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State-space kinetic Ising model reveals task-
dependent entropy flow in sparsely active
nonequilibrium neuronal dynamics
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The emergence of ordered spatiotemporal dynamics in none- Further, the thermodynamic uncertainty relation

Ken Ishihara™?| & Hideaki Shimazaki ®*°®

Neuronal ensemble activity, including coordinated and oscillatory patterns,
exhibits hallmarks of nonequilibrium systems with time-asymmetric trajec-
tories to maintain their organization. However, assessing time asymmetry
from neuronal spiking activity remains challenging. The kinetic Ising model
provides a framework for studying the causal, nonequilibrium dynamics in
spiking recurrent neural networks. Recent theoretical advances in this model
have enabled time-asymmetry estimation from large-scale steady-state data.
Yet, neuronal activity often exhibits time-varying firing rates and coupling
strengths, violating the steady-state assumption. To overcome this limitation,
we developed a state-space kinetic Ising model that accounts for nonsta-
tionary and nonequilibrium properties of neural systems. This approach
incorporates a mean-field method for estimating time-varying entropy flow, a
key measure for maintaining the system’s organization through dissipation.
Applying this method to mouse visual cortex data revealed greater variability
in causal couplings during task engagement despite reduced neuronal activity
with increased sparsity. Moreover, higher-performing mice exhibited
increased coupling-related entropy flow per spike during task engagement,
suggesting more efficient computation in the higher-performing mice. These
findings underscore the model’s utility in uncovering intricate asymmetric
causal dynamics in neuronal ensembles and linking them to behavior through
the thermodynamic underpinnings of neural computation.

108 3nd the thermo-

quilibrium systems that continuously exchange energy and matter dynamic speed-limit theorem'" show that dissipation sets funda-

with their surroundings has intrigued many scientists'>, as it provides
a foundational mechanism for phenomena such as chemical oscilla-
tions, morphogenesis, and collective behaviors like animal herding.
Nonequilibrium processes inherently violate the detailed balance
between the forward and reverse transitions, yielding time-asym-
metric, irreversible dynamics. Stochastic thermodynamics has clarified
that this time-asymmetry is essential for systems to sustain their
organized structure by dissipating entropy into the environment®™’.

mental bounds on how precisely and rapidly systems can evolve.
Neural systems are no exception. In animals engaged in beha-
vioral and cognitive tasks, the dynamics of neuronal population
activity exhibit hallmarks of nonequilibrium systems. Notable exam-
ples include the rotational activity of M1 neurons during motor
execution tasks'®” and the sequential patterns observed in hippo-
campal neurons, including their replay, during navigation and
sleep’™®2°. Since the original proposal of cell assembly and its phase
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sequences by Donald O. Hebb?, coordinated sequential patterns have
been thought fundamental for memory consolidation and
retrieval’> . Recently, studies on fMRI or ECoG suggested that
increased time-asymmetry in neural signals, quantified by steady-state
entropy production’*?, could serve as a signature of
consciousness® ™ or reflect the cognitive load demanded by tasks™.
For instance, entropy production measured from ECoG signals of non-
human primates is diminished during sleep and certain types of
anesthesia compared to wakefulness®*, indicating that the awake
state includes more directed temporal patterns. However, assessing
entropy production directly from neuronal spiking activities remains
challenging. Further complicating this issue, neural signals exhibit
nonstationary dynamics, including transient or oscillatory behavior,
which hinders the use of steady-state entropy production metrics.

The kinetic Ising model is a prototypical model of recurrent neural
networks®?, It extends the equilibrium Ising model, which has been
successfully applied to empirical spiking data to elucidate the thermo-
dynamic and associative-memory properties of neural systems®>°. In
the kinetic Ising system, neurons are causally driven by the past states of
self and other neurons, as well as a force representing the intrinsic
excitability of the neurons and/or an influence of unobserved con-
current signals. When neurons receive steady inputs and their causal
couplings are asymmetric, the system does not relax to an equilibrium
state. Instead, it exhibits steady-state nonequilibrium dynamics char-
acterized by non-zero entropy production. Recent theoretical studies
on steady-state entropy production have elucidated its behavior in
relation to distinct phases of the Ising system, including critical phase
transitions®. Mean-field theories have been developed for kinetic Ising
systems®**, enabling the estimation of steady-state entropy production
from large-scale spike sequences*’. However, neuronal activity exhibits
dynamical changes not only in firing rates but also in the strength of
their interactions, both of which violate the steady-state assumptions.

To account for the nonstationary dynamics of neural systems, the
state-space method*** has been applied to the Ising system**™°, In
these approaches, Bayesian filtering and smoothing algorithms have
been developed to estimate time-dependent parameters of the Ising
model, along with an EM algorithm®~? to optimize various hyper-
parameters. These models have enabled researchers to trace time-
varying neuronal interactions while neurons’ internal parameters
change dynamically, absorbing the effect from unobserved concurrent
signals. Additionally, it has elucidated the thermodynamic quantities
of neural systems (e.g., free energy and specific heat) in a time-
dependent manner, in relation to the behavioral paradigms of tasks*s.
Nevertheless, these methods assume an equilibrium Ising model with
symmetric couplings, which limits their ability to assess the none-
quilibrium properties of observed neural activities.

In this study, we develop the state-space kinetic Ising model to
account for the nonstationary and nonequilibrium properties of neural
activities. We also construct a mean-field method for estimating time-
varying entropy flow, an essential component of entropy production
that quantifies the dissipation of entropy, from spiking activities of
neural ensembles. Given this method, we hypothesize that entropy
flow, as estimated with the kinetic Ising framework, reflects the capa-
city of neural populations to perform meaningful computation under
energetic and behavioral-time constraints®. Specifically, we expect
that high-performing animals would exhibit greater entropy flow per
spike, consistent with efficient coding.

Application of the methods to mouse V1 neurons revealed
behavior-dependent changes in entropy flow. From the analysis of 37
mice, we found that while spike rates of the populations are lower on
average and exhibited sparser distributions when mice actively
engaged in tasks than in the passive condition, active engagement
significantly enhanced the variability of the neuronal couplings, which
contributed to increasing entropy flow. Further, higher-performing
mice exhibited stronger entropy flow per spike in active engagement

than in the passive condition. We corroborated contributions of cou-
plings to this tendency using trial-shuffled data that excluded influ-
ences of firing rate dynamics and sampling errors in estimating
neuronal couplings. Thus, the method enabled us to reveal contribu-
tions of behavior-related neuronal couplings to the causal activities in
sparsely active neuronal populations, while isolating firing rate
dynamics. These results imply economical representations of stimuli
by time-asymmetric causal activity in competent mice.

This paper is organized as follows. In Results, we first introduce the
state-space kinetic Ising model and its estimation method. Next, we
introduce the mean-field method for estimating entropy flow. We vali-
date these methods through simulations and then apply them to mouse
V1 data. Finally, we relate our findings to previous studies and discuss
their implications for efficient information coding in neural populations.

Results

The state-space kinetic Ising model

In neurophysiological experiments, the experimentalists simulta-
neously record the activity of multiple neurons while animals are
exposed to a stimulus or perform a task, and repeat the recordings
multiple times under the same experimental conditions. We analyze
the quasi-simultaneous activity of neurons using binarized spike
sequences. For this goal, we convert the simultaneous sequences of
spike timings of N neurons into sequences of binary patterns by bin-
ning them with a bin width of 4 [ms]. We assign a value of 1 if there is
one or more spikes in a bin and 0 otherwise. We assume that there are
T +1bins for each trial, with an initial bin being the Oth bin and L trials
in total. Below, we treat the bins as discrete time steps and refer to the
tthbin astime t. We let x! , = {0, 1} be a binary variable of the ith neuron
at time tin the lth trial (=1,.... N, t=0,..., T, [=1,...,L). We collectively
denote the binary patterns of simultaneously recorded neurons at time
tin the [th trial using a vector, X! = (x! ,, ..., x{,, ..., x}, ). Further, we
denote the patterns at time ¢ from all trials by x,=(x}, ..., x}, ..., x%)
and denote all the patterns up to time ¢ by Xq...

We construct the state-space kinetic Ising model to account for
the nonequilibrium dynamics of the binary sequences by extending
the state-space models developed for equilibrium Ising systems*”*%,
The state-space model is composed of the observation model and the
state model. The observation model in the tth bin is

L N )
PO IX_1, 0= ][] P0xi c1x¢ 1, 8)
I=1i=1 1
L N N ) (
= HHCXD ei,txxl',t + Zeij,rxz{,zx;,zA —96,x; )|,
] =

where 0;, is a time-dependent (external) field parameter that
determines the bias for inputs to the ith neuron at time ¢ and 0,
is a time-dependent coupling parameter from the jth neuron to
the ith neuron. These parameters are collectively denoted as

6.=@,....6,....6)) and 6.=(0;0, 60 - 0yr . Oy, 0)-
¥(8,,x._)) is the log normalization term defined as
X N
Y6, x;_,) = log {1 + exp {9,;[ +> 05 H} } . )
j=1

We also specify p(xo), a probability mass function of the binary pat-
terns at ¢ = O, which we assume p(Xo)=IT\; ITj-, P(x. o), where
p(xt 1)=0.5 for data generation.

Next, we introduce a state model of the time-varying parameters
O, fort=1,..,T:

N . . n T . . .
PO w=1] {p«%m',f) pr:lo:_l,a’)}, 3)
i=1 t=2
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where w denotes the collection of the hyperparameters:
w=[d,...pm" 2. X, Q... Q"]. Namely, we assume independence of
the parameters of a neuron from those of the other neurons, which
significantly reduces computational costs. The transition of the ith
neuron follows the linear Gaussian models:

ig O 1 i o il i
p(6,16; Q)= exp {5 6 -6 @)@ -6,

1
\/ 12mQ]

while the initial density p(B |1, £ is given by the Gaussian distribution
with mean g and covariance X',

Model fitting and inference

Our goal is to obtain the approximation of the posterior
density of the trajectory 6. given the observed neural activity
Xo:7*

P(Xo.710,.7)p(B1.7IW)
P(Xo.7|W)

POyr1Xo.7, W)= ) )

while optimizing the hyperparameters w under the principle of max-
imizing marginal likelihood:

.
P(XO:T|W):P(XO)Hp(xdxo:zflrw)
t=1

(6)

L

—poo [T1111 / poct X, Bp(@ixh, |, w)d6.
l

t=11[=1

Here, p(G‘ Ix}.,_;, W) is the one-step prediction density.

The Expectation-Maximization (EM) algorithm®* offers a way to
construct the approximate posterior with optimized hyperpara-
meters by alternately constructing the approximate posterior
density while fixing the hyperparameters (E-step) and optimizing
the hyperparameters while fixing the approximate posterior (M-
step). The construction of the approximate posterior density at the
E-step is performed by sequentially applying Bayes algorithms in a
forward and backward manner, where we approximate the poster-
iors by Gaussian distributions using Laplace’s method. Thus, the
method yields the mean and variance of the approximated Gaussian
posterior at time ¢, which are denoted as 8,rand W7, respectively.
See Methods and Supplementary Note 1 for the details of the
algorithm.

Entropy flow

Using the inferred parameters 6,.; of the kinetic Ising model
from spike data, we estimate entropy flow (also known as bath
entropy change) at each time step. The entropy flow at time ¢ is
defined as

P(X,|1X;_1)
PXe 11X,)’ @

o7V = Z p(Xe, X, ) log

Xer X1

where p(x,|X,) represents the probability of observing time-
reversed processes generated under the forward model. Because
we use the natural logarithm, we report entropy flow in units of nats.
Eq. (7) is related to the entropy production o, at time ¢ as
follows™*2¢%";

PX¢|Xe_1)Pe_1(Xe_1)

Here p/X,) is the marginal probability mass function of the system at
time ¢. S, is the entropy of the system at time ¢ defined as

S,=— Zp‘(xt) log p,(X,). 9)

The entropy production is non-negative: o, > 0. Thus, the positive
entropy flow allows a decrease in the system’s entropy: namely, the
system can be more structured or organized when the entropy flow is
positive. Since it is challenging to estimate the system’s entropy or its
change, here we estimate the entropy flow, which provides the lower
bound of the entropy change: S, — S,_; > — oflow,

Similarly, since the total entropy production across all time steps
o7 is given as

T T
o= Z 0.=(Sr —So)+ > _of*, (10)
t=1 t=1
the total entropy flow Zt 101" provides the lower bound of the
system’s entropy change from the initial and final time step:
S —So> — I, o, This indicates that the positive total entropy
flow enables the systems to be more structured (i.e., lower entropy) at
the final time step than at the initial time step.

In this study, we refer to Eq. (7) as entropy flow because it is
related to heat flow to reservoirs (thermal bath) and the entropy
change of the reservoirs in thermodynamics™. We note that Eq. (7)
differs from the entropy flow defined elsewhere*, which was
obtained by the decomposition of the dissipation function” as an
alternative to entropy production. See refs. 27,57 for their distinct
definitions and decompositions for the case of discrete-time systems.

For the case of the kinetic Ising model, the entropy flow is written
as

ﬂow_ze”(f Xie —

+ Z 09‘,tEx[,xl,1 (xi, Xje-1 — X, t—lxj,t)

Ex[ lxz t— 1)

an

- Z(Ex[ WO, X ) — £ 961, x),

where £, and E, ,  represents expectation by p(xy) and p(X;, X.1),
respectively.

Mean-field estimation of entropy flow
Entropy flow (Eq. (7)) requires the expectation by the joint density
p(X,, X1), which is computationally expensive for large systems. While
the mean-field methods for the kinetic Ising model’*** were employed
to estimate steady-state entropy flow*’, the mean-field method for
estimating time-varying entropy flow remains unexplored. Here, we
develop the mean-field method for estimating dynamic entropy flow.
The entropy flow 6f°¥ can be decomposed into the forward and
reverse components,

O.pow - _ Ggorward + o?ackward’

12)
where gforward gnd gbackward denote the conditional entropies of the
forward and time-reversed conditional distributions, respectively. The
proposed mean-field method estimates the entropy flow by approx-
imating the forward and time-reversed conditional entropies using the
Gaussian integral:

o,= (X,, X,_1)lo
t popr et l) & p(Xt_l\X,;)p,;(X[) (8)
N
=(S; =S +opo. gfomvard / D X(8iee1t2y/Aige1)s 13)
t lz:; V4 < Lt L, )
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(14)

N
gbackward Z/ D, ¢i,t(gi,r,t+2\/Ai,t,t)r
i-1

where D, = %exp(— 12%). See Methods and Supplementary Note 2
for the derivation of these results. The functions x(h) and ¢;(h) are
given as follows. x(h) is entropy of (0, 1) binary random variables with
mean r(h) =1/(1+ e™):
X(h)= —r(hh+yg(h), 15)
where we redefined the log normalization function ¢ as a function of h:
P(h) = log(1+e"). ¢, (h) is given by
&i ()= —m; . h+h), (16)
where m;,_; is the mean-field activation rate of ith neuron at time ¢ - 1
(see below for how to obtain it).
Here, the input h=g; . ;+z./A; , ; is a Gaussian random variable
with mean g; . and variance 4;, (s = ¢, t — 1), where z denotes a stan-

dardized Gaussian random variable. g; . and 4; s are computed using
the mean-field activation rate at time s, m;, as

8it,s=0;ct Z 0;,:m; s, a7
J

A= Z eé,tmj,s(l —m ). (18)
J
The mean-field activation rate m;, can be recursively computed
using

19)

m; . 8/ Dzr(gi,t,t—l"'zvAi,t,t—l)r

starting with nominal values of m;o. In this study, we use spiking
probability averaged over all time bins and trials for each neuron
as m;o.

We also note that under the steady-state assumption, the mean-
field approximation can be expressed using the stationary parameters
m;, g;, and 4; as (See Supplementary Note 3):

N
o~y [ D, (g2 -m) -2V @)

i=1
The term r(g; +z,/A;) — m; quantifies how the neuron’s activity rate
deviates from its long-term average, while z./A; represents the
fluctuations of the input it receives. The steady-state mean-field
solution thus provides an intuitive view of entropy flow as a measure of
a neuron’s causal responsiveness to input fluctuations—a quantity that
captures the correlation underlying Hebbian plasticity in neural
systems. However, this equation also clarifies that the approximation
depends mainly on the magnitudes of the field and coupling
parameters and is thus insensitive to the detailed coupling structure.
It should therefore be applied with caution when the degree of
coupling asymmetry is the primary determinant of the strength of
entropy flow.

Simulation: estimating the model parameters

We begin by testing the proposed method by estimating the time-
dependent parameters of a kinetic Ising model consisting of two
simulated neurons (Fig. 1A). Figure 1B shows the spike data generated
using Eq. (1) with the number of bins, 7T=400, and the number of trials,
L = 200. The time-dependent parameters 6. used to generate binary
data were sampled from Gaussian processes (See Methods).

The EM algorithm was applied to this spike data until the log
marginal likelihood converged (Fig. 1C). Figure 1D shows the compo-
nents of the optimized hyperparameter matrices, Q'(i =1, 2). Figure 1E
shows the MAP estimates of the time-dependent fields 6;, and cou-
plings 6, under the optimized hyperparameters (solid lines) with 95%
credible intervals (shaded areas). The results confirm that the method
uncovers the underlying time-dependent parameters (black dashed
lines) used to generate the data.

Next, we applied the state-space kinetic Ising model to a net-
work of 12 simulated neurons to estimate the time-varying field and
coupling parameters between neurons. Figure 2A presents the spike
data generated using the observation model with the number of
bins set to 7 =75 and the number of trials L = 200. Data generation
and model estimation procedures follow the two-neuron case
above. Figure 2B shows the estimated time-varying coupling para-
meters 8, for each neuron. In Fig. 2C, we compare the estimated
coupling parameters 6,7 with the true values 6, at representative
time points (¢ = 10, 20,..., 60). The scatter plot shows agreement
between the true and estimated values, with most points aligning
closely along the diagonal line, indicating that the model captured
the underlying dynamics of the coupling parameters. These results
confirm that the proposed state-space kinetic Ising model can reli-
ably estimate time-varying coupling parameters in a network of
simulated neurons.

Simulation: estimation error and computational time

We evaluated the performance of the proposed state-space kinetic
Ising model in terms of estimation accuracy and computational time,
varying dataset and population sizes (See Methods for parameter
generation).

Estimation error: To assess estimation error, we computed the
root mean squared error (RMSE) between the true parameters 6, and
the estimated parameters 87 for both field and coupling parameters.
Namely, RMSEs were computed separately for the field parameter 6;,
and the coupling parameter 8, then averaged over time bins. The
means over 10 independent samplings are shown in Fig. 3A, B with the
standard deviations represented by error bars.

For a fixed number of neurons (N = 80), RMSEs for both field
and coupling parameters decreased as the number of trials L
increased (Fig. 3A), demonstrating improved estimation accuracy
with more data. Conversely, when the number of trials was fixed at
L = 550, RMSEs exhibited different trends depending on the para-
meter type. The RMSE for the field parameter increased with N,
imposing the challenges of estimating field parameters in larger
networks with limited data. The RMSE for coupling parameters
remained stable across different neuron numbers in this simula-
tion (Fig. 3B).

Computational time: We analyzed the computation time for
model fitting. Figure 3C illustrates the computation time required
to complete the EM algorithm for different numbers of neurons N
and trials L. The results indicate that estimation with N = 80 and
L =550 trials can be completed in approximately one hour, making it
feasible for practical data analysis. Nevertheless, computation time
scales with both N and L, highlighting the necessity for further
optimization to enable large-scale analysis. The assumption of
independent state evolution for individual neurons (Eq. (3)) sig-
nificantly reduces computational complexity by enabling indepen-
dent calculations for filtering, smoothing, and parameter
optimization per neuron, which can be further accelerated through
parallel updates. Another potential improvement is replacing the
current filtering method, which employs exact Newton-Raphson
optimization for maximum a posteriori (MAP) estimation, with
quasi-Newton or mean-field approximations, as demonstrated in
equilibrium state-space Ising models*®,
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Fig. 1| Application of the state-space kinetic Ising model to two simulated
neurons. A A schematic of the time-dependent kinetic Ising model for two neurons
with field and coupling parameters. The links between the nodes represent the
neurons' causal interactions with arrows indicating the time evolution from the
past to the present. B Raster plots for the two neurons. The vertical axis represents
the number of trials, and the horizontal axis shows the number of time bins. C The
approximate marginal log-likelihood as a function of the iteration steps of the EM
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algorithm. D The optimized hyperparameter Q' for neuron 1 (left) and neuron 2
(right). E (top) Estimated and true time-dependent field parameters. The solid lines
represent the MAP estimates of the field (first-order) parameters obtained from the
smoothing posterior, 8,7. The shaded areas show the 95% credible intervals derived
from the diagonal elements of the smoothed covariance matrix, Wyr. The dotted
lines are the field parameters from true 0, used to generate the data. (middle,
bottom) Estimated and true time-dependent coupling (second-order) parameters.

Simulation: estimating entropy flow

In this section, we assess the proposed mean-field approximation
method for estimating entropy flow. As in the previous section, we
generated spike samples from time-dependent parameters 6.7 sam-
pled from Gaussian processes. All simulations were conducted with
N =80, T =75, and L = 550 trials. We then estimated the time-
dependent field and coupling parameters from the data. Using the
posterior mean 87, we obtained the mean-field approximation of the
time-dependent entropy flow (Eq. (12), using Egs. (13) and (14)). The
solid red line in Fig. 4 represents the entropy flow calculated using the
mean-field approximation with the learned parameters.

To verify the consistency of the estimated entropy flow, we cal-
culated the entropy flow using a sampling-based method to compute
the expectation over the two-step trajectories (solid black). This
approach involves repeatedly running the kinetic Ising model (Eq. (1))
using the true parameters to sample binary spike sequences. This
process was performed n; = 10, 000 times to empirically estimate the

joint distribution p(x,X,-1). Using this empirical distribution, we
obtained a sample estimate of the entropy flow as follows:

~ flow 1 < p("? ‘xg—l)
o, =— log————=1, 21
‘ ng ; p(x;_1Ix?) @

where x§ denotes the sth sample at time ¢. This sampling estimation
using the true parameters serves as the baseline.

The mean-field estimation of the entropy flow (solid red) follows
the trajectory of the baseline sampling estimation using the true
parameters (solid black). The result confirms that the proposed
method is applicable for entropy flow analysis while ensuring com-
putational feasibility. The slight discrepancy between the two lines is
due to the errors in estimating the time-dependent parameters and/or
the mean-field approximation (in addition to sampling fluctuation
inherent to the sampling method). To separate these effects, we esti-
mated the entropy flow by the mean-field approximation using the
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Fig. 2 | The application of the state-space kinetic Ising model to 12 simulated
neurons. A Simulated spike data for the first, 100th, and last trial out of 200 trials.
The vertical axis shows the number of neurons, and the horizontal axis represents
the number of bins. B Estimated coupling parameters 8,7 (solid lines), for all

neurons and time bins (i=1, 2,...,12, t=1,..., T). Shaded areas indicate 95% credible
intervals, and dashed lines denote the true parameter values used to generate the

2 2 2
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data. These plots show only the couplings that are significantly deviated from zero:
The couplings whose 95% credible interval contains O in all bins were excluded. For
clarity, only five such significant incoming couplings from other neurons are shown
in each panel. C Scatter plots comparing the true coupling parameters 6, with the
estimated values 6, at time ¢ = 10, 20,...,60. The black line is a diagonal line.

true parameters 0.7 used for the data generation (dashed blue). This
estimation deviated from the baseline sampling estimation. In con-
trast, the sampling method using estimated parameters (dashed
green) did not significantly differ from the baseline. Thus, the dis-
crepancy arose from the mean-field approximation, rather than from
inaccuracies in parameter estimation. These results suggest that
refining the mean-field method could further improve the accuracy of
entropy flow estimation.

Simulation: model limitations

We end the simulation analysis by acknowledging that assumptions of
the kinetic Ising framework, in particular pairwise couplings and con-
ditional independence, represent simplifications that may not faith-
fully capture neural population dynamics. To demonstrate this, we
fitted the kinetic Ising model to population activity, using a neuronal

population model called the alternating-shrinking higher-order inter-
action model, which accounts for deviations from the logistic activa-
tion function of individual neurons and exhibits higher-order
interactions™,

In this model, homogeneous binary population activity was gen-
erated using an exponential-family distribution with interactions of all
orders (Eq. (63) in Methods). The model was designed so that the
spike-count histogram of the population exhibits sparse yet wide-
spread characteristics (Fig. 5A, green), consistent with empirical data.
We performed Gibbs sampling from this distribution (blue circle),
which corresponds to the dynamics of recurrent networks with an
extended activation function (See Methods).

When the state-space kinetic Ising model was fitted to these
activities, it failed to reproduce the observed spike-count histogram
(Fig. 5A, yellow). One reason is its restriction to pairwise interactions,
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rons N and trials L = 55, 100, 300, 550, with error bars indicating standard devia-
tions. Computation was performed on a Dell PowerEdge R750 server with two Intel
Xeon 2.4 GHz CPUs (76 cores/152 threads).

which prevents it from capturing higher-order dependencies. Repro-
ducing widespread spike-count histograms in large populations is
known to require interactions of all orders®. By contrast, the pairwise
model concentrates probability mass on only up to two points in the
limit of large N, often overestimating the tail because it neglects the
higher-order interactions that generate sparse, heavy-tailed distribu-
tions. The mismatch in model architectures is also apparent in their
activation functions (Fig. 5B). The alternating-shrinking higher-order
interaction model exhibits a supra-linear activation function due to the
nonlinear integration of synaptic inputs (Eq. (71) in Methods). In con-
trast, the kinetic Ising model employs the classical logistic activation
function with a linear sum of synaptic inputs (Eq. (1)).

In addition, an equally profound architectural limitation lies in the
assumption of conditional independence, which enforces synchro-
nous updates across neurons within each step. Gibbs sampling, by
contrast, uses sequential (or randomly ordered) updates that guaran-
tee detailed balance and allow neurons to incorporate the most recent
changes, enabling activity to propagate within a sweep and generate
synchronous states. Because the kinetic Ising model updates all neu-
rons simultaneously from the previous state, it lacks this recruitment
mechanism and consequently fails to drive synchronous activity
appropriately.

The results highlight that caution is warranted in applying the
kinetic Ising framework: although it offers a tractable statistical
description, its simplifying assumptions constrain the neural dynamics
it can represent. In particular, entropy flow estimates should be

regarded as quantities defined under the pairwise and synchronous-
update assumptions.

Mouse V1 neurons: experimental design and data description
Having confirmed the applicability of our methods using simulation
data, we next applied the state-space kinetic Ising model to empirical
data obtained from mice exposed to visual stimuli and estimated its
entropy flow.

In this study, we analyzed the Allen Brain Observatory: Visual
Behavior Neuropixels dataset provided by the Allen Institute for Brain
Science, which contains large-scale recordings of neural spiking
activity of mouse brains during the visual change detection task (See
refs. 60-62 for analyses using this data set). The task is designed to
analyze the effect of novelty and familiarity of the stimulus on neural
responses. One of two image sets (G and H) was presented to animals
at the training/habituation and recording sessions with different
orders. The G and H image sets contain 8 natural images. We analyzed
the recordings of 37 mice available from the Allen dataset, which were
exposed to stimulus G in the recording sessions (either day 1 or 2)
whereas the same stimulus G was used in the training and habituation
sessions prior to the recording sessions (i.e., the case in which G is
familiar).

The neural activities were recorded under two distinct conditions,
in which the mice were either actively or passively performing the task
under the same set of images. The active condition involved the mice
performing a go/no-go change detection task, where they earned a
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with f=20 and 7= 0.8 (green) and that of the kinetic Ising model (yellow) using the
average of the fitted field and coupling parameters.

water reward upon detection of a change in the visual stimulus, mea-
sured by licking behavior. Each of the 8 stimuli was presented for
250 ms, followed by a 500 ms interstimulus interval (gray screen),
repeating for one hour while mice actively engaged in the task for
reward. In contrast, the passive condition involved replaying the same
visual stimuli used in the active condition but without providing any
rewards or access to the lick port. In this study, we analyzed recordings
with images labeled im036_r, im012_r, and im115_r, which are used in
the training session and classified as Familiar, and compared neural
responses under the active and passive conditions. We used all pre-
sentations of the images equally and treated one presentation as a trial.

We selected neurons in the V1 area for analysis. For each mouse,
we analyzed the simultaneous activity of neurons during a 750-ms
period following the image onset. Although the number of trials varies
across mice, the mean trial count was 566 with 356 and 652 as the
minimum and maximum number of trials, respectively, for the case of
an image im036_r.

Mouse V1 neurons: an exemplary result from a single mouse

We constructed binary sequences using a 10 ms bin, which resulted in
T=75time bins. Here, we focused on the analysis of im036_r. Figure 6A
(Left) shows the spike-rate averaged over neurons at each time under
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the active and passive conditions (population-average spike rate) from
an exemplary mouse (574078). The overall temporal profiles were
similar across the active and passive conditions. In both conditions, the
population exhibited higher mean spike rates during the stimulus
presentation period (0-250 ms) than the post-stimulus period
(250-750 ms). However, their magnitudes significantly differed across
the conditions. The passive condition (blue) showed consistently
higher spiking probabilities than the active condition (red) throughout
the stimulus and post-stimulus periods. In agreement with the
population-average spike-rate dynamics, time-averaged spike rates of
individual neurons exhibited a sparser distribution during the active
condition compared to the passive condition (Fig. 6A, Right).

We then applied the state-space kinetic Ising model to the binary
activities of these neurons. For this goal, we selected the top N = 80
neurons with the highest spike rates. The estimated dynamics of the
field and coupling parameters exhibited variations in both active and
passive conditions (Fig. 6B). Notably, the field parameters ;. (the first
column) follow the dynamics of the mean spike rate of the population
with significant fluctuations. On the contrary, the dynamics of the
coupling parameters 6;; exhibited smoother transitions. To clarify the
dynamics of the couplings, we show them in the matrix form at specific
time points, ¢ =5, 25, 35, 50 (Fig. 6C). The neurons are indexed in the
ascending order of the average firing rates. The top and bottom rows
show the results of the active and passive conditions, respectively.
Coupling strength is indicated by graded color, with red and blue
representing positive and negative values, respectively. The results
show that (i) the couplings exhibit significant variations with positive
and negative values; (ii) the variations are stronger in the active con-
dition than in the passive condition; (iii) the diagonal components of
the couplings (self-correlations) mostly display negative correlations.

To corroborate the above observations, we performed the same
analysis on the trial-shuffled data (Supplementary Fig. S1). The analysis
of trial-shuffled data reveals bias and variance in estimation under the
assumption of neuronal independence. The result shows a significant
reduction in the magnitude and variability of the couplings, whereas
self-couplings remained unchanged (note that the self-coupling
remains after trial-shuffling). However, non-zero couplings persisted
with stronger variations in the active condition than in the passive
condition, reflecting sampling fluctuations due to the lower firing rates
in the active condition. These findings indicate that the parameters
observed in Fig. 6B, C include estimation noise, necessitating statistical
analyses to confirm their significance.

Mouse V1 neurons: population analysis across mice
We assessed key features identified in the exemplary mouse (Fig. 6)
across all mice by comparing them with trial-shuffled data.

First, the firing rate profiles with reduced activity in the active
conditions found in Fig. 6A were consistently observed across all mice
with a few exceptions (Supplementary Fig. S2 and S3). We compared
the mean and sparsity of the firing rate distributions of individual
neurons between the two conditions across all 37 mice (Supplemen-
tary Fig. S4). Sparsity of a non-negative firing rate distribution was
quantified by the coefficient of variation (CV)®>. The V1 neurons
exhibited diminished and sparser firing rate distributions in the active
condition than in the passive condition, as confirmed by the reduced
mean spike rates (p = 1.556 x 10, Wilcoxon signed-rank test) and
increased CVs (p = 8.35 x 107, Wilcoxon signed-rank test).

Next, we assessed key statistical features of the estimated para-
meters of the state-space kinetic Ising model. Figure 7A-C illustrates
these features for an exemplary mouse (574078). Figure 7A, B shows
distributions of time-averaged fields 6;, and couplings 6;;. under the
active and passive conditions, while Figure 7C shows a scatter plot of
time-averaged reciprocal couplings 6;, vs 8;, to evaluate coupling

asymmetry. In the active condition, the medians of field parameters
decreased, reflecting reduced firing rates, while the medians of cou-
plings remained near zero in both conditions. Field and coupling
parameter variances increased, and coupling asymmetry strengthened
in the active condition. These trends were consistent across all mice
(Fig. 7D-F). These characteristics represent key aspects of neural
dynamics that are closely related to entropy flow, although they are
not entirely independent of each other.

While increased parameter variabilities and coupling asymmetry
were observed under the active condition, they may be influenced by
the lower neuronal activity. To examine this, we compared results with
trial-shuffled data across all mice. Figure 7G-1I shows field and coupling
variances in both conditions, adjusted by subtracting shuffled data
values for each mouse. Notably, observed values in both active and
passive conditions were significantly higher than shuffled data:
p = 291 x 10" (active), p = 1103 x 107 (passive) for fields,
p =4.676 x 1078 (active), p = 1.455 x 10™ (passive) for couplings (Wil-
coxon signed-rank test). Note that the observed significant hetero-
geneity in the field parameters is likely associated with the coupling
heterogeneity. These results confirm that the variability observed in
active or passive conditions is not explained by noise couplings. The
coupling asymmetry was higher than shuffled results only for the
active condition (p = 1.185 x 10(active) and p = 0.1287 (passive) for
asymmetry).

Comparisons of these significant changes of the parameter
variability (i.e., shuffled results subtracted) between the active and
passive conditions showed significantly greater values in the active
condition (p = 8.273 x 10™* for fields, p = 6.421 x 10™* for couplings,
Wilcoxon signed-rank test, Fig. 7G, H), indicating greater variabilities in
both field and coupling parameters during active behavior. A similar
analysis of the mean couplings across mice revealed slightly but sig-
nificantly larger values under the active condition (Supplementary
Fig. S5). In contrast, coupling asymmetry showed no significant dif-
ference (p = 0.1287, Wilcoxon signed-rank test, Fig. 7I). The lack of
statistically discernible change in asymmetry in the effective couplings
accords with the use of the proposed mean-field method for com-
paring the coupling effect, which primarily arises from variability
change. These findings validate enhanced parameter variability in the
sparse neuronal activity during active engagement.

Mouse V1 neurons: entropy flow dynamics

Using the estimated parameters of the state-space kinetic Ising model,
we computed entropy flow dynamics. Figure 8A shows the time-
varying entropy flow of a representative mouse (574078) under the
active and passive conditions (red and blue solid lines, respectively). In
both cases, transient increases in entropy flow coincided with declines
in the mean population spike rate (dashed lines). Similar patterns
appeared across all mice analyzed (Supplementary Fig. S6). These
increases align with the second law, indicating that greater entropy
dissipation is required when the system is transitioning to a lower
entropy state, characterized by reduced firing rates.

The entropy flow time courses for this mouse showed no clear
differences between the active and passive conditions. To assess
population-level effects, we analyzed all 37 mice and computed total
entropy flow across time bins for each condition (Fig. 8B). The com-
parison revealed significantly lower total entropy flow in the active
condition (p = 0.01159, Wilcoxon signed-rank test). Note that neurons
exhibited reduced firing rates (Supplementary Fig. S3) and increased
parameter variability (Fig. 7D, E) during the active condition.

Toisolate the effect of couplings, we compared the observed total
entropy flows with shuffled data results (Fig. 8C). The estimated
entropy flow for shuffled data includes the impact of firing rate
dynamics and estimation error on couplings from other neurons;
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absolute difference of the reciprocal couplings <|éy - éﬁl)ij, where 9,]- indicates the
time-average of 6;;,, and (-); refers to the average over the combinations of i, j.
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for shuffle-subtracted parameter variances and coupling asymmetry. Each subplot
of (D-I) contains the p-values of Wilcoxon signed-rank tests for the active vs.

passive conditions.

therefore, subtracting shuffling results from observed entropy flow
isolates contributions of couplings among different neurons beyond
the sampling fluctuation. Positive values of the shuffle-subtracted total
entropy flow in both conditions indicate that the couplings caused a
significant entropy flow increase (p = 1455 x 10™ for active,
p =1.455 x 10" for passive, Wilcoxon signed-rank test). These shuffle-
subtracted entropy flows behave in agreement with the theoretical
prediction by the Sherrington-Kirkpatrick model”. In the active con-
dition, the increased coupling variability (and asymmetry) from the
shuffle-subtracted values were positively correlated with the shuffle-
subtracted entropy flows, while the increased field heterogeneity was

negatively correlated (Supplementary Fig. S7A-C). These effects dis-
appeared in the passive condition, possibly due to small changes in the
variabilities and asymmetry introduced by shuffling (Supplementary
Fig. S7D-F).

We analyzed the differences in coupling-related entropy flows
between the active and passive conditions for all mice (Fig. 8C). The
result shows no significant difference between the two conditions
(p = 0.1448, Wilcoxon signed-rank test). However, coupling-related
entropy flows of indistinguishable magnitude emerged under distinct
neural activity states: sparser, lower activity with increased variability
in field and coupling parameters in the active condition; and less
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sparse, higher activity with reduced variability in the passive condition.
Thus, coupled with the previous results, this result indicates that the
greater coupling variability in the active condition led to increased
total entropy flow, making it comparable to the passive condition
despite significantly sparser firing rate distributions. Consistent with
this view, a recent study by Aguilera et al. using this dataset com-
plementarily reported that a lower bound on entropy production,
derived under steady-state assumptions using a variational framework,
was higher in the active condition when normalized per spike®.

Mouse V1 neurons: model-based perturbation analysis

To further elucidate the difference in the estimated entropy flow in
active and passive conditions, we performed a model-based pertur-
bation analysis by rescaling the fitted model parameters as @ > 0 and
computing the resulting entropy flow to assess its sensitivity to para-
meter perturbation. An example result from mouse 574078 (Fig. 9A)
shows that the entropy flows during stimulus presentation and waiting
(gray image) periods exhibited distinct behaviors in response to the
rescaling. The transient increases in entropy flow caused by firing rate
reduction after stimulus onset and offset persisted as the scaling
parameter S increased. In contrast, we observed that the entropy flow

peaked at 8 < 1 during the waiting period, where the neural activity is
relatively stationary.

Both forward and reverse conditional entropies (of™ad and
gbackward in Fq. (12)) decreased with increasing 8 during the waiting
period (Fig. 9B, C), indicating that both processes became more
deterministic. This trend suggests that, as f increases, the system
transitions from a disordered phase toward a ferromagnetic phase,
rather than into a quasi-chaotic regime*. Thus, these results indicate
that the subsampled neural population during this period operates in a
subcritical regime.

By subtracting the entropy flow estimated from trial-shuffled
data, which preserves only firing rate dynamics, we confirmed that the
two bands of increased entropy flow associated with stimulus pre-
sentation are attributable to firing rate changes, whereas the increase
at f§ <1 arises from interactions, since the former disappeared but the
latter persisted after shuffle subtraction (Fig. 9D). The interaction-
driven entropy flow revealed by parameter scaling was stronger during
the active condition than the passive condition (Fig. 9D, E), a result
confirmed across all mice (Fig. 9F). Notably, the previous analysis at
B =1 showed no difference in shuffle-subtracted (i.e., interaction-dri-
ven) entropy flow between the two conditions (Fig. 8C). Thus, the
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model-based perturbation analysis uncovered differences in entropy
flow between active and passive states that were not apparent at S =1.

Mouse V1 neurons: entropy flow and behavioral performance
Finally, we investigated the relationship between neural dynamics and
behavioral performance across individual mice. We quantified task
performance by the sensitivity index d’ (mean d-prime) defined as the
difference between the z-transformed hit and false-alarm rates (Sup-
plementary Note 4). In the following analyses, we extended the analysis
to include two additional images (im012_r and im115_r).

First, we examined how sparseness, assessed from individual
neurons’ activity rates, relates to behavioral outcomes. As shown in
Supplementary Fig. S3, neuronal activities were significantly reduced
under active conditions, accompanied by increased sparsity of firing
rate distributions. To further characterize this effect, we examined
whether the reduction was uniform across neurons or driven by a
subset of neurons by computing the skewness of the firing rate dif-
ference between active and passive conditions (Fig. 10A). A uniform
reduction results in a skewness of zero, whereas negative skewness
indicates that only some neurons decreased their activity, reflecting
the sparsification. We found that this sparsification index was sig-
nificantly correlated with behavioral performance measured by the d-
prime, indicating that task engagement is reflected in changes in
sparsity quantified at the level of individual neurons’ activity rates
(Fig. 10B).

Having established the link between activity-rate sparsity and
behavior, we next turned to entropy flow to ask whether it provides
additional explanatory power beyond rate changes alone. The varia-
bility of effective couplings was significantly higher during the active
condition. To gain insight into the contributions of couplings to

entropy flow, we computed the activity rate and mean-field entropy
flow of individual neurons as a function of the mean and variability of
their inputs (Fig. 10C, D). Theoretically, in the low-input and stationary
regime, entropy flow increases with both higher mean input and
greater variability (Eq. (20), background color in Fig. 10D). We
observed that neurons receiving high mean input tended to have less
variable inputs, whereas neurons with low mean input exhibited larger
variability (colored circles). These results suggest that total entropy
flow is shaped not only by high-input (typically high-firing) neurons but
also by low-input neurons with high variability.

These patterns imply two sources of entropy flow: (i)
mean-input-driven contributions that track high firing, and (ii)
variability-driven contributions that can be substantial even at low
firing. To focus more on the latter, we considered entropy flow per
activity rate. This normalization reduces the direct dependence on
the mean rate and makes variability-driven effects, particularly those
arising in low-rate neurons, observable on an equal footing with high-
rate effects. The shift in mean entropy flow per activity rate across
individual neurons (active - passive) was significantly correlated with
behavioral performance (Fig. 10E). Moreover, this correlation was
weaker and non-significant for trial-shuffled data, indicating con-
tributions from highly variable couplings during active conditions
(Fig. 10F). This finding suggests that the thermodynamic cost per
spiking activity is related to mouse performance, with couplings
contributing in addition to activity-rate sparsity.

As an alternative explanation, behavioral performance could be
related to entropy-flow changes concentrated in high-firing neurons.
We therefore tested whether neurons with higher spike rates tended to
increase entropy flow during active engagement in mice with higher
task performance (Supplementary Note 5, Supplementary Fig. S8).
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While this tendency correlated significantly with behavioral perfor-
mance for one image, it was not significant for the other two images.
We therefore infer that high-firing-based changes alone cannot con-
sistently account for performance differences. Instead, the more
robust association with entropy flow per activity rate supports a
complementary role of variability-driven, coupling-mediated con-
tributions—including those from low-rate neurons—in explaining
behavioral performance.

Discussion

This study presents a state-space kinetic Ising model for estimating
nonstationary and nonequilibrium neural dynamics and introduces a
mean-field method for entropy flow estimation. Through analysis of
mouse V1 neurons, we identified distinct field and coupling distribu-
tions across behavioral conditions. These structural shifts influenced
entropy flow compositions in V1 neurons, revealing correlations with
behavioral performance.

To our knowledge, no inference methods have been proposed for
time-dependent kinetic Ising models within the sequential Bayesian
framework, which estimates parameters with uncertainty using opti-
mized smoothness hyperparameters (see ref. 64 for a Bayesian
approach in a stationary case). While parameter estimation has often
been considered under time-dependent fields with fixed couplings*®*?
(see also refs. 65,66 for the equilibrium case), exceptions exist* that
provide point estimates for time-varying couplings. These methods
rely on mean-field equations relating equal-time and delayed correla-
tions to coupling parameters, but estimating correlations at each time
step is often infeasible in neuroscience data due to limited trial num-
bers in animal studies. Campajola et al.*” proposed a point estimate of
time-varying couplings using a score-driven method under the max-
imum likelihood principle, but assumed all fields and couplings were
uniformly scaled by a single time-varying parameter. In contrast, our
state-space framework accommodates heterogeneous parameter
dynamics and employs sequential Bayesian estimation with optimized
smoothness parameters. These innovations are crucial for uncovering
parameter variability’s impact on causal population dynamics and
elucidating individual neurons’ contributions.

Lower spike rates of V1 neurons observed during the active con-
dition (see also ref. 60) contrast starkly with previous reports showing
increased firing rates during active task engagement®® or
locomotion®®’®, Nevertheless, the diminished spike rates found in the
active condition (Fig. 6A and Supplementary Figs. S1, S2) are in
agreement with sparse population activity in processing natural ima-
ges in mouse V1 neurons’’, Further, active engagement broadened
distributions of field and coupling parameters, possibly reflecting
stronger and more diverse inputs from hidden neurons”*. These
findings align with previously reported increased heterogeneous
activities during the active condition and their correlation to beha-
vioral performance”. The observed shift in cortical activity largely
aligns with the effects of neuromodulators, such as acetylcholine
(ACh)’*”” and norepinephrine (NE)’®, which alter local circuit interac-
tions and global activity patterns, thereby regulating transitions such
as quiet-active, and inattentive-attentive states’**. For example, Run-
feldt et al.”® demonstrated that spontaneous network events became
sparser under ACh, as the probability of individual neurons partici-
pating in circuit activity was markedly reduced. In addition, ACh
altered the temporal recruitment of neurons, delaying their activation
relative to thalamic input and prolonging the window during which
stereotyped activity propagated through local circuits. These findings
indicate that ACh reorganizes cortical circuits into sparser and tem-
porally extended modes of activity, potentially underlying the sparser
population activity observed during task engagement and the stronger
shift in entropy flow per spike in competent mice. However, we did not

observe the previously reported decoupling of neuronal activity dur-
ing active engagement (Supplementary Fig. S5), which may suggest the
involvement of additional mechanisms beyond those described above.

In our analysis, the shift toward sparser activity during active
engagement was significantly correlated with behavioral performance
(Fig. 10B), consistent with sparse-coding theories that posit efficient
representations using a few active neurons for natural images® .
Moreover, mice with higher task performance exhibited greater
entropy flow per spike during active compared with passive conditions
(Fig. 10E), indicating that the capacity to form economical image
representations via time-asymmetric causal activity is also linked to
behavioral performance. Future work should determine whether this
pattern reflects a direct computational mechanism or a secondary
consequence of network state (e.g., attention or arousal). Importantly,
the proposed method further yields testable predictions for informa-
tion coding. For instance, if entropy flow per spike indeed relates to
computation, then (i) neurons whose receptive fields match the pre-
sented image features should show selectively higher entropy flow per
spike, or (ii) population decoding accuracy is expected to remain lar-
gely unchanged when the analysis is restricted to neurons with higher
entropy flow per spike. Moreover, targeted pharmacological or opto-
genetic manipulations of neuromodulatory systems are predicted to
induce systematic changes in entropy flow by modulating coupling
variability, thereby altering coding efficiency. These predictions pro-
vide avenues to experimentally validate the computational role of
entropy flow.

EEG, fMRI, and ECoG studies suggest that steady-state entropy
production and related irreversibility metrics covary with conscious-
ness level and cognitive load, and they reveal large-scale directed
temporal structure”>"**%”_ For example, in human fMRI, violations of
the fluctuation-dissipation theorem are larger during wakefulness than
deep sleep, and larger during tasks than rest®. Arrow-of-time analyses
likewise show stronger temporal asymmetry during tasks than rest and
identify a cortical hierarchy of asymmetry*®. Our state-space kinetic
Ising model complements these steady-state, macroscopic approaches
by estimating entropy flow directly from spiking data without assum-
ing stationarity, potentially illuminating the lower-level mechanisms of
mesoscopic/microscopic circuit dynamics. In parallel, equilibrium
Ising and energy-landscape methods have been successfully applied to
binarized neuroimaging and electrophysiological signals to char-
acterize correlation structure and attractor basins of large-scale brain
networks®*?., Our framework explicitly quantifies time-asymmetric
entropy flow in nonstationary binary signals, complementing energy-
landscape analyses of macroscopic stability with measures of time-
dependent causal dynamics. In principle, our approach could be
extended upward in scale to local field potentials (LFPs), multi-
electrode arrays (MEAs), or coarse-grained EEG/EC0oG recordings,
enabling multiscale analysis of nonequilibrium dynamics from circuit
to whole-brain levels.

In addition, our framework could be extended to analyze longer-
term processes such as learning by treating time bins as trials within
sessions and allowing parameters to vary across sessions, under the
assumption of stationarity within each session. This would enable
tracing learning trajectories of couplings among individual neurons
when stable longitudinal recordings are available, an increasingly fea-
sible scenario with recent advances in calcium imaging and
electrophysiology’*®. However, the state-space method still faces
limits in computational time and scale, constraining its use for large-
scale signals. Future improvements through parallelization, optimized
algorithms, and refined mean-field approaches could extend its
applicability and enhance entropy flow estimation.

The kinetic Ising-based framework should also be viewed in light
of its theoretical limitations. While analytically tractable, it imposes
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strong assumptions—namely, pairwise couplings and conditional
independence—that simplify neural dynamics but restrict interpret-
ability. Our model misspecification analysis (Fig. 5) showed that
reproducing the heavy-tailed spike-count statistics observed in real
populations requires higher-order interactions; neglecting these leads
to systematic biases, particularly in the tails. Likewise, synchronous
updates imposed by conditional independence obscure cascade-like
recruitment within bins in experimental data, leading to bin-size-
dependent distortions: large bins capture heavy tails by merging cas-
cades, which the model fails to represent, while small bins preserve
fine-scale cascades, but the model misses slower interactions distant in
time. These limitations motivate extensions beyond the synchronous
pairwise framework. The generalized linear models (GLMs) and related
point-process models provide a natural asynchronous alternative with
longer history-dependency, since spikes are modeled in fine-grained
bins or continuous time and influence others through coupling ker-
nels. However, entropy flow in such history-dependent systems
requires full path probabilities, making estimation challenging.

More broadly, fitted couplings and entropy flow should be
regarded as statistical summaries of nonequilibrium dynamics, not
direct measures of synaptic connectivity or mechanism. Future work
must relax these constraints—by permitting asynchronous updates,
incorporating higher-order dependencies, and developing principled
estimators of entropy flow in non-Markovian settings—while remaining
clear about the limits of inference when bridging statistical abstrac-
tions with physiology. For example, the alternating-shrinking higher-
order interaction model (Eq. (63)) could be extended to include
asymmetric couplings, potentially with asynchronous updates in a
continuous-time limit.

In summary, by developing a state-space kinetic Ising model that
accounts for both nonstationary and nonequilibrium properties, we
have demonstrated how task engagement modulates neuronal firing
activity and coupling diversity. Our approach incorporates time-
varying entropy flow estimation, revealing that time-asymmetric,
irreversible activity emerges within sparsely active populations during
task engagement—an effect correlated with the mouse’s behavioral
performance. These findings underscore the utility of our approach,
offering new insights into the thermodynamic underpinnings of neural
computation.

Methods

Estimating time-varying parameters of the kinetic Ising model
We summarize the expectation-maximization algorithm for estimating
the state-space kinetic Ising model with optimized hyperparameters.
See Supplementary Note 1 for more details.

E-step: Given the hyperparameters w, we obtain the estimate of
the state 6, given all the data available. When estimating the para-
meters @, (t=0,1,...,T,i=1,...,N) from the spike datax, (t=0,1,...,7), we
first obtain the filter density by sequentially applying the Bayes theo-
rem:

PX|0,, Xo.—1, WIP(0; X0, 1,W)

22
P(X¢Xo..—1, W) @)

p(B;Xo.c, W)=

Here, the one-step prediction density is computed using the Chapman-
Kolmogorov equation:

P(0;|Xo,1, W)= H / p(6,16; 1, Q)p(B; i1, d6, ;.  (23)
By assuming that the filter density for the ith neuron at the previous
time step ¢ - 1is given by the Gaussian distribution with mean @; ,, ,
and covariance W' _ 1¢_1- the one-step prediction density becomes the
Gaussian distribution whose mean 0’m , and covariance Wm , are

given by

0£|t—1 = ai,m,l, (24)

wilt—l = W[;fl\tfl +Q, (25)

with 0‘1‘0 p and Wi, =% being the hyperparameters of the initial
Gaussian distribution, p(6|p, /). Then, the filter density is given as

P(B;|Xo.., W)= prflxm,m

X
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[ [ iyl
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=
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L g i\l pi
{ wa - 0t|t—l)T(Wt\t—l) l(ot - 0t|t—1):| .
(26)

Since this filter density is a concave function with respect to Oi for
each neuron, we apply the Laplace approximation independently to
the filter densities of individual neurons and obtain the approximate
Gaussian distributions, where the mean is approximated by the MAP
estimate:

0”, arg m;\x log p(6: (X, W), Q7)

fori=1,...,N, while the covariance is approximated using the Hessian as

} -1
tie

0-6

i
Wi =

_ 62 Iogp(0t|xo o W)
00:067

(28)
. . 111
= {G(alm)Jr <w[t|t—1) } ,

. 200 x!
where G(0)) = YL 2%0x)

=1 & is the Fisher information matrix
26.06]

95‘ :af‘\[
with respect to 0; computed for the kinetic Ising model over the trials.

We computed the MAP estimate by the Newton-Raphson method
utilizing the Hessian evaluated at a search point.

Next, we obtain the smoother density by recursively applying the
formulae below. Because the filter density and state transitions are
approximated by normal distributions, we follow the fixed-interval
smoothing algorithm developed for the Gaussian distributions’. In
this method, the smoothed mean and covariance are recursively
obtained by the following equations:

0571\7 6; 1t LHAL 1(0z\r 9;[), (29)
wi = =W,_ Lie— [ tAL 1(Wnr —Wlm)Ar v (30)
i _wi i 7! 31
At—l_wt—ut—l (Wt\t—l) 4 ( )

forte=T7T,7T-1,...,2.

M-step: We optimize the hyperparameters given the smoothed
posteriors. To optimize the hyperparameter Q, we used the following
update formula that maximizes the lower bound of the log marginal

Nature Communications | (2025)16:10852

16


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-66669-w

likelihood:

Mﬂ

Q=73 (O - 6O — 6y

t

Il
N

(32)
wlr _Wt mr_wrt 1\T+wt 1|T]

We compute the lag-one smoothing covariance matrix W ey

following  the metlhod of De Jong and Mackinnon”:

W, ur= wm(w +1) Wyr. We also note that the optimization of a

diagonal of the form Q' = dlag[/lo, A iv] or @ =21 can be performed by

taking diagonal and trace of ther.h.s of the equation above, respectively.
Similarly, we update ¥’ according to

2 =Wy + 6y — mOyr — F)T~ 33)

The convergence of the EM algorithm is assessed by computing
the approximate log marginal likelihood function (Eq.(6)) using the
Laplace approximation. Using the mean and covariance of the filter
and one-step prediction densities, the approximate log marginal like-
lihood function for the hyperparameters w is obtained as

log p(xo)
T N
1
+ [ log [W},| — IogIWm ks q(ﬂm)

t=1i=1

log p(xo.71W) =
(34)

See Supplementary Note 1 for the derivations and the functional form
of q().

Mean-field approximation of the entropy flow
Here we extend the mean-field approximation method developed for
the steady-state kinetic Ising model** to make it applicable to nonsta-
tionary systems.

First, of°¥ can be decomposed as follows by introducing the
forward and backward conditional entropies:

O.{:low ogorward + O.E)ackward' (35)
where
oiorward == Z P(Xe, X,y log p(X,1X,_y), (36)
Xer Xeo1
gbackward _ _ Z P(Xe, X_y) log p(X,_11X,). 37)

Xer Xe1

We calculate these conditional entropies using the Gaussian approx-
imation as follows.
We begin with approximating the forward conditional entropy as

o™= — N p(X X, )P(X,_1) 108 P(X,1X, 1)

Xe X1

~ =3 Q1) Zp(x Xc_1) 108 P(X¢ X, _p)-

X1

(38)

Here we replaced p(x,-;) with an independent model Q(x,—;) defined as

where
pX; 1X,_1) = exi,[hi,t(xlfl)_w(hi,l(x[)), (41)
with

hi (X)) =0+ Z 6y, X, c1- (42)
J

Here, we redefined the log normalization function ¢ as a function of
i o) Ph; (X)) = log(1+ €MD),
Note that the expectation of x; is given by

r(hy (X)) = in, P eIXe1)

Xie

4
. 1 (43)
- 1+e i)’
Using r(h; (X)), we have
PO =11X,_) =r(h; (X)), (44)
p(x; =01X,_1)=1—r(h; (X,y))- (45)
Then the forward conditional entropy becomes
ot ~ Z Q(X;_1) Z ZP(X, ¢IXe_1) 108 P(x; (X, 1)
X1 (46)
= Z Z Q(x,_x ( i,t(xt—l))r
i X
where
X(hy (X)) =— Zp(xi,t‘xtfl) log p(x; +1X_;)
Xi,t
= —r(h; (X,_p)logr(h; (x,_1) (47)

— (1= r(h; (x,_1))) log(1 — r(h; (X;_1)))
= —[rth; (X ))hy  (Xe_1) — P(h; ((X,))]

We approximate Eq. (46) by a Gaussian distribution based on the
central limit theorem for a collection of independent binary signals.
Specifically, by using D, = %exp(—%zz), the forward conditional
entropy is approximated as

agorward ~ Z/ Dz)((gi,f,f—l +Z\/;,t:>,
i

where g;..1 and 4; ., are the mean and variance of h; (x,—;) given by

(48)

8ite1= 0t Z 0,cm; 1, (49)
J

o1l —my _p).

(50)

Bite1= Z B;r
J

Here, m;, is the mean-field approximation of x;, obtained by the
Gaussian approximation method assuming independent activity of

Q)= [ [ Qex;e-)- (39)

i neurons at ¢ —1:

The conditional probability is written as = Z X; ¢ PXc1X,_)P(X,_1)
Xer X1
(D)
P(X|1X,_1) = Hp(xi,tlxt—l)' (40) = Z Qx,_pr(h; (X,_1))-

i Xe-1
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Applying the Gaussian approximation to h;/X.-;), m;, is recursively
computed as

m; . “/ Dzr<gi,t,t—1+z\/Ai,t,t—l)r

fort=1,...,T, using Egs. (49) and (50), which are functions of m; ;. Here
m;; was computed using nominal values of m;o (i = 1,...,N). In the
simulation and empirical analyses, we used spiking probability aver-
aged over all time steps and trials for each neuron as m; .

Next, we approximate gb2ward |t js computed as

(52)

oprekvard = — Z P(X;, X,_1)log p(X,_;|X,)

Xe» X1

- Z p(xtlxt—l)Zp(xt—llxt—Z)p(xt—Z) log p(x,_1X,)

Xer X1 Xe 2
= - Z Zp(xt—llxt—Z)p(xt—Z)
Xe2 Xe1

D PXelXe 1) Y [Xg e 1By (%) — i (X))
X, i
(53)
We approximate the following probabilities by independent dis-

tributions:

P(X; 2)=QX; 5), (54)

PXIX,_1)=Q(X,). (55)

Using them, g%k"ard can be approximated as

O?ackward ~_ Z Zp(xpﬂxt—Z)Q(xf*Z)

Xe2 Xe1

. Z Q(X[) Z [xi,t—lhi,t(xt) - w(hi,t(xt))]
-> Q)Y Qx_,)

X2

Y [Py ey XDy (X)) — Wl (X))

=222 Q) [my sy (Xe) = Plhy (X)),

(56)

where we used Eq. (43) to obtain the second equality and Eq. (51) to
obtain the last result. By defining

@i e(hy (X)) = = M e 1By (X) = Ry (X)), (57)

the backward conditional entropy is obtained by the Gaussian integral:

o= D QP ey (%)

(58)

~ Z/ D, ¢i.t(gi.t,t tz,/ Ai.t.t)'

i
where
=0+ Z 0;,cm, ¢ (59)
J
A= Z eé,tmj,t(l —m; ). (60)
J

An alternative approach to obtain the backward conditional entropy is
given in Supplementary Note 2.

Thus, the entropy flow is obtained as

O.?OW - _ oiorward + O.It)ackward

5 sl
+¢i,t<gi,t,t+zm)]'

which allows us to examine the contributions of each neuron to the
total entropy flow.

See also Supplementary Note 3 for the analytical expression of the
entropy flow under steady-state conditions or for independent
neurons.

(61)

Generation of field and coupling parameters for simulation
studies

We constructed time-varying field and coupling parameters, from
which we generated the binary data. To ensure smooth temporal var-
iations, each coupling parameter 8;, was sampled from a Gaussian
process of size T with mean y and covariance matrix defined by the
squared exponential kernel

2
k(t,s)=ky exp (— Cnd)) ) .

212 (62)

For the analysis of estimation error and computational time using
different system sizes (Fig. 3), we used the scaling mean u = 5/N and
variance ko = 10/N, following the convention of the Sherrington-
Kirkpatrick model. The characteristic length-scale was specified by
7=30/+/N. Similarly, the external field parameters 8;, were indepen-
dently sampled from the Gaussian process, using u = -3, 7 = 50,
and ko = 1.

To obtain trajectories for the different system sizes, a single set of
random values was generated for the maximum system size, and
subsets of these values were used to examine the system size N. Spe-
cifically, for the coupling parameters, a global three-dimensional array
was created with dimensions corresponding to the maximum number
of neurons, time steps, and coupling connections. Similarly, for the
field parameters, a two-dimensional array was generated, with
dimensions corresponding to the maximum number of time steps and
neurons. For a given neuron count N, the relevant subset of values was
extracted from these precomputed arrays, ensuring that each N used a
subset of the values assigned to larger N. This hierarchical structure
ensured that the seed for N = 80 encompassed all values used for
smaller N, maintaining consistency across different system sizes. We
evaluated the model’s performance using this data set and repeated
the procedure 10 times.

Alternating-shrinking higher-order interaction model
To perform the analysis on fitting the kinetic Ising model to a mis-
matched model, we generated binary spike sequences using
a nonlinearity that goes beyond linear synaptic summation
and a logistic activation function, which therefore induces the
higher-order interactions (HOIs) in the population activity. For this
goal, we employed the recently proposed alternating-shrinking HOI
model*®,

The model is a time-independent, homogeneous model including
all orders of HOIs in the following form:

(>N x; N , X\
p(x)= <Zzl>exp [fz (71)/+1Cj <X‘X/X,)I} , (63)
i

where f is a sparsity parameter and Z is the partition function. Let
n= Zf-": 1X;- h(n) is an entropy-canceling base measure function defined
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using the binomial coefficient:

o/ (3)

The parameters C;, G,,...,Cy are the shrinking parameters, where
C; =(t) with 0 <7 <1results in the shifted-geometric population spike-
count distribution.

The population spike-count distribution is the probability dis-
tribution of n active neurons in the binary patterns, which is given as

(64)

X, =1,%,,1=0, ..., xy=0)

N
P(n)= <n>p(x1=1, ..

. (65)
() Seo |3 G |

This distribution was shown to be widespread due to the cancellation
of the binomial term, and also sparse due to the alternating HOIs.

We performed Gibbs sampling from this distribution, which dic-
tates the dynamics of a recurrent neural network with threshold-
supralinear activation nonlinearity. For neuron i, let n=37,..x; be the
spike count of the other units, and define

X - (Y
am=> 176} (66)
j=1
AQ(n)=Q(n+1) — Q(n). (67)
The unnormalized joint activities of neurons are
Po o< h(n) exp(=f Q) (x;=0), (68)
pyoch(n+1) exp(=f Q(n+1)) (x;=1). (69)

We update x; using the following conditional probability given the
state of all other neurons:

pO;=1|x,;)= 1 (70)
b 1+ exp(—log(py/po)) |
The log-ratio simplifies to
logPL = n n n
g =[logh(n+1) - log h(n)| — f AQ(R)
Po 71

- o8y —5) ~ £ 20,

One sweep visits all i = 1,...,N in permuted order and applies this
update. We obtained 1,000,000 samples.

The resulting spike sequences were then fitted with the state-
space kinetic Ising model. Because the data were stationary, we fixed
the state noise covariance to zero, Q' = 0 (i = 1,...,N), and omitted
hyperparameter optimization. To reduce computation time, the sam-
ples were reorganized into 7 = 200 time bins and L = 5000 trials,
preserving dependencies across consecutive bins within each trial.
Under this setting, the fitted state-space model yielded constant
parameters across bins. We then generated 500,000 spike sequences
by resampling from the fitted model, and compared their population
spike-count distribution with that of the original Gibbs-sampled data.

Data availability

We used the publicly available Allen Brain Observatory: Visual Behavior
Neuropixels dataset provided by the Allen Institute for Brain Science:
https://portal.brain-map.org/circuits-behavior/visual-behavior-
neuropixels. Large precomputed datasets required to reproduce the
figures are archived on Zenodo: 10.5281/zenodo.15220108.

Code availability

The analysis code used in this study is archived on Zenodo and linked
to the GitHub repository: https://doi.org/10.5281/zenodo.17504162.
For convenient browsing, see the GitHub mirror: https://github.com/
Kenlshihara-17171ken/Non_equ.
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