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Leveraging spatial-angular redundancy for
self-supervised denoising of 3D fluorescence
imaging without temporal dependency

Zhi Lu 1,2,3,4,5,6,11, Wentao Chen3,7,11, Feihao Sun 2,3,4, Jiaqi Fan 3,8,
Xinyang Li 4,9, Zhenqi Fu 2,3,4, Manchang Jin 3,6,7, Jiamin Wu 2,3,4,10 &
Qionghai Dai 2,3,4,10

Photon noise is one of the fundamental limits in fluorescence imaging. Despite
broad applications, existing self-supervised denoising methods rely on either
temporal redundancy or spatial redundancy, leading to degradation in either
temporal resolution or spatial resolution, especially for 3D imaging. Here, we
propose light field denoising (LF-denoising), a self-supervised transformer
framework leveraging spatial-angular redundancy based on the high-
dimensional light field measurements to achieve high-fidelity denoising with-
out relying on temporal information and avoiding associated artefacts in
spatial domain. We demonstrate the advantage of LF-denoising over previous
methods in highly dynamic 3D imaging with both simulations and experi-
mental data across different species. Combined with state-of-the-art light field
microscopy variants, we achieve long-term high-speed high-resolution 3D
intravital imaging on diverse animals including zebrafish,Drosophila andmice,
with ultra-low excitation power of 10 μW/mm². Specifically, we show that LF-
denoising well preserved the temporal causality with superior denoising per-
formance, which is critical for quantitative biology analysis in immunology and
neuroscience.

High-fidelity subcellular 3D imaging in live organisms with minimal
phototoxicity is crucial for studying multicellular behaviors and
functions1–4. However, photon noise is one of the fundamental limits,
leading to fragmented images and artefacts5. For example, prolonged
3D imaging sessions often encounter significant shot noise with low
signal-to-noise ratios (SNR), especially when imaging photosensitive
tissues or cells over extended periods.

Deep learning-based denoising methods have shown promise in
enhancing noisymicroscopy images6,7. Nevertheless, existingmethods
face several bottlenecks, especially for 3D imaging. Supervised

learning-based networks8,9 can substantially suppress image noise by
acquiring low- and high-SNR data pairs simultaneously; however,
required targets are barely accessible for light-sensitive samples10 or
fast, nonrepetitive 3D biological activities11,12. Consequently, self-
supervised networks are more commonly used, denoising directly on
low-SNR data by relying on either temporal or spatial redundancy. On
one hand, DeepInterpolation6 and DeepCAD-RT7 rely on temporal
redundancy, in which signals from consecutive frames are regarded as
almost the same and noises are considered to be independent. The
temporal dependency may cause motion blur when imaging highly
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dynamic 3D samples, limiting their application to a relatively small
range, such as functional calcium dynamics in which neuronal struc-
tures are kept unchanged6,7 or in vitro cultured living cells that move
slowly13. On the other hand, spatial redundancy can be utilized for
denoising through spatial oversampling, with typical methods such as
SRDTrans14 and SN2N15. But for fast volumetric imaging, spatial over-
sampling is not easily achieved and comes at the cost of a reduced field
of view or lowered resolution. Therefore, both temporal and spatial
redundancies are often insufficient, particularly in high-dynamic,
orchestrated 3D samples, resulting in degradation in either temporal
or spatial resolution. Exploring higher-dimensional redundancy for 3D
image denoising is imperative.

Light fieldmicroscopy (LFM) provides a high-dimensional sampling
that captures both spatial and angular information, offering spatial-
angular redundancy to achieve sophisticated 3D imaging with high
spatiotemporal resolution16–27. The core advantage of LFM lies in its
highly parallelized 3D volumetric imaging capability. Traditional
confocal28 and two-photon microscopes29 require slow, point-by-point
scanning across the 3D volume to achieve volumetric imaging. More
recently, light-sheet microscopy30 has improved the physical scanning
mechanism, yet it still relies on sequential plane-by-plane scanning,
which remains relatively slow and is further constrained by sample
transparency. In contrast, LFM leverages high-dimensional spatial-
angular information to enable single-shot 3D volumetric imaging with a
single camera exposure. The unique capability has greatly advanced
large-scale, high-speed biological applications and is now becoming
commercially available and widely used by the scientific community31–33.
Compared to exploiting temporal or spatial redundancy in a single
dimension, the joint spatial-angular redundancy inherent in LFM holds
the potential for enhanced denoising performance. However, it has not
been fully leveraged by previousmethods due to the ill consideration of
the complex spatial-angular model. Fixed pattern artefacts and under-
performed effects occur when using existing self-supervised networks.
Until now, denoising LFM images still relies on traditionalmethods, such
as block matching34, total variation regularization35 or dictionary
learning36, all of which easily overestimate noise and degrade perfor-
mance. Deep learning-based light field denoising is constrained to
macroscopic-scale scenes for natural images without wave-optics
modeling37,38. Therefore, developing denoising methods by leveraging
spatial-angular redundancy is urgently needed to achieve long-duration
intravital 3D subcellular imaging under low-light conditions.

To address such problems, we develop a self-supervised learning-
based imaging framework termed LF-denoising based on the high-
dimensional light field measurements, to push 3D fluorescence imaging
beyond the shot noise limit. The proposed LF-denoising comprehen-
sively considers the attribute of spatial-angular redundancy in LFM
variants, to disentangle underlying signals from noisy recordings39–41.
Implementing the bidirectional angular traversing strategy, we created
four sets of high-dimensional data pairs in the epipolar plane image (EPI)
domain, whereby spatial-angular continuity and redundancy canbe fully
investigated42. Equipped with two concurrent transformers, LF-
denoising effectively removes noise in spatial-angular images without
compromising resolution. The consistent relationship betweenmultiple
spatial-angular components ensures accurate volume reconstruction.
We demonstrated the versatility of LF-denoising across various spatial-
angular imaging setups (conventional LFM, high-resolution scanning
LFM (sLFM), two-photon synthetic aperture microscopy (2pSAM)),
diverse animals (zebrafish,Drosophila,mice) andmultiple researchfields
(hemodynamics, developmental biology, immunology, neuroscience).
Quantitative analysis characterized that LF-denoising improved
SNR by over 11 dB, and resolved 3D subcellular activities over 10 h
at unprecedentedly low excitation light levels of 10μW/mm2.
Moreover, LF-denoising accurately preserved event causality in neural
recordings without temporal dependence, which may be compromised
in previous methods.

Results
Principle and benchmark of LF-denoising
Inspired by studies utilizing Noise2Noise for image denoising7,39, a
natural idea is to apply self-supervised denoising on LFM data after 3D
reconstruction. However, deconvolution alters the distribution of
signal and noise and fails to account for spatial-angular correlations,
resulting in poor performance (Supplementary Fig. 1). Therefore, it is
necessary to perform denoising directly on the high-dimensional data
acquired by LFM. Considering that 4D spatial-angular correlation is
concealed within LFM, traditional temporal or spatial redundancy is
insufficient. We explore a strategy to extract clear signals from com-
plex light field acquisitions by utilizing high-dimensional spatial-
angular redundancy (Fig. 1a). Specifically, we used the EPI format for
denoising, as it explicitly represents these spatial-angular constraints42.
By employing bidirectional angular traversals, noisy EPI pairs can be
established at different axes. Along with noisy spatial-angular images,
we obtain three groups of noisy data pairs for self-supervised training
(Fig. 1b). LF-denoising features a hybrid architecture with two trans-
formers to leverage surrounding spatial-angular pixels for improving
SNR of EPI, an attention-based fusion module to transform EPI pixels
into spatial-angular space, and a global connection with multiple
orthogonal masks to enhance fidelity (Supplementary Fig. 2). The
bidirectional structure effectively preserves spatial-angular correla-
tions to present high-resolution details while maintaining fidelity.
Removing part of the network degrades performance (Supplementary
Fig. 3a–d). To prevent overfitting to sample textures in the training set,
LF-denoising is designed to be as compact as possible with only 18
millionparameters. Data augmentationbefore training further reduces
overfitting and enhances performance (Supplementary Fig. 3e, f).
During inference, noisy spatial-angular images are directly converted
into clean ones, achieving an 11 dB SNR enhancement without data
supervision and temporal dependency (Fig. 1c–e). For efficiency, 81
central angular views were utilized to achieve desirable denoising
performance with accelerated network training and inference (Sup-
plementary Fig. 4).

We validated LF-denoising through quantitative experiments. We
compared it with state-of-the-artmethods, including analytic methods
(block matching and 3D filtering (BM3D34)) and deep learning net-
works (Noise2Void41, Noise2Noise39, DeepInterpolation6, DeepCAD-
RT7, DeepSeMi13, SRDTrans14). Fully supervised networks like CARE8

were excluded due to the inaccessibility of high-SNR ground truth in
microscopy. We benchmarked LF-denoising using data from sLFM25, a
representative LFM variant. We simulated the sLFM imaging process
with low photons on a 3D confocal stack and enhanced it using LF-
denoising (Fig. 2a). BM3D results were extremely blurry, failing to
distinguish signal from noise (Fig. 2b). Learning-based methods, while
effective in noise removal, resulted in some detail loss. Methods like
Noise2Void and Noise2Noise, crafted for natural images, tended to
reduce high-frequency components at the submicron level. Dee-
pInterpolation, DeepCAD-RT and DeepSeMi engineered for denoising
fluorescence images, showed compromised fidelity when applied to
spatial-angular data instead of spatiotemporal data due to temporal
dependency. Due to the substantial variation across different angular
views in light field images, the signals corresponding to consecutive
frames in this transformed space also become dissimilar, which leads
to a reduction in resolution. SRDTrans, which leverages spatial
redundancy, is less dependent on temporal continuity but still strug-
gles with single-framedata, resulting in reduced image contrast due to
its continued use of spatiotemporal convolution in the denoising
process. These methods focused primarily on spatial information,
disrupting angular correlations and undermining reconstruction
quality (Fig. 2c). Differently, by addressing spatial-angular constraints
in LFM, LF-denoising preserved the resolvability of tiny structures,
which are mistaken by conventional methods. Quantitatively, LF-
denoising achieved optimal denoising performance with a 3 dB
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improvement in peak signal-to-noise ratio (PSNR) and a 30% reduction
in root-mean-square error (RMSE) compared to state-of-the-art algo-
rithms (Fig. 2d). Simulated tubulins and bubbles from the bubtub
dataset43 exhibited similar enhancement with LF-denoising (Supple-
mentary Fig. 5). Even as noise increased, LF-denoising consistently
outperformed conventional methods, regardless of whether the noise
followed Poisson (Fig. 1d and Supplementary Fig. 6) or Gaussian dis-
tributions (Fig. 1e and Supplementary Fig. 7).

Temporal independency enhances sensitivity of LFM for highly
dynamic 3D recordings
Observing cells and organelles in living animals requires low excitation
power to prevent photodamage44. The accompanying shot noise
would contaminate the signals, complicating themeasurements.While
previous denoising techniques have advanced in handling videos with
slow samplemotions, processingdata fromhighlymotile bioprocesses
remains extremely challenging (Supplementary Fig. 8). Although LFM
can record volumetric signals within a snapshot for high-speed 3D
observation over a long period17, there has been no dedicated

algorithm designed to recover clean dynamics in LFM recordings. For
example, the rapid movement of cells within the animal’s circulatory
systemposes a challenge for learning-based video denoising. Methods
relying on spatial redundancy also fall short due to insufficient spatial
sampling rate, difficult to distinguish fine structures with high
resolution.

To demonstrate the advantages of our method, we applied LF-
denoising to enhance data on flowing blood cells in beating hearts of
zebrafish larvae captured by LFM.Under low excitation power, the raw
measurements were severely affected by noise (Fig. 3a). The data were
imaged at a high speed of 50 volumes per second (VPS), resulting in
substantial differences between frames. Methods like DeepCAD-RT
and DeepSeMi, which require temporal redundancy that assumes
consecutive frames canbe treated as independent samples of the same
signals or require surrounding pixels in the spatiotemporal domain for
denoising, were incapable of handling such dynamic data. Conse-
quently, these methods produced results with motion blur and haze
(Fig. 3b, c). Although SRDTrans reduced reliance on temporal con-
tinuity, it required spatial redundancy, which is not present in LFM,

x
y s x

y s

y
x t y

x t

x
y s

y
x t

x
y s

x
y s

x
y ty

x t

x

y

v

u

Loss 1

Loss 2

Loss 3

x

y

v

u

...
...

... ...

... ...

... ...

... ...

Raw (SNR = 3.6 dB) LF-denoising  (SNR = 15.1 dB) GT  (SNR = ∞)

b

a

c

x

y

Split x

Split x

Split y

Split y

At
te

nt
io

n-
ba

se
d

fu
si

on
 m

od
ul

e

Transformer

Transformer

Orthogonal masks

...

x

y

x

y

Downsampling

x

y

v

u

Temporal redundancy Spatial redundancy Spatial-angular redundancy Angle

v

u

Time

x

y

x
y

x
y

SS
IM

SS
IM

Photon number σ

256 128
4,0

00
3,5

00
3,0

00
2,5

00
2,0

00
1,5

0032 16 8 4

d e

LF-denoising
DeepSemi
Raw

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

LF-denoising
DeepSemi
Raw

x
y

Fig. 1 | Principle of LF-denoising. a Comparisons between strategies of self-
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dancy. b Schematic of the LF-denoising processing pipeline. Noisy spatial-angular
images are first converted into two EPIs via bidirectional angular traversing. These
noisy EPIs are divided into four sub-stacks along the x and y dimensions, serving as
inputs and targets for training transformer-based networks in a self-supervised
manner. An attention-based module then fuses the two channels to produce clean
spatial-angular images. Multiple orthogonal masks and downsampling operators

are employed to establish a global loss function, enhancing fidelity. Loss 1 and Loss
2 are sub-network loss functions defined on the EPI representation, whereas Loss 3
is a global loss function defined on fused spatial-angular representation. c Spatial-
angular images of simulated neuron data before and after LF-denoising, with clean
images provided as ground truth. SNR values are indicated above each image. LF-
denoising performance indicated by the SSIM across varying photon numbers (d)
and Gaussian standard deviations (e), with distinct improvement over state-of-the-
art methods. Image bit depth is set to 16. Scale bars: 20μm (b, c).
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leading to underperformance (Fig. 3d). In contrast, LF-denoising
leverages spatial-angular redundancy to accurately recover the real
sample signal distribution without relying on temporal dependency.
Blood cells and vascular structures were clearly resolved, as indicated
by the extended high-frequency components45 (Fig. 3e, f and Supple-
mentary Movie 1). LF-denoising preserved high resolution, enabling
the recognition of adjacent cells that were indistinguishable with
conventional methods (Fig. 3g, h). Furthermore, only with LF-
denoising enhanced recordings can we accurately track cell trajec-
tories during cardiac cycles within 0.2 s. (Fig. 3i). Thus, the temporal

independence of LF-denoising extends its applications to highly
dynamic bioprocesses.

Spatial-angular redundancy facilitates high-fidelity denoising
without artefacts in sLFM
We further integrated LF-denoising into sLFM for intravital subcellular
observations. sLFM employs a microlens array (MLA) for light field
modulation. However, the tens of thousands of lenslets on the MLA
pose a challenge in ensuring uniformity during manufacturing46. This
issue becomes more pronounced with limited photons, where
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Fig. 3 | LF-denoising shows superior performance in highly dynamic 3D ima-
ging, such as heart beating in zebrafish larvae. Maximum intensity projections
(MIPs) of a beating zebrafish heart along different directions for: low-SNR raw
recordings in (a) DeepCAD-RT enhanced recordings in (b), DeepSeMi enhanced
recordings in (c) SRDTrans enhanced recordings in (d) and LF-denoising enhanced
recordings in (e). All images are processedwith 3D reconstruction. fCorresponding
Fourier transforms of the vasculature channels with estimated resolutions deter-
mined by Fourier ring correlation. g Enlarged regions of the blood cell channel.

h Normalized intensity profiles along the lines indicated by arrows in (g) showing
that adjacent cells, which were unresolved by previous algorithms, were dis-
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nonuniform transmittance between microlenses can be exacerbated
by previousmethods (Supplementary Fig. 9). In high-SNR imaging, the
raw measurement is clean, and denoising algorithms perform well.
However, in low-SNR imaging, the noise values fluctuate significantly
over time, while signals and MLA patterns remain constant. Due to its
reliance on temporal information, DeepCAD-RT suffers from severe
fixedpattern artefacts and fails to extract the signal correctly, resulting
in outcomes similar to a direct average over time. LF-denoising, on the
other hand, extracts and fuses information in spatial-angular domain
instead of temporal domain, providing an effective solution to fixed
pattern artefacts while achieving desirable denoising performance
(Fig. 4a, b; Supplementary Fig. 10 andSupplementaryMovie 2).With its
high sensitivity, LF-denoising facilitated a 10 h 3D observation of
migrasome formation in zebrafish embryos in vivo at an extremely low
light intensity of 10μW/mm² (Fig. 4c). Increasing the laser intensity to
acquire clean images would lead to phototoxicity and photobleaching,
swiftly eroding fluorescent signals and challenging the revelation of
biological phenomena (Fig. 4d, e).

Next, we applied LF-denoising inmammalian in vivo observations.
To validate ourmethod, we developed a synchronized programwithin

sLFM to capture low-SNR and high-SNR recordings simultaneously
(Supplementary Fig. 11). We imaged neutrophils in the vessels of living
mouse livers using inverted sLFM. At 20× lower laser intensity, LF-
denoising successfully preserved the intact morphology of cells that
were otherwise obscured by noise in spatial-angular images (Fig. 5a
and SupplementaryMovie 3). Quantitative analysis showed substantial
improvement with LF-denoising compared to raw measurements
(Fig. 5b, c). After denoising, we could observe the formation of
migrasomes, previously obscured by noise in raw images (Fig. 5d). We
counted the number of particles with diameters less than 2μm over
time. The raw images had many misidentifications, whereas the out-
come of our method was fundamentally consistent with high-SNR
recordings (Fig. 5e, f).

To visualize neural activity in the mouse cortex, we built an
upright sLFM systemwith approximately 100μmpenetration depth in
tissues. We recorded neural activities in an Ai148D mouse genetically
expressing GCaMP6f indicators for both low and high SNR simulta-
neously at 30 VPS (Fig. 5g and Supplementary Movie 4). Due to noise,
both the spatial footprints and temporal traces of neurons were
severely contaminated (Fig. 5h). After LF-denoising, neurons became
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distinguishable, and calcium traces were liberated from noise, aligning
closely with high-SNR recordings (Fig. 5i–l). Thus, even without tem-
poral information, LF-denoising enhances fidelity across spatio-
temporal dimensions by leveraging spatial-angular redundancy,
making it widely applicable to diverse biological studies.

LF-denoising preserves causal relationships of neural activities
in vivo for 2pSAM
Ensuring the causality of events is a significant challenge in denoising,
especially in neuroscience, where the correlation between stimuli and
neural responses is crucial47. Previous denoising methods6,7 often use
convolution operators on the temporal dimension, which can cause
event misalignment and impede accurate neural analysis, potentially
leading to distorted conclusions. In contrast, LF-denoising could be
expected to achieve satisfactory denoising results in neural recordings
with causality by replacing temporal dependency with leveraging
spatial-angular redundancy.

To verify the causal fidelity of LF-denoising, we applied it to data
captured by our previously developed 2pSAM24, with a slight mod-
ification of the angular traversing (Fig. 6a). The system was also based
on spatial-angular acquisition.Weconducted anexperiment on a living
Drosophila brain under odor stimuli (Fig. 6b). LF-denoising empha-
sized spatial-angular redundancy and correlationwithin a single frame,
achieving denoising on images (Fig. 6c) and functional traces (Fig. 6d).
We identified and averaged neural spikes (Materials and methods).
Compared to previous methods, LF-denoising produced more accu-
rate spike morphology (Fig. 6e). DeepCAD-RT deteriorated temporal
resolution and widened spikes, while SRDTrans partially reduced
temporal dependency but with fluctuation due to ill consideration of
high-dimensional redundancy. Quantitative analysis showed that our
method’s average spikes were closest to raw measurements (Fig. 6f).
Furthermore, previous denoising techniques intertwined information
across the temporal domain, distorting causal relationships. Our
approach addressed this issue effectively. Response traces near the
stimulus highlighted the drawbacks of DeepCAD-RT and SRDTrans,
which led to premature or delayed responses and trace fluctuations,
indicating limited fidelity (Fig. 6g). Only LF-denoising preserved
causality andfidelity by eliminating time dependency. Enhanced traces
showed the same trend as raw data but with reduced shot noise
(Supplementary Movie 5).

To further demonstrate causal relationships, we embedded
functional traces into a high-dimensional manifold for visualization
(Fig. 6h and “Methods”). Each latent feature corresponded to neural
activity after each odor release category. After denoising, the traces
became more distinct. The starting point of the trace represented the
initial state before odor release, and the closer it was, the greater the
event causality in the neural response. Quantitative analysis showed
that LF-denoising could shorten the distance between latent features
by at least threefold compared to previousmethods (Fig. 6h). With LF-
denoising, the causality betweenmultiple brain regions also improved,
as indicated by Granger causality analysis (Fig. 6i–k). Together, our
proposed LF-denoising maintains causality and has the potential for
application in a wide range of high-fidelity biological observations.

Discussion
In conclusion, we present LF-denoising, a computational denoising
framework based on high-dimensional measurements by leveraging
spatial-angular continuity and redundancy, enabling long-duration,
low-phototoxicity, high-resolution, high-fidelity intravital volumetric
imaging beyond the shot-noise limit. LF-denoising employs a self-
supervised approach in high-dimensional space, eliminating the need
for high-SNR data and temporal priors. The ingenious architecture
allows LF-denoising to surpass state-of-the-art methods, particularly in
removing fixed pattern artefacts and preserving event causality. By
enhancing signal extraction through spatial-angular constrains, LF-

denoising demonstrates improved generalization across different
structures (Supplementary Fig. 12). Extensive intravital experiments
confirm its outstanding performance with minimal photon budget,
especially in long-term, high-dynamic applications.

LF-denoising stands out as a unique method for 3D image
denoising by specifically leveraging spatial-angular redundancy. On
one hand, unlike DeepCAD-RT and DeepSeMi relying on temporal
redundancy, LF-denoising eliminates the dependency on temporal
information and specializes in high-dimensional LFM from design,
making it applicable to highly dynamic 3D samples while preserving
event causality. On the other hand, SRDTrans and SN2N investigate
spatial redundancy to replace temporal redundancy for denoising, the
latter ofwhichemploys a self-constrained learningprocess that further
generalizes the Noise2Noise concept to remove noise with random-
ness and reduces the need for an infinite amount of data15. However,
SN2N still fails to consider data redundancy in high-dimensional
spaces, which makes it less effective than LF-denoising in the com-
parison on spatial-angular data (Supplementary Fig. 13). In addition,
V2V3D48 is a recently proposed method that relies on angular redun-
dancy for denoising, but the lack of spatial redundancy makes it
struggle to preserve low-intensity details in spatial-angular data (Sup-
plementary Fig. 14). The results show that LF-denoising achieved
higher resolution and better detail by extracting and integrating fea-
tures across multiple spatial-angular components.

Recently, unsupervised diffusion models offer advantages for
image denoising, primarily by eliminating the need for paired clean-
noisy training data, leveraging instead the inherent structure within
noisy observations themselves, making them particularly valuable for
real-world applications49. However, these benefits come with notable
drawbacks. The iterative nature of reverse diffusion necessitates hun-
dreds to thousands of network evaluations per image, making inference
orders of magnitude slower than single-pass discriminative models like
LF-denoising, severely hindering real-time use. Performance of diffusion
models is also highly sensitive to the choice of sampling parameters,
requiring careful tuning to avoid artefacts or excessive smoothing.
These hyperparameter adjustments pose challenges for biologists. In
contrast, the proposed LF-denoising method offers a faster, more
stable, and practical solution for denoising microscopy data.

To broaden the applicability of our method, we have shown that
LF-denoising can be generally adapted to high-dimensional data cap-
tured from LFM, sLFM and 2pSAM. The performance of LF-denoising
was evaluated on 2pSAM data with only 13 angular views. Further
reducing angular views would likely degrade performance, as spatial-
angular redundancy collapses toward purely spatial redundancy. LF-
denoising does not presume any properties of the imaging system,
including optical aberrations. The method has been verified to gen-
eralize across different spatial-angular imaging setups with varying
optical aberrations. Nevertheless, severe aberrations that substantially
disrupt angular redundancy may adversely affect the performance of
LF-denoising, which can be addressed using computational adaptive
optics. Furthermore, with the inherent light field nature unaffected, our
denoising framework can be incorporated with other advanced tech-
nologies in the future, such as virtual scanning27 for improving the
spatial resolution, confocal detection50 for removing background
fluorescence, and multiscale model22 for reducing tissue scattering. We
envision that LF-denoising will serve as a practical, bio-friendly tool,
enabling accurate 3Dobservation of subcellular behaviors and functions
in vivo without the photodamage caused by intense excitation light.

Methods
Experimental setup and imaging conditions
The inverted sLFM system was based on the setup reported in our
previous work25, working on a commercial epifluorescence micro-
scopy (Zeiss, Observer Z1) and an MLA (RPC Photonics MLA-S100-f21)
attached to the image plane. A sCMOS camera (Andor Zyla 4.2 Plus)
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deposited at the back focal plane of MLA, multichannel lasers
(Coherent OBIS 405/488/561/640) providing excitation light and fil-
tering module (Chroma ZT405/488/561/640rpcv2, ZET405/488/561/
640xv2, ZET405/488/561/640mv2) installed in the filter cube of
microscope, were used formulti-color imaging. Eachmicrolens exactly
covers 13 × 13 camera pixels with a designed 4f system with 0.845-fold

magnification. The 13 × 13 camera pixels can also be considered as the
angular resolutionof sLFMsystem. For thewayof lightfield scanning, a
2D galvo system (Core Morrow P33.T2S) was inserted at the extended
pupil plane andworked in a 3 × 3 scanningmode, where the amplitude
of each drifting step was equal to one-third of the diameter of the
microlens. A high-NA oil-immersion objective (Zeiss Plan-Apochromat
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denoising enhanced image. k Matrices of Granger causality between each pair of
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significant in raw data but lost after denoising. Scale bars, 40μm (c, i, j).
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63×/1.4 Oil M27) is adopted in most biological experiments for high-
resolution imaging. The results demonstrated in Figs. 1, 2, 4, 5a–f,
Supplementary Figs. 1, 3–9, 12–14 andSupplementaryMovies 1–3,were
acquired by the inverted sLFM.When capturing zebrafish heart data in
Fig. 3, we maintained the galvo stable. The sLFM was consequently
downgraded to LFM.

The upright sLFM system was used for neural monitoring
in vivo, by using optical components (Thorlabs Cerna series) and a
customized MLA with a pitch size of 136.5 μm and a focal length of
2800 μm. A water-immersion objective (Olympus XLPLN25XWMP2)
and a matched tube lens (Thorlabs TTL180-A) together consisted of
the basic microscopic unit. A high-sensitivity sCMOS camera (Tele-
dyne Photometrics Kinetix) was used for recording neural activities
at high speed. Each microlens exactly covers 21 × 21 camera pixels.
Other hardware devices, including lasers, filters and galvo, were
identical to those in the inverted system. When acquiring scanning
light field images, the galvo also worked on the 3 × 3 scanning mode.
We also captured unscanned light field data to show the versatility of
the proposed denoising method, during which the galvo remained
unchanged at the offset voltage. The results demonstrated in
Fig. 5g–l and Supplementary Movie 4, were acquired by the
upright sLFM.

To capture synchronized low-SNR and high-SNR images,wewrote
a hardware synchronization program based on the previous sLFM
acquisition software (sLFDriver 26). A time-division multiplexing
method was used to trigger the lasers to turn on and off. The laser
exposure durations for odd and even frames were set to different
values (Supplementary Fig. 10). After rearranging the odd and even
frames, the high-SNR data sequence and low-SNR data sequence can
be acquired almost simultaneously. The low-SNR data were regarded
as the input of denoising methods, while the high-SNR data served as
the reference to evaluate the performance frame by frame. Both the
upright and inverted sLFM systems utilized this synchronization con-
trol scheme.

We also acquired Drosophila data using 2pSAM. The 2pSAM sys-
tem is consistent with what we previously described24, in which a
commercial femtosecond laser (Spectra-Physics InSight X3, Newport)
was used for two-photon excitation. Angles at the conjugated objec-
tive plane are changed to scan the whole back pupil of the objective
lens (25×/1.05 NA, water-immersion, XLPLN25XWMP2, Olympus). 13
illumination angles were used as previously stated24.

Detailed imaging conditions and parameters used in biological
experiments of this paper, including fluorescence label, laser, excita-
tion power, exposure time, volume rate, objective lens and system
setups, are illustrated in Supplementary Table 1. During imaging,
relatively low laser intensities were applied to minimize photodamage
in organisms.

Overview of network architecture
In our proposed LF-denoising network, the input is a 4D tensor of low-
SNR light field data, while the output is a 4D tensor of the high-SNR
one. For the preprocessing of light field data captured by LFMor sLFM,
we retained 81 central angular views (Fig. 1b). For light field data cap-
tured by 2pSAM, 13 views were padded to create 16 angular views
(Fig. 6a). Subsequently, these spatial-angular images were rearranged
into 3D tensors with x-s and y-t EPI representations (Fig. 1b). The ten-
sors were then partitioned in spatial dimensions, yielding overlapping
patches with a size of 128 pixels in both height and width. Specifically,
x-s patches were split in the height dimension, generating two patches
with the size of 64 × 81 × 128 pixels, serving as an input-target pair of x-s
sub-network. Simultaneously, the y-t patches were split in the width
dimension for y-t sub-network. In addition, spatial randommasks were
applied toproducedown-sampledpatchesused for the fusionmodule,
to prevent the network from overfitting to artefacts generated during
spatial downsampling processes. The masks group every four spatial

pixels of the input patch and randomly select twoof themaccording to
one of eight predefined patterns, resulting in two downsampled pat-
ches with half the original width and height. For angular dimension,
the masks were identical across different views and always picked
the same pixel. These masks were randomly generated in each
training iteration, and the random strategy is consistent across
different datasets.

An overview of LF-denoising network is given in Fig. 1b and
detailed network structure is shown in Supplementary Fig. 2. For each
sub-network, we emphasized spatial-angular redundancy for self-
supervised image denoising. The input EPI patches were first fed into
three convolution-based U-net encoders. Each encoder involved
down-sampling with 3D maximum pooling layers (kernel size of
2 × 2 × 2). The corresponding channel numbers for these encoders
were 16, 32, and64, respectively. Then the featuresweremapped into a
representation using a 3D convolution layer (kernel size of 3 × 3 × 3,
and padding size of 1 × 1 × 1), where the feature channel was usually set
to 128. The resulting features were then sequentially passed through a
temporal transformer and a spatial transformer. These layers worked
in conjunction to leverage correlations across spatial and angular
dimensions. Next, the features underwent convolution to be mapped
back to feature representations with 64 channels, followed by U-net
decoders that integrated them back into EPI patches using a 3D con-
volution (kernel size of 1 × 1 × 1). The U-net convolutional encoders
extract compact local features at low cost and reduce the dimen-
sionality. The Transformer then captures long-range dependencies
that encoders miss without the heavy computation at full resolution.
Then, decoders recover spatial details with skip connections. This
hybrid design is more computationally efficient than a purely Trans-
former model and preserves more local structure than a purely con-
volutional U-Net.

To mitigate information loss during the dataset preparation, we
devised an attention-based fusion network that took the initial
denoising outcomes from two sub-networks as input and produced a
final denoising output. The ablation study demonstrated only single
sub-network was insufficient and validated the effectiveness of
employing two paths of network along with the fusion module (Sup-
plementary Fig. 3). In our implementation, the output from x-s sub-
networkwas split along thewidth dimension, while the output from y-t
sub-network was split along the height dimension. Then the two fea-
tures were rearranged into the same representation (in the form of
angle × height ×width, with the pixel size of 81 × 64 × 64 or
16 × 64 × 64, according to the input data). Subsequently, the two out-
putswere concatenated in an alternate order, forming the input for the
fusionmodule. The fusionmodule also comprised two routes: residual
swin transformer and convolutional block attention routes. In the
former route, the input patch was first embedded with positional
embedding, then processed through eight residual transformer
blocks. Afterward, the output is fused using a double convolution layer
along the angular dimension, resulting in 81 or 16 angular views. In the
latter route, the input patch was initially passed into the double con-
volution layer, yielding 81 or 16 angular views. It is important to note
that the parameters of the convolution layers were shared across both
routes. Subsequently, the patch was processed by five convolution
block attention modules. Each one consists of 3-channel attention
layers and 3 spatial attention layers. The channel attention layers first
calculated the spatial max pooling and spatial average pooling of the
patches. These two pooled representations were then processed by a
double convolution layer with shared weights. Finally, the output of
channel attention was obtained by adding two convoluted features.
The spatial attention layers first computed the channel-wise average
and max of the patch while preserving the spatial dimensions. These
two results were concatenated into a two-channel feature and then
reduced into a single channel using a convolution layer. It is worth
noting that the outputs of both channel attention layers and spatial
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attention layers were element-wise multiplied with the input features
to produce the final output features.

For network training, we typically used 1000 EPI patches of the
same type of dataset, and it usually took approximately 20–25 epochs
for convergence. For the two sub-networks, the pixel-wise mean
absolute error (L1-norm error) and pixel-wise mean square error (L2-
norm error) with equal weights were adopted as the loss function for
each sub-network, which can be expressed as:

lossðX ,Y Þ=0:5 × kX � Yk1 + 0:5 × kX � Yk2, ð1Þ

where X denotes the target of EPI patches and Y denotes the output
patches. For the fusion module, we introduced constraints between
the fusion output and initial denoised fusion inputs from the two sub-
networks. The whole loss function can be expressed as:

lossf usion =0:4× ½0:5 × lossðY 1, Y f Þ+0:5 × lossðY 2,Y f Þ�
+0:6× ½0:5 × lossðYm1, Y f Þ+0:5 × lossðYm2, Y f Þ�,

ð2Þ

where Y1 and Y2 denote output patches from x-s and y-t sub-networks
respectively, Yf is the output patch from the fusion module, Ym1 and
Ym2 denote two targets generated from spatial random masks. The
gradients of Y1 and Y2 were truncated during the backward projection
process. The total loss function of the LF-denoising network is
described as the sum of the loss functions of the two sub-networks
and the loss function of the fusion module. The parameters of the
Adam optimizer were set to β1 = 0.9, β2 = 0.999. The learning rate was
initialized to 1 × 10–4 and then decreased by a factor of 0.3 for every
5 steps.

LF-denoising demonstrated its effectiveness across various types
of light field data and exhibited robustness in accommodating differ-
ent input sizes. The network accepted arbitrary angular numbers,
provided they were greater than 8. All positional embedding vectors,
attention heads and convolution kernels that involve the angular
dimension were not hardcoded. Consequently, the parameters of
these modules were automatically obtained during the network
training stage. For the inference stage, the input light field imageswere
either retained or padded to 81 or 16 (typical angle number used in
LFM systems) views, as in the training stage. They were then spatially
divided into overlapping EPI patches and rearranged into two forms of
EPIs, with pixel sizes of 128 × 81 × 128 or 128 × 16 ×128. The patches
were directly passed through the sub-networks and fusion module
without undergoing any splitting. The output light field images were
angularly padded back to the original input size in the spatial-angular
domain. Finally, the output LFs were employed to obtain high-
resolution volumes through iterative tomography with DAO, as
detailed in previous work25,51. The validity of LF-denoising has been
verified in extensive fluorescence specimens, including fixed cells,
beating hearts of zebrafish larvae, zebrafish embryos, living mouse
livers, brains and Drosophila brains. To verify the generalization cap-
ability of LF-denoising, we trained a network model on bubble and
tubulin data and subsequently performed direct inference on cell data
without any additional retraining (Supplementary Fig. 11).

Thenetworkwas implementedonPyTorchplatformusing a single
NVIDIA RTX 3080GPU. The complete training process for 25 epochs
on a typical training set (comprising approximately 1000 pairs) took
approximately 5 h. Inference on a light field data with 81 angles (size of
81 × 459× 459 pixels) required approximately 10.3 s and 2142MB
memory usage. It is worth noting that training and inference speed can
be further improved with more powerful GPUs. We have released LF-
denoising codes and corresponding 3D reconstruction scripts on a
public repository to promote the community.

Comparison to state-of-the-art denoising methods
We compared our method with previous state-of-the-art denoising
methods, such as BM3D, Noise2Void, Noise2Noise, SN2N, Dee-
pInterporation, DeepCAD-RT, DeepSeMi, SRDTrans and V2V3D.

For comparison with BM3D, Noise2Void, Noise2Noise and SN2N,
we initially retained themost central 81 angular views in each light field
data. Subsequently, we flattened the two angular dimensions into one,
rearranging the data into the 3D form of angle × height ×width. Fol-
lowing that, we concatenated all rearranged data along the angle
dimension, resulting in a 2D image sequence with the length of 81 × n,
where n denotes the number of light field data. For BM3D, we directly
input the 2D images in sequence using codes described previously52.
For Noise2Noise, Noise2Void and SN2N, each 2D image was cropped
into patches with a size of 128 × 128 pixels, whichwas used for network
training and inference. The resulting output patches were then stit-
chedback to the full size. Theoutput sequencewas rearranged into the
form of angle × height ×width for subsequent comparison and
reconstruction.

For DeepInterpolation, DeepCAD-RT, DeepSeMi and SRDTrans,
we also initially retained 81 angular views in each light field data,
rearranged them into a 3D form as described above. For static sample
datasets without temporal information (Fig. 2 and Supplementary
Figs. 5–7), considering the similarity and correlations among angular
views, we designated the angle dimension as the temporal dimension
for network implementations, resulting in 81-frame-long data
sequences, with the form of angle × height ×width. For dynamic sam-
ple datasets (Figs. 3–6 and Supplementary Fig. 8), we concatenated 3D
representations in temporal order for each angular view, yielding 81
image sequences in the form of time× height ×width. Each of them
was considered as individual data for the networks. For DeepInterpo-
lation, the sequences were cropped into patches with a size of
32 × 64 × 64 pixels, which were used for both training and inference.
For DeepCAD-RT and SRDTrans, the sequences were cropped by built-
in preprocessingmoduleswith a patch size of 16 × 128 × 128. In the case
of DeepSeMi, the temporal patch size was set to 17 as required by the
network. After denoising, the output sequencewas rearranged into the
form of angle × height ×width for subsequent comparison and
reconstruction. For V2V3D, we retained the most central 13 angular
views in each light fielddata and flattened two angular dimensions into
one, rearranging the data into the 3D form of angle × height ×width.
Subsequently, each 3D image was cropped into patches with a size of
13 × 128 × 128 pixels with overlaps of 16 × 16 pixels in spatial dimen-
sions, whichwasused for network training and inference. The resulting
output patches were then stitched back laterally to the full size for
subsequent comparison.

All training and inference timesweremeasured on a single NVIDIA
RTX 3080GPU. All the inference timesweremeasuredwith a light field
data with 81 angles (size of 81 × 459× 459 pixels). The inference timeof
BM3Dwas 193.9 s, using 341 MB ofmemory. The training convergence
times for Noise2Void, Noise2Noise, and SN2Nwere approximately 5, 6,
and 4 h, respectively. Their inference times were 170.8, 12.0, and 4.3 s,
with memory usage of 1402, 1240, and 1422 MB, respectively. For
DeepInterpolation, DeepCAD-RT, DeepSeMi, and SRDTrans, the
training convergence times were approximately 5, 2, 7, and 4 h,
respectively. Their inference times were 20.2, 6.2, 17.8, and 9.8 s, with
memory usage of 3410, 2922, 4620, and 1744 MB, respectively. For
V2V3D, with a light field data with 13 angles (size of 13 × 459 × 459
pixels), the training convergence time was approximately 50 h. The
average inference time was 32 s, with memory usage of 13,926 MB.

3D reconstruction process
After performing denoising on the spatial-angular images, we subse-
quently reconstruct a 3D volume using an iterative tomography
approach25, which operates in the phase-space domain51. A uniform
volume is employed as the initial estimate at the start of the iterative
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process. During each volume update, different angular components
are used sequentially to progressively refine the high-resolution 3D
reconstruction. This process involves forward projections, used to
estimate the reconstruction error, and backward projections, used to
correct the volume accordingly.

Brain slice preparation
Male Thy1-YFP-H transgenic mice (Jackson stock no. 003782) were
transcranially perfusedwith 50mLof 0.01MPBS, followedby 25mLof
4% PFA in 0.01M PBS. The harvested brain was fixed in 4% PFA over-
night at 4 °C. Brain slices (50μm thick) were obtained using a Leica
VT1200 S vibratome. The slices were then sealed in antifade solution
(C1210, Applygen Technologies, Inc.) for high-SNR and low-SNR
imaging.

Zebrafish experiments
Heart beating imaging. Tg(flk:EGFP; gata1:DsRed) transgenic zebrafish
larvae at 4 days postfertilization were used. The larvae were anesthe-
tized by ethyl 3-aminobenzoate methanesulfonate salt (100mg/L) and
mounted in 1% low-melting-point agarose in a 35-mm confocal dish
(D35-14-0-N, In Vitro Scientific) for imaging. Embryo imaging. Zebra-
fish embryos were injected with 300pg of PH-Mcherry mRNA (syn-
thesized in vitro with an mMessage mMachine T7 kit (AM1344,
Ambion)) in one cell at the 16–32 cell stage (1.5 h postfertilization, hpf).
At the 70% epiboly stage (8 hpf), injected embryos were embedded in
1% low-melting-point agarose in glass-bottom dishes (D35-14-0-N, In
Vitro Scientific) for imaging. Fertilized zebrafish embryos were main-
tained at 28.5 °C in Holtfreter’s solution (NaCl 59mM, KCl 0.67mM,
CaCl2 0.76mM, NaHCO3 2.4mM).

Mouse experiments
Mouse liver imaging. Male wild-type (WT) C57BL/6J mice aged
6–8 weeks were housed with food and water ad libitum under a 12 h
light/dark cycle at 24 °C ambient temperature and 50% humidity. 3 µg
of WGA-AF488 dye (Cat# W11261, Thermo Fisher) and 1μg of Alexa
Fluor 647 Ly6G antibody (Cat# 127610, Lot# B420110, Clone 1A8,
0.5mg/ml, Biolegend) and 80μL of PBSwere administered to themice
through tail intravenous injection. Then, Avertin (350mg/kg, i.p.) was
used to anesthetize the mouse deeply by intraperitoneal injection.
After 20min, the mice were dissected to expose the living liver on a
homemade holder with a 170μm-thick glass bottom for imaging.
Mouse brain imaging. Male Ai148D mice aged 7–8 weeks were housed
with water and food ad libitum under a 12 h light/dark cycle at 24 °C
ambient temperature and 50%humidity. A 7mmcraniotomywasmade
in themice with an implanted glass window. After 2 weeks of recovery,
the mice were head-fixed for imaging.

Drosophila experiments
Drosophila was of the genotype: w; UAS-rGRAB_ACh-0.5/+; nSyb-Gal4,
UAS-jGCaMP7f, combined by w; UAS-rGRAB_ACh-0.5/cyo; +/(TM2/
TM6B), nSyb-Gal4 and UAS-jGCaMP7f. Drosophila with the genotype:
w; UAS-rGRAB_ACh-0.5/cyo; +/(TM2/TM6B) were from Professor
Yulong Li’s Lab at Peking University. Drosophila with the genotype:
nSyb-Gal4 (BDSC: 51941) and UAS-jGCaMP7f were from Professor Yi
Zhong’s Lab at Tsinghua University. Only the jGCaMP7f channel was
analyzed in our experiments. The Drosophila were reared on standard
cornmeal medium with a 12 h light and 12 h dark cycle, maintained at
23 °C and 60% humidity. The flies were housed in vials containing both
male and female individuals, but only femaleDrosophila aged between
3 and 8 days old were selected for this experiment. Drosophila were
anesthetized using ice and then mounted in a 3D-printed plastic disk,
which facilitated unrestricted movement of their legs53. Subsequently,
the posterior head cuticles, fat bodies and air sacs of the flies were
carefully dissected using sharp forceps (5SF, Dumont) at room tem-
perature. The dissection was performed in fresh saline containing

103mMNaCl, 3mMKCl, 5mMTES, 1.5mMCaCl2, 4mMMgCl2, 26mM
NaHCO3, 1mM NaH2PO4, 8mM trehalose, and 10mM glucose, adjus-
ted to pH 7.2, bubbled with a mixture of 95% O2 and 5% CO2. Fur-
thermore, we adjusted the positions and angles of the Drosophila to
maintain the posterior aspect of the head in a horizontal orientation.
Additionally, a spacious and clearwindowwasprovided for convenient
observation of multiple brain regions. Brain movements were mini-
mized by encircling the proboscis with UV glue54. Finally, the Droso-
phila were placed under the objective of 2pSAM scanning system for
imaging. For neural recording of responses to odor stimulus, 3-octa-
nol, 4-methylcyclohexanol and ethyl acetate (EA), diluted 1.5:1000,
1:1000 and 1:1000, respectively, in mineral oil, were utilized53. Odors
were released for 5 s with 30 s interval between stimuli, totaling 75
trials (25 sessions), facilitated by a custom-made air pump. Presenta-
tion order was pseudo-randomized, and consecutive presentations of
the same odor were avoided.

Performance metrics
We used modulation transfer function (MTF), RMSE, structural simi-
larity (SSIM), PSNR, SNR and Pearson correlation metrics to compare
the performance of LF-denoising with existing state-of-the-art meth-
ods. The MTF is calculated as

MTF =
maxðLÞ � minðLÞ
maxðLÞ+ minðLÞ , ð3Þ

where L is an intensity profile, max(L) is the peak value, and min(L) is
the trough value. The RMSE is represented as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i= 1

kXi � Y ik22
n

v

u

u

t , ð4Þ

where X is the reference, Y is the estimation, n is the pixel number in X
or Y. The SSIM is represented as

SSIM =
ð2μXμY + ð0:01 � maxðX ÞÞ2Þð2σXY + ð0:03 � maxðX ÞÞ2Þ

ðμ2
X +μ2

Y + ð0:01 � maxðX ÞÞ2Þðσ2
X + σ

2
Y + ð0:03 � maxðX ÞÞ2Þ

, ð5Þ

µX and µY are the averages of X and Y, σX and σY, σXY are the cor-
responding standard deviations and the cross covariance. We firstly
obtained the local SSIM maps using sliding 2D Gaussian windows
(11 × 11, standard deviation of 1.5) for 2D images and sliding 3D Gaus-
sian windows (11 × 11 × 11, standard deviation 1.5) for 3D volumes. Then
the average of these local maps was returned as the final SSIM value.
The PSNR is represented as

PSNR= 10log10
maxðkXk22Þ
kX � Yk22

: ð6Þ

The SNR is represented as

SNR= 10log10
kXk22

kX � Yk22
: ð7Þ

The Pearson correlation is represented as

R =
E½ðX � μX ÞðY � μY Þ�

σXσY
, ð8Þ

where R is the correlation value, E[·] is the expectation.

Data analysis
All data processing and analysis were accomplished with customized
Python (3.7.0 version) and MATLAB (MathWorks, MATLAB 2019a)
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scripts. The 3D rendering was performed by Amira (Thermo Fisher
Scientific, Amira 2019) with Voltex modules. The 3D tracking of blood
cells in the zebrafish beating heart was carried out automatically using
Imaris. For calcium analysis of the mouse brain data, we manually
selected regions of interest to acquire temporal traces. The functional
traces were calculated using ΔF/F0 = (F−F0)/F0, where F0 represents the
average fluorescence within the region of interest averaged over time
and F represents the averaged intensity of the region of interest. We
further analyzed the spikes of each temporal trace. To filter out local
maxima caused by noise, the spikes were identified as the local peaks if
they rose surpassing 1% in 3 frames preceding the peaks, were highest
peaks in 3 frameswithin a range of 3 frames before and 10 frames after,
and had prominences exceeding 2.5%. All identified local peaks were
temporally aligned to the moment their peak value of ΔF/F0 occurred
and normalized, ensuring a minimum value of 0. Subsequently, we
averaged all aligned and normalized local peaks within each frame to
generate averaged peaks for the raw data and each denoising method
employed. Additionally, we calculated the width between the peak rise
and fall to 75% of the maximum for each identified local peak.

For calcium analysis of the Drosophila data, we manually plotted
neural traces of three odor stimulus. Initially, we applied a brain-region
mask that selectively included the voxels within the community con-
taining olfactory regions. Subsequently, we extracted masked voxels
within 14 frames after 75 trials and reduced dimensionality of voxels
using principal component analysis (PCA). In addition, we applied
linear discriminant analysis (LDA) on the PCA processed voxels. The
third-frame data after the start of odor stimulus were analyzed to
identify a low-dimensional space where order identity was stable and
well-represented. Following this, 75 trials were categorized into three
groups based on the odor released during each trial. Finally, we aver-
aged each group by frame, yielding three latent features shown in Fig.
6h. It is worth noting that, theoretically, the start points of the three
latent features should be identical. This is because the olfactory neu-
rons had not yet been stimulated at the time of odor release. There-
fore, there shouldbeno statisticaldifferences among all latent features
at the start point, despite these features being formed by different
odor stimuli. However, in practice, the start points are separated due
to neural activity and imaging noises, which would even be further
disruptedbyDeepCAD-RTandSRDTrans. Furthermore,wepartitioned
the field of view into 6 horizontal regions. Each region underwent
dimensional reduction using the PCA algorithm with the same para-
meters, resulting in temporal sequences. Following this, we conducted
Granger causality tests55 with a maximum lag of 8 frames (approxi-
mately 3.5 s, exceeding the typical neuronal transmission time)
between the 6 sequences from frame 2095 to 2185 to produce a
Granger causation matrix shown in Fig. 6i. Additionally, we manually
selected 3 olfactory neurons (Fig. 6j) and extracted functional traces
from frame 6500 to 8000. We then conducted Granger causality tests
with the lag of 42 and adaptive thresholds for F-statistic56 between
these 3 traces. We compared the Granger causality matrices produced
from raw data and denoising data. We observed that some causal
significances present in the raw data were lost after DeepCAD-RT and
SRDTrans denoising, while LF-denoising preserved all significant
casual relationships and revealed additional causalities compared to
raw data (Fig. 6k).

Ethics statement
This work was conducted with all relevant ethical regulations for ani-
mal research. All biological experiments were performed with ethical
approval from the Animal Care and Use Committee of Tsinghua
University.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The training data generated in this study have been deposited in the
Zenodo database under accession code https://doi.org/10.5281/
zenodo.1693866857. All data generated in this study are provided in
the Source Data file. Source data are provided with this paper.

Code availability
All relevant codes of LF-denoising are available on GitHub (https://
github.com/LF-denoising/LF-denoising) or Zenodo (https://doi.org/10.
5281/zenodo.16938935)58.
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