nature communications

Article

https://doi.org/10.1038/s41467-025-66459-4

Imbalance of stem-like and effector T cell
states in children with early type 1 diabetes
across conventional and regulatory subsets

Received: 11 December 2024

Accepted: 7 November 2025

Veronika Niederlova ®'?, Ales Neuwirth®", Vit Neuman?, Juraj Michalik ®",
Bela Charvatova', Martin Modrak ® 4, Zdenek Sumnik® & Ondrej Stepanek ®"

Published online: 11 December 2025

M Check for updates

Type 1 diabetes (T1D) is an autoimmune disease caused by the loss of self-
tolerance toward insulin-producing pancreatic -cells. Its etiology remains

incompletely understood but involves dysregulated T cell responses. Here, we
perform single-cell transcriptomic analysis of peripheral blood T cells from
children newly diagnosed with T1D, the same children after one year, and
healthy donors. We observe that children with diabetes show diminished
effector and cytotoxic programs and enhanced stemness-associated gene

signature across diverse T cell subsets, especially at diagnosis. In parallel, we
detect signs of impaired regulatory capacity in regulatory T cells and reg-
ulatory TR3-56 cells. These findings are supported by flow cytometry analysis
of the same cohort and reanalysis of publicly available datasets. Overall, our
results suggest that T1D is associated with impaired T cell effector differ-
entiation and regulatory T cell dysfunction, both of which may contribute to

immune imbalance and loss of self-tolerance.

Type 1 diabetes mellitus (T1D) is an autoimmune disease characterized
by the destruction of pancreatic -cells, leading to insulin deficiency,
hyperglycemia, and impaired metabolic homeostasis. As there is cur-
rently no cure for TID, people with TID rely on insulin replacement
therapy for the rest of their lives. Unlike most autoimmune diseases,
TID typically manifests in childhood. Both genetic and environmental
factors contribute to the development of TID. The genetic factors
include specific HLA haplotypes', polymorphisms in the insulin gene
(INS)* and several immune-related genes (e.g., CTLA4, PTPN22, IFIHI,
and CD226)°. The importance of the environmental factors is high-
lighted by an increase in T1D incidence in high-income countries*®. It
has been proposed that specific viral infections, such as enteroviruses,
can trigger TID”®. On the contrary, the hygiene hypothesis proposes
that the reduction of the infection burden in children may partly
explain the rising incidence of TID and other autoimmune
diseases**™'. Despite some controversies in this area of research, it is
well-established that a genetically and/or environmentally altered state
of the immune system is a significant risk factor for TID and may

contribute directly to its onset. However, the etiology of T1D is still
largely unknown.

T cells are extensively studied in the context of T1D because of the
genetic evidence of HLA involvement, their clear role in the develop-
ment of TID in animal models'>?, and their presumed role in B-cell
destruction via cell-mediated cytotoxicity'*". Moreover, it has been
proposed that T1D susceptibility may be induced by insufficient self-
tolerance mediated by FOXP3" regulatory T cells (Treg) and non-
classical regulatory T cell populations, such as CD3* CD56" TR3-56
cells'®. Despite numerous studies in the field”"*, the T1D-associated
alterations in the T cell compartment are still not fully understood.

Traditionally, the immune cells in T1D are studied using targeted
flow cytometry panels or bulk transcriptomics on whole blood, per-
ipheral blood mononuclear cells (PBMC), and/or sorted leukocyte
subsets* %, Whereas flow cytometry is limited to the pre-selected
protein markers, bulk transcriptomic analysis lacks flow cytometry’s
single-cell resolution. These limitations can be overcome by multi-
parameter approaches on the single-cell level, such as cytometry by
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time-of-flight or single-cell RNA sequencing (scRNAseq). Indeed, pio-
neering studies established these techniques as the methods of choice
to capture the differences between the immune cells in children with
and without TID*¢?°*°_ However, these studies also revealed potential
caveats, such as a trade-off between the sufficient size of the cohort to
address reproducibility and the number of sequenced cells per donor
to achieve sufficient resolution’*?2°, In parallel efforts, big consortia
such as The Network for Pancreatic Organ Donors with Diabetes
(nPOD)* and Human Pancreas Analysis Program (HPAP)*>** are gen-
erating large atlases of multimodal data from tissues of deceased
donors, including scRNAseq, flow cytometry, immune repertoire pro-
filing, and imaging data. Although these efforts provide invaluable data
sets, including samples from solid organs that are hardly accessible,
their disadvantage is their inability to recruit donors specifically based
on features such as their age or time after diagnosis.

In this study, we compare the T cell compartments in children
with and without T1D using single-cell transcriptomics, and we moni-
tor longitudinal changes during the first year after diagnosis. T cells
from newly diagnosed children display a bias toward naive-like and
stem-associated states, which is partially normalized after one year. In
addition, Tregs show impaired functional differentiation with a gene
signature of dysfunction. Together, these findings highlight a dis-
rupted balance between effector and regulatory programs in T cells,
providing new insights into mechanisms that may underlie loss of self-
tolerance in TI1D.

Results

Generation of a T cell atlas of children with T1D and

healthy donors

We performed a prospective study on a cohort of 43 pediatric donors
with TID or without TID (henceforth referred to as healthy donors)
using scRNAseq to identify potential gene expression patterns and
heterogeneity in blood T cells associated with TID. Specifically, we
searched for differences in the T cell compartment between the
healthy donors and children with T1D, and for changes occurring
during the first year after the diagnosis of T1D. We based our analysis
on the scRNAseq, including T cell receptor sequencing (VD] profiling)
and flow cytometry analysis of T cells from the peripheral blood of our
Czech cohort, complemented by the analysis of openly accessible data
from other cohorts.

Blood samples from 30 children with TID were taken 4-24
(median 9) days after their diagnosis (time TO) and again at 359-423
(median 377) days after diagnosis (time T1). For comparison, we col-
lected blood from 13 healthy donors (Fig. 1A). The T1D and healthy
donor cohorts were comparable in age distribution, as confirmed by
descriptive statistics (Supplementary Table 1, Supplementary Fig. 1A)
and standardized mean difference (SMD) analysis (Supplementary
Fig. 1B). However, the sex distribution differed, with a higher propor-
tion of males in the T1D cohort (67%) compared to the healthy donors
(33%) (Supplementary Table 2). We characterized the donors by their
age, sex, partial clinical remission status at T1, T1D-associated auto-
antibody levels, HLA haplotypes (Fig. 1B), as well as blood concentra-
tions of glycated hemoglobin, random and fasting C-peptide, and
leukocyte levels (Supplementary Fig. 1C-E). At TO, children with T1ID
showed a higher proportion of lymphocytes (mean 48.1%, SD 12.9%)
and a lower proportion of neutrophils (mean 38.9%, SD 13.1%) com-
pared to healthy donors (lymphocytes: mean 40.4%, SD 11.0%; neu-
trophils: mean 46.5%, SD 12.6%) and to their own levels at T1
(lymphocytes: mean 37.9%, SD 11.2%; neutrophils: mean 49.2%, SD
11.8%) (Supplementary Fig. 1E).

First, we performed an initial sScRNAseq analysis of CD4" and CD8*
lymphocytes from 16 samples, which revealed that the majority of
T cells in our child donors had a naive CD45RA" CD45RO" phenotype
(Supplementary Fig. 2A-D), determined by CD45 splicing-sensitive
analysis tool IDEIS®. To enable a more detailed characterization of

antigen-experienced (non-naive) T cells in the final scRNA-seq analysis,
we enriched for these cells by sorting at a fixed 1:5 ratio of naive to
antigen-experienced cells for both CD4" and CD8a" lymphocytes
(Supplementary Fig. 2E-H). Details on sample counts, donor numbers,
and enrichment strategies for both initial and final experiments are
summarized in Supplementary Table 3.

In total, we processed 176 samples, with an average of 992 cells per
sample. On average, each cell contained 2689 non-redundant tran-
scripts and 1464 detected genes (Supplementary Table 4). We pro-
cessed the data using our standard pipeline* including the removal of
dead cells and doublets (Supplementary Fig. 3A, B). Because the library
preparation was performed in six batches, we used integration by
STACAS to remove the batch effect™*. Integration successfully
removed the unwanted variability between experiments, but impor-
tantly, it preserved biologically relevant differences, such as the
difference between initial and final experiments, which contained non-
enriched versus enriched cells (Supplementary Fig. 4A-H). Comparison
of data from initial and final experiments showed that, as expected, our
approach reduced the frequency of naive cells from ~ 70-75% to 20-25%
(Supplementary Fig. 41-)). All subsequent analyses were restricted to the
final experiments, i.e., enriched samples, to ensure consistency.

In the next step, we generated CD8" and CD4* lymphocyte atlases
using the processed scRNAseq data. The CD8" lymphocyte compart-
ment consisted of three clusters: CD8a'™ NK cells, unconventional
CDS8' T cells represented by semi-invariant MAIT cells and yST cells, as
well as conventional CD8" afST cells (Supplementary Fig. SA-D). Based
on the typical markers, we identified that conventional CD8" T cells
contain naive, memory (Tmem), unconventional KLRC2* memory, also
previously described as KILR-like cells*”*%, which we abbreviate as Tmk
(T cell memory KLRC2"), terminally differentiated CD45RA" (Temra),
and proliferating subsets (Fig. 1C, D and Supplementary Fig. 5E). Temra
and to a lesser extent, proliferating and Tmem cells, but not Tmk cells,
were clonally expanded (Fig. 1E). These subsets could be further sub-
divided into 41 smaller subsets (Supplementary Fig. 5F). The identity of
cell subsets was validated using a previously published RNAseq dataset
of sorted populations of CD8" T cells* (Supplementary Fig. 5G, H).

The CD4* lymphocyte compartment consisted of a subset of
unconventional T cells including iNKT cells expressing their signature
TCRa (TRAVIO, TRAJIS; CDR3: CVVSDRGSTLGRLYF) (Supplementary
Fig. 6A, B) and conventional CD4" T cells, which could be further
divided to naive, central memory (Tcm), Treg, Th1/Th17, Th2, Temra,
CD4" T cells with a high expression of interferon signaling associated
genes (ISAGhi)*, proliferating cells, and CD4" T cells enriched for
genes involved in signal transduction pathways (Tsig) (Fig. 1F, G and
Supplementary Fig. 6C-F). Temra cells were the only CD4" T cell subset
showing a substantial level of clonal expansion (Fig. 1H). These subsets
could be further split into 38 smaller subsets (Supplementary Fig. 6G).
The identity of cell subsets was validated using a previously published
RNAseq dataset® (Supplementary Fig. 6H, I).

We compared the proportions of particular subsets using both
frequentist (Supplementary Fig. 7A-D) and Bayesian (Supplementary
Fig. 7E, F) statistics. These analyses did not reveal substantial differ-
ences between children with TID and healthy donors, with the
exception of CD8" Temra cells, which were enriched in the healthy
donors in comparison to the children with T1D (Supplementary Fig. 7A,
E). The Bayesian statistics revealed apparent differences in ISAGhi and
Tsig subsets (Supplementary Fig. 7F), which, however, originated from
only a limited number of outlier participants (Supplementary Fig. 7C).
Within the T1D group, the frequency of MAIT cells among CD8" T cells
and the frequency of Th2 cells among CD4" T cells correlated with
fasting C-peptide level, which we used as a proxy for residual p-cell
activity (Supplementary Fig. 7G, H). However, because of the prior
enrichment for antigen-experienced T cells, the relative abundance of
the particular subsets in the scRNAseq data does not correspond to the
real frequency in the original sample.
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Fig. 1| Blood T cell atlas of children with T1D and healthy donors.

A Experimental design. PBMCs from children with newly diagnosed TID (TO,
n=30), one-year follow-up (T1, n=29), and age-matched healthy donors (HD,
n=13) were collected and cryopreserved. Sorted CD4* and CD8"* T cells underwent
scRNA-seq (gene expression and paired TCR repertoire profiling). Findings were
validated in independent published cohorts. B Cohort characteristics. Each dot
indicates one donor. Upper panel: group, age, sex, remission at T1 (defined as
insulin dose-adjusted HbAlc <9) and diabetic ketoacidosis at TO (defined as pH
<7.3 and/or bicarbonate < 15 mEq/L). Middle panel: autoantibody status (GAD, IAA,
1A2, ZNT8). Lower panel: T1D risk HLA alleles inferred from scRNA-seq. C-E CD8*
T cells (n=63,068 cells from 43 donors) after quality control and exclusion of
contaminants, unconventional subsets, and CD8low NK cells. C UMAP of conven-
tional CD8* T cell populations. Louvain clusters were merged by functional simi-
larity and annotated by marker genes. D Heatmap of selected cluster-defining

genes (row-scaled z-scores of average expression). E TCR repertoire analysis: UMAP
colored by clonal expansion (log, counts of recurrent paired CDR3a/CDR3p).
Bottom: quantification of expansion across clusters. F-H CD4* T cells (n=79,876
cells from 43 donors) after exclusion of low-quality, contaminating, and uncon-
ventional subsets. F UMAP of conventional CD4* T cell populations. Louvain clus-
ters merged and annotated as in (C). G Same as (D) but for CD4* clusters. H TCR
repertoire analysis: UMAP colored by clonal expansion, calculated as in (E), with
quantification across clusters. TID - Type 1 Diabetes Mellitus, TO - timepoint at
diagnosis, T1 - timepoint one year after diagnosis, Tmk - unconventional KLRC2*
memory T cells, Tmem - memory T cells, Tcm - central memory T cells, Treg -
regulatory T cells, Tsig - T cells with signaling transduction signature, ISAGhi -

T cells with interferon signaling signature, GAD - Glutamic Acid Decarboxylase, IAA
- Insulin Autoantibodies, IA2 - Tyrosine Phosphatase-like Protein IA-2, ZNT8 - Zinc
Transporter 8.

Nature Communications | (2025)16:11301


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-66459-4

A cDs ; CD4
050 MYOM2| 05

METRNL

‘ CXCR4
IFI6__ ARL4C

0.00

IFIG\ IFIT3

STAT1.® |
GNAS
ITGB1—
CD81

B

IFI44L° ) ppq
EFHD2

0.25 - ZFP36L2

GZMB

0.00

GZMH -
/CCL5 :
[ e TNF

IER2
GADD45B

-0.50

-0.25 d o
IFNG
GIMAP1

o K|F1° N
EEF1G JUN

“LDHB  PCBP2
“CCR7

AvgLog2FC T1D T1 vs Healthy

BTN3A2 -0.75

GZMA pres>
A pRF
-0.25 / GZMB-,
GADD45B 2
CCL5—~ /CFL4 | BTN3A2
|[ER2” / CENPK

GZMH

B-. o
| [-FGFBP2

FOS

Stemness
-associated
gene
signature

-0.50

-0.3 0.0 0.3

0.0

AvgLog2FC T1D TO vs Healthy

® GSE9650 Naive vs Effector CD8" T cell UP
GSE9650 Naive vs Effector CD8" T cell DN

«—T1D Healthy —» <«—T1D

e p=0.04
p=1.1e-05

0.25- 0.25 -

©® GSE11057 Naive vs Eff. Memory CD4" T cell UP
GSE11057 Naive vs Eff. Memory CD4" T cell DN

Healthy —»
e p=0.02

/’\ p =4.7e-06

Effector
response
gen
signature

o
o

0.0

-0.25-
-0.25-

S
3
)

Enrichment score
Enrichment score

S~

0 5k 10k
Ranked genes CD8 T1D vs Healthy

15k 0

CD8

SCM
signature

0.02

Naive
signature

0.08

0.045

Temra
signature

0.03

Naive
signature

0.03

006 007 008
-10 20
16
-15
12

10

N
o

DecoupleR score
DecoupleR score

-15

20

Y,

5k 10k 15k

Calcium/
NFAT
signaling

Signaling
regulators

CD8

Healthy

B 11D TO

Healthy
TIDT1

] TIDTO

(@)
@)
=

T1D T1

LEF1
BACH2
NELL2

M TCcF7
CXCR4

N zFP36L2

IL7R

KLF2

B ccr7
SELL

IFNG
TBX21
TNF
CCL5
CX3CR1
GZMA
GNLY
CSsT7
GZMB
NKG7
PRF1
TNFRSF9

NFATC2
NFATC3
ORAI1
ITPR3

B TNFAIP3
] DUSP1
|| Tsc22p3
| NFKBIA
DDIT4
INPP4B

Ranked genes CD4 T1D vs Healthy

-

| PTPNG
RCAN3

CD4

SCM
signature

0.13

Type 1
Interferon
response

Temra
signature
0.9
0.045

BTN3A2

HLA region |
region | | I BTN3A3

B |

Qv afwess

e Healthy
e T1DTO
e T1D T1

Fig. 2 | Differential gene expression in T cells in children with T1D.

A Differentially expressed genes (DEGs) in CD8* (left) and CD4* (right) T cells
comparing children with T1D at diagnosis (TO, n=30) or one year after diagnosis
(T1, n=29) with healthy donors (HD, n=13). Each point represents one gene,
plotted by average log, fold change in T1D TO vs. HD (x-axis) and T1D T1vs. HD (y-
axis). DEGs were identified using the two-sided Wilcoxon rank-sum test (Seurat
FindMarkers), with p-values adjusted for multiple comparisons (Bonferroni). Only
genes with adjusted p < 0.05 are shown; selected top up- and downregulated genes
are labeled. B Heatmap of relative expression of selected DEGs across HD, T1D TO,
and T1D T1. Donor-level averages were calculated using Seurat AverageExpression,
z-score normalized within each gene, and then averaged per group. C Gene set
enrichment analysis (GSEA) showing enrichment of naive versus effector T cell

signatures from published datasets (GSE9650, GSE11057). Each curve corresponds
to genes upregulated (dark, “UP” set) or downregulated (light, “DN” set) in naive
versus effector cells. Positive normalized enrichment scores indicate enrichment of
the naive-up gene set and depletion of effector-up genes in TID samples. P-values
were estimated using an adaptive multi-level split Monte Carlo scheme (fgsea R
package). D Violin plots of decoupleR scores quantifying similarity to reference
contrasts (Temra vs. naive; naive vs. Tem) in CD8* (left) and CD4* (right) T cells.
Each dot = one donor. Comparisons between HD and T1D TO were assessed using
two-tailed Mann-Whitney tests; paired comparisons between T1D TO and T1 used
two-tailed paired Mann-Whitney tests. Bars indicate medians. n =13 HD, 30 TID TO,
29 T1D T1. TID - Type 1 Diabetes Mellitus, TO - timepoint at diagnosis, T1 - time-
point one year after diagnosis, GSEA - Gene set enrichment analysis.

The onset of diabetes is associated with low effector T cell
signatures

Next, we compared gene expression between healthy donors and
children with TID at TO and T1, separately in CD4* and CD8" T cells
(Fig. 2A, B). We visualized the consistency of gene expression changes
by plotting log-fold changes in T1D TO vs. healthy donors against TID

T1 vs. healthy donors for each gene, showing the key differences at
both timepoints (Fig. 2A).

At both timepoints, we found an enrichment of effector and
cytotoxic genes (GZMA, GZMB, GZMH, PRF1, GNLY, IFNG, TNF, CCLS,
CCL4) in healthy donors compared to TID. In contrast, genes asso-
ciated with naive, quiescent, and/or stem-like T cells (TCF7, LEFI,
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BACH?2, IL7R, CXCR4, ZFP36L2) were upregulated in children with TID.
Hereafter, we refer to the latter set of genes as a stemness-associated
gene signature, reflecting transcriptional features shared by naive,
quiescent, and stem memory T cells, rather than being strictly limited
to canonical naive cells. This bias toward a stemness-associated sig-
nature was most pronounced at TO (Fig. 2B).

T cells from TID TO samples also showed higher expression of
several regulators of intracellular activation signaling pathways
(DUSP1, TSC22D3, TNFAIP3), which might be associated with the
quiescent state (Fig. 2B). In contrast, samples from healthy donors
showed a higher expression of genes associated with calcium signaling
and NFAT activation (ORAI1, NFATC2, NFATC3), potentially supporting
a more activated, effector-like state.

To further support these observations, we performed gene set
enrichment analysis (GSEA) using signatures of genes upregulated or
downregulated in naive versus effector or effector memory T cells
from previously published datasets (GSE9650*, GSE11057*%). This
analysis confirmed the enrichment of the naive (stemness-associated)
signature in T cells from children with T1D and an effector signature in
T cells from healthy donors (Fig. 2C).

To validate these findings at the sample level, we performed dif-
ferential expression analysis using DESeq2 on pseudobulk expression
profiles aggregated per donor. This analysis confirmed a strong cor-
relation of log-fold changes with the original per-cell analysis (Sup-
plementary Fig. 8A, B). Key genes representing effector-, stemness-,
and NFAT-associated signatures were identified by both types of ana-
lysis (Supplementary Fig. 8C-F).

In addition, for each donor, we quantified the similarity of their
gene expression to reference contrasts of naive versus memory cells
from a previously published dataset (GSE179613%) using decoupleR*,
which, unlike GSEA, explicitly accounts for the sign and weight of
network interactions. This comparison revealed enrichment of naive
and stem memory signatures in T1D samples at TO, and enrichment of
Temra signatures in healthy donors (Fig. 2D). These patterns were
observed across different age and sex groups, confirming that these
differences are not driven by age or sex (Supplementary Fig. 9A, B).

In addition to the bulk CD4" and CD8" T cell compartments, we
also analyzed differential expression within individual T cell subsets
(Supplementary Figs. 10A, B, 11A, B). This revealed that while most
genes followed similar patterns across subsets, certain differentially
expressed genes (DEG) (e.g., MYOM2, IFI27, CD38, GZMK, FOS, FOSB)
showed distinct, subset-specific regulation. To quantify these overlaps,
we assessed shared top DEGs across subsets, showing high similarity
among naive and memory populations (Supplementary Figs. 10B, 11B).

To check whether the downregulation of effector genes and
upregulation of naive genes in children with T1D is associated with the
disease severity, we carried out the comparison of differential
expression between children with TID at TO who suffered from
ketoacidosis and those who did not, and between T1D who fulfilled or
not the criterion of partial clinical remission (insulin dose adjusted
HbAlc <9***) (Supplementary Fig. 12A-D). We did not observe a
pronounced bias towards stem-like or effector-like gene expression in
either of these subgroups (Supplementary Fig. 13A, B).

For the interpretation of the previous results, it should be noted
that the ratio of naive and antigen-experienced T cells was normalized
for the scRNAseq analysis. For this reason, we analyzed the samples by
flow cytometry to reveal that both antigen-experienced CD8" and CD4"
T cells were less abundant in children with TID than in healthy donors
at TO, but not at T1 (Fig. 3A). Accordingly, the expression of a key
cytotoxic protein Granzyme B (GZMB) is lower in children with T1D in
CD8* and CD4" T cells than in the healthy donors at both time points
(Fig. 3A). The frequencies of populations analyzed by scRNAseq before
enrichment correlated with the frequencies obtained by flow cyto-
metry, indicating the consistency of the two methods (Supplementary
Fig. 14A).

Overall, the data suggested that the T cell compartment has a
more stem-like and less effector-like state in children with T1D than in
healthy donors. This stem-like state is partially normalized within one
year after the diagnosis and the associated introduction of the insulin
therapy.

To extend our findings to unrelated T1D cohorts, we addressed
the question of the stem-like vs. effector signature in people with TID
in previously published data. Using the HPAP database®, we re-
analyzed scRNAseq data obtained from T cells from the spleens of 53
children and adult donors with or without TID. In this cohort, the
effector signature genes were enriched in the control samples, and the
stemness-associated (naive-like) signature genes were enriched in
donors with TID (Fig. 3B). In addition, we re-analyzed flow cytometry
data from the HPAP and observed a reduction of effector CD8" and
CD4" T cells in the blood of donors with T1D (Fig. 3C and Supple-
mentary Fig. 14B), consistent with the findings in our pediatric cohort.

Next, we collected transcriptomic data from previously published
studies?®**2447 (Supplementary Table 5) and re-analyzed it using the
same pipeline. Genes consistently upregulated across T1D datasets
included those connected to the naive, stem-like, and quiescent T cell
states such as LEFI*®, FOXPI*°, BACH2*°, NELL2", IKZFI** and a negative
regulator PI3 kinase signaling INPP4B%* (Fig. 3D). In contrast, genes
associated with cytotoxicity and effector functions, such as NKG7,
GNLY, CCL4, CCLS, CX3CR1, TNFRSF4 (0X40), TNF, and TNFRSF9 (4-1BB)
were upregulated in healthy donors. Altogether, our results showing a
T cell bias towards a naive-like, stem-associated, and quiescent state in
T1D are supported by the majority of the published datasets.

BTN3A2 expression depends on HLA haplotypes

It was shown that BTN3A2 and to a lower extent, BTN343, encoding
butyrophilin family members, are upregulated in T cells of children
with TID compared to healthy donors*. However, we observed the
opposite in our dataset, i.e., the higher expression of BTN342 and
BTN3A3 in healthy donors than in children with T1D (Fig. 2A, B). Since
BTN3A2 is a part of the extended MHC region®*, we hypothesized that
its expression may depend on specific HLA haplotypes rather than TID
status.

In our cohort, most children with T1D carried known susceptibility
alleles, specifically HLA-DR3-DQ2 (haplotype HLA-DRB1 03:01-DQA1
05:01-DQB1 02:01) and/or HLA-DR4-DQ8 (HLA-DRB1 04:01-DQA1
03:01-DQB1 03:02)", while healthy donors reflected the general HLA
distribution in the Czech population® (Supplementary Fig. 15A). We
used our data and publicly available data to estimate the role of the
T1D status, particular haplotype, and study on BTN3A2 expression. We
observed that the study and HLA haplotypes, but not the TID status,
are the factors significantly influencing BTN3A2 expression (Supple-
mentary Figs. 15B, 16). This indicates that the selection of healthy
donors (e.g., unmatched as in our study or partially matched as in
ref. 26) might have a great impact on the results concerning BTN342
expression.

Naive-like regulatory T cells in children with TID

It has been proposed that the dysfunction of Treg cells might con-
tribute to the loss of self-tolerance and the development of auto-
immune diabetes in humans and animal models™**’. We identified four
Treg subclusters labeled Tregl to Treg4 (Fig. 4A). The gene expression
analysis revealed that Tregl represents Tregs with the most naive/
stem-like phenotype, with high expression of stemness-associated
genes such as CCR7, TCF7, SELL and relatively low expression of Treg
signature genes such as FOXP3, CTLA4, and IL2RA (Fig. 4B-D). How-
ever, the expression of these signature molecules in Tregl cells was
higher than in naive T cells suggesting that they are bona fide Tregs
(Fig. 4D). In contrast, the Treg4 subset represents Tregs with the most
activated phenotype, which predispose them for potent regulatory
functions™.
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Fig. 3 | Validation of scRNAseq results by flow cytometry and reanalysis of
published datasets. A Validation by flow cytometry. Effector and naive T cells were
gated from live CD3* CD8* or CD4* T cells. For CD8* (left) and CD4* (right) T cells,
plots show (left to right): representative gating of naive (CCR7*CD45RA*) vs.
effector populations, effector-to-naive ratio, and geometric mean intensity of
GZMB. Full gating in Supplementary Fig. 2. Comparisons between HD and T1D TO
were assessed using two-tailed Mann-Whitney tests; paired comparisons between
T1D TO and T1 used two-tailed paired Mann-Whitney tests. Bar at median. n=13
healthy donors, n =30 T1D TO donors, n =29 TID T1 donors. B Gene set enrichment
analysis (GSEA) of DEGs identified in published datasets (GSE9650, GSE11057) using
splenocytes from T1D and non-diabetic donors in the HPAP dataset. P-values esti-
mated by the adaptive multi-level split Monte Carlo scheme (fgsea R package).

C Flow cytometry of CD8* (left) and CD4" (right) T cells from PBMCs of T1D and

ParseBio: CD4" T cells

I ParseBio: CD8" T and NK cells
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EGAD00001005768: CD8* T cells
GSE221297: CD4* T cells
GSE221297: CD8"* T and NK cells
Current study: CD4" T cells
Current study: CD8" T cells
GSE123658: Whole blood
GSE10586: CD4* CD25" T cells
GSE237218: CD4" Typemay Cells
GSE237218: CD4* CD25' T cells

N EN B GSE237218: CD4* CD25" T cells
n-tile: 1 20
Healthy T1D

M Gene not detected

non-diabetic (NonDia) HPAP donors. Plots show (left to right): representative naive
vs. effector gating and violin plots for quantification. Full gating in Supplementary
Fig. 14. P-values by two-tailed Mann-Whitney test; bars at medians. n =32 NonDia,
n=23TID. D Heatmap of DEGs consistently dysregulated in T1D vs. healthy donors
across published studies. Transcriptomic count matrices from multiple datasets
(Supplementary Table 5) were processed using a unified pipeline. Fold changes
(T1D vs. healthy) were calculated for all genes, then divided into 20 quantiles
(quantile 1=most upregulated in healthy; quantile 20 = most upregulated in T1D).
Genes most consistently enriched in quantiles 1 (left) and 20 (right) across studies
are shown. HPAP - Human Pancreas Analysis Program, T1D - Type 1 Diabetes
Mellitus, TO - timepoint at diagnosis, T1 - timepoint one year after diagnosis, GSEA
- Gene set enrichment analysis.

The naive-like Treg subset was more abundant among Tregs in the
children with T1D than in healthy donors (Fig. 4E, F and Supplementary
Fig. 17A) at TO and T1. Tregl cells expressed high levels of CD226 and
low levels of TIGIT (Fig. 4C), which both bind to common ligands CD112
and CD155, but have the opposite functions. CD226 is associated with
Treg dysfunction, whereas TIGIT in Tregs is linked to the self-tolerance
in the context of TID**®,

To further understand the relationship among Treg subsets, we
performed pseudotime analysis®*, which revealed a trajectory

consistent with progressive Treg activation and differentiation
(Fig. 4G). Pseudotime strongly correlated with a Treg activation score
(Fig. 4H), and median pseudotime values indicated that Tregs were
more activated in healthy donors compared to children with T1D
(Fig. 41). To formally test for differences in trajectory progression, we
applied the condiments package®, which confirmed significant dif-
ferences in pseudotime dynamics between groups (Fig. 4J-L).

In the next step, we addressed whether Tregs from T1D resemble
functionally impaired Tregs from conditions in which their
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Fig. 4 | Regulatory T cells in children with TID. A Reclustering of Treg clusters
from the UMAP projection shown in Fig. 1F. Selected clusters were extracted and
subjected to new normalization, scaling, integration, and dimensionality reduction.
The resulting UMAP projection is shown on the right. n=9890 cells from 43
donors. Cells are colored by cluster. BSame UMAP projection as in (A), colored by
expression of a gene module upregulated in activated Tregs compared to resting
Tregs from GSE15659°. C Heatmap of selected marker genes characterizing the
clusters shown in (A). Color represents row-scaled z-score of average gene
expression per cluster. D Violin plots of the percentage of cells per cluster with non-
zero expression of selected genes (87 samples). Bars show medians. E Density plots
of Treg subtype abundance across healthy donors and children with TID at TO and
T1. F Quantification of the percentage of naive Tregs per sample among total Tregs,
gated as shown in (E). P-values were calculated using a two-tailed Mann-Whitney
test (healthy donors vs. children with T1D at TO) or a two-tailed paired
Mann-Whitney test (children with T1D at TO vs. T1). Bars indicate medians. n=13

healthy donors, n=30 T1D TO, n=29 TID T1. G Same UMAP as (A), colored by
pseudotime values calculated using the slingshot package. The arrow indicates the
identified lineage trajectory. H Tile plot of correlation between pseudotime and
Treg activation score from (B), binned into 20 intervals. P-value by two-sided
Pearson correlation. I Violin plots showing median pseudotime values in healthy
donors and children with T1D at TO and T1. P-values as in (F). Bars indicate medians.
n=13 healthy donors, n=30 T1D TO, n =29 TID T1. J Same UMAP as (A), colored by
scaled imbalance score estimated using the condiments package. Higher scores
indicate greater differences in cell density between healthy donors and children
with T1D at TO or T1. K Density of cells from healthy, TID TO, and T1 along pseu-
dotime. L Violin plots showing the pseudotime value at which cells show maximum
density in each condition. P-values as in (F). Bars indicate medians. n =13 healthy
donors,n=30T1D TO, n=29 TID T1. T1D - Type 1 Diabetes Mellitus, TO - timepoint
at diagnosis, T1 - timepoint one year after diagnosis.
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Fig. 5 | Altered Treg signatures in children with T1D and validation in inde-
pendent datasets. A Gene set enrichment analysis (GSEA) of genes up- or down-
regulated in IPEX patients vs. healthy donors (refs. 65,66) tested against ranked
DEGs in Tregs from children with T1D vs. healthy donors. P-values estimated using
adaptive multi-level split Monte Carlo (fgsea R package). B Correlation between
fasting C-peptide at T1 and IL4R (left) or ILIORA (right) expression within Tregs at
TO. P-values from two-sided Pearson correlation; n=28 T1D donors. Line =
regression fit; shaded area =95% CI. C Correlation between fasting C-peptide at T1
and frequency of Tregl (left) or Treg4 (right) at TO. P-values, line, and shaded area
as in (B); n =28 T1D donors. D-G Reanalysis of Treg populations in published
datasets: GSE221297 (PBMC, 5 T1D, 3 healthy), ParseBio (PBMC, 12 T1D, 12 healthy),

and HPAP (splenocytes, 4 T1D, 8 non-diabetic). D UMAP projection of Treg cells,
colored by Louvain clusters. E Density plots showing distribution differences of
Tregs from healthy vs. T1ID donors. F Heatmaps of selected marker genes per
cluster (row-scaled z-scores of average expression). G Quantification of cluster
frequencies per sample. Boxplots: line = median, hinges = first and third quartiles,
whiskers =1.5 x IQR. H Average frequency of Treg subclusters in healthy (blue) and
TID (red) donors across datasets. Clusters Tregl-4 in our study matched to
TregA-D here. P-values by paired ¢ test. HD - Healthy Donor, IPEX - Immuno-
dysregulation polyendocrinopathy enteropathy X-linked syndrome, T1D - Type 1
Diabetes Mellitus, T1 - timepoint one year after diagnosis.

dysfunction is well established and characterized. First, we compared
TID Tregs from our cohort to Tregs from patients with a disease called
Immune dysregulation, polyendocrinopathy, enteropathy X-linked syn-
drome (IPEX), which is caused by loss-of-function mutations in FOXP3.
Tregs from children with T1D upregulated genes specific for defective

Treg-like cells observed in IPEX patients®®” (Fig. 5A). We obtained the
same results when we compared Tregs from children with TID to Treg-
like cells in Foxp3’ mice®®*’ and bona fide human Tregs after their key
transcriptional regulators FOXP3, HIVEP2, IKZF2 (Helios), or SATBI were
knocked-out” (Supplementary Fig. 17B, C). Moreover, we observed an
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inverse correlation between /L4R expression in Tregs and residual
insulin production measured as fasting C-peptide levels (Fig. 5B),
which points to a previously proposed inhibitory role of IL-4 signaling
in Treg differentiation”””. In contrast, the expression of /LIORA in
Tregs correlated with fasting C-peptide levels, which highlights a
possible role of IL-10 signaling for Treg-mediated tolerance in T1ID
(Fig. 5B). Fasting C-peptide levels also correlated with the frequency of
Tregl cells (negative correlation) and the frequency of Treg4 cells
(positive correlation) (Fig. 5C), suggesting that the Treg maturation
status might be involved in the disease severity. Overall, this evidence
suggests that Tregs in children with TID might be less mature and/or
less functional than their counterparts in healthy donors.

To address our findings in independent cohorts, we reanalyzed
data from three publicly available scRNAseq datasets studying per-
ipheral immune cells of donors with T1D and healthy donors: a recent
publication®’, HPAP dataset®, and a reference dataset published by
Parse Biosciences (henceforth ParseBio). In each dataset, we identified
Treg cells based on canonical markers, then extracted and reclustered
these cells to define four clusters (A-D), which roughly corresponded
to our Tregl-4 clusters based on their gene expression profiles
(Fig. 5D). Similar to our dataset, cluster A represented the most naive
and D represented the most mature Treg state (Fig. S5E, F). Cluster A,
which showed high expression of naive genes and IL4R, was over-
represented in Tregs from donors with TID in comparison to healthy
donors, whereas cluster D, which showed high expression of Treg
effector genes, was overrepresented in healthy donors in all three
datasets (Fig. 5G, H).

In the next step, we examined FOXP3" Tregs in our cohort using
flow cytometry (Supplementary Fig. 18A, B) and analogous data from
the HPAP database (Supplementary Fig. 18C, D). In both cases, there
were slightly more FOXP3* cells among CD4" T cells in children with
TID than in healthy donors. However, we did not see consistent dif-
ferences in the expression of the naive or effector signature genes
between children with T1D and healthy donors. A possible reason is the
low expression of FOXP3 in the naive Treg subset (Fig. 4C, D), which
makes it difficult to identify these cells by the conventional flow
cytometry panels, which highly depends on FOXP3 detection.

Low frequencies of effector-phenotype unconventional T cells in
children with T1D

It has been proposed that a loss of unconventional CD3* CD56" T cells
(named TR3-56) with regulatory properties might contribute to the
development of TID™. In our cohort, we observed that children with
TID at TO, but not at T1, exhibited slightly lower expression of the TR3-
56 signature than healthy donors, both in CD4* and CD8" T cells
(Fig. 6A). We observed similar results in two unrelated cohorts with
publicly available data (Supplementary Fig. 19A).

In the next step, we aimed to identify TR3-56 cells in our scRNAseq
data, starting with the CD8" T cells atlas, consisting of naive and
antigen-experienced conventional T, NK, yST cells, and MAIT cells
(Fig. 6B, C and Supplementary Fig. 19B). Among these populations,
TR3-56 cells were predominantly annotated within the MAIT and y6 T
cell subsets (Fig. 6B, C and Supplementary Fig. 19C). Accordingly, these
clusters contained the most cells coexpressing CD3 and CD56 (Sup-
plementary Fig. 19D). Furthermore, TR3-56 cells in these clusters
exhibited the highest annotation scores (Fig. 6D), supporting their
overlap with MAIT and y6 T cells.

To identify unique markers of TR3-56 cells independent of their
parental subsets, we performed differential gene expression analysis
comparing TR3-56 cells and non-TR3-56 cells in the CD8" lymphocyte
clusters (Fig. 6E). This analysis revealed that TR3-56 cells upregulate
transcription factors associated with cytotoxicity and T cell activation
(RUNX3, BHLHE40, NR4A3), as well as genes associated with homing to
tissues (CCR6, ITGBI). Finally, we assessed the regulatory potential of
TR3-56 cells by comparing their gene expression to a canonical Treg

signature, and found that TR3-56 cells exhibited the highest similarity
among all CD8* lymphocyte subsets. (Fig. 6F).

Re-clustering of the unconventional T cells identified two clusters
of y&8T cells and four clusters of MAIT cells (Fig. 6G, H). We observed
that the y8T1 cluster was enriched in healthy donors in comparison to
children with T1D at TO and T1 (Fig. 6l). This cluster corresponded to
effector-phenotype y&T cells (Fig. 6H), suggesting that the state of
YST cells in TID essentially phenocopies conventional T cells
(Fig. 2A-D). In contrast, y6T2 cells, enriched in some children with T1D
(Fig. 6l), expressed lower levels of effector genes (Fig. 6H). Accord-
ingly, the total unconventional CD8' T cells from children with TI1D
express lower levels of cytotoxic effector genes such as GZMB, GZMH,
GNLY,and CCLS (Supplementary Fig. 19E).

Using flow cytometry, we observed that CD8"" T cells are enri-
ched for y6TCR" and CD56" cells (Fig. 6) and Supplementary Fig. 20A).
Thus, gating for CD8"™" cells can be used as a proxy for CD8"* y8T cells
or CD8" CD3* CD56" T cells. In our flow cytometry analysis, we found
that percentages of y8T cells and CD8'* T cells among CD3" cells were
low in children with T1D at TO, which was partially reverted at T1
(Fig. 6K and Supplementary Fig. 20A). Moreover, a higher percentage
of CD8"" T cells expressed GZMB in healthy donors than in children
with T1D, essentially confirming the scRNAseq data (Fig. 6K). A higher
percentage of CD8" T cells among CD3" T cells from healthy donors
compared to donors with TID was observed also in the HPAP flow
cytometry data (Supplementary Fig. 20B, C).

In the CD4" T cell compartment, the Temra cluster contained
most TR3-56 phenotype cells (Fig. 7A-C) and had the gene expression
profile most similar to TR3-56 cells (Fig. 7D, E). Re-clustering of the
Temra cluster revealed four subclusters (Fig. 7F). The Temra2 cluster,
corresponding to the cells with the strongest cytotoxic phenotype and
the highest expression of GZMB (Fig. 7G), was more abundant in
healthy donors than in children with T1D at TO (Fig. 7H).

The analysis of T cell receptor repertoire in children with TID
Alongside the single-cell transcriptomics, we analyzed T cell receptor
sequences in T cells from the children with T1D and healthy donors. We
observed only minimal clonal overlap between individual donors
regardless of their disease status (Fig. 8A). However, there was a sig-
nificant overlap of TCRa and TCRp sequences in the same children
with T1D at TO and T1 (Fig. 8A), indicating the persistence of these
clones in the blood during the one year period. We did not identify any
T cell clones previously associated with TID. The usage of variable,
diversity, and joint segments did not significantly differ between the
children with T1D and healthy donors (Supplementary Figs. 21, 22).

It has been reported previously that the CDR3 segments of TCR3
chains in people with TID are generally shorter than in healthy
individuals. However, we did not observe any differences in the
CDR3p length in CD4" or CD8' T cells in our cohort or in TCR repertoire
profiling data from the HPAP database (Fig. 8B-D).

Finally, we analyzed the biochemical properties of the CDR33 TCR
sequences in our cohort and in the HPAP cohort. We observed that the
CDR3p sequences from people with TID showed significantly higher
Boman index and H Moment and a slightly lower Hydrophobicity index
(Fig. 8E). This effect was apparent also on the average values per donor
(Fig. 8F, G), but with a relatively low significance. A large cohort is
required for eventual confirmation of this observation.

Discussion

In this study, we profiled peripheral blood T cells from children newly
diagnosed with TID and healthy donors using scRNAseq and flow
cytometry, with follow-up sampling one year after diagnosis to track
longitudinal changes. One of our key findings was a reduced effector
phenotype and upregulation of stemness-associated gene signature in
T cells from children with T1D, evident in conventional CD4* and CD8*
subsets as well as unconventional populations such as yST cells.
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Fig. 6 | Unconventional CD8" T cells in children with T1ID. A-C Cells were
annotated using a published RNA-seq dataset of FACS-sorted TR3-56 (CD3*CD567),
NK, CD3*CD56", and CD8" cells (GSE106082) with SingleR. A Quantification of TR3-
56 annotation scores in CD8* and CD4* T cells from healthy donors (n=13) and
children with T1D at TO (n=30) or T1 (n=29). B UMAP (from Supplementary

Fig. 5A) with cells annotated as NK or TR3-56 highlighted. C Violin plots of TR3-56
annotation scores across clusters; bars at medians. D Quantification of TR3-56
annotation scores for cells from different parent clusters (only cells annotated as
TR3-56 considered). UMAP highlights are illustrative; violin plots show medians.
E Heatmap of marker genes shared across TR3-56 cells, column-scaled by z-score.
F Module scores of Treg signature genes in main CD8* clusters and TR3-56 cells.
Violin plots; P-values by two-tailed Wilcoxon test. G Reclustering of CD8* y8T and
MAIT cells from Supplementary Fig. 19B (11,012 cells, 43 donors) after reprocessing.

UMAP colored by clusters. H Heatmap of marker genes defining clusters in (G).

1 Percentage of cells from clusters in (G) among total unconventional CD8* T cells
per sample in healthy (n=13), TID TO (n=30), and T1D T1 (n=29).J, K Flow
cytometry validation of CD8* TR3-56 cells (gating in Supplementary Fig. 20).

J Intensity of TCRyS and CD56 in naive CD8*, non-naive CD8*, NK, and CD8low

T cells. Shown: representative histogram (left) and quantification across 68 samples
(n=13 healthy, n=26 TID TO, n=29 T1D T1). K Frequencies of y&T (left) and
CD8low (middle) T cells among CD3* cells, and GZMB intensity in CD8low cells
(right), across the same donors. Panels (A, I, K): P-values by two-tailed
Mann-Whitney test (healthy vs. T1D TO) or two-tailed paired Mann-Whitney test
(T1ID TO vs. T1). Bars = medians. AgExp - Antigen Experienced T cells, MAIT -
Mucosa Associated Invariant T cells, T1D - Type 1 Diabetes Mellitus, TO - timepoint
at diagnosis, T1 - timepoint one year after diagnosis.
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Fig. 7| Unconventional CD4" T cells in children with T1D. A UMAP of CD4* T cells
showing merged Louvain clusters used for subset analysis (n = 79,876 cells from 43
donors). BSame UMAP annotated with a published dataset of TR3-56 (CD3"CD567),
NK cells, CD3*CD56-, and CD8"* cells (GSE106082) using SingleR. Cells annotated as
TR3-56 are highlighted. C Percentage of TR3-56-annotated cells in each cluster.
D Violin plots of TR3-56 annotation scores (similarity to TR3-56 reference) by
cluster; bars = medians. E Violin plots of the percentage of cells per cluster with
non-zero expression of selected genes (87 samples); bars = medians. F Reclustering

of CD4* Temra cells from (A). In the resulting UMAP, there are n = 815 cells from 43
donors. G Heatmap of selected marker genes for clusters in (F), colored by row-
scaled z-scores of average expression. H Percentage of cells in subclusters from (F)
among total CD4* Temra cells in healthy (n=13), TID TO (n=30), and TID T1
(n=29) donors. P-values by two-tailed Mann-Whitney test (healthy vs. T1D TO) or
two-tailed paired Mann-Whitney test (TID TO vs. T1); bars = medians. AgExp -
Antigen Experienced T cells, TID - Type 1 Diabetes Mellitus, TO - timepoint at
diagnosis, T1 - timepoint one year after diagnosis.

Expression of cytotoxic genes such as GZMB was downregulated in
T cells from children with T1D across various subsets, which is coun-
terintuitive given that direct T cell cytotoxicity against pancreatic -
cells has been proposed as a T1D-inducing mechanism’* "¢, The down-
regulation of the effector genes became less pronounced at one year
after diagnosis, but still apparent compared to healthy donors. These
findings were supported by analyses of HPAP spleen and blood data-
sets and by reanalysis of multiple public RNAseq studies. Consistently,
previously published flow cytometry analysis revealed higher fre-
quencies of naive T cells and lower frequencies of terminally

differentiated Temra cells in adults at the onset of T1D in comparison
to healthy donors®. Experiments on non-obese diabetic (NOD) mice
showed that stem-like pancreatic antigen-specific CD8" T cells were
more effective at disease initiation than their effector counterparts,
suggesting that effector function may arise later, at the site of
inflammation’’. Recently, we observed a similar pattern in NOD mice,
where animals that developed diabetes exhibited a naive-like pheno-
type, whereas those protected from disease showed stronger antigen-
specific activation’®. Accordingly, it has been shown that pancreatic
cell-specific CD8" T cells retain a stemness-associated epigenetic
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Fig. 8 | TCR repertoires in children with T1D. A-C TCR repertoires of CD4* and
CD8* T cells from children with T1D at TO (n=30) or T1 (n = 29) and healthy donors
(n=13) were profiled by 10x immune profiling. A Unique CDR3a/f amino acid
sequences were extracted and used for overlap analysis. For each donor, the per-
centage of overlapping sequences with all others was calculated. Overlaps are
shown for healthy-healthy (blue), healthy-T1D (violet), and TID-TID (red), as well
as self-overlap between TO and T1 within the same child. Analyses were restricted to
conventional CD8* (excluding MAIT, NK, y8T) or CD4* (excluding iNKT) T cells. P-
values by two-tailed Mann-Whitney test. B-D Length distributions of unique
CDR3p sequences per donor. Frequencies were quantified and visualized for: (B)
CD8* conventional cells (n =30 T1D, 13 healthy), (C) CD4* conventional cells (n =30
T1D, 13 healthy), and (D) mixed CD4*/CD8* splenic T cells from HPAP (n=16 T1D,
38 non-diabetic). P-values by two-tailed Mann-Whitney test without correction for

multiple comparisons. Boxplots show medians, IQRs, and 1.5 x IQR whiskers.

E-G Biochemical properties of unique CDR3f sequences (Boman index, H moment,
hydrophobicity) were computed with the Peptides R package. Analyses included
conventional CD8" T cells (excluding MAIT, NK, y8T; n=30 T1D, 13 healthy), con-
ventional CD4* T cells (excluding iNKT; n =30 TID, 13 healthy), and splenic T cells
from HPAP (n =17 T1D, 39 non-diabetic). E Clonotypes pooled within groups;
contrasts shown for TID vs. healthy in CD4*, CD8*, and HPAP T cells. P-values by
two-tailed Mann-Whitney test. Estimates represent the difference of location
(median of differences between T1D and healthy CDR3 sequences), with 95% Cls.
F, G Donor-level averages of biochemical scores. Differences between T1D and
healthy donors shown for CD8"* (F) and CD4* (G). P-values by two-tailed
Mann-Whitney test; bars at medians. TID - Type 1 Diabetes Mellitus, HPAP —
Human Pancreas Analysis Program.
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signature in the blood of T1D patients”. Our observation of reduced
cytotoxic and enhanced stemness-associated gene signatures in per-
ipheral T cells aligns with these insights and supports the concept of
altered differentiation dynamics in early TID.

The cause of this stem-like phenotype bias of the T cell com-
partment in the children with T1D is unclear. One possibility is that it is
the consequence of the metabolic imbalance induced by the disease.
However, we did not see particularly low expression of the effector
genes in children with ketoacidosis, indicating a lack of correlation
with the severity of the metabolic disorder. Another possible expla-
nation is that the insulin deficiency directly affects the state of the T
cell compartment via hypostimulation of the insulin receptor signaling
pathway, which was previously shown to promote T cell effector
function in mice in an intrinsic manner®. However, we observed
reduced expression of the cytotoxic genes in children with T1D one
year after their diagnosis, albeit less pronounced than upon diagnosis,
and in adults with TID from the HPAP database, who were already
receiving exogenous insulin therapy. Thus, we find it more likely that
the phenomenon of low effector and cytotoxic profile in T cells pre-
cedes or coincides with the onset of clinical T1D. This scenario is in line
with the hygiene hypothesis, which explains the current rise of auto-
immune diseases in high-income countries by a reduced exposure of
individuals to infectious agents, leading to immaturity of the immune
system, which results in the loss of self-tolerance'®®"*2, The evidence
for the hygiene hypothesis in TID comes from experiments on NOD
mice, which show higher incidence of diabetes in germ-free conditions
than in standard housing facilities®’, and from population studies®**°.
An alternative and seemingly contradictory hypothesis postulates that
TID is triggered by viruses, such as enteroviruses”**. These two
phenomena can be reconciled as it is possible that individuals with an
immature immune system and/or those being infected at an older age
with the hypothetical triggering virus might be at a particularly high
risk of by-stander T1D development. This scenario goes along with the
hypothesis that the immune system is shaped by the environment
within a relatively narrow window during early life®’.

Tregs are crucial for maintaining peripheral tolerance. For this
reason, the lack or dysfunction of Tregs has been studied as a potential
cause in many autoimmune diseases®. In the TID research, conflicting
findings have been reported, showing reduced®®’, normal’**°, or
elevated®*”*®* FOXP3" Treg frequencies in the peripheral blood in
individuals with T1D compared to healthy donors. Our and HPAP flow
cytometry data showed slightly elevated Tregs among CD4" T cells in
TID. These discrepancies might be at least partially caused by differ-
ences in the age or time after TID onset in the particular cohorts.
Accordingly, it has been shown that the frequencies of Tregs increase
within the first year after T1D diagnosis®.

Partial dysfunction of Tregs and their impaired maturation in
individuals with T1D have also been proposed'>%19297100-102 Degpite
the controversies and open questions surrounding the role of Tregs in
TID, Treg-targeted therapies have been used to treat T1D in preclinical
models'” and are being tested in clinical trials in T1D patients'®* %, In
this study, we observed that a relatively high proportion of Tregs from
children with T1D show low expression of key Treg effector genes such
as IL2RA, FOXP3, CTLA4, TGFBI and high expression of CD226, IL4R and
GZMK, which are connected with Treg dysfunction®®®*”"> or T cell
senescence'”’. Moreover, the whole Treg compartment was slightly
altered in children with TID, as it was enriched for the gene signature
specific for dysfunctional FOXP3-deficient Treg-like cells, such as those
present in IPEX patients or FOXP3 knock-out Tregs®®°. TID is one of
the typical autoimmune symptoms in IPEX'®. In contrast to the
pleiotropic IPEX syndrome, the children in our cohort developed only
TID and were still self-tolerant to most tissues, indicating that their
Treg cells were still largely functional. However, their Treg compart-
ment might be prone to failure in a specific context, such as sup-

pressing an autoimmune response towards the pancreatic B-cells'”’.

Accordingly, the progressive loss of a specific subset of effector
KLRG1" ICOS' Tregs is associated with the TID development in NOD
mice. We speculate that the bias of the Tregs in children with T1D
towards the less effector phenotype and their similarities to genetically
dysfunctional Tregs might contribute to T1ID development.

A population of CD3" and CD56" co-expressing lymphocytes
referred to as TR3-56 was proposed to be a regulatory subset pre-
venting diabetes'®. To date, this subset has not been characterized
using single-cell transcriptomics. We did not see CD3 and CD56 co-
expressing T cells as a standalone subset, but rather as a hetero-
geneous group of cells overlapping with unconventional subsets such
as CD8"" y8T and MAIT cells, and CD4* Temra cells. We observed
generally reduced frequencies of these subsets in children with TID in
comparison to healthy donors at the time of their diagnosis. Low fre-
quencies of y8T in individuals with T1D upon diagnosis and one year
later have been reported previously™. The same study showed a drop
in CD56" yOT cells at the time of T1D diagnosis, which was reverted
after one year, which aligns with our data'. Moreover, these uncon-
ventional cells showed generally more naive and less effector pheno-
type in T1D patients at both time points in comparison to healthy
donors in our cohort. It is unclear if these unconventional T cells are
involved in the self-tolerance and T1D prevention or if their less cyto-
toxic phenotype only corresponds to the overall state of the T cell
compartment in children with T1D.

We used the data from our cohort to address previously proposed
differences between people with T1D and healthy donors. Whereas a
previous study observed elevated expression of butyrophillin-
encoding genes BTN3A2 and BTN3A3 in T1D patients®, we observed
the opposite. Our analysis of data generated by multiple studies
showed that the expression of BTN3A2, residing in the extended MHC
region, depends on particular HLA haplotypes. Whereas our healthy
donors were not HLA-matched to the people with TID, the previous
study used partially matched controls®®, which might explain the dif-
ferent observations.

Our analysis of the TCR repertoires revealed clonal expansion in
the antigen-experienced subsets and showed that the same clones can
be detected in the same children one year after analysis. However, we
could not detect any public clones present in different donors. Our
cohort, as well as data from the HPAP, did not show changes in the
CDR3 length between people with T1D and healthy donors, which were
observed previously”. We detected small differences in the average
biophysical parameters of the TCRs between children with T1D and
healthy donors, such as Boman index, H Moment, and hydrophobicity.
However, additional studies are required to validate these findings.

Our analysis is the first comprehensive analysis of CD4* and CD8"
T cells from newly diagnosed children with T1D and the same indivi-
duals at one year after the diagnosis using single-cell transcriptomics.
It indicated differences between children with T1D and healthy donors
at the time of diagnosis, some of which persist to the one-year time
point post-diagnosis. Our findings indicate an overt stem-like pheno-
type in the T cell compartment, potential decreased functionality in
the Treg compartment, and alterations in unconventional T cell sub-
sets. These findings were largely supported by our flow cytometry
analysis and/or analyses of data published by others, when possible.
However, our experimental approach still needs to be taken as an
exploratory study in a relatively small cohort. Further studies addres-
sing these conclusions are needed.

Methods

Collection of clinical metadata

The samples were collected between February 2021 and February 2023
at a setting of a tertiary center for pediatric diabetes (Motol University
Hospital, Prague, Czechia). After the consent of parents/caregivers and
the study participants was granted, two study samples were obtained
from each participant. The first sample was obtained at a median of 9
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(4-24) days after the clinical diagnosis of T1D, the second sample at a
median of 377 (359-423) days after diagnosis. At both time points,
fasting C-peptide, HbAlc, and the standard blood count with the dif-
ferential count were performed. At TO, the measurements of the T1D-
specific autoantibodies (a-GAD, IAA, a-1A2, a-ZnT8) were performed.
Data on diabetic ketoacidosis status at first contact (pH below 7.3 and/
or bicarbonate < 15) were obtained from individual medical records. To
assess partial clinical remission at T1, we employed the insulin dose
adjusted HbAlc (IDAAIc) as a marker. IDAAlc was calculated as HbAlc
(%) plus [4 times insulin dose (units per kilogram per 24 h)]. IDAAIc <9
was considered as the presence of partial clinical remission',

The samples were obtained from 30 children with T1D at TO and
from 29 of these children at T1. One T1D participant withdrew from the
study before the one-year follow-up visit. Their sample was included in
all analysis except for paired statistical testing. A cohort of 13 healthy
donors was also enrolled. Healthy donors were frequency-matched to
the TID cohort by age. Healthy donors were not HLA-matched to
participants with TID. The parents/caregivers and the participants
signed a written consent.

Processing of blood samples

Three to ten mL of peripheral blood were collected into EDTA-coated
tubes, kept on ice, and transferred from Motol University Hospital to
the Institute of Molecular Genetics within two hours. PBMCs were
separated using Ficoll-Paque (GE Healthcare) and immediately frozen
following a cryopreservation protocol (10x Genomics). Briefly, 4 ml of
Ficoll-Paque was overlaid with blood and centrifuged at 400 x g for
30 min at room temperature (brake set to one). The mononuclear cell
layer was washed in PBS and resuspended in RPMI medium containing
40% FBS. After adding an equal volume of freezing medium (RPMI,
40% FBS, and 30% DMSO), two to five aliquots of PBMCs were frozen
and stored in liquid nitrogen. PBMCs were gently thawed by slow,
sequential dilution in RPMI medium containing 10% FBS. To minimize
cell stress, wide-bore tips were used during the thawing process.

ScRNAseq experimental design
ScRNAseq was performed in two different experiments, hereafter
referred to as the initial experiment and the final experiment.

Initial scRNAseq experiment

The initial experiment was performed in two batches: batch 1 - CD8*
T cells from 6 children with T1D and 2 healthy donors in one well, batch
2 - CD4" T cells from 6 children with T1D and 3 healthy donors, CD8*
T cells from 1 healthy donor in one well, and CD4" and CD8" cells from
6 children with TID and 3 healthy donors in two wells. Cells were
incubated on ice for 5 minutes with Human TrueStain FcX (BioLegend
#422301) and for additional 30 min with anti-human CD4 and CDS8
antibodies (CD8 APC, LTS8, Exbio #1A-817-T100; CD4 AF700, MEM-241,
Exbio # A7-539-T100) and one of the hashtag antibodies (TotalSeq™-
C0251 anti-human Hashtag 1 Antibody, LNH-94 2M2, BiolLegend
#394661; TotalSeq™-C0252 anti-human Hashtag 2 Antibody, LNH-94
2M2, BiolLegend #394663; TotalSeq™-C0253 anti-human Hashtag 3
Antibody, LNH-94 2M2, BioLegend #394665; TotalSeq™-C0254 anti-
human Hashtag 4 Antibody, LNH-94 2M2, BioLegend #394667; Total-
Seq™-C0255anti-human Hashtag 5 Antibody, LNH-94 2M2, BioLegend
#394669; TotalSeq™-C0256 anti-human Hashtag 6 Antibody, LNH-94
2M2, BioLegend #394671; TotalSeq™-C0257 anti-human Hashtag 7
Antibody, LNH-94 2M2, BioLegend #394673; TotalSeq™-C0258 anti-
human Hashtag 8 Antibody, LNH-94 2M2, BioLegend #394675; Total-
Seq™-C0259 anti-human Hashtag 9 Antibody, LNH-94 2M2, BioLegend
#394677; TotalSeq™-C0260 anti-human Hashtag 10 Antibody, LNH-94
2M2, BioLegend #394679) and with Hoechst 33258 for viability right
before sorting. From each sample, 10,000 CD4" cells and 10,000 CD8"*
cells were sorted. All samples were collected to the same collection
tube, washed with PBS/0.05% BSA and counted using the TC20

Automated Cell Counter (#1450102, Bio-Rad). The viability of the cells
before loading was higher than 85%.

Final scRNAseq experiment

The final experiment was performed in four batches: batch 1 - CD4*
and CD8' T cells from 8 children with T1D TO, 8 children with T1D T1, 4
healthy donors in 4 wells, batch 2 - CD4* and CD8" T cells from 8
children with T1D TO, 8 children with T1D T1, 4 healthy donors in 4
wells, batch 3 - 8 children with TID TO, 7 children with T1ID T1, 3
healthy donors in 4 wells, batch 4 — 6 children with T1D TO, 6 children
with T1D T1, 4 controls in 4 wells. Cells from the same donor from time
0 and time 1 were always processed in the same well to minimize batch
effect. Cells were incubated on ice for 5 minutes with Human TrueStain
FcX (BioLegend #422301) and for additional 30 minutes with anti-
human CD4, CD8, CD45RA and CCR7 antibodies (CD4 APC, MEM-241,
Exbio #1A-359-T100; CD8 PE, MEM-31, Exbio #1P-207-T025; CD45RA
FITC, MEM-56, Exbio #1F-223-T100; CCR7 PeCy7, GO43H7, BioLegend
#353226) and one of the hashtag antibodies (the same as in the initial
experiment) and with Hoechst 33258 for viability right before sorting.
Non-naive cells were enriched in the final sample as follows: from each
sample 1000 naive (CCR7* CD45RA") and 5000 antigen-experienced
cells were sorted into two tubes, one for CD4"* T cells and one for CD8*
T cells. All samples were collected to the same two collection tubes,
washed with PBS/0.05% BSA and counted using the TC20 Automated
Cell Counter (#1450102, Bio-Rad). The viability of the cells before
loading was higher than 85%. One control sample was removed from
the analysis because of the bad quality of the data at the sort.

Cells from both cohorts were loaded onto a 10x Chromium
machine (10x Genomics) aiming for a yield of 1500 cells per sample.
cDNA libraries were prepared using the Feature Barcode technology
for Cell Surface Protein protocol (#CG000186 Rev D) with the Chro-
mium Single Cell 5’ Library & Gel Bead and Chromium Single Cell 5
Feature Barcode Library kits (10x Genomics, #PN-1000014, #PN-
1000020, #PN-1000080, #PN-1000009, #PN-1000084) according to
the manufacturer’s instructions. Sequencing was performed on the
NovaSeq 6000 platform (lllumina), yielding an average of 45,745 reads
per cell in the gene expression libraries and 3712 reads per cell in the
V(D)J libraries (Supplementary Table 4).

Quality control, normalization, and integration of

scRNAseq data

The human reference used to map sequenced reads was taken from
Ensembl version 102" and prepared using 10x Cell Ranger 5.0.1 Soft-
ware (mkref tool). The count matrices were generated by 10x Cell
Ranger 5.0.1 Software (count tool) in either R2-only or paired-end
mode. Afterwards, they were pre-processed using the Seurat 4.3.1
package™ on R 4.2.1. Any cell that was not marked by any expected
combination of hashtags was removed. All cells with more than 10% of
genes mapping to mitochondrial genes, those expressing less than
200 genes and those that were marked as doubles according to the
V(D)J (more than 2 TCRa or more than 1 productive TCRf sequence
present) were excluded during initial object creation (code available in
GitHub folder code01_raw to _init).

Mitochondrial genes, ribosomal genes, genes encoding TCR
variable segments (any gene symbol containing the TR[AB][VD]] sub-
string) and genes present in less than 3 cells were removed. Each data
set was then normalized (default method and scale factor=1x10%),
scaled, subjected to dimensional reduction (PCA with 20 principal
components followed by UMAP) and Louvain clustering. PTPRC
counts were generated by the IDEIS tool and normalized by the
centered-log ratio method™®.

Preprocessed datasets were merged, normalized, scaled and used
for dimensional reduction (PCA with 12 principal components and
UMAP) and Louvain clustering. In a second, more stringent quality
control step performed on the merged dataset (code available in
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GitHub folder code02_analysis_of init, parts 02 and 03), clusters of
dead or low-quality cells and individual cells with fewer than 500
detected genes were excluded. Integration of datasets from different
batches was performed using STACAS (v 2.1.3)™. In a subclustering
step for CD4* Temra cells, we revealed a contaminating cluster of NK
cells (n=80), which only appeared after reclustering. We kept those
cells in the final dataset, but removed them from the analysis in Fig. 7.

Analysis and visualization of scRNAseq data
Transcriptional regulatory interactions were estimated using the
decoupleR package (v2.10.0) using the CollecTRI database"®. GSEA
pathways were processed using gene sets from datasets GSE9650* and
GSE11057* with the R package fgsea (v1.20.0)". Heatmaps were cre-
ated with the package pheatmap (v 1.0.12). Sankey plots for Supple-
mentary Fig. S3 and S4 were created using RAWGraphs (v2.0)"%.
DEGs were identified using the two-sided Wilcoxon rank-sum test
(Seurat FindMarkers), with p-values adjusted for multiple testing using
the Bonferroni correction. To address concerns about pseudor-
eplication in cell-level differential expression analysis, we performed a
sample-level pseudobulk analysis. For each annotated T cell subset,
raw gene expression counts were aggregated per donor, generating
one pseudobulk profile per donor per subset. Differential gene
expression and log fold changes were then calculated using the
DESeq2 package (v1.44.0), enabling rigorous comparison between
healthy donors and children with T1D at different timepoints. In par-
allel, we applied the decoupleR package (v2.10.0) to quantify the
similarity of each donor’s expression profile to reference gene
expression contrasts between naive and memory T cells (GSE179613).
Pseudotime analysis was performed using the slingshot package
(v2.12.0) to infer a lineage trajectory among Treg subsets. The analysis
was based on UMAP embeddings and cluster annotations. To test for
differences in pseudotime progression between groups, we used the
condiments package (v1.12.0), which estimates group-specific changes
in pseudotime distributions along the inferred trajectory.

HLA Typing and allele frequency analysis

We used the raw fastq files for estimation of the HLA genotype using
arcasHLA™. In cases where samples were profiled twice for the initial
and final dataset and/or for two timepoints, fastq files were merged to
one fastq file per donor. These fastq files were processed with the
commands genotype and merge. Reference data from the global
population of the Czech Republic were obtained from The Allele Fre-
quency Net Database® using the tool HLAfreq’.

Analysis of published data
Count matrices from the RNA sequencing data were obtained from the
Gene Expression Omnibus (GEO) (GSE237218", GSE123658 (unpub-
lished), GSE10586*°) and processed with DESeq2'*. Raw fastq files from
the Single Cell 3’ sequencing of PBMC of four Finnish children at risk of
developing Type 1 diabetes and their gender, age and HLA matched
control children were obtained from the European Genome-Phenome
Archive (EGAD00001005768%) and mapped with CellRanger software
(10x Genomics, cellranger-7.1.0) to the GRCh38 human reference gen-
ome. Count matrices were processed with Seurat similarly to our data.
Processed scRNAseq data of PBMCs from 46 TIDM cases and 31 mat-
ched controls was obtained from Synapse under the accession code
syn53641849%. Processed scRNAseq data of PBMCs from 5 TIM donors
and 3 healthy donors was obtained from GEO GSE221297%°. Processed
scRNAseq data of PBMCs from 12 TID donors and 12 healthy donors
was obtained from ParseBio (Supplemental Table 1). Genes from all
datasets were ranked by the fold changes obtained from comparing
children with T1D to healthy donors (DESeq LogFC). For comparison
between datasets, the ranks were converted to 20-quantiles.

For the genotype-expression analysis of BTN3A2, we used bulk
RNA sequencing data from GSE237218*, GSE123658 (unpublished),

EGADO00001005767 (Kallionpaa), and scRNAseq data from the current
study and from the HPAP repository. In all cases, raw fastq files were
processed using arcasHLA as described above to obtain HLA geno-
types for all the donors. HLA alleles were typed to the level of two
fields, which distinguishes specific HLA proteins. The information
about the expression of BTN3A2 for each of the donors was obtained
from the count matrices that were generated for each dataset as
described above. The expression of BTN3A2 for the donors in each
dataset was scaled to a range from -1 to 1 to allow comparison
between datasets, i.e., the donor with the lowest expression of BTN3A2
in each dataset had a value of -1, and the donor with the highest
expression in each dataset had a value of 1. The effect of study, dia-
betes status and particular alleles in all MHC-I and MHC-II loci was
calculated using a generalized linear model with gaussian distribution.
The analysis was performed for each locus separately.

Annotation of cells with previously published signatures
For annotation of cells with the TR3-56 signature, count matrix from
RNA sequencing of the flow sorted CD3"* 56" cells, NK cells, CD3*CD56’,
and CD8" cells was obtained from the Gene Expression Omnibus
(GSE106082)'¢. CD4 and CD8 datasets were annotated using SingleR'>.
For annotation of Treg cells, the differentially expressed genes
from dataset GSE15659°° were retrieved from the mSigDB (#M3563).
The function AddModuleScore from the Seurat package was used to
calculate the expression of the genes in the Treg dataset.

Analysis of scRNAseq data from the HPAP database

From the HPAP repository, we used a collection of scRNAseq samples
from splenocytes and lymph nodes of the deceased healthy or TID
donors that were processed using the HPAP CITEseq: Dual-index 3' HT
scRNAseq with Antibody Derived Tags and Hashtag Oligos protocol.
The full protocol can be accessed at the HPAP database. For our ana-
lysis, raw fastq files were downloaded from the HPAP web and mapped
to the GRCh38-2020-A human reference genome using cellranger-
7.1.0. Count matrices were merged and subjected to normalization
(scale factor =1x10*), scaling and dimensional reduction (PCA with 15
principal components on 2000 variable features and UMAP) and
Louvain clustering. Clusters representing dead cells or contaminating
cell types other than T or NK cells were removed. For analysis of the
Treg subpopulations, splenic Tregs were extracted from the whole
dataset and subjected to new to normalization (scale factor=1x10%),
scaling and dimensional reduction (PCA with 10 principal components
on 1000 variable features and UMAP) and Louvain clustering. The
batch effect of cells from different experiments was removed using
STACAS (v 2.1.3).

Analysis of TCR repertoires

TCR repertoires of the CD4" and CD8" T cells from initial and final
experiments were profiled using 10x Chromium Single Cell V(D))
Enrichment Kit, Human T Cell (#PN-1000005) and mapped by the 10x
Cellranger 5.0.1 sotware (vdj tool) to human reference obtained the
International ImMunoGeneTics Information System (IMGT)'? for the
immune receptor repertoire profiling. Additional V(D)J sequences
were extracted from the gene expression library using the MiXCR
3.0.12 software'®. For the clonal expansion analyses, cells with the
same nucleotide sequences of the CDR3a and CDR3[3 were considered
clones. In cases where we detected two productive rearrangements of
CDR3q, the cells were considered the same clones if the nucleotide
sequences of CDR3[3 and both CDR3a were shared, or if the nucleotide
sequences of CDR3p and one CDR3a were shared while the second
CDR3a was not detected.

For the repertoire overlap analysis, unique amino-acid sequences
of the CDR3a or CDR3[3 were extracted for each donor. Then, the
percentage of overlapping sequences in one participant with all of the
other participants was calculated and quantified in the following
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comparisons: (i) healthy donors with other healthy donors, (ii) healthy
donor with a T1ID donor, or iii) two T1D donors. In addition, the Self T1 -
Self TO comparisons were calculated as the overlap between CDR3a or
CDR3 sequences in the same donor in the two timepoints.

For the analysis of the length of the CDR3p, unique amino-acid
sequences of the CDR3[ were extracted for each donor. The lengths of
the sequences were quantified as the frequency of each length in a
particular donor and visualized in children with TID and healthy
donors.

For analysis of the biochemical properties of the CDR3 sequences,
we used the R package Peptides'”. For each of the biochemical prop-
erties available in the package, the values for all the unique CDR3f
sequences were calculated and compared between healthy donors and
children with T1D. Each sequence was taken into the analysis, the
number of times it occurred in the dataset, i.e., a CDR33 sequence
representing an expanded clone that was detected in three donors,
with 50 occurrences in donor 1, 10 occurrences in donor 2 and 1
occurrence in donor 3 would be counted 61 times. To see the global
biases of the repertoires in children with TID and healthy donors not
influenced by the clonal expansion, we calculated the biochemical
properties for all the unique CDR3[ sequences in each donor, and
averaged these values per donor.

For all the analyses except for clonal expansion, the analysis was
performed on conventional cells only, i.e., MAIT cells, NK cells, and y6T
T cells were excluded from the CD8' dataset, and iNKT cells were
excluded from the CD4" dataset.

The analyses of CDR3[ length and biochemical properties were
performed also on samples from splenocytes of the non-diabetic or
TID donors from the HPAP dataset. In the HPAP repository, the TCR
libraries were prepared as described previously®. Briefly, T cell
receptor beta chain gene rearrangements were bulk sequenced from
gDNA using custom primers. Typically, 100 ng of input DNA was
amplified per replicate. Sequencing libraries were prepared using
2 x 300 bp paired-end kits (Illumina MiSeq Reagent Kit v3, 600-cycle,
Illumina Inc., San Diego, CA). The raw sequencing data (fastq files) were
downloaded from the HPAP database and mapped to the using Mixcr
v4.5.0 to the human reference obtained from the International
ImMunoGeneTics Information System (IMGT)'%.

Flow cytometry analysis

The list of used antibodies is provided in Supplementary Table 6. Flow
cytometry was performed in two batches. In each batch, aliquoted
PBMCs stored in the liquid nitrogen were gently thawed by slow,
sequential dilution in RPMI medium containing 10% FBS. Cells were
counted, and a comparable number of cells (1.2 million in batch one, 2
million in batch two, depending on sample availability) were used for
staining. The counted cells were divided into three equal parts. The
first part was used for extracellular staining of live cells, the other two
parts were used for intracellular staining of fixed cells. To prevent
unspecific binding to Fc receptors, Human TrueStain FcX (BioLegend
#422301) was added to all staining mixes. For staining of extracellular
markers (Panel 1: CD4 OKT4 BV421, CD16 BV510, TCR Va24-jal8
BV605, CD45RO BV650, CD197 BV711, CD45RA FITC, CD3 UCHT1 PE-
Cy5, HLA-DR PerCP/Cy5.5, CD183 PE, CD25 PE/Fire700, CD196 PE/
Dazzle 594, TCR gamma/delta PE-Cy7, CD8 APC, CD56 APC-R700),
cells were incubated with diluted antibodies and LIVE/DEAD Fixable
Near-IR Dead Cell Stain Kit (Invitrogen #L34975) for 30 min on ice
immediately after isolation. For staining of intracellular markers and
transcription factors, cells were first stained for 30 min on ice with the
mix containing LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit (Invi-
trogen #L34975) and extracellular markers (CD3 MEM-57 AF700, CD4
SK3 BV421, CD8 APC, CD25 PE/Fire700, CD45RA FITC, CD45R0O BV650,
CD45R/B220 BV510) and then fixed and permeabilized using the
eBioscience Foxp3 / Transcription Factor Staining Buffer Set (Invitro-
gen #00-5523-00) according to the manufacturer’s instructions,

washed, and stained overnight with antibodies for intracellular mar-
kers in 4 °C (Panel 2: extracellular markers and CD127 BV605, Ki-67
BV750, HLA-DR PerCP/Cy5.5, CD226 PE, FOXP3 PE/Dazzle 594, CD137
Pe/Cy7; Panel 3: extracellular marekrs and CD127 BV605, Ki-67 BV750,
IkBa AF488, GZMK PerCP/Cy5.5, CD184 PE, Eomes PE/CF594, GZMB
PE/Cy7).

Flow cytometry was carried out with a Cytek Aurora flow cyt-
ometer, configuration 4 L 16V-14B-10YG-8R (Cytek). Data were ana-
lyzed using FlowJo software v10.10 (BD Life Sciences). Anomalies in
flow rate, signal acquisition, and dynamic range were removed using
the FlowJo plugin FlowAI'”.

HPAP flow cytometry

Flow cytometry data (fcs files) from PBMC of donors with TID and
healthy donors were downloaded from the HPAP. These samples were
collected from deceased donors on the date of death and analyzed
either fresh or after cryopreservation. For our analysis, we used only
PBMC samples from donors with T1D and healthy donors. Two samples
were excluded due to suspected duplicity, and six samples were
excluded based on the lack of compensation metadata in the fcs file.
The list of used and excluded samples is provided in Supplementary
Table 7. Samples were analyzed in groups based on three different
panels for staining and manually compensated when needed. We ana-
lyzed 41 samples in Panel 1 - CD4 phenotyping panel, 19 samples in
Panel 2 - CD8 phenotyping panel and 26 samples in Panel 3 - CD8
phenotyping panel, focused primarily on antigen-specific cells. In cases
when the same patient had measurements in multiple panels, these
values were averaged. For analysis, we excluded donors youger than 5
years as appropriate age-matched heatlhy controls were not available.

Statistical analysis

The statistical analysis was performed using tests indicated in the
Figure legends using R v4.2.1. Quantitative scRNAseq and flow cyto-
metry data were tested using the nonparametric Mann-Whitney test
without a correction for multiple comparisons or, for a comparison of
the same donors at two different timepoints, using the paired Wil-
coxon signed rank test without a correction for multiple comparisons.
Two-tailed tests were performed. The number of biological replicates
(cells and donors) is indicated in the respective Figure legends.

Bayesian statistics

Differences in population composition were assessed by a Bayesian
generalized linear model with a negative binomial response, with an
offset term to normalize for the total number of cells in a sample. The
input data consisted the counts of cells for each Level 3 population,
and the model included a fixed effect for the type of sample (healthy,
TID at time 1, TID at time O) and the Level 3 population. Additionally,
random effects of the type of sample were added, grouped by both
Level 2 and Level 3 populations. The shape parameter was also pre-
dicted, with a fixed effect for Level 2 populations and a random
intercept for Level 3 populations. The model was fitted with the brms
package'”®. We used the default priors in the brms package, specifi-
cally: (i) The intercept for the mean has student-t prior with 3 degrees
of freedom and scale 2.5, with location guessed by brms from the
overall range of the data (1.81 for CD4 data and 1.97 for CD8 data), (ii)
Student-t prior with 3 degrees of freedom and scale 2.5 centered at O
for the intercept for overdispersion, (iii) Improper flat prior for all fixed
effects, (iv) Half Student-t prior with 3 degrees of freedom, scale 2.5
and location O for standard deviation of random effects, v) LKJ(1) prior
for correlations between random effects.

Ethical consent

The study was approved by the institutional Ethics Committee (EK-819/
20) of the Motol University Hospital. Written informed consent was
obtained from all the participants and their legal guardians.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw sequencing data are protected and are not available due to
data privacy laws. The processed scRNAseq data and flow cytometry
data generated in this study have been deposited on Zenodo under
https://doi.org/10.5281/zenodo.17280189 [https://doi.org/10.5281/
zenodo.17280189] and in the NCBI Gene Expression Omnibus (GEO)
under the accession code GSE309970. Data from previously published
studies used for validation of our findings are available in the Gene
Expression Omnibus (GEO) database under the following accession
codes: GSE237218, GSE123658, GSE10586, GSE221297, in the European
Genome-phenome Archive (EGA) under the following accession codes:
EGAD00001005767, EGAD00001005768, and in the Synapse database
under the accession code syn53641849 [https://www.synapse.org/
Synapse:syn53641849]. All display items presented in the main
manuscript and supplementary information can be reproduced from
data and code that are available in public repositories. The raw num-
bers for charts and graphs are available in the Source Data file when-
ever possible. Source data are provided in this paper.. Data from
previously published studies used for validation of our findings are
available in the Gene Expression Omnibus (GEO) database under the
following accession codes: GSE237218, GSE123658, GSE10586,
GSE221297, in the European Genome-phenome Archive (EGA) under
the following accession codes: EGAD00001005767,
EGADO00001005768, and in the Synapse database under the accession
code syn53641849 [https://www.synapse.org/Synapse:syn53641849].
All display items presented in the main manuscript and supplementary
information can be reproduced from data and code that are available
in public repositories. The raw numbers for charts and graphs are
available in the Source Data file whenever possible. Source data are
provided in this paper.

Code availability

The code can be accessed at https://github.com/Lab-of-Adaptive-
Immunity/dia. The code for the Bayesian analysis can be accessed at
https://github.com/martinmodrak/diabetes_populace.
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