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Clonal cell states link gastroesophageal
junction tissues with metaplasia and cancer
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Barrett’s esophagus is a common type of metaplasia and a precursor of eso-
phageal adenocarcinoma. However, the cell states and lineage connections
underlying the origin, maintenance, and progression of Barrett’s esophagus
have not been resolved in humans. Here, we perform single-cell lineage tracing
and transcriptional profiling of patient cells isolated from metaplastic and
healthy tissue. Our analysis unexpectedly reveals evidence for lineages span-
ning squamous esophagus, gastric cardia, and transitional basal cells at the
tissue junction. We also identify lineages connecting Barrett’s esophagus to
both esophageal and gastric tissues. Barrett’s esophagus biopsies consist of
multiple distinct clones, with lineages that contain all progenitor and differ-
entiated cell types. We discover Barrett’s esophagus cell types, including tuft,
ciliated, and BEST4+ cells, which we validate through both lineage relation-
ships and spatial transcriptomics. In contrast, the precancerous dysplastic
lesions show expansion from a single molecularly aberrant Barrett’s esophagus
clone. Together, these findings provide a single-cell view of the cell dynamics
of Barrett’s esophagus, linking cell states along the disease trajectory, from its
origin to cancer.

Metaplasia is a response to injury in which the cell types normally
found in a tissue are replaced by other, foreign cell types'. Because
the cells of a metaplastic tissue take on a new identity, it is difficult
to determine their previous identity and tissue of origin. Barrett’s
esophagus is a classic example of metaplasia: chronic exposure to
acid reflux is believed to cause the squamous cells of the esophagus
to be replaced by columnar cells resembling those of the stomach
and the intestine’. The cell of origin for Barrett’s esophagus and
whether it arises through the expansion of a single cell or multiple

cells remains highly debated®. It is also unclear whether a single
progenitor cell can generate all of the cell types found in Barrett’s
esophagus, or if different cells contribute to separate compart-
ments within the tissue*. As with other metaplastic tissues, Barrett’s
esophagus can undergo additional changes that lead to cancer’;
however, the early molecular events that initiate this malignant
transformation and the specific cell types involved are not fully
understood®. Hence, to capture the origin of Barrett’s esophagus
and its progression to cancer, we need detailed tracking of cell
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lineages within these tissues to build a trajectory of how cells
advance through the stages of disease.

As applied to the origin of Barrett’s esophagus, reporter-based
mouse models for lineage tracing have shown that metaplasia can
develop from several different types of cells, including progenitors in
the gastric cardia’, the esophagus®, and the gastroesophageal junction
itself”'°, However, it is not possible to use this lineage tracing approach
in humans, since it requires genetic engineering to express lineage
tags. Thus, lineage tracing in human tissue has largely relied on
sequencing for the detection of somatic mutations present in bulk
samples, which lacks the resolution to attribute mutations to indivi-
dual cells". Alternatively, individual crypts or single cells can be iso-
lated with laser capture microdissection and then sequenced for
somatic mutations, but this approach is not feasible for large cell
numbers'>”. In both of these techniques, identical mutations detected
in separate samples suggest a common origin for the cells within them.
However, the identity of these cells remains unresolved, making it
impossible to precisely determine the cell types that share a common
origin with Barrett’s esophagus.

Lineage tracing of esophageal adenocarcinoma development has
similarly relied on bulk sequencing of mutations in the cancer and
adjacent Barrett’s esophagus tissue'™". In line with our understanding
of cancer evolution’, esophageal adenocarcinoma is initiated by a
clonal expansion®”, and a recent transcriptional analysis suggests
that it originates from metaplastic cells". However, these bulk
sequencing approaches face crucial limitations. First, bulk methods
cannot determine which specific cell types within a tissue are clonally
related, a fundamental limitation when studying a heterogeneous tis-
sue like Barrett’s esophagus that contains multiple specialized cell
types'* . Second, the cancer often shares minimal mutational overlap
with the adjacent Barrett’s esophagus, suggesting that bulk lineage
tracing is failing to capture the small subset of cells that initially
transform'. Third, while bulk sequencing can reveal genetic altera-
tions, it cannot connect these changes to the specific transcriptional
states. Thus, despite extensive genetic characterization of esophageal
adenocarcinoma, the cell states underlying these lineage dynamics
remain to be revealed.

To address these limitations from studying Barrett’s esophagus
with bulk analyses, the challenges are two-fold: we must have single-
cell lineage tracing to identify how cells are related to each other, and
we must also know the transcriptional states within these cells. To
overcome these challenges, recent advances in single-cell sequencing
have now enabled the detection of single-cell lineage information-in
the form of mitochondrial DNA (mtDNA) mutations-with high-
throughput single-cell RNA sequencing (scRNA-seq)”*%. Because
mtDNA is passed on through cell division, each mutation labels cells
that are derived from a common ancestor cell. These somatic muta-
tions develop with age?* within stem cells of epithelial tissues?**’. By
linking cells with the same mtDNA mutations, we can reconstruct their
lineages**”. Beyond determining lineage relationships between indi-
vidual cells, pairing lineage and cell state information allows us to
directly measure how changes in gene expression determine cell fate.

In this study, we apply single-cell lineage tracing paired with
transcriptomics to patient samples from the gastroesophageal junc-
tion, providing resolution of cellular relationships in Barrett’s eso-
phagus and its progression. By analyzing mtDNA mutations as natural
lineage markers, we identify clonal relationships that span different
tissue types and disease stages, allowing us to directly observe cellular
connections that are otherwise undetectable in human samples. We
characterize the diverse cell types within Barrett’s esophagus and
demonstrate that individual lineages can contain the full spectrum of
differentiated cell states, including rare populations. Importantly, we
reveal a striking contrast in clonal architecture between non-dysplastic
Barrett’s esophagus, which consists of multiple discrete lineages, and
dysplastic lesions, which arise from the expansion of a single

molecularly aberrant clone. This approach allows us to directly resolve
the transcriptional and genetic alterations that drive malignant trans-
formation, identifying specific molecular mechanisms that confer
competitive advantages during disease progression.

Results

Tissues of the gastroesophageal junction can be clonally related
to each other and Barrett’s esophagus

The tissues spanning the gastroesophageal junction (Fig. 1a) are
maintained by progenitor populations that have the potential to
become dysregulated in response to chronic acid reflux*®, and thus,
could be the cell of origin for Barrett’s esophagus. Moreover, recent
profiling of Barrett’s esophagus by scRNA-seq found important tran-
scriptional similarities between Barrett’s esophagus and neighboring
normal cell types from esophageal submucosal glands and the gastric
cardia*’. However, it is impossible to know whether single cells are
indeed related from transcriptional states alone.

In order to determine whether any of these cell types native to
the gastroesophageal junction were the source of Barrett’s esopha-
gus in humans, we collected a combination of pinch biopsies of the
esophagus, gastric cardia, and Barrett’s esophagus from 13 Barrett’s
esophagus patients at endoscopy and immediately subjected them
to scRNA-seq and mitochondrial variant enrichment (Fig. 1b, Sup-
plementary Table 1). Within our scRNA-seq dataset of nearly 180,000
cells, the different tissue types were readily identifiable after uniform
manifold approximation and projection (UMAP) and Louvain clus-
tering, with confirmation of expected cell types by established mar-
ker genes (Fig. 1c, Fig. S1). Mitochondrial variant enrichment of 36 of
the 41 samples revealed somatic lineages unique to each tissue, as
well as homoplasmic germline mutations (Fig. S2, S3). Somatic var-
iants were identified by comparison to normal cell types, including
fibroblasts, endothelial cells, and immune cells, using established
methods'®”*%. We did not identify a relationship between variant
allele frequency and clone size or cell cycle status of cells within a
clone (Fig. S4). Focusing on the somatic mutations, we developed a
zero-inflated beta binomial (ZIBB) model to rigorously identify cells
that had acquired variants of interest whose signal was statistically
higher than the predicted background noise. This model robustly
identified high-quality variants across different filtering thresholds
and coverage levels (Fig. S5, S6).

Throughout our analyses, we use ‘lineage’ to refer to cells sharing
mtDNA mutations, while using ‘clone’ for cells that inherit both lineage
markers and transformative phenotypic states such as metaplastic or
dysplastic features. This framework helps determine whether the dis-
ease arose through multiple independent transformation events
(polyclonal) or through inheritance from a single transformed ances-
tor (monoclonal) (Fig. S7). As expected, we found that the squamous
esophagus and gastric cardia were polyclonal (Figs. 1e, S8), which is a
well-known feature of normal healthy tissue?. We also did not observe
a founder clone, a single dominant ancestor giving rise to the entire
tissue, in any non-dysplastic Barrett’s esophagus biopsies. The absence
of such a founder clone suggests that non-dysplastic Barrett’s eso-
phagus can also originate from multiple clones, as supported by
whole-genome sequencing studies'®*.

To validate our mitochondrial variant-based methodology, we
performed an independent analysis of single nucleotide variants
(SNVs) detectable in our scRNA-seq data. We compared cells that were
grouped together in our mitochondrial-based lineages with cells of the
same tissue types from the same samples to assess whether genomic
SNV patterns supported these groupings. Despite the sparse coverage
of SNVs in scRNA-seq data*’, we found that cells sharing mitochondrial
variants also shared nuclear variants at frequencies significantly higher
than expected by chance (Fig. S9). This analysis showed that, when
available due to sufficient sampling, genomic SNV patterns fully cor-
roborated our mitochondrial lineage assignments.
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Fig. 1| Cell lineages in human gastroesophageal junction tissues labeled by
mtDNA mutations. a Barrett’s esophagus occurs at the gastroesophageal junction
between esophageal squamous and gastric cardia tissues. Clones within these tis-
sues can be traced using distinctive mtDNA mutations. b Pinch biopsies of the
squamous esophagus, Barrett’s esophagus, and gastric cardia were collected from
Barrett’s esophagus patients at endoscopy and dissociated for single-cell analysis.
Conventional scRNA-seq libraries can be enriched for mtDNA mutations, enabling
the linking of clones to cell states. c UMAP of scRNA-seq of all the samples collected

o

3]
in this study. d UMAPs of scRNA-seq of all epithelial cells, where cell lineages that
span multiple tissues are highlighted for individual patients. e Heatmap showing
the allele frequencies of mtDNA mutations within squamous esophagus, Barrett’s
esophagus, and gastric cardia cells from all biopsies collected from Patient 13.
f Diagram of the gastroesophageal junction region labeled with the locations of the
biopsies from Patient 13. g UMAPs of scRNA-seq of biopsies from Patient 13 con-

taining cells that acquired the mutation 6150G>A, plotted within the UMAP of all
epithelial cells and colored with the allele frequency of 6150G>A.

In six of the patients in our study, we captured mutations in single
cells that were present across tissue types (Fig. 1d), including muta-
tions shared between squamous esophagus and Barrett’s esophagus,
mutations shared between squamous esophagus and gastric cardia,
and mutations shared between gastric cardia and Barrett’s esophagus.
We found these mutations in different tissues contained within the
same biopsy, as well as across separate biopsies (Supplementary
Table 2). We did not observe any somatic mutations that were shared
between patients (Fig. S3d), further indicating that the mutations we
detected for individual patients were indeed unique lineage markers.
Importantly, cells harboring these mtDNA variants maintained

expression profiles consistent with their tissue identity, suggesting
that these are not due to doublet artifacts (Fig. S10). Thus, we con-
cluded that the distinct tissues of the squamous esophagus and gastric
cardia can be derived from the same clone, and that these clones can
give rise to Barrett’s esophagus. Notably, while these clones contain
transcriptionally different cell types, the presence of a shared mutation
indicates a shared somatic ancestor cell.

To investigate how lineage relationships were spatially distributed
in the lower esophagus, we collected a series of at least six biopsies at
measured distances from the gastroesophageal junction from two
patients, 12 and 13. We captured numerous lineages across these
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samples, with most restricted to a single tissue type (Figs. le, S8, S11);
however, there were also several lineages that spanned tissues. In the
case of Patient 13, we found mutation 6150G>A in five separate biop-
sies with cells from the squamous esophagus and gastric cardia (Fig. 1f,
g); the mutation was also present in transitional basal cells that were
recently shown to exist natively at the squamocolumnar junction and
generate Barrett’s esophagus-like tissue (Fig. 1g, Fig. S12a, b). Intrigu-
ingly, the fraction of cells that had mutation 6150 G > A was highest in
biopsies close to the gastroesophageal junction and lower in biopsies
farther away. In another patient with transitional basal cells containing
a crossing lineage (9166T>C), we likewise observed a lower lineage
fraction or failed to detect the lineage in biopsies taken away from the
gastroesophageal junction (Fig. S12c, d), suggesting that the ancestor
originated at or near the junction and then progeny migrated from this
location.

Barrett’s esophagus consists of multiple clones with diverse
cell types

To understand the role of Barrett’s esophagus in the development of
dysplasia, we first needed to characterize its cell types and investigate
its clonal organization. In particular, we aimed to examine whether
multiple cell types could be found within individual lineages in Bar-
rett’s esophagus, which would provide insight into cellular differ-
entiation within the tissue. We collected Barrett’s esophagus biopsies
from eleven patients for scRNA-seq and mitochondrial variant
enrichment. Of these patients, three were previously diagnosed with
various degrees of dysplasia, but dysplasia was not detected in the
remaining eight patients (Supplementary Table 1). When we merged
the individual Barrett’'s esophagus transcriptomes from all the
patients, including those with dysplasia, a set of consensus Barrett’s
esophagus cell types emerged from the overlap between known non-
dysplastic samples (Fig. 2a, b).

Established Barrett’s esophagus cell types, such as mature secre-
tory (goblet and endocrine) and absorptive (enterocyte) cells, as well
as OLFM4+ cells, were well represented in our data. We also captured
other cell types that included tuft cells, airway-like ciliated cells, and
poorly differentiated BEST4 cells that were clearly identifiable by dis-
tinct markers known from other tissues®* (Figs. 2a, ¢, S13, Supple-
mentary Data. 1). These specialized populations were not detected in
previous single-cell characterizations of Barrett’s esophagus", high-
lighting how our deeper sampling revealed additional cellular diversity
within this tissue (Fig. S14). Furthermore, we consistently observed the
majority of Barrett's esophagus cell types across all the biopsies,
confirming their fundamental relevance to the tissue (Fig. 2b, d).

As noted earlier, we did not observe a founder clone within any of
the Barrett’s esophagus biopsies, which instead consisted of multiple
discrete lineages that accounted for smaller subpopulations of cells
(Figs. 2e, S13). Upon overlaying the lineages on our annotated UMAPs,
we discovered that each lineage largely resembled the sample as a
whole, both in the cell types present, as well as their relative propor-
tion (Fig. 2f). Such remarkable differentiation potential was supported
by the existence of a large pool of immature cells (Fig. S13).

While histological analysis and protein staining have been used to
identify some of the cell types in Barrett’s esophagus, there is currently
no comprehensive mapping of the localization of these cell types
based upon gene expression within the tissue. We performed spatial
transcriptomics using seqFISH* to probe a panel of cell-type specific
markers within the same tissue section that we validated with multi-
plexed hybridization chain reaction* (Figs. 3a, b, S15, S16). By inte-
grating our scRNA-seq data*, we mapped the cell types we identified
previously onto the tissue, revealing regular expression patterns along
the structure of the glands (Fig. 3¢, d). We found enterocytes at the
lumen, along with foveolar and goblet cells, which were also common
in the middle of the gland; endocrine cells were located closer to the
base of the gland, where abundant progenitor cells give rise to the

more differentiated cell types above (Figs. 3b-d, S15, S16). We also
directly confirmed the presence of identified cell types, including tuft
(SH2De), ciliated (ZMYNDI10), and BEST4 cells (Figs. 3b-d, S15, S16),
and found that the ciliated cells specifically localized to the boundary
of the squamous esophagus and Barrett’s glands, suggesting a role in
the junction of these tissues.

A single molecularly aberrant cell can initiate the malignant
transformation of Barrett’s esophagus

Given that Barrett’s esophagus contained multiple lineages, we next
wondered whether one lineage or many lineages were represented in
the transition to dysplasia. Within a biopsy collected from a patient
with high-grade dysplasia, we observed two large clusters of epithelial
cells by scRNA-seq (Fig. 4a); one of the clusters consisted of cells that
expressed established Barrett’s esophagus cell type markers, whereas
the other did not, instead showing a marked loss of PIGR and FAM3D,
known regulators of intestinal barrier integrity>**” (Fig. S17). Thus, we
concluded that we had captured adjacent patches of non-dysplastic
Barrett’s esophagus and dysplastic tissue. In order to understand
whether the cells in these molecularly distinct tissues were clonally
related, we subjected them to mitochondrial variant enrichment.
Consistent with our earlier lineage analysis of Barrett’s esophagus, the
Barrett’s esophagus tissue in this sample was made up of several dis-
tinct clones, each of which accounted for a fraction of the population
(Fig. 4b). Strikingly, the dysplastic tissue in this patient originated from
the expansion of a single cell containing mtDNA mutation 15153G>A
(Figs. 4b, S18a-c, S19), a finding further supported by concordant
nuclear SNV patterns observed in single-cell RNA-seq (Fig. S9c). Our
ZIBB model identified a subset of non-dysplastic Barrett’s esophagus
cells belonging to the same lineage as the dysplastic cells, confirming
that dysplasia originated from Barrett’s esophagus (Fig. S17). Within
this dominant lineage, we further observed the emergence of a large
dysplastic subclone that was spatially restricted within UMAP space
(Fig. S18b). Such clonal expansion was not unique to the one dysplastic
case; a second patient with low-grade dysplasia contained a similar
precancerous outgrowth (Fig. S18d).

To further characterize the evolutionary relationships between
clones in this sample, we performed phylogenetic analysis of the
mitochondrial variant patterns (Fig. 4b). This revealed a hierarchical
structure, with the dominant 15153 G > A mutation present across both
dysplastic and a subset of non-dysplastic BE cells. An additional
mutation, 5215 T > C, was restricted to specific subpopulations within
this lineage. When we examined differential gene expression across
these clonal populations (Figs. 4c, S18c), we identified a distinct tran-
scriptional signature in the dysplasia origin clone, with several genes
including TPM2, FAU, PCBD1, and APCDDI1 showing consistent upre-
gulation. This divergence in transcriptional state observed in dysplasia
compared to the well-differentiated non-dysplastic Barrett’s esopha-
gus is consistent with recent work describing phenotypic diversity in
patients as a feature of progressive disease*.

Having resolved the clonal structure of the dysplastic tissue and
determined its relationship with adjacent non-dysplastic cells, we
next investigated whether its transcriptional states could explain
how it evolved. We noticed a large increase in the abundance of LGR5
cells, which is a known feature of dysplastic progression®*** (Fig. 4d).
More surprising was the expression of NOTUM, as well as other WNT
antagonists*®™*?, within a subset of the dysplastic cells (Figs. 4d, S13).
In situ hybridization of tissue from the same patient confirmed the
scRNA-seq data and showed an expansion of the stem cell compart-
ment (Fig. 4e). Further analysis of WNT pathway components
revealed extensive dysregulation in dysplastic cells, with upregula-
tion of WNT antagonists and a complex network of intercellular
signaling that may drive competitive clonal dynamics (Fig. S18e, f).
Interestingly, several genes, including COL17A1, which drives stem
cell fitness in the skin*, were differentially expressed in the
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Fig. 2 | Identity and clonal relationships of Barrett’s esophagus cell types.

a UMAP of scRNA-seq of all Barrett’s esophagus biopsies, colored by consensus
Barrett’s esophagus cell types common to a majority of non-dysplastic Barrett’s
esophagus samples. b UMAP of scRNA-seq of all Barrett’s esophagus biopsies, with
the cells from each individual biopsy highlighted separately. ¢ Bubble plot of
marker genes for Barrett’s esophagus cell types. d UMAPs generated from (b)

containing only the cells corresponding to the non-dysplastic Barrett’s esophagus
sample indicated. e Heatmaps show the allele frequencies of mtDNA mutations
within the Barrett’s esophagus cells in the adjacent UMAP. f UMAP from (d) colored
with the allele frequency of a representative mtDNA mutation; stacked bar graph
comparing the proportion of Barrett’s esophagus cell types within the repre-
sentative lineage to their proportion within the entire sample.

dysplastic subclone, suggesting that new cell states that emerge
within an already transformed clonal population could confer addi-
tional malignant potential (Fig. S20).

Given the level of WNT pathway dysregulation, we wondered
whether there might be an underlying genetic mutation in a WNT
regulator. Thus, we performed whole-exome sequencing on cells that
were dissociated from the same biopsy that underwent scRNA-seq,
along with matching normal squamous esophagus and gastric cardia
controls (Fig. 4f). Besides confirming the presence of mitochondrial
mutations in the DNA (Fig. S21), the whole-exome sequencing revealed
mutations in CDKN2A and TP53, the genes most frequently implicated
in dysplasia and esophageal adenocarcinoma®*® (Fig. 4g, h).

Additionally, as we hypothesized, there was a truncating mutation in
the mutation cluster region of APC, a negative WNT regulator (Fig. 4h).
This result raises the possibility that the dysplastic cells in this patient
may have been driven by a mechanism recently discovered in pre-
malignant colon adenomas, in which APC-mutant stem cells secrete
NOTUM, and thereby shut down and outcompete neighboring wild-
type ones*”*5,

Next, we wanted to determine whether esophageal adenocarci-
noma contained Barrett’s esophagus and dysplastic cell states from
our scRNA-seq analysis that would further demonstrate their involve-
ment in its development. We checked for the presence of mRNA
signals*’ corresponding to the Barrett’s esophagus and dysplastic cell
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Fig. 3 | Spatial location of Barrett’s esophagus cell types. a Schematic of the
spatial transcriptomics workflow on fresh frozen sections of Barrett’s esophagus
tissue. scCRNA-seq data was integrated with highly multiplexed RNA FISH (seqFISH)
to map cell types. b seqFISH of fresh frozen Barrett’s esophagus tissue for pre-
viously identified cell type markers from scRNA-seq (Fig. 2a, 2c); shown are a subset
of marker genes. RNA Signal was called computationally and overlaid on DAPI
images. DAPI staining is displayed in blue. Scale bars, 50 pm. ¢ Annotation of the

section from (b) with Barrett’s esophagus cell type markers from scRNA-seq; the
colors match the labels in Fig. 2a and Fig. 3d. d Boxplot of distance to the lumen for
all epithelial cells in (b) split by cell type. Boxplot shows the median, first and third
quartiles, and 1.5 times the interquartile range below the first quartile and above the
third quartile; outliers were removed. Data is shown for one region of interest (ROI)
from one patient. Additional patients and ROIs are in Fig. S15.

states in 88 bulk esophageal adenocarcinoma tumor transcriptomes
previously analyzed by TCGA (The Cancer Genome Atlas)*® (Fig. 4i). In
15 of the 88 esophageal adenocarcinoma tumors, we found that cell
states from the dysplastic sample contributed to at least 3/10 of the
bulk transcriptome (Fig. 4i). Specifically, of the three cell states that
made up that dysplastic sample, the first consisted of cells with high
LGRS and NOTUM expression (Fig. 4j). Therefore, in this subset of
esophageal adenocarcinomas, we can conclude that there is a WNT-
dysregulated transcriptional state that is similar to the cell state that

we discovered in dysplasia. In other words, Barrett’s esophagus can
transition to esophageal adenocarcinoma directly through the dys-
plastic cell state that we identified.

Discussion

In this study, we applied lineage-resolved scRNA-seq to human sam-
ples collected from the gastroesophageal junction of patients with
Barrett’s esophagus and dysplasia. We identified biology at every stage
of the disease. Squamous esophagus and gastric cardia cells were
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25% of cells for visualization. ¢ Gene expression heatmap of differentially expressed
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BE cells. d UMAPs from (A) featuring the expression of LGRS and NOTUM. e RNA
FISH HCR probing for LGRS and NOTUM performed once on a fresh frozen tissue
sections of a Barrett’s esophagus biopsy from Patient 6. f) Schematic illustrating the
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sequencing workflow for the cells isolated from a single Barrett’s esophagus biopsy
taken from Patient 6. g Copy number analysis from whole-exome sequencing of the
same cell population from Patient 6 that underwent scRNA-seq; featured is chro-
mosome 9, highlighting the loss of CKDN2A. h Schematics of mutations detected in
TP53% and APC** proteins by whole-exome sequencing. i Analysis of the con-
tribution of mRNA signals from Barrett’s esophagus and dysplastic cell states to the
bulk transcriptomes of esophageal adenocarcinoma tumors from TCGA. Dysp_1-
Dysp_3 correspond to gene signatures specific to the dysplastic cells from Patient 6.
j Heatmap shows genes differentially expressed within the dysplastic cells from
Patient 6 grouped by clusters corresponding to the gene signatures in (i).

related to each other and Barrett’s esophagus, as well as transitional
basal cells found at the squamocolumnar junction. Barrett’s esophagus
is a polyclonal tissue in which a single cell can generate multiple
mature, specialized cell types. Additionally, Barrett’s esophagus can

transition to dysplasia through the expansion of a WNT-
activated clone.

While scRNA-seq has proven to be an indispensable tool for
mapping normal and diseased human cell states, it also has important
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limitations. How these cell states are related, for example, cannot be
conclusively answered without accompanying lineage information.
Our results highlight the value of such information to connect cell
states not just within a single phenotypic state, such as one tissue type
or disease, but also between phenotypes, connecting different stages
of a disease or multiple tissue types through lineage. Without lineage
tracing, the scRNA-seq data alone could not have captured the rela-
tionship between transitional basal cells and esophageal squamous
and gastric cardia tissues, as was missed in previous scRNA-seq work
that specifically profiled the normal squamocolumnar junction®.
Similarly, combining lineage tracing with scRNA-seq for different
stages of disease allowed us to show that the transformation of Bar-
rett’s esophagus to cancer could be caused by a cascade of clonal
expansions with uniquely aberrant cell states.

Our observation of multiple discrete lineages within Barrett’s
esophagus samples should be interpreted within the context of
existing literature on Barrett’s esophagus clonal evolution. While pre-
vious studies have provided evidence for clonal relationships in BE
using bulk sequencing approaches*™", our single-cell resolution offers
insights into how these lineages correspond to specific cell states. We
do not claim that Barrett’s esophagus originates from completely
independent founders, but rather that at the resolution of our mtDNA-
based lineage tracing, we observe a heterogeneous clonal structure
that contrasts markedly with the dominant clonal pattern seen in
dysplastic progression. This distinction in clonal dynamics between
disease stages represents an important finding with potential clinical
implications.

This study contributes to our broader knowledge surrounding cell
plasticity at the gastroesophageal junction. We capture lineages that
cross tissue types, thus relating them to each other through a shared
ancestor cell. We find the highest fraction of these cells from lineages
that cross the tissues of the gastroesophageal junction near the
boundary, suggesting that this ancestor is near the junction. However,
an important consideration is that our lineages might not contain the
progenitor explicitly as the stem cell containing the mutation might
not be sampled by our biopsy. Thus, the interpretation of these
lineages that contain multiple tissue types is that they share an
ancestor cell, not that a differentiated cell from one tissue transformed
into a differentiated cell of another tissue. One possibility is that the
crossing lineages in this data might arise through a multipotent pro-
genitor at the gastroesophageal junction or gastric cardia.

While our study achieves single-cell resolution for the lineage
tracing, the resolution of the lineages themselves remains a limitation.
Because we are using mtDNA mutations as a marker of cell lineage, we
depend upon the acquisition of mutations to provide the lineage
resolution. It is thus important to consider that acquisition of mtDNA
mutations is not uniform across cells, and is dependent upon the
number of mtDNA per cell and the mutation rate, both of which can
vary across cell types®® and change in the setting of cancer’.. It is also
possible that the mtDNA mutations used for lineage tracing could have
pathogenic effects that change their distribution in the tissue. Addi-
tionally, our approach cannot definitively rule out the possibility that
some mitochondrial mutations present in founder cells may have been
lost in subclones during expansion, potentially causing us to miss
some lineage relationships. Such mutations could be acquired during
development or with age®*, but then lost by a subset of cells due to
mitochondrial heteroplasmy. However, our independent SNV analysis
using the limited nuclear genomic information available from single-
cell RNA-seq data provides supporting evidence for our findings.
Despite the inherently sparse nature of SNV detection from scRNA-seq,
we observed significant concordance between these genomic variants
and our mitochondrial-based clonal groupings. This concordance,
even with limited data, suggests that widespread mutation loss is not
significantly confounding our lineage assignments. While the

orthogonal SNV validation and ZIBB provide confidence for lineage
assignments, we acknowledge that artifacts are possible, particularly in
the context of small numbers of cells containing a variant; thus, it is
important to carefully inspect the underlying data (Fig. S5, S6, S10, and
scmtVT Github) and consider more stringent filtering. In the future, we
expect to see new single-cell methods for lineage tracing in tissues that
will improve upon these resolution constraints.

The origins of Barrett’s esophagus and its transformation to eso-
phageal adenocarcinoma are complex phenomena. We observed evi-
dence of clonal expansion in two dysplastic samples analyzed. In the
case we examined in detail, this expansion could be traced from BE
cells through a WNT-dysregulated mechanism. The generalizability of
both the BE-to-dysplasia lineage relationship and the specific mole-
cular pathways involved requires investigation in larger cohorts. In our
TCGA analysis, we confirm that this cell state is relevant to esophageal
adenocarcinoma, but in a subset of the cases. While this result repre-
sents a pathway for disease progression in metaplasia, it is likely one of
many. Likewise, our finding that gastroesophageal junction tissues are
clonally related to each other and Barrett’s esophagus reconciles see-
mingly contradictory publications that linked Barrett’s esophagus to
either the squamous esophagus or gastric cardia in human samples™".
However, future research will be essential to understanding how these
crossing lineages develop from a single progenitor into distinct tissue
types. Thus, this work further supports a growing appreciation for the
fact that the paths between related phenotypic states (such as normal
tissue to Barrett’s esophagus, or Barrett’s esophagus to cancer) will not
always follow a single trajectory>. Studies like ours, even when they
profile larger numbers of human samples, will never be exhaustive.
Their value lies in providing hard evidence for the role of specific cell
states in maintaining and connecting phenotypes that we could only
speculate about. In the case of Barrett’s esophagus, these relationships
have important clinical implications that earlier methods struggled to
address. This work further demonstrates the general usefulness of
tracking clones across diverse cell states in disease and justifies its
broader application not just at the gastroesophageal junction, but
throughout the human body.

Methods

This research complies with all relevant ethical regulations and was
approved by the University of Pennsylvania Institutional Review Board
(Protocol #813841), with all samples obtained following written
informed consent. No statistical methods were used to predetermine
sample size. The experiments were not randomized, and the investi-
gators were not blinded to allocation during experiments and out-
come assessment.

Patient samples

Patients had a prior history of Barrett’s esophagus and were under-
going routine surveillance endoscopy. The patient cohort included 14
males and 2 females, determined by self-report, with an average age of
66, sex or gender was not considered in the study design, and no sex or
gender analysis was carried out as it was not deemed relevant to the
biology under investigation, and because we lacked sufficient sample
size. Pinch biopsies were taken from the BE tissue, as well as the normal
esophagus proximal to the Barrett’s esophagus segment and the gas-
tric cardia at the discretion of the endoscopist (G.W.F). Samples were
immediately transferred for processing in ice-cold Dulbecco’s
phosphate-buffered saline (DPBS; Corning, 21-031-CV). The Barrett’s
esophagus biopsy from Patient 2 was the only exception to the above;
the tissue was immediately preserved in 1 mL CryoStor CS10 (Biolife
Solutions, 210373) and frozen at —80 °C in an isopropyl alcohol-filled
freezing container before being transferred to liquid nitrogen after
24 hours. Sample preparation required the destruction of biopsies,
rendering them unavailable after processing.
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Isolation of single cells from patient tissue

Fresh pinch biopsies were washed twice in DPBS before being coarsely
chopped with a scalpel and transferred into 0.5mL DPBS solution
containing 0.1 WU mlI™ Liberase TH (Roche, 5401151001) and 0.5 U mI™*
RQ1 DNase I (Promega, M6101). The samples were incubated at 37 °Cin
successive 10-minute rounds with gentle vortexing every 2 minutes
and trituration every 5 minutes. At the end of each round of incuba-
tion, large tissue pieces were spun down in a microcentrifuge and the
supernatant containing single cells was passed through a 70-um cell
strainer fitted onto a 50-mL conical tube containing 8 mL DPBS +1%
bovine serum albumin (BSA; Sigma-Aldrich, A7906) in DPBS on ice.
0.5mL fresh dissociation solution was added to the tissue at the
beginning of each incubation step. The samples were further filtered
through the 0.35 um cell-strainer cap of a FACS tube and single cells
were pelleted by centrifugation at 400 g for 4 minutes at 4 °C. Samples
were washed twice in 1 mL DPBS + 0.04% BSA and finally resuspended
in 50 uL DPBS + 0.04% BSA, at which point they were counted in 0.2%
trypan blue (Gibco, 15250061) in preparation for 10x Genomics
Chromium Next GEM Single Cell 3’ v3.1 library preparation. For the
frozen BE biopsy from Patient 2, the tissue was quickly thawed at 37 °C
and rinsed three times in DPBS+10% fetal bovine serum (GE,
SH30396.03) before being dissociated and filtered as described above.
After the final filtering step, dead cells were removed with the Dead
Cell Removal Kit (Miltenyi Biotec, 130-090-101) following the manu-
facturer’s protocol.

10x Genomics Chromium Next GEM Single Cell 3’ v3.1 library
preparation and sequencing

Single-cell suspensions were loaded onto a 10x Chromium Controller
for GEM generation of approximately 5,000-10,000 cells for each
sample. 10x Genomics Chromium Next GEM Single Cell 3’ v3.1 Dual
Index library preparation was performed following the manufacturer’s
protocol. Library quality was confirmed on an Agilent 2100 Bioanalyzer
Instrument using the High Sensitivity DNA Kit (Agilent). Libraries were
paired-end sequenced on an Illumina NextSeq 550 with 28 cycles for
Read 1 and 43 cycles for Read 2, as well as 10 cycles for both indices.

10x Genomics sequencing data mapping, and count matrix
generation

Raw Illumina base call files were demultiplexed and converted into
FASTQ files using CellRanger mkfastq v5.0.0. The resulting FASTQ files
were loaded into STARsolo v2.7.9a for alignment to the 10x reference
GRCh38-2020-A%. Count matrices generated with the —soloFeatures
GeneFull argument were used for downstream analyses.

scRNA-seq dimensionality reduction, clustering, and cell-type
annotation

Count matrices for each sample were converted into Seurat objects
in R (Seurat, v4.0.2), and genes present in fewer than three cells were
removed®”. Doublets were detected using scDblFinder (v1.8.0), with
nfeatures = 3000 and includePCs = 1:20°. Once doublets had been
filtered out, only cells with more than 300 genes and less than 30%
mitochondrial reads were retained. Outlier cells containing high total
counts were also removed on a sample-by-sample basis. Consistently
within stomach samples, a population of cells with a large fraction of
mitochondrial reads that had disproportionately high total counts
was observed and confirmed to be made up of biologically important
parietal cells; hence, appropriate mitochondrial and total count
thresholds were set for these samples. For analyses where samples
from different tissues were merged, whether within or across indi-
vidual patients, count matrices were first normalized separately
using NormalizeData. Merged normalized data was then processed
with the standard Seurat pipeline of FindVariableFeatures, ScaleData,
and RunPCA, followed by RunUMAP and FindNeighbors with 50
principal components, and FindClusters with a resolution of 0.4 or

0.6. General tissue types were identified using established high-level
markers.

Batch correction of the merged Barrett’s esophagus samples was
performed with Harmony (v0.1.0) after subsetting for Barrett’s eso-
phagus cell types following the processing approach outlined above®.
Two rounds of subsetting were required to remove the majority of
non-Barrett’s esophagus cells. Batch correction was run with the
default settings, except for lambda = 14, followed by UMAP and clus-
tering on dimensions 1:50 of the Harmony embedding and a resolution
of 1.4. Barrett’s esophagus cell types were identified by matching top-
selected genes for each cluster found using the wilcoxauc function
from the Presto package (v1.0.0) with existing annotated gastro-
esophageal junction and intestinal single-cell datasets™. Certain
clusters were grouped together to capture a broader cell type.

The differentiation state of Barrett’s esophagus cells was deter-
mined using R package CytoTRACE (v0.3.3) with subsamplesize =
3000°. Inference of cell-cell communication was performed using
CellChat v2°',

MAESTER library preparation and sequencing

Mitochondrial transcripts were enriched from the intermediate 10x
cDNA libraries following the MAESTER protocol and using published
MAESTER primers®. Briefly, previously amplified full-length cDNA was
further amplified over six cycles in 12 separate PCR reactions con-
taining primers that together spanned the mitochondrial tran-
scriptome; 5-20ng input ¢cDNA was used in each reaction. PCR
products for each sample were pooled and purified using Ampure XP
(Beckman Coulter, A63881). Sequencing primer binding sites, adap-
ters, and dual indices were added to the resulting cDNA over another
six cycles of PCR and again purified using Ampure XP. Final MAESTER
libraries were in the expected range of 2-100 ng ul™ for concentration
and fragment sizes of 300-1500 bp. Libraries were sequenced on an
Illumina NextSeq 550 with a v2.5 300 cycle kit, allocating 28 cycles for
Read 1 and 270 cycles for Read 2, as well as eight cycles for both
indices; a custom index 2 primer was used (10x-Ci5P).

MAESTER sequencing data pre-processing and mapping
MAESTER raw sequencing data were demultiplexed and converted to
FASTQ files using bcl2fastq (v2.20.0.422). Reads were trimmed of
sequences that dropped below a quality threshold using a custom
Python script: reads were broken up into 10-bp segments whose
average quality (Q) score was calculated; the entire sequence following
and including the first 10-bp segment with an average Q score lower
than 25 was removed from the read. Reads that contained barcodes
not present in the corresponding filtered 10x data for each sample
were removed, and the remaining Read 2 FASTQ files had the library
barcode, 10x cell barcode (CB), and UMI added to the read identifier.
Reads were then aligned to the 10x reference genome used above with
STAR®,

Mitochondrial genome variant calling

Mitochondrial mutations were called using maegatk, which was
developed specifically for this protocol?’. Before running maegatk, the
CB and UMI were transferred from the Read 2 identifiers to the MAE-
STER BAM files as SAM tags, and the BAM files were merged with 10x
mitochondrial reads. maegatk was run with the following arguments:
-g rCRS-mb 100-mr 1. The output of maegatk included count matrices
with coverage values doubled. We normalized these values when
generating coverage plots in Fig. S2 and S5 to accurately represent the
true per-cell coverage.

Filtering of mitochondrial variants

Allele frequencies of mitochondrial variants in single cells were cal-
culated in R from the maegatk output and combined with accom-
panying variant information, including mean coverage, mean Q score,
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and allele frequency quantiles within specified cell subsets. This
information was used to select for variants within each sample that had
a mean coverage of >5, mean quality of >27, and AF of >25% in at least
1% of epithelial cells; such filtering identified germline and significant
tissue-specific variants. The above filtering steps were based on pre-
viously  published scripts  (https://github.com/petervangalen/
MAESTER-2021). Additionally, variants of interest were further fil-
tered to exclude any that were found in multiple patients, since these
were more likely to be artifacts.

In order to confirm somatic mitochondrial variants, we developed
a zero-inflated beta binomial model to capture the background noise
from contamination and technical artifacts within cells for those var-
iants. P-values could then be calculated for the variant in question in
each cell to determine whether it was improbable (and therefore true)
given the modeled background noise using a zero-inflated binomial
test. Finally, significant cells for a given variant were identified by cal-
culating a false discovery rate using an empirical null distribution
(based on the signal in non-epithelial cells) that accounted for differ-
ences in sequencing coverage between cells. A full description of the
statistical method is provided in the supplementary information. Var-
iants containing at least three significant cells from the ZIBB analysis
after accounting for expected false positives were plotted as allele
frequency heatmaps or in gene expression-derived UMAPs. Allele fre-
quency UMAPs included cells with a minimum coverage of five for the
variant of interest.

Mitochondrial clone calling and phylogenetic reconstruction
To find related cells (clones) for phylogenetic analysis, a clustering
analysis was performed on the single-cell heteroplasmy matrix gen-
erated from significant variants identified through the ZIBB pipeline
using Seurat’s FindNeighbors and FindClusters functions (cosine dis-
tance, k-parameter = 10, resolution = 3) with the variants acting as
features as previously described®.

Phylogenetic relationships between clusters were reconstructed
using the neighbor-joining method based on cosine distances between
cluster averages. Statistical support for the tree topology was assessed
through a comprehensive bootstrap analysis involving 1000 repli-
cates, in which cells within each identified cluster were resampled with
replacement while maintaining cluster sizes. For each edge in the ori-
ginal tree, the bipartition it defined was identified by traversing the
tree structure to determine the two sets of leaf nodes separated by
that edge.

Support values were calculated as the frequency of each biparti-
tion’s occurrence across bootstrap replicates, with identical or reverse-
ordered bipartitions considered equivalent. To calibrate these support
values, a null model analysis was performed through 100 permuta-
tions, in which cells were randomly reassigned between clusters while
maintaining cluster sizes. Each permuted dataset underwent the same
bootstrap analysis, generating a null distribution of maximum support
values expected by chance. The significance threshold was established
at the 95th percentile of this null distribution. Edges were considered
statistically supported only if both the edge itself and its parent node
exceeded this empirically derived threshold, ensuring that significant
edges represented well-supported evolutionary relationships that
were unlikely to arise from the random reassignment of cells between
clusters.

Clonal differential gene expression analysis

Differential gene expression analysis was performed in two stages to
identify genes associated with both dysplastic progression and clonal
expansion. Following clustering of cells based on their mitochondrial
variant patterns and phylogenetic relationships, cells in clusters 1, 8,
and 9 were identified as belonging to a clonal lineage spanning across
Barrett’s esophagus and dysplastic tissue, with clusters 8 and 9 con-
taining both Barrett’s esophagus and dysplastic cells of shared clonal

origin and cluster 1 representing a dysplastic subclone. Initial differ-
ential expression between dysplastic and Barrett’s esophagus cells was
assessed using the Seurat FindMarkers function with the Wilcoxon
rank-sum test (test.use = “wilcox”), minimum detection threshold of
10% (min.pct = 0.1), and log-fold-change threshold of 0.25 (logfc.-
threshold = 0.25).

Due to the limited number of Barrett’s esophagus cells in the
identified clone, a bootstrapped differential expression approach was
implemented to identify any clonal differences in gene expression.
This analysis involved 100 iterations using Seurat’s FindAlIMarkers
function (min.pct = 0.25, only.pos = TRUE), with each iteration sam-
pling cells to match the size of the smaller group. For each bootstrap
iteration, the temporary Seurat object was subsetted to contain equal
numbers of cells from each group, preserving the original Seurat
object structure and data normalization. Results across iterations were
aggregated to calculate mean log-fold changes, mean adjusted p-
values, and the frequency of significance for each gene. Genes were
considered robustly differentially expressed if they achieved statistical
significance (adjusted p-value<0.05) in at least 50% of bootstrap
iterations and showed consistent expression changes (|log2FC|>
0.25). The intersection of differentially expressed genes from both the
dysplasia versus Barrett's esophagus analysis and the clonal analysis
was identified. The top 10 overlapping genes were selected based on
their adjusted p-values from the clonal analysis bootstrap results for
plotting.

Single nucleotide variant analysis for clone call validation

To validate the mitochondrial variant-based clonal assignments, we
performed an independent single-nucleotide variant (SNV) analysis
using the scRNA-seq data. Putative SNVs were identified using
SCReadCounts®, a tool designed for cell-level quantification of SNV
expression from scRNA-seq data. First, we used the discovery mode of
SCReadCounts to identify a list of potential SNVs from each sample
and patient. After compiling all samples from each patient, we then
used SCReadCounts to quantify both reference and alternative allele
read counts for each SNV at the single-cell level.

Following SCReadCounts, we extracted information on variant
allele frequency (VAF), read depth (GoodReads), and SNV identity
(SNV_ID). We filtered SNVs based on a minimum read depth threshold
(=3 reads) and required a minimum number of cells (>4) to express
each variant for reliable statistical inference. For each SNV, we then
performed a comparative analysis between two groups of cells: group 1
consisted of cells belonging to a particular clone of interest (based on
mitochondrial variant lineage tracing), while group 2 consisted of cells
outside this clone but deliberately restricted to the same cell types and
samples as group 1 to control for technical and biological confounders.
This carefully matched control group design ensured that any
observed differences in SNV profiles were due to clonal relationships
rather than cell type-specific gene expression patterns or sample-
specific effects.

We then tested for statistical significance using a two-stage
approach. First, we calculated the optimal VAF threshold for each SNV
using Otsu’s method, which objectively separates cells with high and
low variant frequencies. We then constructed 2x2 contingency tables
based on this threshold and cell group assignments, and applied
Fisher’s exact test to assess the statistical significance of the associa-
tion between variant frequency and cell group. P-values were adjusted
for multiple testing using the Benjamini-Hochberg false discovery rate
(FDR) method.

To assess the robustness of our findings and control for potential
confounding factors, we conducted a permutation analysis with 100
iterations. In each permutation, we randomly reassigned cells to
groups while maintaining the original group sizes, and repeated the
statistical analysis. Permutations were stratified by sample of origin
and cell type to account for potential batch effects or cell type-specific
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SNV patterns. The distribution of p-values from permuted data served
as an empirical null distribution, against which we compared the actual
results to distinguish true biological signal from technical noise.

Tissue preparation for sequential in situ RNA hybridization
(seqFISH)

Pinch biopsies used for seqFISH were embedded fresh in OCT (Fisher,
23730571) and snap-frozen in an isopentane (035514, Fisher)-dry ice
bath, after which they were transferred to -80 °C for storage. 10-um
tissue sections were prepared from the OCT-embedded biopsies using a
cryostat (Microm) set to -20 °C and transferred to functionalized cov-
erslips (Spatial Genomics). Tissue sections were fixed in 3.7% for-
maldehyde (Fisher, BP531-500) solution in PBS (Invitrogen, AM9625) for
15 minutes at room temperature, followed by 3 PBS washes of 5 minutes
each. Tissue sections were permeabilized in 70% ethanol at 4 °C over-
night. Following permeabilization, the coverslip was dried completely
before washing with 1mL of Clearing Solution (Spatial Genomics) for
5 minutes. The coverslip was then rinsed with 70% ethanol for 60 sec-
onds and let air dry. Once dry, the flow cell was assembled using the
functionalized coverslip and the Spatial Genomics flow cell top. 80 pL of
Primary Wash Buffer (Spatial Genomics) was added to the flow cell and
incubated for 5 minutes. 80 pL of primary probes were denatured at
90 °C for 3 minutes during the wash buffer incubation and subse-
quently added to the flow cell. The primary probe incubation took place
overnight at 37 °C for 16 hours, after which the probe mix was removed
and washed out with 2 washes of 80 pL of Primary Wash Buffer (Spatial
Genomics). The flow cell was then incubated with 80 pL of Primary
Wash Buffer for 30 minutes at 37 °C, repeating the washes and incu-
bation a second time. Following the second incubation, the flow cell was
rinsed three times with 80 pL of Rinse Buffer (Spatial Genomics) and
loaded onto the Gene Positioning System (GenePS).

seqFISH imaging and analysis

Following a preliminary scan where regions of interest were manually
defined, Barrett’s esophagus sections underwent 40 sequential rounds
of hybridization and image acquisition for Alexa Fluor 488, Cy3B, and
Alexa Fluor 647 on the GenePS*. DAPI was also included in the
experiment. Probes for target genes were designed and synthesized by
Spatial Genomics. seqFISH images were exported as.tif files. Raw seq-
FISH images were thresholded using the SGAnalysis software (v0.6.1).
The same thresholds were used for all regions of interest on the cov-
erslip. seqFISH images were decoded in SGAnalysis to generate a count
matrix for downstream analysis.

Integration of scRNA-seq and spatial transcriptomics

Barrett’s esophagus cells were identified in the tissue based on the
expression of specific canonical genes, and cells lacking this signature
were excluded. Following this selection, cells with zero counts were
filtered from the dataset. The remaining cells underwent normalization
based on total gene counts over all genes, followed by a natural
logarithm transformation and scaling to achieve zero mean and unit
variance. A neighborhood graph of the cells was then computed and
visualized using UMAP. Concurrently, the scRNA-seq data of Barrett’s
esophagus cells were aligned with the genes from the spatial genomics
dataset to form a correspondence matrix. Finally, the MaxFuse pipe-
line was used to integrate the spatial transcriptomics and scRNA-seq
datasets™, improving the accuracy of cell type labeling. For distance
measurements, the position of the lumen was determined by choosing
the correct nodes from the convex hull that was found by using the
Graham scan algorithm. We then calculated the distance of each cell to
the line that represented the lumen.

Tissue preparation for HCR RNA FISH
Pinch biopsies used for HCR RNA FISH were embedded fresh in OCT
(Fisher, 23730571) and snap-frozen in an isopentane (035514, Fisher)-

dry ice bath, after which they were transferred to —80 °C for storage.
6-10 um tissue sections were prepared from the OCT-embedded
biopsies using a cryostat (Microm) set to —20 °C and transferred to
ColorFrost Plus Microscope Slides (Fisher, 12-550-17). Tissue sections
were fixed in 3.7% formaldehyde (Fisher, BP531-500) solution in PBS
(Invitrogen, AM9625) for 10 minutes at room temperature, followed by
2 PBS washes of 5 minutes each. 70% ethanol was used to permeabilize
cells at 4°C overnight. Slides were stored in 2xSSC (Invitrogen,
AM9765) at 4 °C.

HCR RNA FISH

Probes for target genes were designed and synthesized by Molecular
Instruments. Probe sets contained between 7 and 20 probes at a
concentration of 1 puM.

Slides were removed from 2xSSC and washed once with PBS
before beginning the HCR RNA FISH protocol. The protocol is a
modified version of the HCR v3.0 protocol that has been previously
published®**., In a humidified slide chamber pre-warmed to 37 °C, 200
ulL of hybridization buffer (30% formamide (Invitrogen, AM9344), 10%
dextran sulfate (Fisher, BP1585-100), 9 mM citric acid (pH 6.0) (Fisher,
BP339-500), 50 ug mL™ of heparin (Sigma-Aldrich, H5515-25KU), 1x
Denhardt solution (Invitrogen, 750018), and 0.1% Tween 20 (Bio-Rad,
1610781) was added to each slide for 10 minutes. 100 uL hybridization
buffer containing 0.4 pmol of each probe set was then added to the
slide and covered with a glass coverslip, after which the slides were
incubated for a minimum of 7 hours but up to 16 hours at 37 °C. After
the probe hybridization, slides were washed three times with
decreasing amounts of wash buffer (30% formamide, 9 mM citric acid
(pH 6.0), 50 pg mL™ of heparin, and 0.1% Tween 20) and increasing
amounts of 5xSSCT for 15 minutes each, followed by 2 washes in
5xSSCT alone. Samples were then pre-amplified with 200 pL amplifi-
cation buffer (10% dextran sulfate and 0.1% Tween 20) for 30 minutes
at room temperature. Previously ramp-cooled (0.08 °C/s) HCR hair-
pins (Molecular instruments) were added to 100 pL amplification
buffer at a concentration of 0.6 pmol; sections were incubated in
amplification solution under a glass coverslip at room temperature,
concealed from light. The amplification solution was washed away with
five 5-minute washes with 5xSSCT, with the last wash containing
100ngmL™? of DAPI. VECTASHIELD Vibrance antifade mounting
medium (Vector Laboratories, H-1700) was applied to the sample and
set under a glass coverslip for at least 4 hours at room temperature
before imaging.

HCR hairpins were labeled with one of the following fluorophores:
Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 594, Alexa Fluor 647, and
Alexa Fluor 700.

In cases where samples were re-probed for new gene targets,
coverslips and mounting medium were removed by soaking the
slides in PBS at room temperature overnight. Old probes were
stripped using 60% formamide in 2xSSC that was applied to the
slides at 37 °C for 15 minutes. Slides were then washed three times
in PBS for 15 minutes also at 37 °C. After stripping, slides were
wet-mounted in 2xSSC and imaged to confirm that the probes had
been successfully removed. Slides were stored in 2xSSC until the
next round of HCR RNA FISH, which proceeded as
described above.

Imaging of HCR RNA FISH

HCR RNA FISH samples were imaged on an inverted Nikon Ti2-E
microscope with a SOLA SE U-nIR light engine (Lumencor), an ORCA-
Flash 4.0 V3 sCMOS camera (Hamamatsu), a x60 Plan-Apo A
(MRDO01605) objective, and filter sets 49000 ET (Chroma), 49002 ET
(Chroma), 49304 ET (Chroma), 49311 ET (Chroma), 49307 ET
(Chroma), and a custom set with filters ET682.5/15x and ET725/40
(Chroma). Exposure times for the hairpin dyes were between 200 ms
to 1s, while the exposure time for DAPI was 10-20 ms.
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Samples that went through subsequent rounds of HCR RNA FISH
were aligned using the “Align Current ND Document” (NIS-Elements AR
5.20.02) command and converted to.tif files. The resulting files were
cropped and contrasted in a custom Python script that relies on the
scikit-image package to perform a gamma correction operation.

Whole-exome sequencing sample processing and library
preparation

Leftover dissociated cells from the Barrett’s esophagus biopsy for
Patient 6 that did not go toward 10x were stored in 80% methanol,
first at =20 °C for 24 hours followed by long-term storage at -80 °C;
approximately 1e5 cells were saved. Total DNA was extracted from
these cells following centrifugation and resuspension in 200 pL
DPBS using the QIAamp DNA Mini Kit (Qiagen, 51304). 600 ng DNA
were recovered, confirming our cell number estimate. Total DNA
was also extracted from whole normal esophagus and gastric cardia
biopsies taken from the same patient and stored in CryoStor CS10 in
liquid nitrogen. Once thawed and washed in DPBS, the biopsies
were chopped coarsely before being processed using the QlAamp
DNA Mini Kit with the manufacturer’s recommended protocol for
tissue.

Whole-exome sequencing library preparation was performed
using the Twist Exome 2.0 plus Comprehensive Exome Spike-in Kit
(Twist Biosciences, 105036) and sequenced on an Illumina NovaSeq
6000 at the Center for Applied Genomics at the Children’s Hospital of
Philadelphia with at least 100x coverage.

Whole-exome sequencing data preprocessing, somatic variant
calling, and copy number analysis

Sequencing data was preprocessed following the Genome Analysis
Toolkit’s (GATK) Best Practices®®. Briefly, FASTQ files were converted
to unmapped BAMs and checked for Illumina adapter sequences. Raw
reads were aligned to the GRCh38 reference human genome with the
Burrows-Wheeler Alignment Tool's Maximal Exact Match algorithm
(v0.7.10), after which duplicates were marked. Unless otherwise stated,
the above were performed using Picard (v1.141).

Preprocessed whole-exome sequencing data were analyzed with
Mutect2 (GATK, v4.2.5.0) to identify short somatic mutations includ-
ing single-nucleotide polymorphisms and insertions and deletions.
The Barrett’s esophagus sample was run with the two matched nor-
mals, as well as the publicly available germline resource somatic-
hg38_af-only-gnomad.hg38.vcf.gz (GATK). Somatic variant calls were
filtered using FilterMutectCalls (GATK) and loaded into the Integrative
Genomics Viewer (v2.12.3) for identification of high-quality variants in
known esophageal adenocarcinoma regulators®¢,

Copy number alterations in the Barrett's esophagus sample were
estimated using CNVKit (v0.9.9) with the default run settings®; a
pooled reference was generated from the normal esophagus and sto-
mach samples. Copy number results were plotted directly within
CNVKit using the function scatter.

Barrett’s esophagus single-cell reference analysis of bulk
transcriptomes

Count matrices of bulk transcriptomes were downloaded from the
TCGA-ESCA project (https://portal.gdc.cancer.gov/projects/TCGA-
ESCA). The Python package cellSignalAnalysis identified reference
signals derived from the Barrett’s esophagus scRNA-seq analysis in the
bulk transcriptomes, while accounting for the possibility that the
mapping was incomplete*’. Reference signals were generated from
clustered scRNA-seq data by summing the raw counts for each gene
across all the cells in each cluster, after which the summed counts were
normalized to sum to one. cellSignalAnalysis was run using Seurat
clusters that, in some cases, were subsequently grouped to define
broader cell types. The contribution of these subclusters was com-
bined by cell type in the output.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The single-cell RNA raw sequencing data are deposited in the Gene
Expression Omnibus (GEO) under accession number GSE291080. The
spatial transcriptomics data are deposited in GEO under accession
number GSE288235. The MAESTER data are deposited in GEO under
accession number GSE287855. The previously published data com-
pared in S14 from Nowicki et al. (2021) are available from the European
Genome-phenome Archive (EGA) EGAD00001005438. All raw micro-
scope images are available on Zenodo under accession 17229323. The
whole exome sequencing data generated in this study have been
deposited in the database of Genotypes and Phenotypes (dbGaP)
under accession number phs003949 [https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs003949.v1.p1]. These
data are available under restricted access due to patient privacy reg-
ulations and the presence of potentially identifying genetic informa-
tion. To request access, researchers should submit a Data Access
Request through the dbGaP Authorized Access system. Access
requests must include a Data Use Certification signed by the investi-
gator and institutional signing official, outlining the proposed research
use and data security measures. The NIH Data Access Committee
typically reviews requests within 2-4 weeks of submission. Once
approved, access is granted for one year with the possibility of annual
renewal, and data will remain available in dbGaP according to NIH data
sharing policies.

Code availability

Code for the ZIBB model is available under an Apache License 2.0 on
Zenodo under accession 17229078 [https://doi.org/10.5281/zenodo.
17229078] and on Github [https://github.com/sydshaffer/scmtVT/
tree/vl.1]. The Apache License 2.0 permits unrestricted use, mod-
ification, and distribution of the code for commercial and non-
commercial purposes, with the requirement that the copyright and
license notices are preserved. Diagnostic plots from ZIBB and FDR
threshold analysis outputs are also available on the same accession.
The code used for making figures has been deposited at Zenodo under
a Creative Commons Attributions 4.0 International License under
accession 171851717° [https://doi.org/10.5281/zenodo.17185171]. The
Creative Commons Attribution 4.0 International license permits
unrestricted use, modification, and distribution of the code for com-
mercial and non-commercial purposes as long as appropriate credit to
the original authors and indication of any changes made is given. Our
code used to process MAESTER samples was modified from Peter van
Galen’'s MAESTER protocol? [https://github.com/petervangalen/
MAESTER-2021], which is licensed under the MIT Copyright License
© 2021 vangalenlab. The copyright notice and license information
have been retained in our relevant source files in the Zenodo reposi-
tory 17185171.
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