of energy annually7,8, underscoring a critical concern for energy
efficiency, particularly in data-driven era.

Human visual system, renowned for its remarkable efficiency in
perceiving, transducing, and interpreting information at approxi-
mately 1.0pJ/bit9–12, provides a promising avenue to tackle the

aforementioned concern. This efficiency stems from the intricate
mechanisms of visual attention, encompassing both passive auto-
nomic attention (PAA) and active volitional attention (AVA)13,14. As
illustrated in Fig. 1a, PAA, naturally attracted by external stimuli, pre-
ferentially dominates the process of forming ideology directly from
significant signal attention. It involves the fundamental light signal
receiving, converting andpre-processing, realizing theprimarymotion
detection. The AVA is further intervened as the subjective selecting
command is sent to the brain’s central thinking region guided by prior
knowledge and objectives. Accordingly, visual attention is directed
through priority maps to efficiently focus on key information while
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ignoring irrelevant stimuli, which facilitates selective feature extrac-
tion and thus an extreme energy efficiency. Leveraging insights from
the human visual system holds immense significance in the develop-
ment of intelligent devices15–18.

Encouragingly, the integration of visual attention into two-
dimensional materials-based retinomorphic vision devices has
demonstrated milestone breakthroughs, navigating versatile and
complicated scenarios, such as intelligent imaging, in-sensor com-
puting, all-in-one hardware and etc19–26. Nevertheless, they pre-
dominantly rely on PAA, constraining their capacity for efficient
feature extraction. This results in redundant sensory data and heigh-
tened power consumption, especially in multi-sport scenarios such as
road tracking, biology follows, adaptive cruise control, etc27. which
highlights the critical necessity of developing volitional neuromorphic
devices with exceptional energy efficiency28.

Here, we demonstrate volitional neuromorphic devices with
extreme energy efficiency of sub-picojoules per bit by emulating the
hierarchical functions of the human visual system. In addition to PAA
for dynamic feature extraction, AVA empowers our devices to pre-
cisely target specific objects and track their trajectories based on
spectral features with an average accuracy over 93%. Such high pre-
cision originates from the active feedback and correction attained by
optimizing gate-tunable differential spectral photo-response, inspired
by biological transsaccadic memory. As a result, the volitional

neuromorphic devices exhibit a data compression ratio of 1.17%,
minimizing redundant data while approaching the IEE of the human
visual system at 0.625 pJ/bit. This advancement is poised to redefine
the landscape of AI hardware development, emphasizing brain-like
energy efficiency in non-Von Neumann architecture-based systems.

Results
Design of volitional neuromorphic devices
Given that the participation of AVA enables a high operation efficiency
and low power consumption, we proposed volitional neuromorphic
devices with extreme energy efficiency by simulating the fovea
response to regions of interest, configured with a van der Waals het-
erostructure of MoSe2/h-BN/MoS2 (Fig. S1). The structural, interfacial,
morphological and elementary characteristics are evaluated by con-
ducting transmission electron microscope (TEM), Raman, X-ray pho-
toelectron spectroscopy (XPS), atomic force microscope (AFM) and
energy dispersive X-ray spectroscopy (EDS), respectively. As shown in
Fig. 1c, clear interfaces and hierarchical element distribution are
observed in the vdWs heterostructure. The corresponding character-
istic E2g (383 cm−1, 233 cm–1 and 1350 cm–1) andA1g (408 cm–1) peaks are
identified for few-layer MoS2 flakes (as floating gate), MoSe2 flakes (as
conduction channel) and h-BN flakes (as potential barrier), respec-
tively (Fig. 1d)29–31. To further evaluate the interfacial characteristics,
the resolved XPS spectra ofMo 3d, Se 3d, S 2p, B 1s and N 1s core levels

Fig. 1 | Theprinciple of implementationpath andcharacterizationbasedon the
volitional neuromorphic devices. Schematic representation for a active volitional
attention (AVA) modulation of and b the proposed volitional neuromorphic devi-
ces. Three key operations are included, incident light receiving for photoelectric
conversion, neural network training for spectral reconstruction, and a feedback

mechanism for error calibration. c The TEM image and EDX mapping for the ver-
tical cross-section of MoSe2/h-BN/MoS2 heterostructure. d The Raman spectra of
MoS2, h-BN and MoSe2/h-BN/MoS2 heterostructure. The shadings represent the
characteristics Raman peaks for clarity. e Resolved XPS of Mo, Se, S, B and N core
levels.
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are analyzed in Fig. 1e29–31, and the symmetric peak profiles of h-BN
suggest that vdWs interactions predominantly govern the interfacial
characteristics32. In addition, the morphology profile and element
distribution are recorded in Fig. S2, S3, further confirming the suc-
cessful fabrication of proposed heterostructure with floating gate. As
the aforementioned AVA in human visual system (Fig. 1a), the fovea
reflects the polarity peak change of the cone photoreceptor, ensuring
the fundamental information pre-processing. When an attention is
focused on a region of interest, the corresponding neuronal potential
activity is immediately enhanced and feeds back to the cone photo-
receptors, promoting selective task perception and cognition. Simi-
larly, as shown in Fig. 1b, the device-level AVA is proposed by
introducing an active spectral feedback circulation, which progres-
sively manipulates voltage feedback until outputs optimal spectral
reconstruction accuracy. Specifically, MoSe2 photoactive channel
receives optical signals and simulates the weight of synapse, andMoS2
conduction channel maintains the persistent current to realize the
memory function. Subsequently, programmable gate voltage (Vg)
pulses, serving as electrical stimulus, are applied to modulate the
photoconductance, which generate both non-volatile positively and
negatively photoconductive photocurrent (PPC and NPC) over visible
spectrum to achieve polarity regulation (similar to cone cells). The
differential operation between NPC and PPC photoconductive cur-
rents enables polarity-regulated spectral reconstruction by synergis-
tically suppressing interference and amplifying target signals. For the
same reason, to observe specific objects within all spectral informa-
tion, the input voltage is carefully adjusted in the manner of desig-
nated optimal Vg for each wavelength, referring to the specific
wavelength with the maximum reconstructed accuracy. Accordingly,
only the spectral signal of specific interest can be emphasized instead
of another irrelevant spectrum. This aligns with the naturalway human

processes and prioritizes visual information, ultimately enabling the
targeting and localization of objects (e.g., a runner wearing a blue
shirt). This canmaintain 93% spectral recognition accuracy even under
1.17% data compression by dynamically balancing noise suppression
and feature retention. Such operation guarantees an intelligent
detection with subjective feature selections, which significantly redu-
ces irrelevant redundant sensory data while effectively allocates pro-
cessing resources to reduce energy consumption. As a result, AVA-
involved volitional neuromorphic device adheres to the intelligent
philosophy of the human brain that prioritizes appointed spectral
sensory inputs over others, leading to an extreme energy efficiency,
which provides an innovative way to establish autonomous selection
of targeting and tracking.

Versatile characteristics of volitional neuromorphic devices
The AVA-involved sensing, memory, and computing capabilities are
essential prerequisites in volitional neuromorphic devices, which
ensure accurate targeting and tracking with extreme energy
efficiency33,34. The intrinsic responsive characteristics are priorly
examined under illumination with primary colors, as shown in Fig. 2a.
The as-fabricated device demonstrates an obvious photoresponse that
over two orders of magnitude larger than dark current, accompanied
by exceptional responsivity, detectivity and noise-equivalent-power
with a low incident light power of 0.1mW (Figs. S4–S6). The photo-
conductive behaviors are subsequently evaluated by applying pro-
grammableVg pulses (Fig.2b, c). A single Vg pulse is initially applied for
1 s, and the light is simultaneously switched on once disconnecting the
gate voltage. It is clear that both PPC and NPC are of progressive
output, good uniformity and reproducibility. Notably, their response
are much more prompt (rise time <160μs, Fig. S7) than HVS (~50ms),
which effectively protects from capturing ghost images, especially in
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Fig. 2 | Photoconductivity properties of volitional neuromorphic devices.
a Logarithmic I–V curves measured in dark and under illumination of primary
colorswith the same intensity of 0.1mW/cm2. Cumulative b positive and c negative
photoconductivity measurements with progressive multilevel states. The pulse
width and interval of incident light are programmed as 200ms and 10 s,

respectively. d Photocurrent mapping as a function of gate voltage within the
spectrum ranging from 450 to 800nm. The gate voltage ranges from −40 to 40V
with a step size of 2 V and a bias voltage of 1 V. e The histogram of the optimal gate
voltage corresponding to the minimum differential photoresponse. Each color
represents its corresponding wavelength.
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the scenario of high-speed motion recognition35,36. Good photo-
responsive characteristics and floating gate effect are also validated in
the manner of pulse number and bias voltage (Figs. S8–S10). Mean-
while, this device possesses a linear memory window of ~80 V with a
large stored charge density of 5.65 × 1012cm–2, and maintains a good
non-volatile stability (Fig. S11), which is beneficial for successive dif-
ferential operation. These attractive data-perceiving and storing cap-
abilities are originated from the appropriate arrangement of vdWs
heterojunction that allows an efficient Fowler-Nordheim tunneling.
The corresponding band alignment and carrier dynamics are eluci-
dated in Fig. S12. Briefly, electrons and holes initially undergo accu-
mulating (MoSe2 conduction channel) and trapping (MoS2modulation
channel) processes as applying negative Vg. The electrons subse-
quently tunnel to MoS2 followed by the recombination with the trap-
ped holes upon light illumination. Accordingly, the decreased number
of electrons weakens the photoconductivity, resulting in a reduced
photocurrent (i.e., NPC) and vice versa for PPC37.

The corresponding spectral response database is established via
adequately mapping the photoresponse as functions of spectrum
(450–800nm) and gate voltage (−40 to 40V), laying a foundation for
the proposed device-level AVA feedback. As shown in Fig. 2d, PPC
clearly transforms to NPC as tuning the direction of in-vertical elec-
tric field by switching Vg from positive to negative, which is con-
sistent with aforementioned device physics. Notably, both PPC and
NPC possess a gradual response to both distinctive wavelength and
gate voltage, indicating effective photoconductive modulation that
enables the subsequent differential operation and thus spectral
reconstruction. As mentioned earlier, differential current (Idiff)
obeying Kirchhoff’s law is essential for realizing visual attention, and
the smaller Idiff, the better object contour clarity, as evidenced in
Fig. S1323,38. Meanwhile, differential signals can suppress common-
mode noise and lead to a higher information compression ratio39,40.
In addition, spatial-temporal operations (edge enhancement and
extraction) of static and dynamic objects are validated by manip-
ulating PPC/NPC characteristics of the device (Figs S14–S17). In this
case, the distribution of optimal gate voltages (VIdiff�min

g ) corre-
sponding to each wavelength with an interval of 10 nm is recorded as
the differential current reaches its minima (Idiff-min), as shown in
Fig. 2e. It is worth noting that each color equips its corresponding
optimal set of gate voltage, e.g., blue (4 and −14 V), green (8 and
−32 V) and red (10 and −34 V). By legitimately analyzing the statistics
of VIdiff�min

g distribution, it is reasonably believed derived operation
condition of primary colors can facilitate the subsequent imple-
mentation of AVA with adjustable feedback.

Spectral active feedback mechanism
With the aforementioned differential current response for different
wavelengths in the volitional neuromorphic devices, the device-level
AVA with spectral active feedback is conceptualized. This operation
leverages the dynamicmodulation capabilities of neuromorphic devices
to enhance the accuracy of motion spectra and thus focus on objects.
Therefore, the crucial aspect of implementation lies in the reconstruc-
tion of the object spectrum. The reconstruction process is briefly out-
lined in Fig. 3a–c. The single differential photocurrent matrix (Idiff-pc)
with different Vg and wavelength is inputted, and each unknown
reflection image input yields a reconstructed spectrum after neural
network training via gradient descent, explained by the formula below:

Idiff�pc = Γ ðVpositive,VnegativeÞSvectorðλÞ+ ν ð1Þ

where Г(Vpositive, Vnegative) is the spectral responsematrix, Svector(λ) is a
vector representing the spectrum, which is dependent on the wave-
length resolution, and ν denotes noise. By performing a comparative
analysis between the reconstructed spectra Svector(λ) and the corre-
sponding reference spectra Svector(λ) within the training dataset, the

neural network undergoes optimization through the resolution of
Eq. 2:

SvectorðλÞ=argmin k Γ ðVpositive,VnegativeÞSvectorðλÞ � Ipck22 ð2Þ

During training, a combination of Mean Squared Error and L1
norm was used as the loss function. After only 79 rounds of training,
the model ultimately stabilized, minimizing convergence issues and
restricting the solution space (Figs. S18, S19)41,42. Utilizing the preferred
light source (xenon lamp), simulative reconstruction of different
transmission spectra can be obtained in Fig. 3c and Fig. S20. We
observed that the spectrum reconstructed from the optimized neural
network agrees well with themeasured reference spectrum. To further
evaluate the model performance, the reconstruction error of the
model at various wavelengths is recorded, as presented in Fig. 3d.
Across the entiredataset, themodel achieved an accuracy rate of 92.2%
with a spectral resolution of approximately 0.24 nm.

The accuracy of spectral reconstruction hinges on voltage and the
resulting Idiff-pc, and the lower Idiff-pc can enhance the effectiveness of
motion recognition. By optimizing the voltage corresponding to Idiff-pc,
accuracy can be improved for specificwavelengths, therebymodulating
signals from desired motion targets. This approach effectively sup-
presses non-target spectral signals, highlighting signals from spectral
motion target, the corresponding process is illustrated in Fig. 3d–f. To
begin, we establish the average reconstruction accuracy as the baseline
for each wavelength across all voltage combinations in Fig. 3d. Taking
the spectral information at 733 nm as an example, the Vg mapping for
this wavelength can be derived (Fig. 3e). By sorting the differential
currents, theminimumdifferential photocurrent and the corresponding
optimal set of gate voltages are obtained. Multiple minima of Idiff-pc
values are identified, guiding the subsequent spectral reconstruction
process for each voltage combination. By subtracting the established
average accuracy curve from the accuracy spectrumobtained under the
voltage combination corresponding to the minimum Idiff-pc, we reveal
the accuracy variation across the spectrum. This comparison aids in
assessing whether the wavelength achieves optimal improvement in
spectral reconstruction accuracy. As depicted in Fig. 3e, spectral
reconstruction accuracy peaks at 733 nm when utilizing the specific
voltage combination of (–20, 38V). This optimal voltage configuration
is determined through iterative optimization, reflecting the device’s
learning process and serving as a crucial condition for subsequent
operational “consciousness” formation of the device. Furthermore, the
same procedure demonstrates maximum reconstruction accuracy in
red, green, and blue light (Fig. 3f), further validating the effectiveness of
this method across different wavelengths.

Active target demonstration
The device-level AVA is believed to easily demonstrate its advantages
in numbers of scenarios to actively identify the desired target among
multiple moving objects. Building upon feature extraction, it can
achieve fusion and superposition of features through accumulation
and averaging. This operation is beneficial for obtaining trajectories of
multispectral moving objects captured in the images. The proof-of-
concept demonstration is illustrated in Fig. 4a–c, sustained attention is
illustrated for individualsmoving in red, green, andblue colors. The 3D
plots effectively display each person’s trajectory in a distinct color,
with the backdrop of a tiled floor for spatial reference. The figures
clearly delineate the paths of the individuals, demonstrating the sys-
tem’s ability to track themaccurately amidstpotential distractions. It is
evident that the information captured in these images is clear and
precise, offering a stark contrast to the data obtained through PAA,
which appears cluttered and chaotic (Fig. S21). In addition, the
extraction of moving objects and color tracking were demonstrated
through single device whiskbroom scanning system in Figs. S22, S23.
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Figure 4d–f illustrates the recognition accuracyof the device over time
at different wavelengths. For all frame rates, the recognition accuracy
often exceeds 93%, with small fluctuations and relatively few outliers,
indication of reliable recognition performance. The AVA significantly
enhances image compression by prioritizing areas with high informa-
tional content, thereby optimizing storage and improving the effi-
ciency of data transmission without sacrificing key visual details.
Dividing the pixels in the grayscale range of 0–256 into 20 equally
spaced statistical units. The spectral reconstruction mechanism
achieves high-efficiency data compression by selectively preserving
the target object’s characteristic spectral channels. Key principles
include: (1) A threshold comparatorfilters pixelswith effective edges in
Fig. 4g (lower part). (2) The original image spectrum is compressed to
only the color channel of the target object in Fig. 4g (upper part). Static
backgrounds and irrelevant moving objects are ignored, which can
significantly reduce data volume, ultimately achieving a compression
ratio of 1.17%, which outperforms other neuromorphic devices as
summarized in Table S4 (Detailed calculations in Supplementary
Information). In addition, the AVA mechanism contributes to low
energy consumption by selectively processing only relevant informa-
tion. The information-energy efficiency (IEE) is comprehensively eval-
uated through the power consumption aspect of human like visual
information processing, quantified in joules per bit(J/bit)10,43,44. Utiliz-
ing an evaluation method based on the resting state and action
potential of human brain neurons (Fig. S24), the IEE of our volitional
neuromorphic device can be as low as 0.625 pJ/bit. This efficiency is
comparable to the energy consumption of neurons in the human
retina, which is approximately 0.714 pJ/bit, and is slightly higher than
the energy consumption observed in the neurons of mouse and Dro-
sophila, as shown in Fig. 4h10,45,46. Meanwhile, IEE demonstrates
obvious advantages compared to other neuromorphic devices
(Table S5). This comparison highlights the potential of the AVA
mechanism to approach near-biological levels of energy efficiency in

AI systems. Notably, a good device-to-device repeatability has been
substantiated via additional validations on vdWs heterostructure,
device performance and accuracy simulation (Figs. S25–29). By
employing AVA, a more comprehensive and refined understanding of
the scene was achieved, facilitating effective tracking and analysis of
moving objects with multispectral features.

We have successfully demonstrated a sub-picojoule-per-bit voli-
tional neuromorphic device by introducing an AVA. The intervened
AVA operation with active feedback and real-time correction, lever-
aging gate-tunable differential spectral characteristics, enables our
device precisely identify and track specific objects with an impressive
accuracy over 93%. As a result, the volitional neuromorphic device
boasts a data compression ratio of 1.17%, which significantly reduces
redundant data and achieves anextreme information energy efficiency
of 0.625 pJ/bit. These advancements mark a major breakthrough in
neuromorphic engineering, highlighting the potential to redefine the
future of AI hardware with brain-like efficiency.

Methods
Materials:Heavily p-dopedSi substrates coatedwith SiO2 layer (90 nm)
were purchased from Corning Inc. The MoSe2, h-BN and MoS2 were
supplied by MaiTa Corp. (Nanjing, China). Acetone (IPA, anhydrous,
99.5%), isopropanol (anhydrous, 99.5%), ethanol (anhydrous, 99.9%)
were purchased from Aladdin.

Device fabrication: Thoroughly clean the SiO2/Si substrate in
acetone, IPA, and ethanol using ultrasonic treatment for 10min. Use
Scotch tape tomechanically exfoliate offMoS2 flakes, h-BN, andMoSe2
flakes, and sequentially transfer them onto a SiO₂/Si substrate with
PDMS assistance, heating to 75 °C, 65 °C, and 75 °C, respectively, dur-
ing each transfer. The electrode patterning was carried out by ultra-
violet lithography of the MoSe2/h-BN/MoS2. Then, the Cr/Au (10/
60 nm) contact pads were deposited by electron beam evaporation,
followed by a standard lifted-off process in acetone. In order to
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improve the ohmic contacts between Au electrodes andMoSe2, the as-
fabricated devices were annealed at 300 °C in the argon atmosphere.
Furthermore, we have successfully fabricated a 3 × 3 array device
(Figs. S30, S31). Despite slight device-to-device variations (Fig. S32),
the essential functional switching mechanism remains consistently
robust. Future work will therefore focus on refining heterostructure
fabrication process to enhance device-to-device reproducibility and
fabrication variability, which represents one of the critical steps for
scaling towards intelligent systems.

Material and device characterizations: Raman, PL, and AFM
(Atomic Force Microscope) of MoSe2/h-BN/MoS2 were measured by a
Raman-atomic force system (Alpha300RA, WITec) under 532nm

excitation laser diode (2mW). TEM and Energy Dispersive X-Ray
Spectroscopy (EDX) of MoSe2/h-BN/MoS2 were represented by Elec-
tron microscope Talos F200S and Spectrum SUPER X, respectively.
The morphology and elemental mapping were measured by Scanning
Electron Microscopy (SEM, ZEISS EV0MA15) and Energy Dispersive
Spectrometer (EDS, SDD type 80T), respectively. XPS spectra of het-
erojunctions were measured using Thermo Scientific K-Alpha with an
Al ka (hv = 1486.8 eV) emission source. The optoelectronic properties
of the photoelectric memory were measured with the SemiProbe
probe station and a semiconductor parameter analyzer (Keithley
4200), and Platform Design Automation (PDA, FS-Pro). The lasers of
450, 520 and 635 nm were emitted and controlled by a Programmable
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Fig. 4 | Simulation of AVA mechanism to recognize and select target moving
objects. aRed,b green and c bluemoving object and theirmotion trajectories. The
boxplots denoting thedistributionsof recognition accuracyofdevice over time for
moving objects in (d) red, (e) green and (f) blue. All box plots include median line,
mean values, outliers and interquartile range (25–75%). g The fundamental of data
compression after AVA mechanism. The color channel only selects objects and

discards background data, and the pixel brightness distribution of the original
image and AVA mechanism is normalized. h Comparison of information-energy
efficiency for different objects: 0.625pJ/bit of volitional neuromorphic devices
(VND), 0.714 J/bit of human brain, 0.574 pJ/bit of mouse and 0.329 pJ/bit of
Drosophila.

Article https://doi.org/10.1038/s41467-025-66295-6

Nature Communications |          (2026) 17:339 6

www.nature.com/naturecommunications


DCPower Supply (Itech Electronic, IT6100B), a function generator and
an irradiatometer. The combined control of a supercontinuum light
source (SuperK Compact) and tunable fiber filter (WLTF-NM-P-1550) is
used to emit lasers of different wavelengths and light with varying
linewidths. The noise spectral density was measured using a semi-
conductor parameter analyzer equipped with a noise testing module
(FS-Pro, Primarius). All the measurements for devices were operated 4
ambient conditions.

Implementation of ResFCNet: In the AVA simulation framework,
the neural network consists of an input layer accepting 16-dimensional
feature vectors, followed by a sequence of residual blocks with pro-
gressively increasing dimensionality (256, 512, and 1024 units,
respectively). Each residual block is composedofmultiple dense layers
with regularization and ReLU activation functions, with skip connec-
tions to preserve gradient flow in deep network configurations. The
output layer is designed to produce 1650-dimensional vectors for
spectral reconstruction. For a comprehensive guide on how to repro-
duce the specific results and figures presented in this work, including
the model training (Fig. S19) and spectral reconstructions (Fig. 3c–f
and Fig. S20), please refer to the Appendix: Implementation and Uti-
lization of the ResFCNet Architecture in the Supplementary
Information.

Data availability
The data that support the conclusions of this study are available from
the corresponding authors upon reasonable request. Source data are
provided with this paper. To ensure full transparency and reproduci-
bility of our work, the primary dataset of ResFCNet has been deposited
in the Hugging Face repository (https://huggingface.co/datasets/IFFS-
ODS/SpectrumReconstruction_Diff).

Code availability
The codes used for simulation and data plotting are available from the
corresponding authors upon reasonable request. The core imple-
mentation code of ResFCNet is publicly available on GitHub (https://
github.com/IFFS-ODS/SpectrumReconstruction_ResFCN), with spe-
cific access details available in the Supplementary Information.
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