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Universal efficiency boost in prethermal
quantum heat engines at negative
temperature

Alberto Brollo 1,2, Adolfo del Campo3,4 & Alvise Bastianello 2,5

Heat engines near the adiabatic limit typically assume a working medium at
thermal equilibrium. However, quantum many-body systems often showcase
conservation laws that hinder thermalization, leading to prethermalization in
exotic stationary phases. This work explores whether prethermalization
enhances or reduces engine efficiency. We investigate Otto cycles in quantum
systemswith varying numbers of conserved quantities.We find that additional
conservation laws reduce efficiency at positive temperatures, but enhance it in
regimes of negative temperatures. Our findings stem from general thermo-
dynamic inequalities for infinitesimal cycles, and we provide evidence for
integrable models undergoing finite cycles using the theoretical framework of
Generalized Hydrodynamics. The relevance of our results for quantum simu-
lators is also discussed.

The analysis of heat engines has played a key role since the birth of
thermodynamics1. The advent of quantum thermodynamics has fol-
lowed a similar path, with the design and characterization of quantum
heat engines2,3. Early theoretical proposals4 have been adapted for
their implementation with current platforms for quantum technolo-
gies, including trapped ions5–7, nitrogen-vacancy centers8, ultracold
gases9, and NMR systems10. Technological advances have motivated
studies beyond canonical equilibrium involving coherence, squeezing,
negative temperatures11–15, and genuine nonequilibrium protocols,
although such processes typically reduce efficiency due to irreversi-
bility. Driving schemes such as shortcuts to adiabaticity16–18 fast-
forward a quantum adiabatic evolution in finite time, but their exact
implementation can be challenging19 and aims for the same efficiency
of adiabatic thermal cycles.

Designing quantumheat engines utilizingmany-body systems as a
workingmedium is necessary for their scaling17,20 and paves the way to
harness a wide variety of phenomena without a single-particle coun-
terpart, including quantum statistics21,22, interparticle
interactions9,23–25, and critical phenomena26. As many-body systems
generally thermalize, theworkingmedium follows equilibrium states if
subject to slow operations. Hence, most previous studies have

considered working medium at thermal equilibrium. Yet, several
many-body systems feature constraints that forbid canonical
thermalization27 and present genuine prethermal phases in which
quantum simulators28,29 could perform reversible operations. A natural
question is whether this scenario could be advantageous in increasing
the performance of quantum heat engines. An important precedent in
this regard is the study of quantum heat engines that harness many-
body localization30.

This article investigates the impact of prethermalization27 in
extended many-body systems on the engine efficiency, revealing that
its advantage, relative to thermalizing working media, is universally
determined by the temperatures of the thermal baths. In particular,
prethermal heat engines that operate at negative temperatures exhibit
a universal efficiency boost.

We consider Otto cycles operating between two thermal baths
and performing work through a tunable parameter χ. Without altering
the baths, we compare prethermalization against thermalization dur-
ing the adiabatic strokes, highlighting the role of the many-body
working medium, whereas previous works focused on prethermal
baths in few-body engines31. We consider the following strokes
depicted in Fig. 1:
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(i) Adiabatic transformation. The system starts at thermal equili-
briumwith the bath, then it evolves in isolation, slowly changing
χ and possibly exploring prethermal phases. It exchanges work
W1, but not heat, and the entropy is conserved.

(ii) Isochore transformation. At constant χ, the system reaches
thermal equilibrium with the second bath exchanging heat Q1,
but not work.

(iii) The cycle is closed with another adiabatic stroke exploring a
prethermal phase, exchanging work W2, and a isochoric trans-
formation, exchanging heat Q2.

The system is governed by a Hamiltonian of the form
H(χ) = H0(χ) + ϵV, where the perturbation governed by the small
parameter ϵ governs prethermalization. Specifically, we assume the
unperturbed Hamiltonian H0(χ) features N conserved charges fQjgNj = 1,
which may depend on χ, and satisfy [Qj, H0(χ)] = 0. The small pertur-
bation ϵV is assumed to break some charges and deforms the others
Qj ! Q0

j =Qj + δQjðϵÞ, in such a way that ½Q0
j,HðχÞ�=0 for

j 2 f1, . . . ,N0 < Ng. This is a fairly common scenario. For example,
resonant tunneling in multicomponent ultracold gases32 or tunneling
in adjacent superfluids33 breaks inter-species particle number con-
servation, Floquet-engineered Hamiltonians showcase symmetries
broken at finite driving frequencies34, and integrable systems35,36 have
infinitely many conservation laws broken by perturbations.

Isolated quantum systems with weakly-broken conserved charges
undergo prethermalization: after a fast timescale tpth decided by
microscopic processes37, the system relaxes to themaximally-entropic
state compatible with the conservation laws of the unperturbed
Hamiltonian H0. This is the prethermal phase. Then, on a slow time
scale tth ≫ tpth usually polynomially growing in ϵ−1 38–40, relaxation to a
steady state determined by the reduced set of charges is observed.
This is the thermal phase, where only few charges like the Hamiltonian
and the particle number are conserved. For commuting charges, the
two phases are described by generalized Gibbs ensemble (GGE)

ρ̂=Z�1e�
P

j
βjQj 35,41 where the appropriate charges and generalized

inverse temperatures βj are considered. Although the GGE excludes
certain nonergodic mechanisms, such as many-body localization30,42

and fractons43, it remains very general.
To highlight the impact of conservation laws only, we consider

adiabatic processes where the adiabatic strokes follow the appropriate
GGE, being it prethermal (tpth≪ χ/(dχ/dt)≪ tth) or thermal (tth≪ χ/(dχ/
dt)), and compare the two cases in the small ϵ limit. This adiabaticity
requirement ismuch less stringent thanquantumadiabaticity44, whose
time scale diverges in the absence of an energy gap, as is common in

the thermodynamic limit. Our focus is on the cycle’s efficiency, namely
the ratio between the total work W =W1 +W2 and the absorbed heat
Qabs = maxðQ1,Q2Þ

η=W=Qabs: ð1Þ

Weunveil a universal efficiencyenhancement: Thermalizingmedium is
more efficient for a positive bath temperature, whereas pre-
thermalization is convenient at a negative temperature. This holds
whenever all the charges conserved by the thermalizing dynamics,
with the exception of the Hamiltonian H0(χ), are independent of the
control parameter χ, while the whole set of prethermal charges can
dependon χ.Weprovide analytical proof for infinitesimal cycles on the
basis of general thermodynamic inequalities without any assumption
on the number of conservation laws, the form of interactions, or the
dimensionality of the system. We furthermore demonstrate our find-
ings using finite cycles with integrable systems, i.e., minimal interact-
ing one-dimensional models featuring infinitely many conservation
laws, amenable to many-body analytical computations far from
equilibrium35,45–47. An interaction-driven quantum Otto cycle has been
experimentally realized in a three-dimensional atomic cloud across the
BEC-BCS crossover9, and nearly-integrable variants are also possible23.
However, realizing negative temperatures requires Hamiltonians with
a finite maximum energy: this is not possible in continuous systems,
but it is conceivable in experiments on a lattice14,48,49. As a proof of
concept, we concretely discuss how our findings can be probed in
state-of-the-art quantum gas microscopes, realizing integrable spin
chains50 with tunable integrability-breaking perturbations. In
this context, we discuss how to engineer negative temperature
states and measure the work done during the (pre)thermal adiabatic
strokes.

Results
The adiabatic flow equations
We begin studying the evolution of the state during the adiabatic
strokes. In the limit of slow changes of the control parameter χ, the
system instantaneously follows a GGE with evolving generalized tem-
peratures, which we conveniently arrange in a vector fβjgj ! β. As
advanced in the introduction, we consider the limit where the per-
turbation breaking conservation laws is infinitesimal ϵ→0, such that its
effect is solely to break certain charges, without substantially altering
the remaining ones.

We derive the flow equations that govern the adiabatic strokes in
the prethermal states, since the thermal case follows similarly. To this
end, it is convenient to approximate the smooth evolution as a
sequence of sudden increments χ → χ + dχ separated by a waiting time
dt. The adiabatic limit dχ/dt → 0 is then taken, considering a large
waiting time, in such a way that the system prethermalizes to the new
generalized inverse temperatures βpth(χ + dχ). Let Qj(χ) be the para-
metrically χ −dependent charge, and 〈…〉χ,βbe the expectation value in
the prethermal state at χ. The parameters βpth are determined by
charge conservation hQjðχ +dχÞiχ,βpthðχÞ = hQjðχ +dχÞiχ +dχ,βpthðχ +dχÞ. To

linear order, one gets the flow equations

Cpth∂χβ
pth +Apthβ

pth =0, ð2Þ

where the χ − dependence is omitted to ease the notation. Above, we
defined the static covariance matrix as the connected charge-charge
correlators ½Cpth�i, j = hQiQjic, and the susceptibility matrix

½Apth�i, j = hQi∂χQjic. Here we defined the connected correlators as

hO1O2ic � hO1O2i � hO1ihO2i. In addition, Eq. (2) implies the adiabatic
evolution of the charges

∂χhQji= h∂χQji: ð3Þ

Fig. 1 | Thermal vs prethermal Otto cycles. The thermodynamic ensemble
(thermal plane) describing the adiabatic strokes of a thermalizing workingmedium
is described by a few conserved charges, including the energy, and the control
parameter χ. Prethermal working matter is characterized by a larger number of
charges, exploring prethermal phases.
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The derivation of Eqs. (2) and (3) is reported in Methods. The
thermal flow equations are identical to Eq. (2), restricted to the proper
conserved charges and inverse temperatures βth.

To relate the flow equations (2) and the conventional notion of
adiabaticity based on entropy, it is instructive to define the free energy
associated with the GGE through the partition function as

F = � log Tr e�
P

j
βjQj

h i
, from which the entropy S is defined through

canonical thermodynamic identities F =
P

jβjhQji � S. By taking the

time derivative of the last expression and comparing it with dF
dt

obtained from the partition function, one reaches

dS
dt

=
dχ
dt

X
j
βj ∂χhQji � h∂χQji
� �

: ð4Þ

Notice that Eq. (3) implies dS
dt =0, and it follows from the flow

equations (2) that the adiabatic strokes are reversible in the conven-
tional sense, regardless of whether the working medium is described
by a thermal or prethermal phase. Therefore, both adiabatic strokes
done with a thermalizing and prethermalizing medium belong to the
class of reversible operations: our goal is now to understand which
choice benefits the engine’s efficiency. Eq. (2) is difficult to solve as it is
highly nonlinear, since the expectation values evolve with the complex
many-body state. Furtherprogress canbemade in generic infinitesimal
cycles and in integrable models where the static covariance matrix A
and the susceptibility matrix C can be analytically computed.

Universal efficiency boost in infinitesimal cycles
Although infinitesimal cycles cannot be reliably used to deduce the
behavior of finite cycles, they already provide a good indication. Fur-
thermore, we found infinitesimal cycles to be amenable of analytical
universal results. Our findings are universal in the sense that they rely
solely on general thermodynamic inequalities, without making any
assumptions about the number of conserved quantities, the form of
interactions, or the dimensionality of the system. Hence, they have the
broadest applicability.

We consider two thermal baths at β and β + δβ, and the two
strokes running from χ to χ + δχ. The change in internal energy during a
stroke is obtained by expanding the integrated equation (3), where we
consider the Hamiltonian as the conserved charge
ΔhHi= R χ + δχχ dχ 0h∂χ 0Hiðχ 0 ,βðχ 0 ÞÞ. We find

ΔhHi= δχh∂χHi+ ðδχÞ2
2

∂χh∂χHi+∂χβj∂βj
h∂χHi

h i
, ð5Þ

where repeated indices are summed and terms OðδχÞ3 are neglected.
Expectation values are computed on the initial thermal state, and the
choice of flowequations (2) determines the evolution through thermal
or prethermal states. Work is obtained by summing the two con-
tributions fromβ and β + δβ, and expanding in δβ. Notice that the flow
equation (2) does not affect the first order ~ δχ contribution, but only
the second order ~ δχ2. Therefore, differences in the two cycles appear
at order ~δχ2. Combining Eq. (2) and the identity
∂βj

h∂χHi= � hQj∂χHi
c
, the work difference δW � Wpth �Wth is

determined by the covariance and susceptibilitymatrices. The result is
further simplified if all charges in the thermal state, except for the
Hamiltonian itself, are χ − independent. In fact, Ai,j vanishes for all
indices j of the charges of the thermalizing dynamics, with the
exception of the Hamiltonian itself. Ai,j may be non-zero for other
prethermal charges, but these do not couple to the initial bath β and
lead to

δW = � βðδχÞ2 AT
pthC

�1
pthApth � AT

thC
�1
th Ath

h i
H,H

, ð6Þ

where […]H,H denotes the diagonal element in the Hamiltonian direc-
tion, and β is the canonical inverse temperature. The sign of Eq. (6)
crucially depends on β, with δW having a sign opposite toβ. In fact, the
matrix product in Eq. (6) is reformulated within hydrodynamic
projections51,52 (see Methods) as the norm of a vector subtracting its
projection onto a smaller subspace, which is always positive. After
having considered the work difference, we now focus on the absorbed
heat and note that both the thermal and prethermal strokes start with
the same energy 〈H〉χ,β. After the first adiabatic stroke, they will have
reached internal energies hHiχ,β +Wth, pth

1 . The absorbed heat is then
computed as the difference in internal energy determined by the
second bath, identical for the two working media, and the end of the

adiabatic protocol Qth, pth
abs = hHiχ + δχ,β+ δβ � hHiχ,β �Wth, pth

1 . Inspec-

tion of Eq. (5) shows that Wpth
1 �Wth

1 =Wpth
2 �Wth

2 = 1
2 δW, whence it

follows that Qth
abs �Qpth

abs =
1
2 δW. Therefore, the relative efficiency can

bewritten as ηpth

ηth = 1 + δW
Wth

� �
1� δW

2Qth
abs

� ��1

and it is thus greater thanone

for δW >0,which implies ηpth > ηth. We conclude that infinitesimalOtto
cycles operating with thermal medium are more efficient than pre-
thermal ones at positive temperatures, whereas the opposite holds for
negative β.

Prethermal finite cycles in integrable models
We next explore the persistence of the efficiency inequality for finite
cycles in nearly integrable models38,53. These systems are realized in
cold atoms36, have infinitely many conserved charges, are strongly
interacting, and are yet amenable to exact analytical computations,
making them ideal candidates for our scope. In GGEs, the expectation
values of charges, the covariance and susceptibility matrices can be
computed exactly within the framework of Thermodynamic Bethe
Ansatz (TBA)54; see Methods. We focus on two prototypical examples:
the Ising model

HIsing = �
X

j
σx
j + 1σ

x
j +hσ

z
j

� �
, ð7Þ

and the XXZ spin chain

HXXZ = � J
X

j
σx
j + 1σ

x
j + σ

y
j + 1σ

y
j +Δσ

z
j + 1σ

z
j

� �
, ð8Þ

where σx, y, z
j are canonical Pauli matrices acting on the j-th site. Notice

that for the sake of simplicity, we work in dimensionless energy units.
We consider homogeneous infinite systems and use as control para-
meters the magnetic field h → χ and the anisotropy Δ → χ respectively.
The Ising model is a canonical example of an integrable system,
equivalent to noninteracting fermions with momentum λ and disper-

sion eðλÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos λ� hÞ2 + sin2λ

q
; see Supplementary Discussion 1 for

details. We choose it primarily for pedagogical reasons55 and for its
broad relevance from non-equilibrium physics37,56 to quantum
engines57–59. The XXZ chain is a paradigmatic example of an interacting
integrable model60 implemented in quantum simulators50,61–65; see
Supplementary Discussion 2 for details of its thermodynamics. In the
Ising chain, many-body eigenstates can be described as a gas of free
fermionic quasiparticles with momentum density ρ(λ) and extensive
energy 〈HIsing〉 = L∫dλ e(λ)ρ(λ), with L the system size (See Supplemen-
tary Discussion)55, where we removed the ground state energy.
Choosing the function ρ(λ) is equivalent to fix the parameters βj of
the GGE35, see Methods and Supplementary Discussion 1. On thermal

states, it has Fermi-Dirac statistics ρðλÞ= 1
2π ðeβeðλÞ + 1Þ

�1
. The same

picture holds in the XXZ chain, albeit interactions dress the excitations
and deform thermal distributions through nonlinear integral
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equations (See Supplementary Discussion). The flow equations Eq. (2)
can be reformulated in the quasiparticle basis within Generalized
Hydrodynamics (GHD)45–47,66, a non-perturbative framework for nearly
integrable systems. In homogeneous systems with slow-varying
interactions, the GHD equations are67

∂χρðλÞ+∂λðFeff ðλÞρðλÞÞ=0: ð9Þ

The effective force Feff captures the many-body effect of varying
interactions, and it vanishes for noninteracting models such as the
Ising chain; see Methods for details. In Fig. 2, we show the efficiencies
for infinitesimal cycles for Ising andXXZ chains, in a broad spectrumof
parameters. Thermal states in the Ising chain are determined solely by
the energy. By contrast, in the XXZ model we consider integrability-
breaking perturbations that preserve the total magnetization

P
jσ

z
j ,

resulting in thermal states with two conserved quantities. Notice that
the total magnetization does not depend on the anisotropy, i.e., our
control parameter. As expected from our general argument, pre-
thermal states are more efficient than thermal ones at negative
temperatures. In Fig. 3, we consider exemplificative cases of finite
cycles numerically solving Eq. (9) (See Supplementary Discussion). For
finite strokes, the gain becomes comparable with the efficiency itself,
and is generally larger for the Ising chain. This is due to the fact that
thermal states in the XXZ chain have two conserved charges rather
than one as in the Ising case, allowing them to be closer to the GGE.
More details are provided in Supplementary Discussion 2.

Quantum engine simulators
The perfect isolation of quantum simulators that makes long-time
coherent dynamics and negative temperature possible hampers
quantum engines requiring heat exchanges with thermal baths23,28,29,68.

Nonetheless, current platforms can already probe the two adiabatic
strokes of the Otto cycle separately. The XXZ chain (8) with positive
spin exchange J > 0 is realized in one-dimensional gases at unit filling69,
encoding the z − direction of the spin in two hyperfine levels. Con-
venient platforms for our scopes are Lithium-based implementations
in optical lattices61, where Δ is tunable thanks to a Feschbach reso-
nance, and quantum gas microscopes50 due to their ability to conduct
single-site measurements and operations. The current XXZ chain
quantum microscope with Rubidium atoms50 lacks a Feshbach reso-
nance, fixing Δ ≃ 1. However, quantum microscopes with Lithium are
also available70, and could combine the advantages of the two plat-
forms in the near future. The tunable transverse confinement effi-
ciently breaks integrability, interpolating between a one-dimensional
and a ladder geometry50. The use of thermal baths at negative tem-
perature generally requires engineering for their preparation. In this
regard, negative temperatures can be realized by selectively exciting
spins in high-energy configurations and evolving them in the presence
of integrability-breaking perturbations that induce thermalization. For
example, such states for the XXZ chain in the ferromagnetic phase
could be an antiferromagnetic spin arrangement. Atom imaging pro-
vides snapshots of the z − magnetization, from which arbitrary zz
correlations can be obtained50. Directly probing the energy requires
measurements in the other spin directions as well, but adiabatic
operations conveniently give direct access to energy differences
through integration of Eq. (3) which, for the case of a tunable Δ,
requires measuring hσz

j + 1σ
z
j i only. In the absence of a tunable Δ, time-

dependentmagnetic trapsHXXZ +
P

jBjðtÞσz
j can be used to exert work,

as suggested in refs. 20,29,69. Indeed, smooth traps break integrability
weakly, resulting in long-lived prethermal states53,71,72. This possibility,
however, pivots (pre)thermalization timescales to the trap’s size: on
the typical sizes of a few tens of spins, a conservative estimation

Fig. 2 | Thermal vs Prethermal infinitesimal Otto cycles in integrable models.
We show the relative efficiency of thermal-prethermal infinitesimal Otto cycles and
the thermal infinitesimal efficiency in the Ising (7) (a, b) and antiferromagnetic
J= − 1 XXZ (8) (c,d) chainswith averagemagnetization 〈σz〉=0.45.Weuse as tunable
parameters themagnetization h and anisotropyΔ, respectively. To plot efficiencies
independent of the cycle size, we focus on skewed cycles where the absorbed heat

is much larger than the work, W≪Qabs, or equivalently ∣δχ∣ ≪ ∣δβ∣. In this regime,
the efficiency scales asη ~ δχ and ηpth/ηth− 1 ~ δχ/δβ, and the data is rescaled to factor
out the explicit dependenceon the size of the infinitesimal stroke. Explicit formulas
are obtained from Eq. (5) and reported in Supplementary Discussion. Notice that
the regions of large relative efficiency are related to regions of vanishing thermal
efficiency.
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suggests timescales of various tens of spin-exchange times, challen-
ging the present coherence time. Instead, (pre)thermalization after
homogeneous quenches in Δ requires ~5 spin-exchanges73, and thus is
more convenient.

Discussion
In this article, we unveiled the universal impact of conservation laws
and prethermalization on quantum engines. By focusing on Otto
cycles, we have established general thermodynamic inequalities
showing how the relative efficiency of small cycles with thermal or
prethermal working medium is entirely determined by the baths’
temperature. Specifically, a thermal working medium is more efficient
at positive temperatures, whereas prethermal media enhance the
engine efficiency at negative temperatures. Although the use of
negative temperatures generally requires population inversion, one
can anticipate scenarios in which the benefits of their use
outperform their cost, if not fundamentally, in practice.We focused on
integrablemodels as a concrete case of study, showing the persistence
of our conclusions beyond small cycles, where Generalized Hydro-
dynamics provides exact quantitative insight into far-from-equilibrium
quantummatter. Our findings are of direct relevance to state-of-the-art
quantum simulators. While we thoroughly discussed the realization of
the XXZ model in quantum gas microscopes, other platforms such as
Rydberg atoms in optical tweezers74, superconducting qubits75, and
trapped ions76 could also be employed. Fermi-Hubbard quantum
microscopes with Feschbach resonances, offer another natural
platform70 in the context of nearly-integrable models. However, as
shown by our analysis of infinitesimal cycles, our results are of broad
relevance beyond integrability itself and apply generally whenever a
conservation quantity can be selectively broken and are thus of broad
experimental relevance. It is worth emphasizing that, albeit we focused
on quasi-static protocols, (pre)thermalization time scales are driven by
microscopic processed37–40 that are usually fast compared with other
typical scales in experiments36, suggesting our results can also be
predictive for finite-time protocols. Interesting future directions
involve exploring the consequences of nonthermal baths, which may
be realized by coupling different portions of isolated quantum many-
body systems29, and considering driving protocols in finite time, and
their role on the tradeoff between the efficiency and power, and (pre)
thermalization.

Methods
Derivation of the flow equations
Wederive theflowequations (2),which govern the adiabatic evolution.

From the partition function Z ðχ,βÞ=Tr e�
P

i
βiQiðχÞ

h i
, one has the

standard thermodynamic equalities hQjðχÞiχ, βi
= � ∂βi

logZ ðχ,βÞ,
h∂χQjðχÞiχ, βi

= � ∂χ logZ ðχ,βÞ, while the secondmixedderivatives give

connected correlation functions. Promoting β to be χ − dependent in
the adiabatic stroke, and imposing charge conservation
hQjðχ + δχÞiχ,βðχÞ = hQjðχ + δχÞiχ + δχ,βðχ + δχÞ to first order in δχ, the flow

equations Eq. (2) immediately follow. Similarly, the generic variation of
a charge can also be obtained with changes in χ and βi, leading to
δ〈Qj〉 = δχ〈∂χQj〉 − ∑iCjiδβi − δχ∑iAjiβi. Imposing that β evolves with the
flow equations, ∂χ〈Qj〉 = 〈∂χQj〉 follows.

Hydrodynamic projections
Historically, hydrodynamic projections51,52 have been introduced to
isolate the slow, long-wavelength dynamics of a many-body system by
projecting onto conserved quantities. We use this framework to con-
veniently rewrite Eq. (6) and make its sign explicit. Due to the infini-
tesimal nature of the perturbation, the leading-order effect is the
suppression of certain conserved quantities, rather than their defor-
mation. Consequently, the set of conserved quantities under therma-
lizing dynamics spans a strict subspace of those preserved in the
prethermal regime. One introduces a scalar product in the vector
space of the observable through their connected correlator
hO1jO2i � hO1O2ic. We define the projector on the conserved charges

of the (pre)thermal dynamics as PpthðthÞ =
PNðN0 Þ

i, j ½C�1
pthðthÞ�i, j ∣QiihQj ∣,

where the inverse static covariance matrix C−1 is introduced for a

properly normalized projection PpthðthÞ∣Qji= ∣Qji. In this language,
Eq. (6) is rewritten as the difference of the norm of a vector projected
on different subspaces

δW = � βðδχÞ2 h∂χHjPpthj∂χHi � h∂χHjPthj∂χHi
h i

: ð10Þ

Since the space of thermal conserved charges is included in the pre-
thermal one ½h∂χHjPpthj∂χHi � h∂χHjPthj∂χHi≥0, proving the sign of
δW depends only on β.

Fig. 3 | Finite Otto cycles in integrable models. On the horizontal and vertical
axes, we show the control parameter and the energy difference from the ground
state (normalized with respect to the system size), respectively. In each panel, both
cycles are represented and the values of the efficiencies are reported. Panels (a, b):
Ising chain with cold(hot) reservoirs at temperatures β�1

C (β�1
H ) respectively. Speci-

fically, in (a) we consider negative temperatures ðβ�1
C ,β�1

H Þ= ð�0:70, � 0:69Þ and in

(b) positive temperature ðβ�1
C ,β�1

H Þ= ð0:30,0:48Þ. Panels (c, d): analog cases for the
XXZ chain (8) with J = − 1 and fixed magnetization 〈σz〉. The temperatures of the
baths in (c) and (d) are ðβ�1

C ,β�1
H Þ= ð�0:175, � 0:150Þ and ðβ�1

C ,β�1
H Þ= ð0:5, 2:0Þ.

These examples show that the general conclusions for infinitesimal cycles remain
valid also for finite operations. A quantitative measure of the GGE's departure from
canonical equilibrium and further cases are reported in Supplementary Discussion.
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Integrable systems
Multiparticle scattering events in integrable models are factorized into
two-by-two elastic scattering events, entirely parametrized by their
scattering phase. In interacting integrable models, the rapidity λ and
root density ρ(λ) generalize the momentum and momentum density of
the free systems, respectively. An additional degree of freedom labeling
quasiparticles of different species is present in several cases, such as in
the XXZmodel54, and is here omitted for brevity. The expectation value
of the conserved charges takes the form 1

L hQii=
R
dλ qiðλÞρðλÞ, with qi(λ)

being the charge eigenvalue. The scattering phase Θðλ� λ0Þ between
two excitations of rapidity λ and λ0 depends on the rapidity difference.
Thermal states andGGEs are describedwithin the thermodynamic Bethe
ansatz (TBA) framework54. More precisely, the state is parametrized by
nonlinear integral equations

εðλÞ=
X
i

βiqiðλÞ+
Z

dλ0

2π
φðλ� λ0Þ logð1 + e�εðλ0 ÞÞ, ð11Þ

where the scattering kernel is defined as φ(λ) ≡ ∂λΘ(λ). The pseudoe-
nergy ε(λ) parameterizes the state through the filling function
ϑðλÞ= ð1 + eεðλÞÞ�1

, which is then connected to the root density as
ρðλÞ= ϑðλÞ ð∂λpÞ

dr

2π , with p(λ) themomentum of a quasiparticle. In general,
the dressing of a bare quantity τ(λ) is given as a solution of the linear
integral equation τdrðλÞ= τðλÞ � φ * ϑτdr

� �ðλÞ. For brevity, we define the
convolution ½φ * τ�ðλÞ= R dλ0φðλ� λ0Þτðλ0Þ. The static covariancematrix
is analytically determined as hQiQjic = � ∂βi

hQji(See Supplementary
Discussion)

1
L
hQiQjic’

L!1
Z

dλ qdri ρð1� ϑÞqdr
j , ð12Þ

where ≃ denotes equality in the thermodynamic limit. The suscept-
ibility matrix follows from hQi∂χQjic = � ∂βi

h∂χQji, where 〈∂χQj〉 is
computed by means of the Hellmann-Feynman theorem67

1
L
h∂χQji ’

Z
dλ ∂χqjρ+

1
2π

∂λqjf
drϑ

� �
, ð13Þ

where f ðλÞ= � ∂χpðλÞ+ ∂χΘ * ϑð∂λpÞdr
h i

ðλÞ. Deriving Eq. (13), the sus-
ceptibility matrix follows (See Supplementary Discussion)

1
L
hQi∂χQjic ’

Z
dλqdr

i ρð1� ϑÞ f dr
ð∂λqjÞdr

ð∂λpÞdr
� Λdr

j

 !
ð14Þ

where ΛiðλÞ= � ∂χqiðλÞ+ ∂χΘ * ϑð∂λqiÞdr
h i

ðλÞ. With the covariance and
susceptibility matrices at hand, the flow equations (2) are fully deter-
mined. In theprethermal case, rather thanworkingwith infinitelymany
charges, it is more convenient to move to a quasiparticle basis. Here,
the flow equations are equivalent to the GHD equations (9)67 with the
effective force being Feff ðλÞ= f drðλÞ=ð∂λpÞdr, which can also be gen-
eralized to inhomogeneous setups. Notice that in non-interacting
systems like the Ising model φ = 0, therefore, the equations greatly
simplify. In Supplementary Discussion 2, we provide details for the
general formulas for the XXZ spin chain in the easy-axis regime ∣Δ∣ > 1.
For ∣Δ∣ < 1, the GHD equations for changing Δ are an open problem67

that we do not address.

Numerical methods
Finite cycles in integrable systems are obtained by numerically solving
the TBA and GHD equations; see SupplementaryMethods 1 for details.
The integral equations are discretized and solved with standard
methods. The GHD equation is solved using the method of char-
acteristics at second order in time evolution67. The evolution along the
thermal strokes is performed with the flow equations (2). We checked
the convergence of our results with respect to the discretization in the

rapidity space, the number of quasiparticle species in the XXZ chain,
and the integration time step. Raw data and a Mathematica code are
available on Zenodo77.

Data availability
All the raw data are available on Zenodo77.

Code availability
Working Mathematica notebooks are available on Zenodo77.
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