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Dynamic models are a cornerstone of power system stability and control. The
growing penetration of inverter-based resources, driven by global dec-
arbonization, significantly complicates power system dynamics. For large-
scale power systems, existing dynamic models of these resources have long
struggled to accurately capture their complex behaviors, limited primarily by
explicit formulations based on simplified physical governing equations. This
study presents a data-driven modeling approach that uses neural networks to
learn and represent these dynamics exclusively from accessible data. Its tai-
lored architecture combining long short-term memory network for temporal
dependencies with a cross layer to model nonlinear feature interactions.
Physical constraints from an inverter dynamic model are enforced to enhance
consistency and prevent implausible outputs. Validated on a real-world power
system (including a wind farm, a photovoltaic power station, and a grid-
forming battery energy storage station), the proposed model shows superior
accuracy and extrapolates across out-of-distribution scenarios. These findings
are further confirmed in a large-scale power system and an inverter-dominated
system. The presented approach provides an effective methodology to cap-
ture and simulate complex inverter dynamics, enabling more reliable transient
stability assessment crucial for the secure operation of future grids.

The transition towards decarbonizing electricity is accelerating glob-
ally, driven by substantial increases in renewable energy capacity'.
Renewable energy is expected to meet all additional electricity
demand through 20267 with wind and solar power generation already
contributing over 40% or even 60% in some countries’. Wind and solar
power generation require inverter-based interfaces to connect power
resources to power grids. Renewable energy sources integrated into
the power grid via these interfaces are classified as inverter-based
resources (IBRs). The fast and complex dynamic behavior of IBRs,
characterized by reduced system inertia, rapid power-electronic
transients, and diverse control interactions, complicates the model-
ing and transient analysis of power systems*’. Given that dynamic
models are the cornerstone of power system stability and control®,
several analyses of recent power system disturbances have raised
serious concerns about the accuracy of IBR dynamic modeling’™’,

highlighting the need for improved modeling methods to support
power system security and stability at higher levels of renewable
energy penetration.

The transient analysis of large-scale power systems incorporating
IBRs typically relies on time-domain simulations utilizing dynamic
models, also known as the root mean square (RMS) model, phasor-
domain model, electromechanical transient model, positive sequence
model, etc. Despite vendors developing proprietary dynamic models
(vendor models), significant concerns have emerged regarding con-
fidentiality and software-specific implementations'’. Therefore, in
2010, the first-generation generic dynamic models for wind turbines
and photovoltaic (PV) systems were released by the Western Electricity
Coordinating Council (WECC)". Due to the inherent limitations, such
as low accuracy and limited model customization capabilities, the
International Electrotechnical Commission (IEC) and WECC
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collaborated to release the second-generation generic models in
2015". These generic models are fundamentally developed using
physics-based approaches derived from simplified physical governing
equations. Although continuous refinements have been made in the
subsequent years™", inherent challenges persist. These limitations
stem from several factors: (1) The precise operational mechanisms of
IBRs are often obscured by proprietary concerns. Inverter character-
istics are primarily dictated by control algorithms, which vendors may
not fully disclose for reasons of commercial confidentiality>'. (2) The
growing diversity of control strategies employed in inverters, broadly
categorized into grid-following and grid-forming paradigms, chal-
lenges the efficacy and universality of single generic models. (3) The
mismatch in temporal resolution makes it infeasible to explicitly for-
mulate the detailed physical mechanisms, thereby inherently limiting
the fidelity and accuracy of the models>”. This is because IBR dynamic
models are typically simulated at the millisecond time scale, which is
coarser than the microsecond time scale governing the physical pro-
cesses within some IBR devices of IBRs.

Given these limitations of physics-based approaches, data-driven
modeling methods have emerged as a promising alternative. The
proliferation of measurement devices, such as wide-area measurement
systems (WAMS)™ and supervisory control and data acquisition
(SCADA)", facilitates the development of data-driven dynamic models.
By using measured data, models can be optimized or tuned to repre-
sent the dynamics of IBRs without relying on detailed physical
understanding and information. Recent studies° use measured data
to cluster IBRs, and then perform parameter identification to establish
dynamic models. These methods, however, may not fully overcome
the inherent limitations derived from physics-based modeling meth-
ods. Neural networks, with their data-driven nature and powerful
expressive capabilities, hold significant potential for addressing the
challenges associated with IBR dynamic modeling. Xiao et al.” form a
neural network-based modeling framework to accurately capture the
dynamics of power system components. They further propose a
design for power system time-domain simulators to accommodate
neural networks?. Some studies also analyze and improve the meth-
ods for incorporating neural networks into time-domain
simulation”?*. In ref. 25, a data-driven dynamic model of synchro-
nous generators is proposed. Ref. 26 utilizes the data-driven method to
precisely model the profiles and dynamics of the load with IBRs. In
ref. 27, a black-box dynamic model for microgrids with IBRs is pro-
posed by using long short-term memory (LSTM). In ref. 25,27, the
similarity between LSTM and differential algebraic equations (DAEs)
describing power system dynamics is discussed in detail. In ref. 28, a
dynamic equivalent model is developed for the hybrid renewable
energy source in the form of a deep LSTM network. Ref. 29 proposes a
high-precision dynamic modeling framework for PV power stations
using LSTM. Despite their ability to achieve high accuracy in dynamic
modeling, purely neural network-based approaches inherently lack the
capacity to enforce physical laws or integrate prior knowledge, occa-
sionally, leading to physically inconsistent or even implausible
predictions®. This potential for unreliable outputs poses a significant
concern, particularly in safety-critical applications like power system
operation and planning®.

Consequently, a physics-informed neural network (PINN) is pro-
posed by combining physical mechanisms with neural network
models®*>*. This approach has gained significant attention across
various power system applications, as summarized in recent reviews®,
and has been adapted for tasks such as creating dynamic equivalents®
and improving state estimation®®. However, a primary challenge for
applying PINN to IBRs is its reliance on accurate, explicit governing
equations. As established previously, such equations are often una-
vailable due to vendor confidentiality, mismatch in temporal resolu-
tion, etc. Furthermore, the multilayer perceptron (MLP), the

foundation of PINN, is not suitable for such time-series
regression tasks.

In summary, the existing modeling landscape presents a clear
challenge: physics-based models struggle with accuracy due to sim-
plifications and proprietary details; purely data-driven models, while
accurate, lack physical grounding and can produce implausible results;
and PINN is hampered by its reliance on known governing equations.

In this work, we propose a data-driven IBR dynamic model for
time-domain simulation, composed of an LSTM, a Cross layer, and a
physical Inverter dynamic model (LSTMCI). The Cross layer is designed
to capture the interactions, which are important and prevalent in
power system dynamics™>*°, LSTMCI uses the advantages of neural
networks while ensuring that the dynamic behavior of its output is
governed by a physical inverter dynamic model. This design enforces
LSTMCI to be strictly constrained by physical mechanisms, providing
reliable and accurate outputs. This work aims to enhance foundational
transient stability studies by providing such a precise model, thereby
supporting more accurate grid planning and operational security
assessments.

Results

Design of LSTMCI

The structure of the LSTMCI is shown in Fig. 1. Inspired by the similarity
between LSTM and the DAEs that describe IBR dynamics, we employ
LSTM as the most fundamental component of the LSTMCI to provide
the primary dynamic characteristics of the neural network. To enhance
expressive ability, a Cross layer is added to introduce additional
interactions. The Cross layer connects to an inverter dynamic model
via a fully connected layer (FC), which compresses the variable
dimensions to match the inputs required by the inverter model. In this
study, the inverter model used is REGC_A", a widely adopted generic
inverter model of WECC, though other inverter models can also be
applied. The outputs of the LSTMCI, /, and /,, are generated through
the inverter dynamic model, whose inputs are the active and reactive
current commands (/pcmg and Igcmq). Neural networks, including LSTM,
the Cross layer, and FC, are employed to emulate components other
than the inverter, such as energy conversion systems (e.g., wind tur-
bines, PV panels, and battery systems) and various controllers. These
networks process input signals, such as voltage and environmental
information, to generate corresponding command signals. This
structure aligns with the functional design of IBRs. Detailed formula-
tions and algorithm descriptions are provided in “Architecture of the
LSTMCI” section, while a comprehensive overview of the data gen-
eration process for model training can be found in Supplementary
Note 3. The model’s compatibility and adaptability with measured data
were further verified, with full details provided in Supplementary
Note 11.

Test system and scenarios

To comprehensively analyze the dynamic responses of IBRs, we
examine a representative real-world power system located in south-
eastern China as depicted in Fig. 2. This power system includes 59
buses, 70 transmission lines, 6 synchronous generators, and 3 IBRs,
including a wind farm, a PV power station, and a battery energy storage
station (BESS). In particular, the BESS is grid-forming, and the
remaining are grid-following. While all leverage IBR technology, wind
farms, PV power stations, and BESSs exhibit substantial variations in
composition, topology, and control. Also, the grid-forming and grid-
following IBRs differ significantly in structure, control, and dynamics:
grid-following inverters in the wind farm and PV power station rely on
phase-locked loops (PLLs) for synchronization, while the grid-forming
BESS typically lacks PLLs and instead maintains system frequency and
voltage through direct control. Therefore, this paper studies and
analyzes the three IBRs as examples. Although they cannot fully
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Fig. 1| The proposed model structure. In this schematic, the top panel shows the
structure applied to different inverter-based resources (IBRs), including a wind
farm, a photovoltaic (PV) power station, and a battery energy storage station
(BESS). In this schematic, ¢ is the time step, h and c are the hidden and cell states, x
and y are the input and output variable vectors, respectively. V and 8 denote the
voltage magnitude and phase angle. The active and reactive currents are given by
I,=P/Vand I;=Q/V, where Pand Q are the active and reactive power. ® denotes the
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other factors, such as environmental information (wind speed, solar irradiance,
etc.) and power commands from the control center. Neural networks (including
long short-term memory (LSTM), cross-layer, and fully connected layer (FC)) are
designed to represent the dynamics beyond inverters. The inverter model simu-
lates the behavior of the inverter and determines the outputs (/, and /,) that
represent the IBR's interface with the grid.

encompass all of the characteristics of IBRs, they are the most
important and widely representative.

The test system is simultaneously constructed in two time-domain
simulators: PSD-BPA and an in-house simulator. PSD-BPA is a com-
mercial off-the-shelf (COTS) time-domain simulator*?, where the three
IBRs are modeled using their default models, which are based on the
second-generation generic model. The parameters of the default
model employed in this study are used in practice. The in-house
simulator is designed for time-domain simulations utilizing the pro-
posed LSTMCI. Except for the dynamics of the IBRs, the simulation
results of the two simulators are consistent (illustrated in Supple-
mentary Note 2).

To validate the differences between the default model of PSD-BPA
and the LSTMCI, we subjected three representative examples, one for
each of the three IBRs, to four typical disturbances. These disturbances
included two low-voltage ride-through (LVRT) scenarios and two high-
voltage ride-through (HVRT) scenarios, corresponding to scenarios a,
b, ¢, and d illustrated in Figs. 3-5. All models maintain consistent
parameters across the four scenarios. The parameters of the default
models are well-suited for scenarios a and c, resulting in the lowest
errors in these scenarios compared to the other two. The scenarios and
methods of model validation in the examples all satisfy the relevant IEC
standard®. In addition to these fault-ride-through tests, the model’s
performance was further validated under a large power mismatch
scenario, as detailed in Supplementary Note 7.

To further assess the scalability and practical relevance, we
extended our validation to a significantly larger 5,075-bus test sys-
tem, which is based on an actual regional power grid in China. This
large-scale grid contains 496 generators and 10,718 transmission
lines, and embeds the 59-bus system described above as a sub-
system. Further research and analysis are presented in Supple-
mentary Note 5.

Model validation

Example 1: wind farm. In this example, the target 400 MW wind farm
consists of 112 variable-speed wind turbines with permanent magnet
synchronous generators (PMSG), each rated at 3.57 MW. Each PMSG is
integrated into the medium-voltage collection network through a
0.69 kV/37 kV step-up transformer. The electrical power output is then
transmitted via a 35 km medium-voltage collection circuit to a 37 kV/
220 kV main transformer, which serves as the point of interconnection
to the power grid. The key parameters of a PMSG are listed in S3.

To verify the performance of LSTMCI, we compare two models to
the measurements: (1) the default model of the COTS simulator (PSD-
BPA) and (2) LSTMCI. The parameters of the default model are actual
values used in practice. The outputs of LSTMCI are obtained from the
in-house simulator. For a detailed exposition of the model training and
integration process with the time-domain simulator, please refer to the
“Implementation details” section. The measurements are sampled at
the point-of-common coupling (PCC) of the wind farm with a sampling
frequency of 100 Hz and processed by a low-pass filter with a cut-off
frequency of 1Hz.

Figure 3 illustrates the simulation results of the proposed model
and the default model. To enhance the observability for analytical
purposes, the model outputs /, and /, have been transformed into P
and Q. The default model performs poorly in scenarios b and d, par-
ticularly in the voltage recovery curve in scenario b. This is because a
single set of default model parameters cannot adequately accom-
modate all scenarios. Instead, the trained LSTMCI demonstrates
enhanced accuracy and adaptability across all scenarios. As depicted in
Fig. 3a, b, the proposed LSTMCI model effectively captures key
dynamic characteristics, exemplified by the post-fault recovery of
active and reactive power.

Figure 3e shows the mean absolute error (MAE) of the four sce-
narios. The accuracy advantage of the LSTMClI is particularly evident,
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Fig. 2 | Schematic of the test system. The key defines generator types (G1-G9) and substation voltage levels (500 kV and 220 kV). Single, double, and triple lines indicate
the number of parallel circuits (one, two, or three) on a transmission corridor. Low-voltage level substations are aggregated for concise illustration.

achieving the lowest error level across almost all scenarios. The mean
squared error (MSE) is more sensitive to outliers, providing a per-
spective that prioritizes the impact of these outliers. Figure 3f shows
the MSE of the four scenarios. Across the four scenarios, LSTMCI
outperformed the default model, decreasing the overall MAE by 56.1%
(from 5.97% to 2.63%) and the MSE by a remarkable 90.9% (from 2.72%
to 0.248%). The obvious reduction in MSE suggests that LSTMCI is
effective at suppressing large prediction errors and mitigating the
extremity of outliers. For more details on error analysis, please refer to
Supplementary Note 10. We validated the model’s practical workflow
through an incremental learning study, which enhanced accuracy in
scenario d by fine-tuning with a limited set of measurements (see
Supplementary Note 11). It should be noted that while data are nor-
malized for the neural network training process, model outputs are de-
normalized back to their original physical scale before the calculation
of any performance metrics. Therefore, all reported MAE and MSE
values are based on the actual per unit (p.u.) values. The definitions of
the MAE and the MSE are given by the following:

1Y :
EMAE:NZH"_&' @
i=1
1d 2\ 2
LMSE=NZ<§'*€:’) 2
i=1

where Lyae and Ly represent the MAE and MSE, respectively. & is
true value at time step i, §; is model output at time step i, and N is the
number of all data points.

Example 2: PV power station. In this example, the PV power station
(rated at 500 MW) comprises 500 PV panels, each rated at 1.05 MW.
The brief parameters of a PV panel are listed in S4. Each PV string is
connected to the collection system via a 1.14 kV/37 kV step-up trans-
former. Here, we also compare the performance of the default model
and the proposed LSTMCI with the measurements. Measurements are
also sampled at the PCC of the PV power station with a sampling fre-
quency of 100 Hz and processed by a low-pass filter with a cutoff fre-
quency of 1Hz. Figure 4 presents a comparative analysis of four
different scenarios.

In scenarios a and b shown in Fig. 4a, b, the default model suffers
from overshooting during the power recovery phase after the LVRT. In
scenarios ¢, d, the default model exhibits deviations during the occur-
rence and recovery of the HVRT process. Figure 4e, f show the MAE and
MSE of the default model and LSTMCI relative to the measurement. The
default model exhibits poorer MAE and MSE in scenarios b, d. This
further highlights the default model's inability to perform accurately in
all scenarios, underscoring the limitations of the existing dynamic
model of IBRs in terms of accuracy. Across four scenarios, LSTMCI
reduced errors compared to the default model, lowering the overall
MAE by 70.4% (from 4.53% to 1.34%) and the MSE by 91.1% (from 1.95% to
0.174%). The LSTMCI demonstrates a significant accuracy advantage
across all scenarios, aligning more closely with the measured data.

Example 3: grid-forming BESS. The previously analyzed wind farm
and PV power station operate with grid-following inverters, which
depend on the grid to provide voltage and command signals for
maintaining power output. During outages, these inverters disconnect
rather than actively contribute to system recovery. In contrast, grid-
forming inverters have garnered significant attention for their ability
to enhance system stability by autonomously regulating voltage and
frequency. To further investigate this capability, we validate a 100 MW/
200 MWh grid-forming BESS. The BESS is at the planning stage. The
measurements are from field tests and processed by a low-pass filter
with a cut-off frequency of 1Hz.

Figure 5 shows the comparison results between the LSTMCI and
the default model of the PSD-BPA. As in the above examples, the
parameters of the default model here are optimized and suited for
scenarios a and c. The specific parameters tuned for each of the default
models are detailed in Supplementary Note 6. Compared to the
modeling results for the grid-following wind farm and PV power sta-
tion (presented in Figs. 3 and 4), the default model exhibits insufficient
accuracy in capturing reactive power dynamics during disturbance
processes and performs poorly in unoptimized scenarios. These lim-
itations are absent in the LSTMCI model. As shown in Fig. 5e, f, LSTMCI
achieves significantly lower MAE and MSE across all four scenarios.
Across the four scenarios, LSTMCI significantly outperformed the
default model, decreasing the overall MAE by 73.8% (from 8.04% to
2.11%) and the MSE by 94.9% (from 2.83% to 0.145%). This highlights
LSTMCI's capability to accurately model grid-forming inverter and
BESS dynamics.
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Fig. 3 | Validation of the modeling wind farm. a A low-voltage ride-through
(LVRT) scenario (the voltage drops to 0.39 per unit (p.u.)). b A LVRT scenario (the
voltage drops to 0.83 p.u.). ¢ A high-voltage ride-through (HVRT) scenario (the
voltage rises to 1.15 p.u.). d A HVRT scenario (the voltage rises to 1.22 p.u.). The

curves of V show the voltage dips for each scenario. e The mean absolute error
(MAE) analysis of P and Q between the four scenarios. f The mean square error
(MSE) analysis. Source data are provided as a Source Data file.

Time-domain simulation with LSTMCI

The superior accuracy of LSTMCI demonstrated across the three
examples exhibits notable deviations compared to existing generic
dynamic models of IBRs in specific scenarios, thereby allowing for
more accurate power system stability assessments.

To investigate these implications, a severe three-phase ground
fault is applied at the largest generator of the test system, G1. This
event triggers low-frequency oscillations in the rotor angle of the
grid, as illustrated in Fig. 6 for simulations employing the vendor
model, LSTMCI, and a default model (with consistent parameters
maintained across all simulations for a fair comparison). Vendor
models, widely regarded within the industry as the most accurate and
detailed representations, nevertheless suffer from significant prac-
tical drawbacks: they are computationally intensive, proprietary, and
tied to specific software platforms'®**. These limitations render them
unsuitable for the large-scale dynamic studies required by the
industry and consequently motivate efforts, such as those by WECC
and IEC, to develop generic dynamic models®. Notably, Fig. 6 shows
that the rotor angle response simulated with LSTMCI closely mirrors

the vendor model’s results, while the response using the default
model exhibits a distinctly different oscillatory pattern. The stability
characteristics of these oscillations are quantified below using Prony
analysis.

To further characterize these oscillations, Prony analysis is con-
ducted on the rotor angle responses to extract dominant modes**,
The Prony analysis results of rotor angle low-frequency oscillations in
generator G2 are summarized in Table 1, where the frequency, ampli-
tude, phase, damping, and damping ratio are provided for each model.
The simulations based on the vendor model and LSTMCI both reveal a
dominant low-frequency mode, with closely aligned frequencies
(0.799Hz and 0.794 Hz, respectively). Critically, both the vendor
model and LSTMCI simulations yield positive damping values (0.020
and 0.021) and corresponding negative damping ratios (-0.395 and
-0.411), indicating an unstable response under the fault scenario. In
contrast, the simulation using the default model exhibits a different
oscillatory profile, characterized by a slightly higher frequency
(0.887 Hz), a negative damping value (-0.005), and a corresponding
positive damping ratio (0.024), suggesting a stable mode.
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These Prony analysis findings highlight the significant accuracy
improvements of time-domain simulations with LSTMCI. By accurately
capturing the dominant oscillatory behavior and the instability ten-
dency predicted by the baseline vendor model, LSTMCI offers a more
reliable assessment of power system stability compared to the default
model, which exhibits qualitatively different and potentially erroneous
stability characteristics. This highlights the importance of employing
accurate IBR dynamic models, such as LSTMCI, for comprehensive
power system stability studies in power systems with high IBR pene-
tration. To further underscore this point, a detailed comparative ana-
lysis in an IBR-dominated, low-inertia system, where the impact of
model accuracy is even more critical, is provided in Supplemen-
tary Note 9.

Performance comparison

This section validates the proposed LSTMCI model by comparing its
extrapolation capability against the default model, and its accuracy
and efficiency against other data-driven approaches (including purely
neural networks and a PINN). These comparisons serve to demonstrate
the superiority of our tailored architecture.

Extrapolation capability. Model evaluation distinguishes between in-
distribution data, resembling the training data, and out-of-distribution
data, representing novel conditions or out-of-range inputs. Model
generalization capability hinges on its extrapolation capability: accu-
rate predictions on out-of-distribution inputs, demonstrating gen-
eralization beyond training patterns*”*%, To validate the extrapolation
capability of the model across different scenarios, we tested a con-
tinuous LVRT scenario for a wind farm. Initially, the wind farm drops
down to 0.4 p.u. 200 ms later, a zone-based protection operates, then
the PCC voltage of the wind farm returns to 0.75 p.u. Another pro-
tection operates 400 ms later, which returns the voltage to normal. In
this scenario, we evaluated the performance of the vendor model, the
default model, and the LSTMCI. The time-domain simulation results
for each model are shown in Fig. 7a. It is important to note that the
training data for LSTMCI is based on single disturbances only. Thus,
the blue region in Fig. 7a is within the distribution of the training set or
in-distribution, and the other region is out-of-distribution. Despite
operating in an untrained scenario, LSTMCI still demonstrated high
accuracy. Its dynamic response of the active and reactive power is
similar to the vendor model: the MAE between the LSTMCI and the
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P and Q between the four scenarios. f The mean square error (MSE) analysis. Source data are provided as a Source Data file.

vendor model is 2.04% for active power and 0.73% for reactive power.
The default model here is specifically tuned for the 0.4 p.u. LVRT
scenario, but it performed poorly in this complex scenario, especially
in capturing the active power recovery characteristics. The MAE
between the default model and vendor models is 13.61% for active
power and 2.62% for reactive power. This illustrates that the default
model cannot achieve high accuracy across all scenarios. It highlights
that the extrapolation capability of LSTMCI is better across multiple
scenarios.

Comparison with other neural networks. Compared to other existing
neural network models, our method has distinct theoretical advan-
tages: the outputs of our method are more reliable and explainable.
The output of our method is generated by an inverter model, and its
dynamic behaviors are compelled to meet the physical constraints of
the inverter.

Basically, the IBR dynamic modeling is a time-series regression
problem. To provide comparative benchmarks, we evaluated several
established sequence models against our proposed approach,
including LSTM, RNN, gated recurrent unit (GRU), temporal convolu-
tional neural network (TCN)*’, and Transformer®. Furthermore, to

situate our work in the context of physics-informed methods, we also
include a state-of-the-art PINN in our comparison®. The PINN is con-
structed using the second-generation generic model equations as its
physical basis. In order to ensure a fair comparison, the data used for
the training of each model, the data normalization method, etc., are
kept consistent. Additionally, when feasible, we match the number of
parameters of the models to that of the proposed model as closely as
possible. Table 2 shows the features of the evaluated models. To reflect
the practical scarcity of measured data, the neural network in this
study is trained using a limited number of data samples. Details of the
data generation process are provided in Supplementary Note 3.
MAEs of the comparison results are shown in Fig. 7b. Among the
three examples, the proposed method outperforms all other models,
as demonstrated by the fact that the MAEs are at the lowest levels.
Among the purely data-driven networks, the MLP shows the maximum
errors across the three IBRs, which confirms its unsuitability for time-
series regression tasks. The PINN, by incorporating physical informa-
tion, achieves a lower error than the standard MLP, confirming the
benefit of physics-informed approaches. Nevertheless, the proposed
LSTMCI model still demonstrates higher accuracy than the PINN across
all three IBR cases. This remaining performance gap can be attributed
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to the two key limitations of the PINN framework in this application: its
accuracy is inherently limited by the accuracy of the simplified generic
model equations it relies on, and its MLP-based structure is less adept
at capturing complex temporal dependencies compared to LSTMCI.
Figure 7d compares the loss function descent process of LSTMCI and
LSTM in the validation set. The LSTMClI reaches lower loss faster, which
demonstrates better training efficiency.

To determine the optimal structure, this study tested several
related alternative structures for the three IBRs validated as examples.
Every related alternative structure is detailed in Table 2 and the vali-
dation results are shown in Fig. 7c. The error of the LSTM+Inv. is
reduced relative to LSTM. This indicates that using the inverter model
can effectively regulate the dynamic behavior of LSTM and improve its
accuracy. With the Cross layer, the accuracy of LSTM+Cro. is improved
relative to LSTM in all scenarios. It shows that the Cross layer adds
effective interactions between the variables to LSTM and improves its
expressive accuracy. Deep & Cross network (DCN) is specifically
designed to provide the interactions®, but is not effective enough in
this problem. DCN provides redundant structures and parameters that
complicate the model, resulting in LSTM+DCN+Inv, which is even less
accurate than LSTM. The accuracy of RNN+Cro.+Inv. is lower than that
of LSTMCI since LSTM is improved from RNN.

Discussion

In this article, we propose a data-driven approach to establishing
dynamic models for IBRs, utilizing the advantages of neural networks
to overcome the inherent limitations of physics-based, purely neural
network-based, and PINN-based dynamic models. The method incor-
porates physical characteristics by employing an embedded physical
inverter model to regulate LSTMCI outputs. This addresses the phy-
sical consistency challenges faced by purely neural network-based and
PINN-based models. To evaluate its effectiveness, we validated the
LSTMCI using two systems: a large-scale, real-world power system
containing 5075 buses, and an IBR-dominated system with 57.8%
penetration. LSTMCI significantly outperformed existing IBR dynamic
models across various scenarios, including complex continuous dis-
turbance events, exhibiting both enhanced extrapolation capability

7 T T

6 Simulation with vendor model i
Simulation with default model

5t Simulation with LSTMCI 4

Rotor angle [rad]

Time [s]

Fig. 6 | Comparison of rotor angle curve observed at the generator G2
relative to G1. For location of the G1 and G2 see Fig. 2. The simulation with the
vendor models is shown as a reference, where closer agreement indicates better
accuracy. Source data are provided as a Source Data file.

and superior accuracy, with relative reductions of over 90% in MSE and
up to 73.8% in MAE. These results highlight the robustness and prac-
tical applicability of LSTMCI in power system simulations where
diverse conditions and unforeseen fault combinations are common.
Consequently, the findings indicate that time-domain simulations
incorporating LSTMCI not only enhance simulation accuracy but may
also yield transient stability analysis conclusions that differ from those
obtained using existing dynamic models of IBRs. Comparing other
neural network approaches, LSTMCI achieves higher accuracy with a
similar number of parameters due to its physical constraints. This may
help alleviate concerns of power system operators about the reliability
of neural network-based dynamic models. Furthermore, the proposed
LSTMCI approach demonstrates the potential to capture the dynamics
of abroad range of IBRs, indicating its applicability extends beyond the
specific case studies examined here (e.g., wind farms, PV power sta-
tions, and BESSs). Ultimately, by providing a more reliable foundation
for time-domain simulation, this methodology has the potential to
enhance a range of critical engineering studies, including power sys-
tem planning, security assessment, post-mortem event analysis, and so
on. For further clarification, a schematic illustrating this hierarchical
application framework is provided in Supplementary Note 13.

There still remain some potential limitations associated with the
present LSTMCI for IBR dynamic modeling. Firstly, the training data of
LSTMCI in this study is generated from the vendor models, which are
widely recognized by the industry as a benchmark for accuracy. While
these models are accurate, they may not fully align with measured data
and may not encompass all dynamic behaviors encountered in opera-
tional environments. In practice, measured data can be utilized to train
the model for further improvement in accuracy. For new installations
with scarce data, transfer learning can be employed to adapt a pre-
trained model from a similar IBR, significantly accelerating deployment.
A further practical consideration is the long-term validity of the model,
as IBR characteristics can evolve due to aging or firmware updates,
which is a challenge known as concept drift. To counteract concept drift
over time, models can be efficiently updated using incremental learn-
ing, an approach whose feasibility we have successfully demonstrated in
this work (see Supplementary Note 11). To solve the challenge of
maintaining long-term accuracy, well-established online adaptation
strategies can be employed to automate this process, where perfor-
mance degradation automatically triggers model fine-tuning. A detailed
discussion of these strategies is provided in the Supplementary Note 11.
Additionally, when initial training data are insufficient, transfer learning
from pre-trained models can enhance accuracy in dynamic modeling.
Furthermore, for data-scarce scenarios such as new installations, a
practical strategy is to generate training data via detailed electro-
magnetic transient simulations using vendor models. The use of such
simulated data is justified by its superior accuracy over simplified
generic models and is a practice supported by recent community
efforts in creating open-source datasets for this purpose*. This work-
flow ensures our method’s applicability even when extensive historical
measurements are unavailable. Practical data quality is also a key con-
sideration. The model’s performance is fundamentally linked to the
data’s temporal resolution; the 100 Hz rate used herein is consistent
with WAMS and sufficient for capturing the target dynamics. In terms of
measurement accuracy, the model’s average Total Vector Error (4.81%)
on test data approaches the IEEE standard for measurements (<1% Total
Vector Error)*. This proximity indicates the model’s high accuracy,

Table 1| Prony analysis results of rotor angle low-frequency oscillations in generator G2

Model used for simulation Frequency (Hz) Amplitude (rad) Phase (rad) Damping Damping ratio
Vendor model 0.799 0.288 -1.374 0.020 -0.395
LSTMCI 0.794 0.193 -1.149 0.021 -0.41

Default model 0.887 0.068 1.614 -0.005 0.024

Nature Communications | (2025)16:11696


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-66604-z

a In-distribution Default model LSTMCI Vendor model l
1.2 1.2 1.2
- e . wm = = 1 f o ——— ] 1 J
1+
08 08r —
5 08f | el El ‘
S — S806 506 |
> o (e] - P ———
0.6 0.4} 0.4F
04 0.2 1 0.2
0 0
0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 25
Time [s] Time [s] Time [s]
b —@— LsTmCI RNN + Transformer == GRU C @ LsT™MCI LSTM+Inv. Y RNN+Cro.+Inv.
——— LSTM-16 TCN MLP —¥— PINN B LSTM-8 @ LSTM+Cro. 3k LSTM+DCN+Inv.
1 . . 0 . .
10" 10 | . 10 : : .‘*
1 1 1 1
I @ | | @
1 1 l 1
= = = 1 1 = 1 1
g 2 10° g I | g [
= = / = ! [ = om
= = = | ! =10 LAk |
w w w w
7] < (10 1 1 ] ] 1 1
S R S N
10 " 1 1 ‘ 1 1
1 * ° 1 1
1 P 1 1 1
2 ® 1 1 2 1 1
2 3 10 1 2 3 1 2 3 10 1 2 3
Example Example Example Example
d 4 LSTM-8
10 Wind farm PV power station iy BESS
—~ 107" —
(o2} j2] [o2]
= =3 10"
1] 1] 1]
%] 1] %]
o o o
- | -
102
| 102} ' ‘
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Epoch Epoch Epoch

Fig. 7 | Results of performance comparison. a Continuous low-voltage ride-
through (LVRT) process observed at the point-of-common coupling (PCC) of the
wind farm. The training data of LSTMCI only contains a single disturbance. The blue
region represents the trained data, and the other region is untrained. In the
beginning, the PCC voltage of the wind farm drops to 0.4 p.u. Then, a zone-based
protection is triggered, returning the voltage to 0.75 p.u. A second protection
operates 400 ms later, returning the voltage to normal. b mean absolute error
(MAE) and mean square error (MSE) results of neural networks for the three

inverter-based resources (IBRs). The compared models include the recurrent
neural network (RNN), temporal convolutional network (TCN), multilayer percep-
tron (MLP), and gated recurrent unit (GRU). ¢ MAE and MSE results of similar
structures for the three inverter-based resources (IBRs): the wind farm, photo-
voltaic (PV) power station, and battery energy storage system (BESS). The inverter
dynamic modelis denoted as Inv., and the cross-layer is denoted as Cro. d Efficiency
of training models for the three IBRs. Source data are provided as a Source Data file.

while also suggesting that sensitivity to measurement noise is an
important characteristic for future investigation of such high-
performance models. Investigating the model’s sensitivity to measure-
ment noise, a characteristic challenge for such high-fidelity models, is
therefore a key direction for future research. Furthermore, the number
of parameters in the Cross layer scales cubically with the number of
LSTM hidden layers. Therefore, increasing the number of hidden layers
to increase the representational capacity of the model can lead to
computational challenges. Based on the results of this study, an LSTMCI
model with eight hidden layers is sufficient for the complexity of wind
farms, PV power stations, and BESSs. Meanwhile, for IBRs of lower
complexity, reducing the number of hidden layers would be beneficial
in optimizing the performance and computational efficiency of the
model. The independent nature of each LSTMCI instance means that
the framework is naturally capable of parallel or distributed computa-
tion. This is the recommended approach to ensure computational
efficiency, particularly for deployment in large-scale systems with a

substantial number of IBRs. A detailed computational benchmark study
has confirmed that this approach ensures the framework is both scal-
able and capable of faster-than-real-time performance (see Supple-
mentary Note 8). Additionally, LSTMCI is sensitive to the initial
parameters of the inverter model. This may be attributed to the training
algorithm and the structure of the inverter model employed in this
study, wherein specific parameters are defined by upper and lower
bounds for limiting functions. These parameters are only updated when
limits are triggered, leading to low update frequency, which can prevent
the optimization of all inverter model parameters to their optimal
values. Adjusting the optimization step size for inverter model para-
meters, optimizing only key parameters, or selecting alternative opti-
mization algorithms for the inverter model could help to address this
issue. Accordingly, there exists substantial potential for the enhance-
ment of the performance of LSTMCIL.

Moreover, a potential relationship exists between the parameters
and computational procedures of the LSTMCI and the fundamental
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Table 2 | Model details and descriptions

Model Number of parameters  Description

LSTM-16 1922 The LSTM with 16 hidden layers.

RNN 1946 The RNN with 24 hidden layers.

GRU 1964 The GRU with 18 hidden layers.

TCN 1946 TCN with 3 convolutional layers (13 channels each).

MLP 1924 MLP with 7 layers (17 neurons each), using Hardtanh as activation function.

PINN 1924 A PINN enforcing the physics of the second-generation generic model as hard constraints, based on the architecture in
ref. 51.

Transformer 1939 The Transformer with 5 encoder and decoder layers, 7 multi-head attention heads, an input feature dimension of 7, an
8-dimensional feed-forward network, and a 0.1 dropout rate.

LSTM-8 578 The LSTM with eight hidden layers.

LSTM+Inv. 588 LSTM-8 with an inverter model.

LSTM+Cro. 1207 LSTM-8 with Cross-layer.

RNN+Cro.+Inv. 1628 RNN (8 hidden layers) with cross-layer and inverter model.

LSTM+DCN+Inv. 652 LSTM-8 with DCN and inverter model.

LSTMCI 1940 LSTM-8 with Cross layer and inverter (can also be marked as LSTM+Cro.+Inv.).

The inverter dynamic model is denoted as Inv., and the cross-layer is denoted as Cro. The FCs of the models are set in the same way and are omitted from the description.

physical mechanisms governing IBR dynamics. It is anticipated that
techniques such as visualization and sparse regression will facilitate
the elucidation of these mechanisms. This investigation will constitute
a key component of our future research.

Methods

Architecture of the LSTMCI

The proposed network architecture of LSTMCI is shown in Fig. 1. The
model architecture reflects the physical structure of IBRs. LSTMCI uses
neural networks, LSTM, Cross layer, and FC to capture and express
non-inverter dynamics. Subsequently, an inverter model employs the
output of the neural network to generate current for injection into the
grid. This study employs an inverter model, REGC_A, and other inverter
models are also available. Among the neural networks, the LSTM
serves as the foundational element. The selection of LSTM over RNN is
due to the fact that RNNs suffer from the vanishing gradient problem,
making them ineffective at capturing the crucial long-term depen-
dencies in power system dynamics. Compared to the similarly efficient
GRU, the LSTM’s more expressive structure with separate forget and
input gates allows for more flexible control over the model’s memory,
which is critical for modeling the complex, path-dependent behavior
of IBRs following a disturbance” . It processes the hidden state of the
last time step, h-y), cell state of the current time step, ¢y, and input
variable of the current time step X, to output the middle hidden state,
h;t). Notably, the input vector x, includes voltage magnitude and
phase angle, while system frequency is omitted. This is because, within
the phasor-domain framework used for transient stability, frequency
dynamics are implicitly captured by the time derivative of the phase
angle (Af = %%), making it a learnable but redundant feature.
The Cross layer processes h;t), X, and the outputs of the last time
step, Y1), to output the hidden state, h,. FC processes A, to output
the inputs of the REGC_A, /,c;nq and Igemq. In the end, REGC_A outputs /,
and /; as the output of the LSTMCI. Supplementary Note 1 provides
detailed information on the REGC_A model, including its structure,
parameters, and practical availability. The LSTMCI offers a unified
framework for modeling the dynamics of IBRs. The flexibility of this
approach allows for the modeling of diverse IBR types by simply
adjusting the inputs to LSTMCI.

A key challenge in IBR dynamic modeling is representing the
numerous and significant nonlinear interactions among state vari-
ables. Fundamentally, these interactions arise from the underlying
physics: for instance, quantities like active and reactive power are
products of voltage and current, and the essential d/qg-axis

transformations central to inverter control involve nonlinear trigono-
metric functions of the phase angle. While a standard LSTM can cap-
ture temporal patterns, it cannot efficiently or explicitly model these
crucial pairwise and higher-order feature interactions®. To
address this, in this study, the cross-layer is designed to add pairwise
interactions between all variables (including k', x, and y) to the LSTM
equations. The input of the Cross layer includes V), 8¢, ®(, Ip¢-1), and
I4-1- By multiplying or squaring these variables, relevant electrical
power information can be incorporated. The input of the Cross layer
also includes k', allowing k' for other inputs of the Cross layer to
simulate additional pairwise interactions. The equations of the cross-
layer are shown in (3) and (4). The calculation process is depicted in
Fig. 8a.

I=M, 1 )W, 3)

.
[= [h(Tt)'x(Tt)'y(thl)] 4)

where 7 represents all the interactions, W, denotes weights, [l is a col-
umn vector composed of all the variables, ® is the Kronecker product,
My, is an ny % ny unitary matrix, ny, is the number of dimensions of h,
also the number of state variables.

Implementation details

Initialization. The parameters of the neural networks of the LSTMCI
are initialized with Xavier normal®, and the parameters of the inverter
model are set according to the rated values collected from vendors.
The state variables of the LSTM are initialized as zeros, and the vari-
ables of the REGC_A are initialized according to the power flow results.

Data preprocessing. The comprehensive overview of the data gen-
eration process for model training can be found in Supplementary
Note 3. All of the data used is low-pass filtered. For the dynamic model,
the signals of the IBRs are centered around the steady-state operating
point, with significant deviations occurring during faults. Therefore,
we propose a mean centering adjustment based on min-max normal-
ization to normalize the input used by the LSTM and the cross-layer of
the LSTMCI. The normalization is defined by the following:

N;
- Z— 2y 1K z2—-2;
z = min -+ min 5)

Zmax — Zmin Ni i-1 Zmax — Zmin
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simulation methodology. a Visualization of the proposed cross-layer.

b Integration process of LSTMCI into a time-domain simulator using the alternating
iteration method.

where 2" is the normalized data, z is the original data points, z,,;,, and
Z ¢ are the minimum and maximum values of z, N; is the dimension of
the z.

Training. In this paper, we use the MAE as the evaluation metric, which
is commonly used in time-series regression and dynamic model
validation***®, The loss function employed by this study is defined as
follows:

L=Lyae(€, é‘)+Ak£MAE(€k'é‘k) (6)

where Ly; is the MAE function referring to (1),  is the output of the
LSTMCI, § « is the output of the LSTMCI during the key time period (i.e.,
pre-fault, fault, and post-fault period), £ and & are the corresponding
true values, and A, is a parameter which controls the importance of the
key time period.

We select the pre-fault period as the key time period in the loss
function to ensure the model accurately establishes the initial steady-
state conditions. Furthermore, to develop a more physically grounded
internal state representation, the model can be trained to predict key
physical quantities in addition to its primary outputs. This is achieved
through a multi-task learning strategy. In addition to the primary task
of predicting terminal quantities (e.g., currents /, and /,), the model is
simultaneously trained to predict a set of auxiliary physical variables.
These auxiliary targets are selected based on two criteria: their physical
significance in representing the IBR’s internal dynamics and their
practical availability from measurement data (e.g., DC-link voltage, PLL
states). This is achieved by defining a composite loss function as shown
in Eq. (6), which includes weighted loss terms for both the primary and
auxiliary outputs. This process encourages the network to learn a more

complete and accurate representation of the IBR’s internal dynamics if
the internal state's physical quantities can be obtained.

We use the adaptive moment estimation (Adam) optimizer®”’
with a batch size of 4 to optimize the parameters of the models.
The step size is set to 0.001, the decay rate for momentum is 0.9,
and the decay rate for squared gradients is 0.999. All the para-
meters, including the parameters of the neural networks and the
inverter model, are optimized in a synchronous manner. In this
study, the neural networks and the REGC_A model are con-
structed and trained using PyTorch®.

Representation of different control strategies. The proposed data-
driven framework accounts for various IBR control strategies, such as
grid-following and grid-forming, by learning their resultant dynamic
behaviors. It is important to clarify that while these control strategies
correspond to physically different characteristics (i.e., controlled
current sources and controlled voltage sources), the model’s structure
of providing a current injection as output based on terminal voltage as
an input is consistent for both. This input-output format is dictated by
the standard numerical interface of large-scale time-domain simula-
tors, which requires all component models to provide their corre-
sponding current injections.

Therefore, the model learns to replicate the correct current
injection response for any given control strategy within this
simulation-compatible modeling framework. Rather than con-
taining explicit parameters or switches for different control
modes, the model learns from operational data that inherently
embeds the unique dynamic characteristics produced by a spe-
cific control strategy in response to grid events. By training on a
dataset from an IBR with a grid-forming scheme, for instance, the
LSTMCI model learns to replicate that specific grid-forming
behavior. Differentiation between control types is thus achieved
by training distinct model instances on representative datasets
for each strategy. This universal modeling philosophy is illu-
strated schematically in Supplementary Note 12.

Integration with the time-domain simulator. The proposed model is
incorporated into a time-domain simulator using the alternating
iteration method, a widely used technique in COTS time-domain
simulation software for power systems?. Figure 8b shows the brief
process of LSTMCI incorporation into a time-domain simulator. At
each time step of the alternating iteration, the time-domain simulator
feeds the bus voltages to the dynamic models, which in turn feed the
injected currents back to the simulator. Once the alternating iteration
converges, the solution proceeds to the next time step. At this point,
the dynamic model saves and transfers the converged state
variables for use in the next time step. Please see Supplementary
Note 2 for details.

Data availability

The primary code, models, and datasets generated and analyzed dur-
ing this study*® are publicly available in a Code Ocean capsule at
https://doi.org/10.24433/C0.7945591.v2. The real-world measurement
data and the detailed parameters for the 5075-bus power system are
confidential and are not available due to regulations from the grid
operator. The source data underlying the figures in this paper are
provided in the Source Data file.

Code availability
The codes necessary for reproducing the results of the manuscript are
available on Code Ocean at https://doi.org/10.24433/C0.7945591.v2.
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