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In-situ physical adjoint computing in
multiple-scattering electromagnetic
environments for wave control

John Guillamon1,3, Cheng-Zhen Wang 1,3, Zin Lin2 & Tsampikos Kottos 1

Controlling electromagnetic wave propagation in multiple scattering systems
is a challenging endeavor due to the extraordinary sensitivity generated by
strong multi-path contributions at any given location. Overcoming such
complexity has emerged as a central research theme in recent years,motivated
both by a wide range of applications – from wireless communications and
imaging to optical micromanipulations – and by the fundamental principles
underlying these efforts. Here, we show that an in-situ manipulation of the
myriad scattering events, achieved through time- and energy-efficient adjoint
optimization (AO) methodologies, enables real time wave-driven functional-
ities such as targeted channel emission, coherent perfect absorption, and
camouflage. Our paradigm shift exploits the highly multi-path nature of these
complex environments, where repeated wave-scattering dramatically ampli-
fies small local AO-informed system variations. Our approach can be imme-
diately applied to in-door wireless technologies and incorporated into diverse
wave-based frameworks including imaging, power electronic and optical
neural networks.

Controlling electromagnetic wave propagation in naturally occurring
or engineered multi-mode complex media is a core challenge for RF/
microwave, modern optical, and photonic systems1–17. The origin of
this difficulty lies in multiple scattering and the consequent inter-
ference of many photon paths, leading to extraordinary complexity
and sensitivity in these media. Yet, controlling these wave-scattering
events and their associated interference phenomena is essential for a
wide range of applications, including satellite and in-door wireless
communications, fiber-based communications and endoscopy, deep-
tissue imaging, and optogenetic control of neurons. At first glance, the
complete scrambling of a wavefront as it propagates through a com-
plex medium appears to conflict with the objective of precision wave-
control—such as focusing electromagnetic radiation on a diffraction-
limited spot inside or through a multi-scattering/opaque medium.
Indeed, for many years, the presence of random secondary sources
(scatterers or reflectors) was considered detrimental. However, novel

techniques such as time-reversal18,19 and wavefront shaping (WS)1,2,19

disrupted this paradigm by recognizing that these secondary sources
offer additional degrees of freedom. Wavefront shaping protocols
have relied on recent technological developments with spatial light/
microwave modulators19–22; these allow phase and/or amplitude
modulation to each segment of an incidentmonochromatic wavefront
in order to achieve desired functionalities after propagation through
the complex medium. On the other hand, time-reversal provides a
broadband approach that yields spatiotemporal focusing of waves.

Although both of these methodologies guarantee optimal effi-
ciency, they require a complete knowledge of the scattering domain,
limiting their practicality for a variety of applications. A pivotal
example is indoor wireless communications4,23,24, where small tem-
poral variations in the enclosure can drastically alter the scattering
process. An entirely different approach relying on smart electro-
magnetic environments has emerged with the advent of
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reconfigurable intelligent metasurfaces (RISs)23–29. This approach
foresees a fully programmable wave propagation to harness the wave-
scattering complexity and achieve optimized transmission of both
information and power. A bottleneck for the practical implementation
of this proposal is the development of smart, low-cost/high-efficiency,
optimization schemes thatwill be able to identify in real-time, with low
latency, optimal RIS configurations for achieving specific modalities.

Meanwhile, there has beenwidespread attention towards physical
(optical) analog computing for low-latency deep learning
applications30–38. Pioneering works such as36,37 showed that it is possi-
ble to perform in-situ backpropagation through a photonic imple-
mentation of an artificial neural network. However, these platforms
typically consist of feed-forward waveguides, couplers and inter-
ferometers, in contrast to complex multi-scattering multi-resonant
electromagnetic environments, inwhich real-timeoptimizations of on-
demand wave-control functionalities are needed. Obviously, the
development of such real-time, on-hardware optimization schemes
will benefit not only indoor wireless communications (see Fig. 1a) but
also a broad class of physical systems. Representative wave settings
include control of closed-loop tabletop experiments, seismic wave
control, as well as applications in adaptive optics (atmospheric ima-
ging, endoscopy, free-space optical links) and related remote-sensing
tasks – including geo-satellite imaging and adaptive ranging (optical or
RF), see Fig. 1b,c.

Here, we experimentally demonstrate an in-situ Physical Adjoint
Computing (iPAC) optimization protocol that leverages adjoint sensi-
tivity analysis39–42 to control and harness complex wave dynamics. The
protocol is built around three components: in-situ measurements,

targeted perturbations, and an external control mechanism, which
collectively enables the real-time optimization of wave systems
through two sequential field propagations – forward and adjoint. First,
local probes are employed to measure both the forward and adjoint
wave fields at specific elements within the system. Forward propaga-
tion is utilized to compute a desired merit (or cost) function and to
determine the excitation profile required for the subsequent adjoint
propagation. The adjoint field, in turn, provides a comprehensive and
simultaneous measurement of all targeted sensitivities. An external
control mechanism evaluates these sensitivities to identify the
potential perturbations that could enhance (or diminish) the merit
(cost) function. These adjustments are then delivered by local actua-
tors to the targeted components (i.e., the tunabledegrees). The cycle is
repeated asmany times as necessary tomaximize (minimize) themerit
(cost) function. The proposed methodology typically achieves the
fastest local convergence among competing strategies, which con-
stitutes it attractive for a variety of wave-control applications, see
Fig. 1a–c. While the ultimate gain is context-dependent, iPAC is most
effective in controlled, quasi-static or slowly varying, multiply scat-
tering environments where forward and adjoint excitations can be
launched. Provided adequate sensing-actuation bandwidth, signal-to-
noise ratio, and tolerable local model mismatch, iPAC provides a
scalable path to on-platform optimization. To demonstrate the versa-
tility of our protocol we showcase three different modalities, namely,
targeted channel emission, coherent perfect absorption, and camou-
flaging, using a microwave experimental platform, see Fig. 1d. The
latter consists of a networkof coupled coaxialmicrowave cableswhose
wave transport demonstrates features characterizing wave chaotic

Fig. 1 | Physical frameworks and experimental platform used to
demonstrate iPAC. Examples of physical wave frameworks where the iPAC pro-
tocol can be sucessfully implemented: a A smart electromagnetic environment
utilizing RIS for a variety of modalities. b Seismic wave management. c Adoptive
optics for atmospheric imaging. d A multi-resonant, multi-scattering complex
network of coaxial cables has been used as a platform to demonstrate the viability
of the iPAC protocol. The protocol used as control parameters, the relative
amplitudes and phases of injectedwaves (whichwere controlled by the VNA), and a

targeted set of coaxial cables of the network whose electrical lengths were digitally
controlled using phase-shifters. The iPAC scheme has been demonstrated for a
variety of modalities: (i) Targeted Mode Transfer that aims to receive the injected
electromagnetic signal at a specific receiving channel; (ii) Coherent Perfect
Absorption that aims to absorb the injected electromagnetic signal completely; (iii)
Invisibility (cavity camouflaging) that results in an outgoing signal being the same
(phase and amplitude) as the injected one.
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systems43–45. These networks are frequently used as models for
mesoscopic quantum transport, sound propagation, and electro-
magnetic wave behavior in complex interconnected structures such as
buildings, ships, and aircrafts46–50 and therefore constitute a versatile
platform for experimentally implementing our in-situ optimization
protocol.

Results
Principles of in-situ adjoint optimization
Formally, the steady-state propagation of a time-harmonic wave field
Φ is governed by a linear system:M(p)Φ =b(p). Here,M is the system
matrix, b is the driving source, and p is a vector of N-controllable
optimization parameters. An optimization objective g is typically
expressed as an explicit function of Φ, Φ*, and p, i.e., g = g(Φ,Φ*, p).
Using the chain rule, the gradient sensitivities of gwith respect top are
given by:

dg
dp = ∂g

∂p +2R ∂g
∂Φ

T
M�1 ∂b

∂p � ∂M
∂p Φ

� �� �
ð1Þ

Here, ∂b
∂p � ∂M

∂p Φ physically represents a collection of induced excita-
tions resulting from perturbing the system via one parameter pi at a
time for each i = 1, 2, 3, ⋯ , N. Consequently, U =M�1 ∂b

∂p � ∂M
∂p Φ

� �
denotes a collection of several wave fields in response to each and
every one of these perturbations (the ith column, Ui, corresponds to
the wave field generated by perturbing the single pi). However, finding
the entire U becomes excessive especially when the number of con-
trollable parameters, N, is large.

The adjointmethod addresses this challenge by reformulating the
problem as:

∂g
∂Φ

� �T

M�1 =ΨT ) MTΨ=
∂g
∂Φ

ð2Þ

Here,Ψ is the adjoint field generated in response to the source ∂g
∂Φ. For

reciprocal wavemedia, whereMT =M, the adjoint field can be found by
propagating through the same system. The gradient sensitivities are
now given by:

dg
dp

=
∂g
∂p

+2R ΨT ∂b
∂p

� ∂M
∂p

Φ

� �� �
ð3Þ

This formulation significantly reduces computational demands, as all
sensitivities can be obtained through a single additional field propa-
gation, instead of computing the entire collection U of N wave fields.
Moreover, ∂b∂p and

∂M
∂p are typically very sparse tensors since the effect of

each parameter pi on M and b is localized. Consequently, only the
values ofΦ andΨ corresponding to the non-zero entries of ∂b

∂p and
∂M
∂p

are needed.
To implement the adjointmethodexperimentally,we sequentially

excite the wave system with the driving sources b and ∂g
∂Φ, measure Φ

and Ψ at the strategic positions designated by ∂b
∂p and ∂M

∂p and then
compute dg

dp digitally using Eq. (3). Importantly, our in-situ protocol
bypasses the computationally intensive tasks of solving MΦ =b and
MΨ= ∂g

∂Φ. Instead,wedirectlymeasureΦ andΨ, inherently accounting
for all the complexities of the system, including hidden losses and
detunings, thereby enabling self-calibration. Having found dg

dp, any
gradient-guided optimization algorithm can be applied to advance g51.
We set up an external control enclosure to orchestrate the entire
process, including the sequential (forward and adjoint) wave-field
excitations, in-situ measurements, gradient computations, and opti-
mization updates, ensuring seamless and efficient real-time
optimization.

While adjoint analysis shares a conceptual common ground with
the celebratedbackpropagation algorithm, our goal is not to develop a

physical deep-learning platform36. Instead, we aim to optimize a wave
system in-situ to achieve specific physical functionalities in real time,
such as perfect absorption, signal delivery to targeted channels, or
camouflage. Unlike data-driven methods, our protocol does not train
any neural network nor rely on extensive datasets. Crucially, our work
should be distinguished from physical implementations of feed-
forward neural networks36,37, which often avoid back reflections. In
contrast, our in-situ optimization holistically exploits the intricate
physics of multiple scattering of waves within an arbitrarily complex
network topology, where any wave effect, including back reflections
and even resonant phenomena, can be utilized as valuable physical
degrees of freedom. Furthermore, our implementation at RF and
microwave frequencies allows us to easily access both phase and
amplitude information of the fields, which ensures that the intricate
wave interactions within the system are accurately accounted for,
enabling precise and reliable optimization.

Physical platform and implementation of the adjoint protocol
The complex microwave network14,44,52–54 consists of n = 1, ⋯ , V ver-
tices, that are connected by one-dimensional coaxial wires (bonds)
B = (n, m) of length LB, which are irrationally related to one another.
The position xB = x on bond B is x = 0 (lB) on vertex n(m). The con-
nectivity of the network is encoded in the V ×V symmetric adjacency
matrix C, with elements Cnm = 1 if vertices n ≠m are connected via a
bond lB, and Cnm = 0 otherwise. The number of bonds that emanate
from a vertex n defines its valency vn. The electric potential difference
(voltage) between the inner and outer conductor surfaces of the coax
cables at position x along each bond satisfy the telegraph
equation44,52–54

d2

dx2
B

+ k2

 !
ψB xB

� �
=0; k =

ωnr

c
ð4Þ

where k is the wavenumber of the propagating wave with angular
frequency ω, c is the speed of light in vacuum and nr is the complex-
valued relative indexof refractionof the coaxial cablewhose imaginary
part describes Ohmic losses in the cables. To emulate realistic
conditions, we have considered that all cables suffer Ohmic losses
which are modeled by a complex refractive index with imaginary part
Imðnr Þ ’ 0:0085. Furthermore, it is convenient to define the vertex
field Φ= ϕ1,ϕ2, . . . ,ϕN

� �> where ψB xB =0
� �

=ϕn is the voltage at
vertex n.

The scattering set-up is completed by connecting α = 1, ⋯ , N ≤V
of the vertices to transmission lines (TL) that are used to inject and
receive monochromatic waves of angular frequency ω = 2πf. The cou-
pling to the TLs is described by the N × VmatrixW with elements 1(0)
when a vertex is connected (not connected) to a TL. At each vertex n,
the continuity of the field and current conservation are satisfied. In the
frequency domain, these conditions take the following compact
form44,52

HðkÞ+ iW>W
� �

Φ=b;Hnm =
�P

l≠n
Cnl cot kLnl

� �
, n=m,

Cnm csc kLnm
� �

, n≠m:

8<
: ð5Þ

Above,b = 2iW⊤I is theN-dimensional vector that describes the driving
source, and Iα =Aαe

iθα are the components of anL-dimensional vector I
that describes the amplitudesAα and the phases θα of the input fields Iα
from the α-lead. Consequently, the system matrix for the microwave
network is M= HðkÞ+ iW>W

� �
=M>.

The gradient sensitivities are evaluated using Eq. (3). The imple-
mentation of this equation requires the knowledge of the adjoint field
Ψ which is the solution of the adjoint Eq. (2). In our case, it takes the
same form as the equations that dictate the forward field with the only
difference being the driving source vector, i.e.,MΨ=2iW> ∂g

∂Φ

� �>
. The
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latter is determined from the specific form of the optimization
objective function g(Φ, Φ*, p).

The other elements required for the evaluation of Eq. (3) are the
gradients ∂M

∂p and ∂b
∂p. Theoptimizationparameter vectorp is partitioned

into two parts: the first one involves cavity-shaping optimization
parameters (e.g. selected set of bond lengths fLoptnm g in the network),
which are encoded in the systemmatrixM. Its gradient ∂M

∂Loptnm
is a sparse

V × V operator with non-zero elements only at entries that incorporate
the selected bonds fLoptnm g. We also consider additional optimization
parameters, i.e., the amplitudes Aα and phases θα of the incident waves
injected into the system from the α-th TL. These wavefront shaping
parameters are encoded in b; resulting in ∂bn

∂Aα
=2ieiθαWn,α ,

and ∂bn
∂θα

= � 2Aαe
iθαWn,α .

Eventually, the objective function gradient becomes:

dg
dp

� dg
dLoptnm

,
dg
dAα

,
dg
dθα

" #
=

�2R ΨT ∂M
∂Loptnm

Φ
n o

∂g
∂Aα

+2R ΨT ∂b
∂Aα

n o
∂g
∂θα

+2R ΨT ∂b
∂θα

n o

2
66664

3
77775

>

: ð6Þ

It is important to emphasize that Eq. (6) does not require measuring
the entireΦ orΨ but only those voltages that correspond to the non-
zero entries of ∂M

∂Loptnm
and ∂b

∂Aα
, ∂b

∂θα
associated with the controllable

parameters. In other words, the sparsity of ∂M/∂p and ∂b/∂p further
reduces measurement complexities.

Examples of modalities and optimization objective functions
Below we provide some examples of optimization objective functions
associated with various modalities.

TargetedModeTransfer—Inmany practical scenarios, particularly
in in-door wireless communications, one requires energy/information
transfer from specific input channels to designated output channels—
distinct from the injected ones. Such targeted mode transfer (TMT)
can be achieved by an appropriate cavity-shaping and/or wavefront-
shaping process whose success is quantified by the objective function

gTMT =

P
fTαgjϕαj2P
fIβgjAβj2

, ð7Þ

where {Tα}( ≠ {Iβ}) denotes the set of targeted (injected) channels. In
case of lossless structures gTMT = 1(0) indicates perfect (poor) TMT
performance.

Coherent Perfect Absorption—Coherent perfect absorption
(CPA)14,55,56 requires that the incident radiation has a particular fre-
quency and spatial field distribution (coherent illumination) such that
the (weakly) absorbing cavity acts as a perfect constructive inter-
ference trap that eventually absorbs completely the incident radiation.
The adjoint optimization methodology can be utilized for the man-
agement of themulti-path constructive interference via cavity shaping
and/or wavefront shaping. In this case, the optimization objective
function is

gCPA = 1�
P

fIαgjϕα � Aαe
iθα j2P

fIαgjAαj2
�
P

fTβgjϕβj2P
fIαgjAαj2

ð8Þ

where the second termdescribes the reflectedwaves from the injected
channels {Iα} and the third term describes the transmitted waves from
the remaining {Tα} ≠ {Iβ} channels. Perfect absorption corresponds
to gCPA = 1.

Invisibility – Evading the detectability of a scattering object
requires the elimination of any imprints in the phase and amplitude of
the scattered interrogatingwaves due to their interactionwith a target.
This is achieved by appropriate manipulation of the many-path inter-
ference phenomena occurring inside the scattering domain via cavity

shaping and/or tailoring control signals that counter phase and
amplitude scattering imprints (including absorption) caused by inter-
actions with the target. The objective function that ensures such
optimal cancellations take the form

g invis =
jϕα0

� Aβ0
eiθβ0 j2

A2
β0

+
jϕβ0

� Aβ0
eiθβ0 j2P

fIβgjAβj2
+

P
fTα≠α0,αc

gjϕα j2P
fIβgjAβj2

, ð9Þ

where ginvis = 0 indicates optimal invisibility/camouflage performance.
Above, the first term on the right-hand-side compares the scattered
signal (phase and amplitude) from a probed α0-channel to an
interrogating signal injected into the system from a β0-channel; the
second termmeasures the reflectance from the β0-channel. Finally, the
last term evaluates the transmittance to all channels that are different
from the probe channel α0 and the control channel αc. The objective
function Eq. (9) does not enforce any constraints to the reflected wave
from the control channel αc.

In-situ Implementation of iPAC
We proceed with the in-situ implementation of our optimization
scheme for the three modalities discussed above. The schematics of
the microwave networks for each of the three cases are shown in the
upper row of Fig. 2. The TLs (black wiggling lines) are attached to
vertices that are indicated with red-filled circles. The amplitude and
phase of the injected signals froma two-sourceVNA, have beenused as
optimization parameters (wavefront-shaping). In all cases, the signal
from the α = 1 TL serves as a reference for the amplitude A and the
phase θof the signal injected from the secondTL. Finally, the bond Lopt12
incorporates a phase-shifter which was digitally controlled for “cavity-
shaping” purposes. The selected bond was chosen solely for experi-
mental convenience; it is not special to any of the three modalities
(TMT, CPA, invisibility). The only practical requirement is that the
bond accommodate a phase shifter and that the fields at its end ver-
tices be accessible for probing. Any bond meeting these conditions
would serve equally well. In our prototypes, tuning a single cable
lengthwas sufficient to realize the targeted functionalities described in
the previous subsection.

The in-situ optimizationprotocol proceeds as follows: (a) Forward
Measurement: First, we inject signals from TLs attached to two of the
vertices (n = 1, 2 for the CPA and n = 1, 3 for the TMT and invisibility
modalities, see upper rowof Fig. 3) into the network. Forward voltages
Φ are measured at the vertices n = 1, 2 that are associated with the
length optimization parameter Lopt12 . (b) Adjoint Measurement: The
source for the adjoint measurement is then constructed from the
previously measured forward voltages and according to the specific
objective function. For the TMT case, the adjoint input was delivered
from theα =4TL thatwas targeted formaximizing the outgoing signal.
For the CPAprotocol, the adjoint inputwas delivered to the two α = 1, 2
TLs. Finally, for the invisibility protocol, the adjoint signal was deliv-
ered to α = 1, 2 TLs where the optimization constraints have been
imposed. In this case, a control field was also injected from the
remaining α = 3 TL. The adjoint voltages Ψ that were needed to mea-
sure for the evaluation of the gradient were associated with the ver-
tices connected to the TLs that have been used to inject the input
signal, i.e. α = 1, 2 for the CPA, α = 1, 3 for the TMT and invisibility
protocols; (c) Gradient Calculation: With the local forward Φ and
adjoint Ψ measurements obtained, we calculate the gradient of the
objective function with respect to the controllable parameters (see Eq.
(6)) in real-time. We re-emphasize that the choice of controllable
parameters dictates the positions/vertices n where the required for-
ward ϕn and adjoint measurements ψn of the voltages are performed
for the gradient calculation dg

dp; (d) Parameter Update: Once the gra-
dient was computed, we employed a gradient descent algorithm to
update the optimization parameters. Specifically, we used the package
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NLOPT with the Limited-memory Method of Moving Asymptotes
(LD_MMA) option57. This algorithm identifies a new set of parameters,
which were then implemented by adjusting the phase shifter length
andmodifying the relative amplitude andphaseof the input signals; (e)
Iteration and Convergence: The steps (a–d) are repeated until the
objective function converges on an optimal value (within some toler-
ance). A single operating frequency was selected and held constant
throughout the optimization process.

In Fig. 2 we report the results of the in-situ optimization (solid
black lines with filled circles) for the threemodalities discussed above.
In all cases, we have achieved a rapid convergence towards an optimal
value of the corresponding objective functions occurring after ~20
iterations of the protocol, see Fig. 2b,g,l. The convergence of the three
control parameters (Lopt12 ,A, θ) towards their optimal value for each of
the three modalities is reported in the third, fourth, and fifth rows of
the same figure respectively.

In-silico Implementation of iPAC for large control
parameter system
In Fig. 3, we also present the in-silico results (shown as dashed lines
with filled squares) obtained from a digital twin implementation of the
AO protocol. The close agreement between the digital twin and the in-
situ results confirms that our experimental set-up is adequately

captured by our network model. This ad hoc validation supports the
applicability of the digital twin approach to more complex networks,
with a larger number of control parameters. Needless to stress that, in
general/typical cases, an in-silico implementation of the AO is subject
to a number of drawbacks like developing a highly accurate model of
every propagation path, boundary and loss channel in continuous
space which can become computationally burdensome and sensitive
to modeling errors, especially for complex cavities. These have to be
contrastedwith the in-situ implementation of iPAC, where the physical
system itself computes its own Green’s function in real time, by per-
forming only local measurements.

We considered fully connected networks consisting of N = 20
vertices with a total of 190 bonds. The bond-lengths are initially uni-
formly distributed in the interval [L0 − δL, L0 + δL] whereL0 = 25 cmand
δL = 5 cm. At each vertex, we have attached TLs (i.e. N = 20) that have
beenused for injecting (receiving) the interrogating (scattering) signal.
The frequencyof the injectedwaveswas chosen to be f = 3.2 GHz for all
cases. The optimization process has been achieved via bond-length
variations (cavity-shaping approach).

The first column of Fig. 3 reports the results of the TMTmodality.
A random wavefront has been injected into the network from six TLs
coupled to vertices n = 1, 3, 6, 7, 9, and 15. The adjoint optimization
scheme aimed to identify the appropriate bond-length variations that
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Fig. 2 | Experimental demonstration of iPAC optimizer. In-situ demonstration of
the iPAC optimizer using a complex network of coaxial cables (red vertices indicate
the positions where TLs are attached). The control parameters are the (electrical)
length of the cable Lopt12 (using a phase shifter) and the relative phase and amplitude
of the injected signals. a Network schematics for Targeted Mode Transmission
(TMT) for a wave with frequency f = 1.86 GHz that is injected fromTLs α = 1, 3 and is
delivered at targeted TL α = 4. b Convergence of the TMT objective function gTMT

(gTMT ≈ 87%) vs. iteration number. Evolution of: c The electrical length Lopt12 ; d The
injected relative power; e The relative phase (with respect to a signal injected from
TL α = 1) of the signal injected from TL α = 3. f Network schematics for Coherent
Perfect Absorption (CPA) for a wave injected from TLs α = 1, 2 at frequency
f = 3.26 GHz. g Convergence of the CPA objective function gCPA toward nearly
perfect absorption (gCPA≈0.9998). Evolution of: h The electrical length Lopt12 ; i The
injected relative power; j The relative phase (with respect to a signal injected from

TL α = 1) of the signal injected from TL α = 2 vs. iteration number. k Network
schematics for signal invisibility (cavity-camouflage). The interrogating signal at
frequency f =0.74GHz is injected into the network from TL β0 = 1 and is received
fromTLα0 = 3with the same amplitudeandphase (0.01 dBpower variation and0.1o

phase variation with respect to the injected wave). A control signal (phase and
amplitude) injected from lead αc = 2 is balancing the losses and together with the
length Lopt12 ensures the invisibility of the cavity as far as the processing signal at TL
α0 = 3 is concerned. The reflected signal from lead β0 = 1 is essentially zero.
l Convergence of ginvis to ~10−4, signifying that the transmitted field matches the
desired (injected) wave. Evolution of:m The cable-length Lopt12 ; n The injected
relative power; o The relative phase (with respect to the signal injected from lead
β0 = 1) of the control signal injected from leadαc = 2 vs. iteration number. The black
solid (colored dashed) lines with filled black circles (colored squares) are the
experimental (digital twin) results.
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Fig. 3 | In-silico demonstration of the iPAC optimizer. In-silico demonstration of
the iPAC scheme using a digital twin of a fully connected network of V = 20 vertices
consisting of 190 lossy coaxial cables. Each vertex is attached to a TL. The control
parameters used for the in-silico optimization involve only the bonds of the net-
work (cavity shaping). Three different modalities, all at f = 3.2 GHz, are demon-
strated: a–c: Targeted Mode Transmission (TMT) for a scenario where six TLs
α = 1, 3, 6, 7, 9, and 15 are used to inject a random wavefront, and the network is
optimized to deliver the input signal ≈90% to the targeted channels n = 8, 16, 17.
a Convergence of the TMT objective function gTMT vs. iteration number.
b Representative evolution of selected bond-length variations during the optimi-
zation. c Final set of bond-length variations across all network bonds.d–f: Coherent

Perfect Absorption (CPA) scenario for a wave injected from all N = 20 TLs.
d Convergence of the CPA objective function gCPA toward nearly perfect
absorption (gCPA ≈0.9998). e Representative bond-length variations vs. iteration.
f Final network configuration achieving the CPA state. g–i: Signal invisibility
(cavity-camouflage). The interrogating signal is injected into the network from
channel β0 = 1 and is received from TL α0 = 8 with the same amplitude and phase.
A control signal injected from a control channel αc = 3 is balancing the losses.
g Convergence of gtrans to ~6 × 10−4, signifying that the transmitted field matches
the desired (injected) wave. h Evolution of selected bond-length variations during
the optimization. i Final distribution of bond-length variations across all bonds
after 3351 iterations.
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resulted in delivering the injected signal to a specified set of channels
attached to vertices n = 8, 16, 17, see inset of Fig. 3a. In themain part of
subfigure Fig. 3a, we show the convergence of the objective function
gTMT to a total transmittance of approx. 90%.We have checked that for
the converged optimal bond-length configuration, the remaining 10%
energy loss was associated with the absorption due to Ohmic losses at
the wires. Typical bond-length variations δLoptnm versus the iteration
number are shown in Fig. 3b, while in Fig. 3c, we report the bond-
length variations for all bonds of the network at the end of the opti-
mization process.

The second column of Fig. 3 reports the digital twin calculations
for the CPA-scenario. We have injected a randomly chosen coherent
wavefront from all N = 20 TLs into the lossy network, see inset of
Fig. 3d. Using the adjoint optimization protocol we have determined
the optimal bond-lengths for which the network acts as a perfect
constructive interference trap leading to complete absorption of the
incident wave. In Fig. 3d, we show the convergence of the objective
function towards a value gCPA= 0.9998 occurring after 2276 iterations.
The evolution of some typical bond variations versus the number of
iterations is shown in Fig. 3e, while Fig. 3f reports the final bond-
variation for all bonds.

Finally, the last columnof Fig. 3 shows the digital twin simulations
for cavity camouflage (invisibility), see the inset of Fig. 3g. We have
injected a signal from channel β0 = 1 with an amplitude Aβ0

= 0:56 and

phase θβ0
= 69o. To balance the network losses we have also injected a

control signal into the system from channel αc = 3 with amplitude
Aαc

=0:85 and phase θαc
=333o. The adjoint optimization protocol

aimed to identify an appropriate bond-length configuration for which
the scattered signal collected at a specified α0 = 8 TL is identical to the
interrogating wave injected from TL β0 = 1. In Fig. 3g, we show the
convergence of the objective function gtrans towards the value
ginvis ≈ 6 × 10−4 after 3351 iterations. Here, in addition to the constraints
imposed by the objective function ginvis in Eq. (9) we have also
requested zero transmission and reflection from the control channel
αc = 3. This additional constraint introduce the following modification

g invis ! g invis +
jϕc�Aαc

eiθαc j
2P

fIβ g
jAβj2

. Even with a modest number of iterations

~400 of the adjoint optimization scheme the objective function can be

as small as gtrans ≈0.01. Figure 3h,i show a representative evolution of
bond-length variations versus iteration number and the final bond-
lengths at the end of the optimization process (3351 iterations).

Efficiency of adjoint optimization computing
It is instructive to examine how the efficiency of the Adjoint Optimi-
zation scheme varies with the number of controlled parameters p and
the complexity of the network. The latter can be quantified by the
topological entropy htop = lnρ58, where ρ is the spectral radius of the
non-backtracking (Hashimoto) matrix T indexed by the set of directed
bonds of the network (see “Methods”). The number of period-n non-
backtracking closed paths (counted up to a cyclic shifts) is
1
nTrðTnÞ � ρn=n, where ρ is bounded between the minimum and
maximum valency vn as minn vn � 1

� �
≤ρ≤maxn vn � 1

� �
. Hence, htop

characterizes the combinatorial branching complexity of the under-
lying non-backtracking dynamics and thus reflects the connectivity of
the network.

In Fig. 4 we report the efficiency of the Adjoint Optimization for
each of the three modalities as a function of the number of control
parameters, for three representative values of the topological entropy.
In all cases, we find that the efficiency increases with the number of
control parameters. The convergence rate of the objective function to
its optimum, however, depends on the task and on htop. For CPA,
convergence accelerates as htop increases. This finding is consistent
with higher connectivity (more lossy bonds), which strengthens mul-
tiple scattering, traps energy, and enhances absorption. In contrast,
TMT and invisibility show a non-monotonic dependence on htop, with
fastest convergence near h ≈ 2 indicating that moderate complexity
aids optimization, whereas excessive connectivity slows the approach
to the optimal values of the objective functions. Further simulation
details are given in Methods.

We stress that gradient-based schemes are farmore time-efficient
than derivative-free alternatives (e.g., genetic algorithms or particle-
swarm methods) once the number of optimization parameters grows
large59. In high-dimensional settings, non-gradient approaches typi-
cally incur substantially greater computational effort and memory,
with scaling that deteriorates as the parameter size increases60,61.
Empirically, gradient methods also frequently attain better local
optima25,59,62,63. As a representative case,59 benchmarks Adjoint
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Fig. 4 | Efficiency of Adjoint Optimization. Efficiency of the Adjoint Optimization
as a function of the number of controlled parameters and network complexity htop
for: a TMT modality; b CPA modality; and (c) signal invisibility. Solid lines corre-
spond to three representative networks with htop ≈ 1 (blue), 2 (orange), 3 (green).
Each network has V = 75 vertices with Vbulk = 50 bulk (interior) vertices whose
connectivity is varied to tune htop, and VTL = 25 boundary vertices used to attach

transmission lines (TLs). EachTLvertex connects to the bulk via twobonds (valency
vTL = 2), which keeps the TL-network coupling constant fixed as the bulk con-
nectivity changes (seeMethods). In all cases, performance improves as the fraction
σ of tunable bulk-bulk bonds (controlled parameters) increases. For h ≈ 1, 2, 3 the
total number of bulk bonds are 73, 193, 529, respectively.
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optimization against a genetic algorithm for photonic inverse design
and finds the former markedly less demanding in computational
resources.

Other gradient-basedmethods that approximate the gradients via
finite differences involve solving or simulating the problem described
by Eqs. (3),(5)) for every combination of the optimization variables
p= ðp1,p2, � � �ÞT leading to too-long computational times. Instead, the
Adjoint Optimization bypasses this costly (in terms of computational
memory and time) bottleneck when number of optimization para-
meters increases, because all the gradients can be computed at once
by solving only two distinct problems associated with the forward and
the backward propagation. A detail comparison between finite differ-
ence and Adjoint Optimization approaches is given in the Supple-
mentary Information.

Of course, the in-silico implementationof anAdjointOptimization
is naturally limited by the computational complexity of simulating the
physical system.On the contrary, the proposed in-situ implementation
of the Adjoint Optimization which bypasses all the latencies (memory
and time complexity) of digital simulations. All other computational
stepshavenearlyfixed cost that donot scale (or scaleveryweakly)with
the system size.

These unique features of the Physical AdjointOptimization and its
in-situ implementation are very promising for potential applications in
RISs, where a large number of tunable elements may need to be
reconfigured quickly to achieve predetermined, yet changing, goals.

Discussion
In conclusion, we have presented a proof-of-concept experimental
demonstration of in-situ Physical Adjoint Computing for real-time
control of electromagnetic wavemodalities in complexmulti-resonant
and multi-scattering systems. Our approach can be mapped onto in-
door wireless communication protocols64, in which a reconfigurable
intelligent surface can be swiftly programmed to deliver stronger
signals tomoving targets amidst an evolving environment in real time.
In suchprotocols, electric fieldmeasurements need to bemade only at
the positions of the metasurface elements and the target. Of course,
such reconfigurable intelligent metasurfaces (RIS) will require the
integration of sensing capabilities by appropriate modification of the
tunable meta-atoms constituting the metasurface. While majority of
current RIS are not designed to perform such local measurements,
there are some recent works that push the boundaries further
proposing65,66 and even demonstrating67,68 pixel-level (i.e. per-meta-
atom) RF magnitude/phase sensing for closed-loop RIS control.

Importantly, no knowledge is required of the full electromagnetic
environment, including any big or small obstacle which may stand in
the way or even moving. Therefore, our approach is fundamentally
different from existing wavefront-shaping methodologies, which
require a full knowledge of the scattering matrix and its eigen-
decomposition to identify the optimal wavefront patterns for achiev-
ing specific operations. Crucially, in such methods, the entire scatter-
ing matrix needs to be repeatedly re-measured and re-analyzed every
time themetasurface is reconfigured and/or the surrounding changes,
leading to formidable challenges in larger and more complex envir-
onments. In contrast, in-situ adjoint optimization bypasses the need
for a scattering matrix by directly exploiting the gradient sensitivities
judiciously plucked from a set of strategically positioned
measurements.

A potential drawback arises in time-varying electromagnetic
environments. Three characteristic time scales are relevant: (a) Fast
environment vs settling: τenv < τss, the environmental fluctuation
(coherence) time τenv is shorter than the wave settling (steady-state)
time τss . This regime is atypical and ill-posed for any steady-state
optimizer. (b) Quasi-static environment: τenv > τadj, the environment
changes slower than the convergence time of the in-situ adjoint opti-
mization τadj. This quasi-static case is ideal for our scheme. (c)

Iteration-timescale drift: τenv∝O(τit), the environmental fluctuations
are on the order of the per-iteration time τit. We analyze this regime in
the Supplementary Information under the worst-case condition
τenv = τit. There, we assume bond-parameter variations on the time-
scale of a single iteration and evaluate the optimization efficiency
versus the variation strength for each of the three modalities reported
in the main text. The results are task-dependent and show differing
robustness to environmental fluctuations. In our experiment, the
iteration time is ≈1 s, with the bottleneck set by relatively slow
mechanical phase shifters. Faster actuation (e.g., semiconductor-
based) would enable regimes with τenv > τit, yielding improved per-
formance under fluctuations.

Let us finally point out that our wave-network platform also sig-
nificantly differs from physical implementations of feed-forward
neural networks, which typically do not utilize complex (multi-scat-
tering) wave interactions in a multi-resonant electromagnetic envir-
onment. By leveraging these interactions, our platform amplifies small
variations in the optimization parameters via multiple interference
pathways, deriving richer physical abilities from a relatively smaller
number of controllable parameters (in contrast to billions of weights
and biases required in a feed-forward neural net). While we do not
pursue any deep learning functionality in this work (and thus require
no training data), we note that our setup offers a natural “physics-
aware” deep learning platform for both in-situ training and inference,
rather than a cumbersome imitation of an abstract neural network
architecture. Most importantly,our experiments pave the way for the
development of more powerful in-situ optimization protocols which
will involve nonlinear and non-reciprocal wave mechanics, broadband
pulses, and real-time control learning.

We conclude our discussion by pointing out that the imple-
mentation of the in-situ Physical Adjoint Computing can be extended
beyond in-doors wireless communications. The same protocol can be
applied to a variety of other wave-physics frameworks, including
adaptive optics (e.g. for turbulence compensation, ophthalmic ima-
ging, deep-tissue microscopy, multimode-fiber endoscopy), seismic
wave control etc.

Methods
Network modeling
The transport properties of the microwave network are modeled
using a metric graph consisting of one-dimensional wires (bonds)
supporting a single propagating mode. The waves propagating
between the inner and the outer conductor along the coax cable, is
given in terms of the difference ψB(xB) between the potentials at the
conductors’ surfaces, see Eq. (4). The bonds are connected together
at vertices (v-port dividers) where Neumann boundary conditions are
imposed. In the experimental network we have used 3—port vertices
(T-junctions).

The solutions of Eq. (4) at a bond B = (nm) can be expressed as

ψB xB

� �
=ϕn

sin k LB � xB
� �� 	

sin kLB
� � +ϕm

sin kxB
� �

sin kLB
� � ð10Þ

which satisfy the wave continuity conditions
ψB xB =0
� �

=ϕn;ψB xB = LB
� �

=ϕm, for each pair of connected vertices
n <m. Furthermore, the current is conserved at each vertex, i.e.,

X
m

dψB xB

� �
dxB

∣
xB =0

+
XL

α0 = 1
δαα0

dψα0 ðxÞ
dx

∣
x =0

=0, ð11Þ

where δαα0 is the Kronecker delta, and the second term accounts for
the derivatives at the ports connected to TLs. Combining the above
vertex boundary conditions, together with Eq. (10) we arrive at Eq. (5)
which provides the system matrix that describes transport in the for-
ward direction.
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Characterization of network complexity
We quantify the network complexity by the topological entropy
htop = lnρ where ρ is the spectral radius of the 2B × 2B non-
backtracking (Hashimoto) matrix T. The latter is defined in the space
of directed edges of the network b = (n → m) with entries

Tb, b0 = 1, ifmðb0Þ=nðbÞ and b≠�b
0 ðno immediate backtrackingÞ

=0, otherwise
ð12Þ

with �b � ðm ! nÞ being the reverse arc. Notice that for any row b the
sum

P
b0Tbb0 = vnðbÞ � 1 where vn(b) is the valency of the vertex n.

Therefore, minðvnðbÞ � 1Þ≤ρ≤ maxðvnðbÞ � 1Þ.
Since TrTn counts the number of period-n non-backtracking

closed paths on the network,

htop = lnρ = limn!1
1
n
ln TrTn: ð13Þ

More branching and more loops indicate more routes and conse-
quently largerhtop; sparseorweakly loopedgraphs yield smallhtop (for
intuition, a v-regular network with vn = v for all n has topological
entropy htop = lnðv� 1Þ whereas a single cycle network has htop = 0).
Thus htop is a pure connectivity metric, which is relabeling-invariant,
independent of bond lengths, that captures the combinatorial growth
of admissible routes on the network.

In-silico Implementation of the iPAC
We conducted in-silico simulations of a complex scattering network
consisting of V = 20 vertices that are fully connected with 190 bonds.
Each vertex was attached to a TL, i.e., N = 20. In the digital twin simu-
lations, we considered a cavity-shaping optimization scheme that
allows adjustments of all 190 bond-length, i.e., a large number of DoF
relevant to operational realities. In fact, under such conditions is
expected that the implementation of the adjoint-based gradient des-
cent protocol is more beneficial as compared to other optimization
schemes

The bond lengths were initialized with randomized values uni-
formly distributed around L0 = 0.25m, with variations constrained to
δL ± 5 cm (=0.5λ where λ is the operational wavelength), such that
Lnm 2 L0 � δL, L0 + δL

� 	
. For all modalities, the wavefront parameters

were fixed, with the amplitude parameters constrained
Ai∈ [0.001, 3.0], and θi∈ [−π, π]. An amplitude lower bound was set
to prevent trivial solutions with zero input power.

Controlling and setting up the VNA for coherent
wavefront inputs
To precisely control the phase and amplitude of signals injected into
the input ports of the scattering system, a Keysight PNA P5023B four-
port Vector Network Analyzer (VNA) equipped with the S93089B Dif-
ferential and I/Q Device Measurements option was utilized. The
S93089B option enables accurate phase control of multiple internal
sources, facilitating coherent excitation without the need for external
hybrid couplers or baluns. Two internal sources were configured to
deliver signals to the desired input ports of our microwave graph
network. Both sources were set to the same frequency to maintain
coherence, while the relative phase between the two sources was
precisely adjusted from 0o to 360o using the S93089B’s phase control
settings. This allows the phase difference to be fixed at specific values
in degrees of one input port relative to a reference port. The output
power of each source was individually adjusted in the interval
[ −40 dBm,0 dBm] to achieve the desired amplitude difference at each
input port. A calibration routine was executed to compensate for any
inherent phase and amplitude imbalances introduced by the VNA’s
internal signal paths and external cabling. For ensuring the experi-
mental stability of the objective function, we performed ten

measurements per iteration, resulting in essentially identical outputs
characterized by their mean value.

For forward scattering measurements, both sources were acti-
vated and phase-aligned according to a random set of initial values.
The S93089B option’s source-phase control ensured that the relative
phase between the inputs was maintained with high precision
throughout themeasurement. The VNA’s receivers were configured to
measure the DUT’s response at the fundamental frequency, capturing
the effects of coherent excitation on the forward scattering para-
meters. In adjoint measurement scenarios, these sources provided the
excitation signal, and the VNAmeasured the reflected and transmitted
signals accordingly (in case only one excitation signal was needed the
other source was deactivated).

Controlling and setting up the mechanical phase shifter
To achieve precise length manipulation in our experimental setup, we
integrated a mechanical phase shifter into the system (bond Lopt12 ), a
coaxial RF phase shifter, typically operated via a manual knob. To
enable automated and repeatable control, we motorized the phase
shifter and developed a characterization method to correlate motor
movements with the resulting length perturbations.

The mechanical phase shifter used in our experiment was
designed to operate over a frequency range of DC to 18GHz, with an
insertion loss of less than 1.0dB up to 18GHz and capable of handling
up to 100 Watts of average RF power. The device originally featured a
manual adjustment knob for phase tuning, however, a stepper motor
wasmechanically coupled to the phase shifter’s adjustment knob. The
motor was securely mounted to maintain alignment and prevent
mechanical backlash, ensuring consistent control over the phase
adjustment mechanism. The motor was interfaced with a Trinamic
motion controller, allowing for precise digital control of the motor’s
position, and providing an adjustable phase shifter’s length from 3mm
to 23mm. The controller was connected to a computer via a USB
interface, enabling automated control through custom Python scripts.

To establish a reliable relationship between themotor’s rotational
steps and the physical displacement within the phase shifter, we con-
ducted a calibration process using a high-precision digital micrometer
(Asimeto IP65 Digital Outside Micrometer). The micrometer was
positioned to measure the linear displacement resulting from the
motor’s rotation. The micrometer’s spindle was placed in contact with
a reference point on the phase shifter that moved in response to the
internal adjustmentmechanism. Themotorwas programmed tomove
in increments ofmicrosteps, and the corresponding displacement was
recorded using the micrometer. Movements were performed in both
clockwise and counterclockwise directions to account for any
mechanical hysteresis. The collected data indicated that 464 micro-
steps of the motor corresponded to a linear displacement of 1mm
within the phase shifter. A linear relationship was established between
the number of micro-steps (Nsteps) and the displacement d =

Nsteps

464 mm.
Multiple trials were conducted to confirm the repeatability of the
calibration. The standarddeviation of thedisplacementmeasurements
was within the micrometer’s specified accuracy, ensuring confidence
in the calibration.

Finally, we point out that the accuracy of the phase shifter was
depending on the resolution of our micrometer, which is roughly
0.01mm. However, the optimizer used to update the optimization
parameters, treated this length as a continuous, real-valued set-point,
with higher precision than it is measured. Despite this “quantization”
error, there was no issue with our optimization performance as the
gradients pointed in the correct direction. In fact, a degree of sto-
chasticity in the gradients are known to be beneficial for gradient-
guided optimization, as our in-situ studies confirmed due to an una-
voidable stochasticity whose origin is traced back to various experi-
mental noise sources (temperature variations, technical noise at the
equipments etc).

Article https://doi.org/10.1038/s41467-025-66385-5

Nature Communications |        (2025) 16:11466 9

www.nature.com/naturecommunications


Modeling of the phase shifter
To understand the phase shifter’s impact on the transmitted signals,
we modeled it as a variable-length transmission line supporting a
Transverse Electromagnetic (TEM) mode. The phase shift introduced
by the device is a function of the electrical length, which depends on
both the physical length and the dielectric properties of the medium.
Using the calibrated Vector Network Analyzer (VNA) setup described
previously, we measured the scattering matrix (S-parameters) of the
phase shifter over the frequency range of interest.Measurements were
taken at various positions of the phase shifter corresponding to dif-
ferent micrometer readings. The phase shifter was modeled as a two-
port network with its behavior represented by transmission line
equations. The phase shift (ϕ) introduced by the line is given by
ϕ = β ⋅ d where β is the phase constant, and d is the physical length of
the transmission line. The phase constant is related to the frequency f
and the effective permittivity ϵeff of themediumby β= 2πf

c
ffiffiffiffiffiffiffiffi
ϵef f

p
where

c is the speed of light in a vacuum. The effective permittivity was
assumed to be complex to account for dielectric losses within the
phase shifter. We modeled ϵeff as a function of the micrometer-
measured length and frequency. To extract the relationship between
the effective permittivity, physical displacement, and frequency, we
employed surrogate optimization using MATLAB, finding that
n = ϵeff ≈ 1.004 +0.0022i and the functional dependence of the length
of the phase shifter LS on the measured length of the micrometer
Lps =286mm+2 d � 7mmð Þ accounting for the fact that it is a trombone
line phase shifter, so the factor of 2 accounts for the doubling of the
line when making length adjustments.

Efficiency of adjoint optimization methodology
Efficiency for increasing complexity and optimization parameters.
To assess how combinatorial complexity and tunability affect iPAC
efficiency, we simulated three modalities (TMT, CPA, invisibility)
across three topological-entropy levels htop = 1, 2, 3 (Fig. 4a–c). For
each htop, we averaged the optimal objective over 100 random net-
works with identical connectivity (thus the same htop) but uniformly
random bond lengths Lb∈ [21.2, 28.8] cm. Each network had V = 75
vertices: a bulk of Vbulk = 50 and VTL = 25 boundary vertices used to
attach transmission lines (TLs). We increased htop by raising the bulk
connectivity (vertex valencies). TL verticeswere kept at valency vTL = 2,
fixing the TL-network coupling Γ= 1� jhSα,α0 ij2 = 1�

�
1� 2

vTL + 1

�244
across realizations anddifferenthtop (Sα,α0 are thediagonal elements of
the scattering matrix and 〈⋯ 〉 indicates an averaging over frequency
realizations and channels α).

The networks with htop = 1, 2, 3, involve 73, 193, and 529, respec-
tively, number of bonds that connect the bulk vertices. In our simu-
lations, we varied the number of control parameters by varying the
tunable fraction σ of bulk-bulk bonds (σ = 1 indicates that all bulk
bonds are tuned). Tunable bond-lengths were constrained within the
range 17.3 ≤ Lb≤ 33.7 cm. The optimization used NLopt’s MMA (gra-
dient-based) with relative tolerances 10−7. For each (h, σ) we report the
mean optimum over the 100 network realizations. The optimization
scenarios used in this analysis were the same ones discussed in the
main text. Specifically: (i) for the TMT we have injected a random
monochromatic wavefront from 10 TLs and targeted other 5 TLs; (ii)
for the CPA, we have injected a random monochromatic wavefront
from all 25 TLs; and (iii) for the invisibility we have used one inter-
rogation TL from where the incident signal was injected, and one
receiving TLwhere we have requested the emitted signal to have equal
amplitude andphaseas the injectedone. Finally,wehave also employ a
separate control TL to balance losses (as in the main text).

Our analysis show that the optimized objective increases mono-
tonically with σ, and high performance shifts toward σ→ 1 for all htop.
The convergence behavior depends on the task and on htop: for CPA,
convergence accelerates as h increases-consistent with more lossy
bonds (fromhigher connectivity) and strongermultiple scattering that

trap energy and enhance absorption. In contrast, TMT and invisibility
show a non-monotonic dependence on htop, with fastest convergence
near htop≈ 2; moderate complexity aids optimization, whereas exces-
sive connectivity offers diminishing returns. A detailed analysis of this
non-monotonicity is left for future work.

Time-performance benchmark. We model four latencies: measure-
ment tm, interconnect tl, host compute tc, and actuation to. One adjoint
iteration (forward + adjoint measurement, gradient assembly, update)
yields

tadjðpÞ=2tm +6tl + ð2 +pÞtc +αt0

where p is the number of tunable parameters and α ≥ 1 is the actuation
multiplier per update. The constants conservatively account for round-
trip link events in the two measurements and a single actuation block.

A central finite-difference (FD) iteration perturbs each parameter
nby ±δ, measures twice, restores the nominal value, and then updates,
giving:

tFDðpÞ= tc + tm +αt0 + 4tl +pðtc + 2tm +3to + 10tlÞ:

On our setup (Keysight P5023B VNA; Intel Core i9-14900K; stepper-
motor actuators) tm = 6.7ms; USB microframe: tl = 125 μs; host com-
pute: tc = 3 ns; stepper actuation: to =0.1 s per micro-move with α ≈ 10
resulting in αto ≈ 1s. Thus tadj(p) ≈ 1.0006 s (for p ≤ 103) while FD grows
linearly with slope 10tl + 2tm + 3to − tc ≈0.301 s/parameter, giving
tFD(p = 1000) ≈ 302 s. For further details see Supplementary Informa-
tion and associated Supplementary Fig. 1.

We, therefore, conclude that since the Adjoint uses two mea-
surements and one update per iteration, it results to a runtimewhich is
essentially independent of p. Instead, FD adds two measurements and
≈3 actuations per parameter, making runtime linear in p and domi-
nated by actuation/I/O.

Data availability
The datasets generated during and/or analyzed during the current
study are available in the Zenodo repository69 (https://doi.org/10.5281/
zenodo.17314682).

Code availability
The algorithms used for this study are standard and are outlined in the
Main text and in “Methods.” The corresponding authors can provide
code scripts upon request.
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