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Factorized embedding of goal and
uncertainty in the lateral prefrontal cortex
guides stably flexible learning

Yoondo Sung1, Mattia Rigotti 2 & Sang Wan Lee 1,3,4,5,6

A major challenge for adaptive agents is achieving behavioral flexibility with-
out compromising stability—particularly in goal-directed learning within
uncertain environments. Agents must adjust as goals shift while maintaining
resilience against noisy signals, necessitating the delicate tradeoff: balancing
flexibility for goal pursuit with stability for preventing erratic behavior. To
investigate how the brain navigates this dilemma, we combined model simu-
lations with behavioral and fMRI data collected during a goal-directed learning
task under varying levels of uncertainty. Our simulations revealed that model-
free learning struggles with the flexibility-stability trade-off, whereas model-
based learning allows for flexible goal pursuit with varying degrees of stability.
Interestingly, human participants displayed both stable and flexible goal-
directed behavior. The fMRI data uncovered the underlying mechanism: goals
and uncertainty are represented as factorized embeddings in the lateral pre-
frontal and orbitofrontal cortex. Notably, the neural separability of goals and
their resilience to uncertainty in these regions correlated with participants’
behavioral flexibility and stability.

Biological agents must rapidly adapt learned behavior, the ability
known as behavioral flexibility. As a core feature of adaptive behavior,
goal-directed learning requires representing action-outcome con-
tingencies and updating them to attain a goal. Under uncertainty,
however, it becomes challenging to distinguish goal-relevant feedback
from environmental noise. Being overly sensitive to noisy outcomes
can undermine stability, whereas failing to revise outdated repre-
sentations hinders adaptation to changing contexts. To illustrate the
stability-flexibility dilemma, consider a rescue operation under highly
uncertain conditions. A rescue team must remain flexible enough to
adjust if new information pinpoints the survivors’ location or the
building’s accessibility. However, overreacting to every rumor wastes
resources on false leads. In such a scenario, filtering out noisy events
(stability) while responding appropriately to significant signals

(flexibility) is crucial for success under shifting circumstances (stably
flexible decision-making).

The prefrontal cortex (PFC) plays a vital role in cognitive control,
which is necessary for behavioral flexibility1,2. It specializes in repre-
senting and integrating various variables such as context, decisions, and
sensory information3–6. The PFC guides context-dependent decision-
making by flexibly altering its information representation based on the
current goals3,7–10. Neural representations in the PFC reflect task
demands, facilitating successful goal achievement and directly impact-
ing performance6,11.

The PFC also encodes environmental uncertainty. The lateral
prefrontal cortex (LPFC) and orbitofrontal cortex (OFC) are parti-
cularly important in representing and tracking environmental
uncertainty to adjust behavior12–15. The LPFC is involved in
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arbitrating between different learning strategies according to
uncertainty16–19. It is also known to perform an important role in
model-based control necessary for goal pursuit20. The OFC is
involved in making confidence judgments under uncertainty21,22,
representing state-space according to task demands23–25, and cal-
culating values26–29.

While wemust flexibly adjust our behavior to pursue goals, we also
need to respond stably to changes in an uncertain environment. How-
ever, cognitive stability and flexibility are generally considered to be in a
trade-off relationship, making it challenging to achieve both30–35. Simi-
larly, neural separability for flexibility and neural robustness for stability
appear to be conflicting properties. In situations where multiple pieces
of information are mixed, high-dimensional neural representations that
easily distinguish stimuli or contexts are advantageous for flexible
responses11,36–39. Conversely, stable task performance requires neural
representations that abstract information into a low-dimensional mani-
fold by removing task-irrelevant noise or distractors7,40–42. This creates a
known trade-off between neural separability and robustness, depending
on the representational dimensionality37,42–44. While these studies
focused on perceptual decision-making to explore neural representa-
tions for cognitiveflexibility or stability, it remains unclear how the brain
achieves stable, flexible goal pursuit during sequential decision-making
with various contextual changes.

Our study employs model simulations, behavioral data analysis,
and model-based fMRI analysis, to examine whether and how the
brain resolves the behavioral flexibility-stability trade-off during
goal-directed learning. We compare humans’ behavioral flexibility
and stability with conventional value learning theory, including
model-free and model-based reinforcement learning. We then ana-
lyze how the neural representations of goals and uncertainty in
related brain areas, including the dlPFC, vlPFC, and OFC, facilitate
stable and flexible goal pursuit.

Results
Behavioral stability-flexibility dilemma during goal-directed
learning
To explore the neural representations involved in pursuing goals
within uncertainty-changing environments, we used behavior and
fMRI data published in a previous study17. Twenty participants per-
formed a context-dependent two-stage Markov decision task (Fig. 1a,
b; Task). Each state in the task was represented by a fractal image, and
participants made left or right choices at each state across two stages.
After the second choice, an outcome state and a corresponding coin
were displayed, with the task’s objective being to maximize the accu-
mulated coin score.

The experiment featured four types of block conditions, corre-
sponding to each combination of two binary context conditions: goal
condition and uncertainty condition (Fig. 1b). By systematically varying
goal specificity and state transition uncertainty, respectively, this
design captures two important dimensions of goal pursuit: the clarity
of the goal to pursue and the predictability of the environment. First,
the goal condition includes specific goal and non-specific goal condi-
tions. In the specific goal condition, only coins matching the color (red,
blue, or yellow) of a box presented at the start of the trial were con-
sidered valid rewards, and coins of other colors scored zero. For
example, when a red box appears, participants understand that the
task for that trial is to reach the state yielding a red coin; the goal is
therefore the red-coin state. This setup encourages participants to
align their actions with a clear goal, thereby promoting goal-directed
behavior. Conceptually, it resembles having a specific goal (e.g., res-
cuing survivors in a single building). In contrast, the non-specific goal
condition served as a control, where a white box was displayed, and
coins of any color were recognized as valid rewards. While this con-
dition still involves reward maximization, the absence of a clearly
defined goal can lead tomore habitual behaviors that are less sensitive

to environmental changes. It is comparable to having a broad, general
objective (e.g. “help anyone, anywhere").

The uncertainty condition modulated the distribution of state-
action-state transition probabilities. Under the low uncertainty condi-
tion, the probabilities of the twopossible subsequent states following a
choice were assigned as (0.9, 0.1), whereas in the high uncertainty
condition, these probabilities were (0.5, 0.5). This difference captures
how predictable (or unpredictable) an environment is. In the low
uncertainty condition, state transitions follow relatively predictable
probabilities, whereas in thehighuncertainty condition, transitions are
dominated by random variability. Such uncertainty changes influence
the efficacy of goal-directed learning, since increased uncertainty
reduces the prediction accuracy of state-action-state transitions, a key
factor in model-based learning.

We investigated the impact of goal and uncertainty contexts on
state-action values and behavior. Using an oracle agent, we calculated
the true state-action values for each context using the Bellman
equation45. The results showed that in the low uncertainty condition,
where the state transitionprobabilitieswerebiased, the valuedifference
between left and right choices was larger than in the high uncertainty
condition (Fig. 1c). From a value-based decision-making perspective, in
the high uncertainty condition, participants are less likely to make
optimal choices due to a smaller value difference46–48. However, by
measuring choice optimality and choice consistency for each trial
(Behavioral measures), we found uncertainty did not affect task per-
formance in the specific-goal condition (Fig. 1d). In the non-specific goal
condition, high uncertainty led to fewer optimal choices (Fig. 1d, aver-
age choice optimality; low unc.: 0.850(mean) ± 0.035(s.e.m.); high unc.:
0.619 ± 0.021; low unc. vs high unc.: t(19) = 5.975, p < 0.0001) andmore
frequent choice changes (Fig. 1d, average choice consistency; low unc.:
0.897 ± 0.023; high unc.: 0.847 ± 0.021; low unc. vs high unc.:
t(19) = 5.294, p < 0.0001). Surprisingly, in the specific goal condition,
choice optimality and consistency were not significantly affected by
high uncertainty (Fig. 1d; low unc. vs high unc. (optimality):
t(19) =0.887,p=0.384; lowunc. vshighunc. (consistency): t(19) =0.891,
p = 0.386), suggesting that humans achieve robust performance when
pursuing a specific goal in uncertain conditions. Relatedly, participants’
response timeswere longer in the specific-goal than in the non-specific-
goal condition, and within the specific-goal condition, they increased
further under high uncertainty (Supplementary Fig. 1). These prolonged
latencies likely reflect the additional deliberation required both to reach
the specified goal and to handle unexpected state transitions in an
uncertain environment.

This finding led us to focus on the specific goal condition to
understand humans’ stably flexible goal pursuit. Optimal performance
requires flexible behavior aligned with the goal, unhindered by noisy
state transitions.We quantified these attributes using choice versatility
and choice consistency (Fig. 1e, Behavioral measures). Each measure,
calculated on a trial-by-trial basis, was designed to quantify choice
sensitivity to goal changes and choice consistency despite environ-
mental noise. The session-wide average of these trial-level values
provided an individual measure of each participant’s behavioral flex-
ibility or stability. In the specific goal condition, participantsmust select
different trajectories to reach the outcome state matching the given
goal (red, blue, or yellow). Hence, when the goal of the current trial is
different from the previous trial, a different choice at the same state
indicates choice versatility = 1, whereas the same choice indicates
choice versatility = 0. Conversely, given a goal, participants should
consistently make the optimal choice despite noisy state transitions.
Therefore, if the goal of the current trial matches the goal of the pre-
vious trial, making the same choice at the same state indicates choice
consistency = 1, while a different choice indicates choice con-
sistency = 0.

To understand how human participants maintain the behavioral
flexibility-stability balance, we compared the relationships between
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flexibility, stability, and performance of human participants with those
of standard value learning models, including model-based (MB) and
model-free (MF) reinforcement learning algorithms (Fig. 1f,Simulation).
Theoverall performance of eachparticipantwas calculated by averaging
trial-wise choice optimality (Behavioral measures), which evaluated the
degree to which their actions aligned with those of an oracle agent
possessing complete knowledge of reward contingencies and state-
transition probabilities (1 = optimal, 0 = non-optimal). Because the MF
algorithm learns a reward function based on consistent sampling of
action-outcome events, whereas the MB algorithm does so by learning
the dynamics of the action-state-outcome, each model’s behavior is
known to be stable and flexible, respectively. We found effects of flex-
ibility and stability on performance inMB agents and humans, but not in
MF agents (the left and the middle plot of Fig. 1f). For the
flexibility–performance comparison, humans showed a strong positive
correlation (r = 0.827, t(18) = 6.244, p < 0.0001), MB agents showed a
comparable effect (r = 0.799; 95% subsampling CI [0.649, 0.916], 10000
resamples with subsample sizem = 20), whereas MF agents showed no
reliable relationship (r = − 0.035; CI [ − 0.475, 0.411]). For the

stability–performance comparison, humans again displayed a robust
association (r = 0.779, t(18) = 5.269, p < 0.0001), MB agents exhibited an
even stronger link (r = 0.963; CI [0.933, 0.986]), while MF agents
remained near zero (r = 0.042; CI [ − 0.399, 0.485]). Furthermore, MF
agents suffer fromaflexibility-stability trade-off (as indicatedby a strong
negative correlation in the right plot of Fig. 1f), whereas humans and the
MB agents did not. Humans showed a moderate positive
flexibility–stability relation (r =0.541, t(18) = 2.726, p =0.014),MB agents
showed a strong positive coupling (r = 0.829; CI [0.681, 0.930]), andMF
agents showed a pronounced negative coupling (r = − 0.964; CI
[ − 0.986, − 0.929]). Notably, humans exhibited the most flexible and
stable behavior.

Evidence of goal and uncertainty representation in PFC during
goal-directed learning
As the first step to investigate neural underpinnings of flexible and
stable goal pursuit, we investigated whether the brain encodes goals
and uncertainty information. We used the ROI-based multivoxel pat-
tern analysis, focusing on eight brain regions known to be engaged in

0.4 0.6 0.8 1
0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8
0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8
0.4

0.6

0.8

1

n.s.

a b

c

22 36 30 20

14 10

Action values:

Value difference:

Low (.9, .1) High (.5, .5)Uncertainty:

Goal: Non-specific

e f

Two-stage Markov decision task

S1

S2

S3

A1

A2

Current state

Next state

Choice (L or R)

State transition
(with probability p)

Block conditions (contexts)

Goal condition Uncertainty condition

Specific Non-specific Low High

0.9 0.1 0.5 0.5

Action value difference

Goal condition
Specific Non-specific

Uncertainty
Low
High

Action value computation example d Goal x uncertainty effect on behavior

C
ho

ic
e 

op
tim

al
ity

C
ho

ic
e 

co
ns

is
te

nc
y

Uncertainty

Low
High

Goal condition
Specific Non-specific

Goal condition
Specific Non-specific

Changed

Shifted
(versatility=1)

Same
(consistency=1)

Unchanged

Goal

Choice

State

Flexibility: 
choice versatility

Stability: 
choice consistency Flexibility vs Performance Stability vs Performance Flexibility vs Stability

Pe
rfo

rm
an

ce
(C

ho
ic

e 
op

tim
al

ity
)

Pe
rfo

rm
an

ce
(C

ho
ic

e 
op

tim
al

ity
)

St
ab

ilit
y

(C
ho

ic
e 

co
ns

is
te

nc
y)

Stability
(Choice consistency)

Flexibility
(Choice versatility)

Flexibility
(Choice versatility)

Human
MB agent
MF agent

E
s

Q
∗

s,
a
=

L
−

Q
∗

s,
a
=

R

****
1

0.8

0.6

0.4

****n.s.
1

0.5

0.6

0.7

0.8

0.9

0

5

10

15 Low
High

40 20 10
40 20

10

40 20

R L R R

40 40

40 010 10 1020 20 20 40 4000000 20

4020 40 0 4020 40 0

Fig. 1 | Flexible and stable human behavior during goal-directed learning.
a Task structure as a binary decision tree. Sk and Ak denote the state and action at
stage k respectively (k = 1, 2, 3). Each trial begins with the same initial state. b Block
conditions that determine the task context. At the start of each trial, the specific
goal condition is represented by one of the boxes (red, blue, yellow) alongside a
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shown with the fractal image. Participants were informed that state-transition
probabilities could change, but specific probabilities were not provided, and no
direct cues about the uncertainty condition were given during the experiment.
c Predicted impact of uncertainty on action value difference between left and right
choices. The left side of the panel shows the value difference calculated for a
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all contexts and states. d Effect of goal and uncertainty on the performance of

human participants (n = 20). Points next to each boxplot represent individual
human participants. Asterisks denote statistical significance (paired t-test, ****:
p < 0.0001). For the box plots, the center lines, box limits, and whiskers represent
medians, upper/lower quartiles, and 1.5× interquartile ranges, respectively. All
statistical tests were two-sided. See Supplementary Table 1 for full statistical
information. e The behavioral measures defined within the specific goal condition.
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of the behavioralmeasures of human participants and virtual RL agents. For human
results, eachpoint represents a single participant. For simulation results, eachpoint
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random parameters, respectively (Simulation). See Supplementary Table 1 for the
statistical details of the Pearson’s correlation test (two-sided). Source data are
provided as a Source Data file.
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context-dependent behavior: ventrolateral prefrontal cortex (vlPFC),
dorsolateral prefrontal cortex (dlPFC), orbitofrontal cortex (OFC),
anterior cingulate cortex (ACC), pre-supplementary motor area (pre-
SMA), primary visual cortex (V1), hippocampus (HPC), and ventral
striatum (vStr). The vlPFC is known to be involved in the arbitration of
MB/MF reinforcement learning17,18,49,50, whereas the dlPFC is known to
represent context information and guide task-switching15,51,52. The OFC
is implicated in state-space representation23–25. The ACC plays a crucial
role in monitoring conflicts in guiding adaptive adjustments in cog-
nitive control53,54. The preSMA is involved in the flexible control of
voluntary actions55. The HPC is involved in the formation of cognitive
maps56–58. Lastly, the ventral striatum plays a key role in computing
reward prediction errors59–61. The AAL3 atlas62 was used to define each
ROI (Supplementary Fig. 2).

For flexible goal pursuit, the brain must effectively encode infor-
mation about goals and associated states. We focused on the specific
goal condition and conducted a decoding analysis on multivoxel pat-
terns to quantify goal-related information. This was assessed by the
classification accuracy of three distinct goals (red, blue, and yellow)
using linear support vector machines (SVM) (fMRI decoding ana-
lyses). All classifications on the fMRI data were performed with leave-
one-run-out cross-validation. To prevent potentially biased predic-
tions from class imbalance, we performed 100 rounds of

undersampling to balance the classes, using the average accuracy from
these iterations as the final result. After this calibration, we confirmed
that the decoding accuracy did not significantly exceed the chance
level when the class label is shuffled (Supplementary Fig. 3).We trained
and tested separate SVM classifiers for each trial event (fix: fixation, S1:
state 1, A1: action 1, S2: state 2, A2: action 2, S3: state 3; Fig. 1a) to obtain
decoding accuracy specific to that event. The decoding accuracy was
calculated as a single value per participant based on multiple trials.
Group-level statistical tests were performed, treating each participant
as a random sample.

The vlPFC, dlPFC, OFC, ACC, preSMA and V1 demonstrated the
highest goal decoding accuracy during the second stage (Fig. 2a;
event-specific decoding accuracies; see Supplementary Table 2 for the
statistical details). The average decoding accuracy across all events
corroborates that these six regions significantly represented goal
information (Fig. 2b; t-test of event-averaged decoding accuracy
against the chance level (33.3%); vlPFC: 37.2% ± 0.7%,
t(19) = 5.712, p < 0.0001; dlPFC: 38.8% ± 0.9%, t(19) = 5.999, p < 0.0001;
OFC: 36.6% ± 0.7%, t(19) = 4.443, p = 0.0003; ACC: 35.4% ± 0.6%,
t(19) = 3.459, p = 0.0026; preSMA: 35.4% ± 0.6%,
t(19) = 3.701, p = 0.0015; V1: 36.9% ± 0.5%, t(19) = 7.401, p < 0.0001;
uncorrected per predefined ROI; Supplementary Table 2). Further-
more, regarding state information, the vlPFC, dlPFC, OFC, ACC,
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Fig. 2 | Evidence of goal and uncertainty representation. All data are presented
as mean ± SEM from n = 20 participants. Asterisks denote statistical significance
(paired t-test against the chance level, *: p < 0.05, **: p < 0.01, ***: p < 0.001). All
statistical tests were two-sided. See Supplementary Table 2 for full statistical
information. aDecoding accuracy of specific goals as a function of trial events. The
x-axis labels “fix" for fixation, and “S1-S3" and “A1-A2" correspond to the states and
actions as illustrated in Fig. 1a. The apostrophe (') denotes events in the subsequent
trial. The event-specific neural measures are derived from fMRI data scanned in the

corresponding time bin. The chance level is 1
3, indicated by the dashed line.

b Average goal decoding accuracy across the trial events (S1-fix'). c Decoding
accuracy of uncertainty as a function of trial events. The chance level is 0.5, as
indicated by the dashed line. Red asterisks denote statistical significance of
uncertainty decoding in the specific goal condition, while blue asterisks indicate
significance in the non-specific goal condition. d Average uncertainty decoding
accuracy across the trial events (S1-fix'). Source data are provided as a Source
Data file.
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preSMA, V1, and HPC demonstrated significant decodability of both
intermediate and outcome states (Supplementary Fig. 4a, b). Notably,
decoding accuracy for the intermediate state peaked during stage 2,
while outcome state decoding peaked during stage 3.

For stable and flexible goal pursuit, the neural representation of
goals must be separable from uncertainty. This demands uncertainty
encoding during goal-directed learning. When measured as the test
accuracy of classifying uncertainty conditions using a linear SVM on
multivoxel patterns in the specific goal condition and the non-specific
goal conditions, the vlPFC, dlPFC, and OFC significantly represented
uncertainty information exclusively within the specific goal condition
(Fig. 2d; t-test of event-averageddecoding accuracy against the chance
level (50%); vlPFC: 51.8% ± 0.7%, t(19) = 2.549, p = 0.020; dlPFC:
52.1% ± 0.9%, t(19) = 2.412, p = 0.026; OFC: 53.4% ± 0.9%,
t(19) = 3.749, p = 0.0014; uncorrected per predefined ROI; Supple-
mentary Table 2). Additionally, our principal component analysis
(PCA) showed that the neural dimensionality in vlPFC, dlPFC, OFC, and
ACC is higher in the specific goal condition compared to the non-
specific goal condition (Supplementary Fig. 5). These results imply that
the LPFC and OFC encode uncertainty while engaging in complex
neural computations to guide goal-directed behavior.

Factorized embedding of goal and uncertainty in the LPFC
Building onourfindings that goal and uncertainty are represented in the
LPFC and OFC, we sought to investigate how these two variables are
represented in a single neural space to facilitate flexible yet stable goal
pursuit. Followingprevious studies on representational geometry11,41,43,63,
we evaluated three hypotheses on mixed representations of goals and
uncertainty (Fig. 3a). The types of possible linear separations vary
depending on the complexity of the neural embedding structure64,65.

If only one of the two variables is represented, one can linearly
separate the neural representations of the classes of that variable, but
not of the other variable (compression hypothesis; the first column of
Fig. 3a). The single represented variable remains stable and invariant
across the changes in the other variable. However, because the
represented variable has no information about the other variable, it is
impossible to distinguish situations in which that other variable
changes. For instance, if the goal is represented without representing
uncertainty, the distinct goal information remains accessible but can-
not detect or adapt to fluctuations in uncertainty.

Conversely, when both variables are independently represented
along their respective coding axes, binary classifications involving the
two variables can be linearly separated (factorized mixing hypothesis;
the second column of Fig. 3a). In this case, both variables maintain
distinct representations, ensuring that changes in one do not alter the
embedding structure of the other. As a result, a downstream neural
readout that decodes one variable can generalize across variations in
the other variable. In such a factorized embedding structure, it is
possible to detect uncertainty changes, while goal information
remains consistently represented regardless of uncertainty levels.

Lastly, if there exists an interaction between the two variables,
where the coding axis of one variable changes contingent on the other,
dichotomies involving the nonlinear interaction can also be linearly
separated (nonlinear mixing hypothesis; the third column of Fig. 3a).
This high-dimensional neural embedding structure allows distinction
across a wide range of situations arising from variable combinations.
However, such dependency among variables reduces generalizability.
As illustrated in the figure, uncertainty changes lead to changes in the
goal embedding structure, making the representation of goal infor-
mation highly sensitive and vulnerable to uncertainty shifts.

To understand the representational geometry, we performed a
shattering analysis (Shattering analysis) to identify the types of pos-
sible linear separations among all dichotomies. We categorized all
dichotomies into four types: goal, uncertainty, linear, and nonlinear
(Supplementary Fig. 6). The average test accuracy of dichotomies

within each categorywas defined as the shattering dimensionality (SD)
for that category. Fig. 3a illustrates plausible neural embeddings under
different combinations of these four types of separability. If the neural
embedding follows the compression hypothesis, one of the SDs for
goal or uncertainty will be distinctly high. Under the factorizedmixing
hypothesis, the SDs for goal, uncertainty, and linear will be notably
high, whereas the SD for nonlinear will be significantly lower. Con-
versely, if goal and uncertainty form a nonlinearly mixed embedding,
all four types of SD will be substantially high.

To evaluate which dichotomies-averaged into four SD categories-
were linearly separable within eachROI, we appliedmultivoxel-pattern
linear decoding. Aside from incorporating multiple binary label sets,
the procedure followed our standard decoding pipeline (fMRI
decoding analyses). For each ROI, we trained separate linear SVM
classifiers at every task-informative event (S1, A1, S2, A2, S3, fix’) and
averaged their decoding accuracies to obtain the SD score. The initial
fixation period (fix) was excluded because it lacks task-relevant infor-
mation for the current trial. However, as the fixation period preceding
a new trial retains residual information from the previous trial, neural
activity for the current trial was decoded using the fixation epoch of
the subsequent trial (fix’).

The vlPFC, dlPFC, and OFC showed a separability profile corre-
sponding to factorized mixing (Fig. 3b). These brain regions showed
significant SD for goal, uncertainty, linear, and nonlinear types (Sup-
plementary Fig. 7; vlPFC goal: 0.530 ±0.005 (t(19) = 5.634,p < 0.0001);
vlPFC uncertainty: 0.518 ± 0.007 (t(19) = 2.582, p = 0.0183); vlPFC
linear: 0.519 ± 0.003 (t(19) = 5.527, p < 0.0001); vlPFC nonlinear:
0.508 ± 0.002 (t(19) = 4.018, p = 0.000735). dlPFC goal: 0.541 ± 0.007
(t(19) = 6.259, p < 0.0001); dlPFC uncertainty: 0.521 ± 0.009
(t(19) = 2.397, p = 0.0270); dlPFC linear: 0.526 ± 0.004
(t(19) = 6.158, p < 0.0001); dlPFC nonlinear: 0.511 ± 0.002
(t(19) = 4.432, p = 0.000286). OFC goal: 0.527 ± 0.006
(t(19) = 4.663, p = 0.00017); OFC uncertainty: 0.534 ± 0.009
(t(19) = 3.724, p = 0.00144); OFC linear: 0.521 ± 0.004
(t(19) = 4.807, p = 0.000122); OFC nonlinear: 0.507 ± 0.003
(t(19) = 2.904, p = 0.00909); paired t-tests against the chance level
(0.5)within eachpredefinedROI, uncorrected). Notably, the vlPFC and
dlPFC showed significantly lower nonlinear SD compared to goal and
linear SDs (pairwise comparison of event-averaged SDs between four
classification types by paired t-test; see Supplementary Table 3 for the
statistical details). Similarly, the OFC showed significantly lower non-
linear SD thangoal, uncertainty, and linear SDs. According to our three
hypotheses (Fig. 3a), these results demonstrated a factorized
embedding of goal and uncertainty. It also suggests a neural
mechanism that maintains stable goal representations across varying
levels of uncertainty.

The next step was to clarify how factorized neural embeddings
contribute tomaintaining stable and flexible goal-pursuit behavior. To
this end, we conducted correlation analyses quantifying the relation-
ship between different patterns of neural separability and task beha-
vior. Theneuralmetricwas restricted to signals that directly inform the
choice behavior. Accordingly, outcome-related events occurring after
the choice (S3 and fix’) were excluded, and each SDwas recalculated as
the mean accuracy across the remaining pre-outcome events (S1-A2).
Multiple comparison corrections were applied with a false-discovery
rate (Benjamini-Hochberg procedure) for the number of ROIs with q =
0.05. Adjusted p-values were reported for all exploratory correlation
analyses (Statistical analysis).

The significant correlation between each type of neural separ-
ability and behavioral measures that we observed suggests that goal
separability in the vlPFC, dlPFC, and OFC is associated with goal
pursuit performance (Fig. 3c; FDR-corrected, q < 0.05; Statistical
analysis). Notably, higher goal separability in the LPFC correlates
with greater behavioral flexibility, stability, and performance. These
results carry two critical implications. First, a neural embedding in
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the LPFC, distinguishing goals from uncertainty, is associated with
goal-dependent behavioral adaptation. Second, a clear goal repre-
sentation is essential for consistently pursuing desired outcomes
across multiple stages, even in noisy environments. On the other
hand, uncertainty separability was not significantly related to goal-
directed behavior, while linear and nonlinear interaction separ-
abilities showed relatively weaker but generally consistent results
with goal separability (Fig. 3d). To summarize, a neural embedding

capable of clearly distinguishing goals is important for effective goal
pursuit.

Neurally stable goal embedding in LPFC guides stably flexible
learning
We further hypothesized that goal embeddings remain unaffected by
uncertainty to maintain stable behavior. To test this hypothesis, we
employed the neural metric called cross-condition generalization
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performance (CCGP; Cross-condition generalization
performance)41, defined as the generalized accuracy of a linear deco-
der across different conditions. Specifically, we trained a linear
classifier (SVM) to decode a target variable (i.e., the goal) in one
context condition (e.g., low uncertainty) and then tested it in a dif-
ferent condition (e.g., high uncertainty). The CCGP score is calcu-
lated as the average test accuracy across these conditions. If the
target embedding is influenced by context, the decision boundary
for decoding would shift, leading to a lower CCGP. Thus, CCGP
reflects how stably the neural representation can be decoded by
downstream neural readouts across varying context conditions. To
assess the robustness of goal representations, we measured the goal
CCGP across uncertainty levels. Consistent with the preceding
decoding analysis, we trained linear SVM classifiers for each ROI at
every task-informative event (S1-fix’) and averaged their decoding
accuracies to obtain the final CCGP score.

Supporting our hypothesis, the CCGP and SD values in each
uncertainty condition were comparable (Fig. 4a; pairwise comparison
of event-averaged neural measures by paired t-tests within each pre-
definedROI, uncorrected; see Supplementary Table 4 for the statistical
details). Although the vlPFC, dlPFC, and OFC significantly represented
uncertainty information (Fig. 2b), goal embeddings in these regions
remained robust and unaffected by uncertainty. Similarly, the ACC,
preSMA, and V1, which did not significantly represent uncertainty,
maintained uncertainty-robust goal embeddings. The HPC and vStr,

the regions that did not significantly represent goals or uncertainty,
showed CCGP values near the chance level.

Furthermore, we found that neural robustness in the vlPFC and
dlPFC is crucial for goal pursuit behavior (Fig. 4b; FDR-corrected,
q < 0.05). The goal CCGPs across uncertainty in the vlPFC and dlPFC
were significantly correlated with behavioral flexibility, stability, and
performance. Additionally, higher CCGP in the OFC was associated
with greater behavioral stability. As in the SD-behavior correlation
analysis, we used the mean CCGP averaged across the pre-outcome
events (S1-A2) for this correlation.

Additionally, we quantified whether the neural goal representa-
tion remained stable across uncertainty levels by computing the par-
allelism score41. For eachROI, we averaged themultidimensional BOLD
pattern within each class and derived vectors representing the direc-
tion from one specific goal representation to another under each
uncertainty condition (Supplementary Fig. 9a). The cosine similarity
between the goal-encoding vectors obtained under the two uncer-
tainty conditionswas thenmeasured. Parallelism scoreswere averaged
across five fMRI runs. As with the other classification-based analyses,
class balancing was performed through undersampling.

Consequently, we found that the vlPFC, dlPFC, OFC, and preSMA
exhibited significantly positive parallelism scores (Supplementary
Fig. 9b), indicatingminimal reorientation of neural goal embeddings in
response to uncertainty. This suggests that the underlying repre-
sentational geometry remained largely parallel. Combined with the

Fig. 3 | Shattering analysis for neural goal and uncertainty embeddings.
a Hypothetical neural embeddings for goal and uncertainty and corresponding
linear separabilities.While there are three specific goals (red, blue, yellow), only two
are depicted for simplicity. The full version of the class labeling and classification
types for all dichotomies are in Supplementary Fig. 6.b SD for the different types of
dichotomies. We trained separate SVM classifiers for each event (S1-fix') and aver-
aged their decoding accuracies to obtain a single SD value. Since SD represents
average binary classification accuracy, the chance level is 0.5. Statistically sig-
nificant SDs were represented as color bars (Supplementary Fig. 7). Data are pre-
sented as mean ± SEM from n = 20 participants. Asterisks denote statistical
significance (paired t-test, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001). All

statistical tests were two-sided. c Correlations between the neural goal SD and the
behavioral measures. Each point represents an individual participant. Solid lines
present linear regression slope and dotted lines show 95% confidence bounds of
the fitted line where there are statistically significant correlations. (d) Correlation
coefficients between the neural SD and the behavioral measures. Only statistically
significant correlations are represented with filled bars (Pearson’s correlation, *:
p < 0.05, **: p < 0.01, ***: p < 0.001; two-sided test). For all the exploratory corre-
lation analyses, multiple comparison corrections were applied with a false-
discovery rate (Benjamini-Hochberg procedure) for the number of ROIs with q =
0.05. See Supplementary Table 3 for full statistical information. Source data are
provided as a Source Data file.
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CCGP results demonstrating robust trial-by-trial decodability based on
decision boundaries, these findings confirmed that goal embeddings
remain relatively stable under changing uncertainty.

Discussion
To investigate how humans achieve flexible and stable goal pursuit, we
studied human goal-directed learning in uncertainty-changing envir-
onments using a two-stageMarkovdecision task.Ourfindings revealed
that humans exhibit more robust behavior during goal-directed
learning. Furthermore, higher behavioral flexibility in response to
goal changes correlates with more stable behavior under uncertainty.
We measured the neural representational separability and robustness
of brain regions, which indicated that goal and uncertainty repre-
sentations form factorized embeddings in the vlPFC, dlPFC, and OFC.
Neural goal separability and robustness in these regions are associated
with stably flexible goal-directed behavior in humans.

Our study presents a significant conceptual advance by offering a
representational solution to the stability-flexibility dilemma in goal-
directed learning. While prior works have primarily focused on iden-
tifying ‘what’ variables areencoded in the PFC (e.g., value, uncertainty),
ourworkelucidates ‘how’ the brain navigates this trade-off through the
specific geometrical structure of its neural representations. Earlier
studies in decision-making have attempted to probe behavioral flex-
ibility in response to changes in goals or context29,60,66–69, while placing
less emphasis on the concurrent challenge of maintaining stability
against environmental noise. Additionally, studies on uncertainty
representation have often centered on perceptual judgments70–75

rather than on the complex dynamics of sequential action toward
delayed goals. Our findings bridge this gap by showing, through the
lens of representational geometry, that the PFC employs a joint, fac-
torized coding scheme for goals and uncertainty. This neural archi-
tecture offers a mechanistic account of how the brain reconciles
competing cognitive demands, enabling robust and generalizable goal
pursuit while remaining attuned to environmental statistics, thus
supporting both adaptive behavior and resilience to noise.

Across the eight ROIs, our MVPA results reveal complementary
contributions to stable yet flexible goal pursuit. V1 encodes task-
relevant sensory features, whereas vlPFC, dlPFC, and OFC jointly
represent factorized goal and uncertainty information; the strength of
these codes correlates with individual differences in behavioral flex-
ibility under uncertainty. By contrast, ACC and preSMAmainly encode
goal information, and the magnitude of these signals tracks behavioral
performance, suggesting that medial frontal areas relay resolved goals
to downstream control systems once uncertainty has been represented
in the lateral PFC and OFC circuits55,76. Uncertainty was not decodable
in ACC, indicating that our noisy state transitions did not evoke the
internal value conflict typically associated with this region53,77, which is
consistent with our findings that factorized goal and uncertainty codes
help resolve the stability-flexibility dilemma. Hippocampus and ventral
striatum showed no reliable pattern-level goal or uncertainty coding
within the sensitivity limits of our analysis. Together, these findings
support a model in which lateral PFC and OFC furnish a flexible state
representation, while medial PFC contributes goal-driven control, col-
lectively balancing behavioral flexibility and stability.

In our study, we confirmed that humans can maintain successful
goal-pursuit behavior even in uncertain environments. Previous stu-
dies have reported that an inaccurate prediction by the model-based
learning system16 or low outcome controllability78,79 can reduce goal-
directed behavior. High state-transition uncertainty, for example,
increases state prediction error, making itmore challenging to achieve
desirable outcomes. However, our two-stage Markov decision task,
which features multiple possible trajectories leading to the goal state
across 16 different branches, allows a greater flexibility in reaching the
desired outcome. This design contrasts with simpler decision-making
tasks, allowing the observation of robust goal-directed behavior under

uncertainty. Our findings suggest that this robustness is supported by
the factorized representation of goal and uncertainty in the prefrontal
cortex, particularly in the vlPFC, dlPFC, and OFC.

The finding in our study that goal representation remains robust to
uncertainty is consistent with previous findings suggesting that having a
factorized representation facilitates generalization across various
contexts37,41,63,80–82. Moreover, the perspective that a similar orthogonal
representation structure enables humans to avoid catastrophic forget-
ting and learn various tasks7,83,84 aligns with the results of our study,
indicating that goal embedding independent of the uncertainty allows
for stable goal pursuit in varying levels of environmental noise.

While many studies have explored how PFC state representations
change depending on the context3,7,8, there has been a lack of research
focusing on strategic processes including multiple contexts and
stages.We targeted to fill this gap, and our findings demonstrated that
uncertainty, which can influence behavioral strategy selection13,16,17,19,
and goal, which affects action selection, are independently repre-
sented in the LPFC. Thus, the LPFC is capable of guiding behavioral
strategies while setting and pursuing goals independently of the
strategy. This suggests that the LPFCpossesses the ability to establish a
stable hierarchy of strategy selection and action selection.

In our task, we observed that when specific goals were not pro-
vided, thedecrease in valuedifference led to adecrease in theoptimality
andconsistencyofbehavior (Fig. 1e), consistentwithpreviousfindings in
value-based decision-making research46–48. Interestingly, during goal-
directed learning, we observed that participants maintained optimal
choices despite the influence of uncertainty on action value. According
toour neural data analysis, this stable goal-pursuit behavior is supported
by the neural goal robustness to uncertainty in the LPFC andOFC. Thus,
our study contributes to understanding the role of the PFC in guiding
multistage decision-making involving multiple contexts at the neural
representational level, which was previously difficult to explain through
value learning alone85–88.

We confirmed that participants exhibiting flexible behavior also
showhighbehavioral stability. It contrastswithprevious studieswidely
discussing the stability-flexibility trade-off30–35. However, recent task-
switch-related research suggests that these two characteristics can be
controlled by independent mechanisms and are not necessarily
conflicting89,90. The neural evidence we present could serve as a key to
explaining the brain’s ability to be flexible yet stable, along with
computational modeling research.

Generally, the OFC is known to compress and judge external
information such as task-relevant state space, confidence, emotion,
and value estimation21–24,26,91. Our results showing that the OFC is most
sensitive to uncertainty are consistent with the existing literature.
Furthermore, regarding specific goals as explicit task-specific infor-
mation, the OFC seems to extract latent information about environ-
mental uncertainty while minimizing interference between them.
Thus, by factorizing abstract latent information and task-specific
information, the OFC facilitates the generalization of important
information as tasks change.

On the other hand, the LPFC extracts important context infor-
mation related to meta-control, task switching, and planning17,18,51,92,93,
guiding strategy selection and action selection. The observation that
the LPFC is most sensitive to goal information is consistent with the
existing literature. Furthermore, the ability of the LPFC to indepen-
dently represent task-relevant goals in uncertain environments
enables consistent pursuit of task goals across various environments.
That is, the factorized representation in the LPFC enables the transfer
of goals across environments.

A promising direction for future studies is to develop neural
network models that integrate factorized representations of goal and
uncertainty, extending approaches such as β-VAE from sensory
perception94,95 to context-dependent reinforcement learning. Testing
whether this architecture enables artificial agents to balance flexibility
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and stability, analogous to human performance, would clarify the
representational mechanisms underlying adaptive, goal-directed
behavior. Further investigation should probe how goal and uncer-
tainty signals evolve across extended timescales or in more complex
tasks, assessing whether factorized geometry in PFC persists in diverse
scenarios.

In conclusion, our findings suggest a representational solution for
achieving flexible yet stable goal pursuit under uncertainty. By main-
taining separate codes for goal and uncertainty, the PFC preserves
goal-directed action plans while selectively adjusting behavior in
response to environmental variability. This perspective extends con-
ventional computational accounts by emphasizing how the geometry
of neural representations can link specialized computations withmore
generalizable cognitive control. This representational account pro-
vides a mechanistic framework for understanding how the brain
maintains goals across varying contexts, offering testable hypotheses
for future computational and empirical research on robust context-
dependent learning.

Methods
Participants
We used the same participant dataset as the previous study17. Twenty-
two subjects (all right-handed, six females, mean age: 28 years, age
range: 19 to 40 years) participated in the experiment, and none of
them had a history of neurological or psychiatric diseases. All subjects
gave informed consent, and the study was approved by the Institu-
tional Review Board of the California Institute of Technology.

One subject was excluded from the analysis since the subject
consistently chose only one of the two choices in stage 1 and never
experienced one of the four goal states. Another subject was excluded
from the analysis because of the exceptionally low behavioral perfor-
mance; the average choice optimality of that subject was less than 0.5
in stage 2, which translated into worse performance than random
choice.

Task
We used behavior and fMRI data published in a previous study17.
Twenty participants performed a sequential two-choice Markov deci-
sion task. In each trial, they began in a common start state and made
two sequential choices (by pressing left or right within 4 s) to obtain a
monetary reward in the form of a colored coin (red, yellow, or blue) at
the end of the sequence. If participants did not respond within 4 s, the
computer selected a random choice for them, and that trial was
designated as a penalizing trial. The reward values (USD 0.40, 0.20,
and 0.10) were randomly assigned to each coin color for each subject
at the beginning of the experiment.

Before the main experiment, each participant completed a pre-
training session consisting of 100 trials in which the state-transition
probability was fixed at (0.5, 0.5). During these trials, a white “collec-
tion box" was presented, indicating that any colored coin would yield
its assigned monetary reward. This pretraining was intended to allow
participants ample opportunity (based on pilot data indicating that 80
trials are sufficient) to become familiarwith both the sequential choice
structure and the general reward contingency of a two-choice
Markov task.

Following pretraining, the experiment proceeded in five separate
scanning sessions of approximately 80 trials each, for a total of 400
trials in the main task. Each scanning session featured two conditions
that manipulated the goal or collection box presented at the start of
each trial. In the specific goal condition, the collection box was ren-
dered in a single color (red, yellow, blue, or gray), indicating that only
one particular coin color would be valuable on that trial (i.e., yield
money if obtained). In the non-specific goal condition, the collection
box was white, indicating that any of the three colored end states
would provide its associated monetary outcome.

Throughout the main task, participants were not informed of the
numeric state-transition probabilities, only that these contingencies
could change. Specifically, the transitions alternated between (0.9, 0.1)
and (0.5, 0.5) across short blocks to induce shifts in task predictability.
Each block contained three to five trials under the (0.9, 0.1) condition
and five to seven trials under the (0.5, 0.5) condition. This design
ensured that participants experienced periods of relatively determi-
nistic transitions and more uncertain transitions, encouraging the
engagement of both model-based and model-free learning strategies.
The time between states (and between trials) was sampled from a
uniform distribution (1–4 s), and the reward outcome was displayed
for 2 s at the end of each trial.

Participants were instructed that they would receive the cumula-
tive monetary earnings from the task and that they should learn,
through experience, which choices were more likely to lead to each
colored coin. They were also aware that goal states and transition
probabilities could vary. No further explicit information regarding
probabilities or block lengths was provided, ensuring that they relied
on ongoing experience to guide their choices.

Behavioral measures
We employed three behavioral measures to characterize goal-directed
learning behavior. First, to assess behavioral flexibility between goals,
we used choice versatility, defined as the switch in choice upon a goal
change. In trials where the goal changed, the choice versatility was
assigned a value of one if the current choicediffered from the previous
one at the same state, and zero if the choice remained consistent.
Second, to evaluate behavioral stability within a goal, we used the
choice consistency measure. For trials with the same goal, the choice
consistency was one if the current choice was identical to the previous
one at the same state, and zero if the choice changed. Lastly, choice
optimality was used to assess the behavioral performance of goal-
directed learning. For each trial, the choice optimality was assigned a
value of one if the agent made an optimal value-based decision, and
zero if the choice was not optimal. If two choices had identical action
values, resulting in the same expected reward regardless of the choice,
those trials were excluded from the analysis and choice optimality was
not calculated for them.

Simulation
To simulate the learning processes, we generated virtual episodes
using both the MB and MF learning agents. The MB agent employed
both FORWARD learning96 and BACKWARD planning17. The FORWARD
learning mechanism enables the agent to learn the model of the
environment by computing the state prediction error to update state-
action-state transition probabilities and corresponding state-action
values. BACKWARD planning allows instantaneous updates to the
state-action value signal in response to changes in the goal, which
defines the rewards of the outcome states. Whenever a goal is given,
the model-based agent calculates the action value (QMB) using BACK-
WARD planning as follows. In doing so, it uses the estimated state-
transition matrix Tðs,a, s0Þ for the given environment to compute the
action value:

rðsÞ= R, for a goal state ,

0, otherwise:

�

for i= 3, 2

for s 2 Si�1

QMBðs,aÞ=
X
s0

Tðs,a, s0Þ rðs0Þ+ γmax
a0

QMBðs0,a0Þ
� �

, 8a

end for

end for
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Here, R is the reward value corresponding to the goal state, and Si
refers to the set of states in the i-th stage. s, s0 refers to the current and
thenext state, respectively.a,a0 refers to the action in the current state
and in the next state, respectively. Since γ is the temporal discount
factor and, in our task, the actual reward is only given at the final stage,
we set γ = 1.

In addition, at each state transition, it calculates a state prediction
error (SPE) to update Tðs,a, s0Þ:

δSPE = 1� Tðs,a, s0Þ,
ΔTðs,a, s0Þ=ηδSPE,

QMBðs,aÞ=
X

s0
Tðs,a, s0Þ rðs0Þ+ γmaxa0 QMBðs0,a0Þ� �

,

where η is the learning rate of the state-transition probability
estimation.

The MF learning agent was implemented using SARSA, which
utilized conventional temporal-difference (TD) updates to compute
the reward prediction error for state-action value (QMF) updates

45:

δRPE = rðs0Þ+ γQMF s0,a0ð Þ �QMF s,að Þ,
ΔQMF s,að Þ=α δRPE,

where α is the learning rate of QMF.
Both the MB and MF models then compute the choice prob-

abilities from action values using the softmax function, and their sto-
chastic choices constitute the simulation behavior:

P ajsð Þ= exp τQðs,aÞð ÞP
a0 exp τQðs,a0Þð Þ :

Here, τ serves as the inverse temperature controlling how strongly the
model exploits value differences.

To maintain consistency with human behavioral data, we utilized
the total number of trials, block condition sequences, and specific goal
sequences directly from the data of 20 human participants. The RL
agents made their own choices, leading to state transitions that dif-
fered from those in the human data. For each human experimental
sequence, we performed simulations of both MB and MF agents using
1000 different random parameter sets, resulting in a total of
20,000 samples for analysis. Both the MB and MFmodels include two
free parameters-a learning rate and a softmax inverse temperature.
Specifically, theMBmodel uses the SPE learning rateη, whereas theMF
model uses the RPE learning rate α.

fMRI data collection and pre-processing
Weused the fMRIdataset providedby theprevious study17.MRI images
were obtained from the Caltech Brain Imaging Center, which uses a 3T
Siemens (Erlangen) Trio scannerwith a 32-channel radiofrequency coil.
Structural images were collected using a standard MPRAGE pulse
sequence (long repetition time (TR): 1,500 ms, short echo time (TE):
2.63 ms, flip angle: 10∘, voxel size: 1mm × 1mm × 1 mm). For the
functional images, 45 slices were collected at an angle of 30∘ from the
anterior commissure-posterior commissure axis using a one-shot
echo-planar imaging pulse sequence (TR: 2,800 ms, TE: 30 ms, flip
angle: 80∘, field of view: 100 mm, voxel size: 3mm × 3mm × 3 mm).

fMRI data were preprocessed using the SPM8 software package.
Preprocessing steps were conducted for each participant individually.
Slice-timing correction was applied to adjust for acquisition time dif-
ferences across slices within each image, using the first slice as the
reference. To correct for participant motion, realignment was per-
formed with the mean of the images as the reference. Each partici-
pant’s structural image was coregistered to the mean functional
realigned image andnormalized to theMontrealNeurological Institute
(MNI) 152 template. The functional images were subsequently spatially

transformed based on these normalization parameters, aligning them
to the MNI152 template brain to account for anatomical variability
across participants.

For additional preprocessing steps required for multivoxel pat-
tern analysis (MVPA), we utilized the Princeton MVPA toolbox (http://
code.google.com/p/princeton-mvpa-toolbox) and custom code.
Within each scanning session, the fMRI data were detrended, and the
BOLD time series of each voxel was z-scored. The resultingmulti-voxel
time series were then used as trial-by-trial brain activity patterns.

We performed ROI analysis based on eight brain regions: the
ventrolateral prefrontal cortex (vlPFC), dorsolateral prefrontal cortex
(dlPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC),
pre-supplementary motor area (preSMA), primary visual cortex (V1),
hippocampus (HPC), and ventral striatum (vStr) (Supplementary
Fig. 2). All fMRI data used in the analyses were extracted from brain
regions defined by the automated anatomical labeling (AAL3) atlas62,
except for the preSMA. The preSMAwas defined as the preSMA region
from the JuBrain Anatomy toolbox97 (the SPM Anatomy Toolbox;
https://www.fz-juelich.de/en/inm/inm-7/resources/tools/jubrain-
anatomy-toolbox). The vlPFC was defined as the triangular part of the
inferior frontal gyrus17. The dlPFC was defined as the middle frontal
gyrus. The OFC was defined as bilateral inferior, middle, and superior
orbital gyri and bilateral rectal gyri23. The ACC was defined as the
pregenual and supracallosal anterior cingulate cortex. The V1 was
defined as calcarine fissures and the surrounding cortex. The hippo-
campus and ventral striatum were defined as the AAL3 ROIs with the
same name, respectively. In our preliminary analyses, we used under-
sampling to match the number of voxels between ROIs and confirmed
that differences in voxel number do not significantly affect our results.
All resultswere bilaterally averaged for each region since therewere no
significant differences between hemispheres.

fMRI decoding analyses
For all our analyses (simple decoding, shattering, and CCGP), we
trained linear SVMs on multivoxel patterns from a participant’s ROI to
separate task-variable classes (for simple decoding analysis; Fig. 2) or
particular dichotomies (for shattering analysis; Fig. 3 and CCGP ana-
lysis; Fig. 4). We treated the pre-processed voxel-wise BOLD time
courses within each ROI as trial-by-trial neural activity patterns. To
avoid session-relateddependencies between the training and test data,
we used leave-one-session-out cross-validation for all analyses. For
eachparticipant, the BOLDpatterns fromoneof thefive fMRI scanning
sessions served as the test set, whereas the data from the remaining
sessions formed the training set used to fit the classifier. All reported
classification results correspond to the mean test accuracy obtained
across the five cross-validation folds. Additionally, the label imbalance
effect was ruled out by undersampling of the larger label. Tominimize
the random effect of the under-sampling, we repeated sampling 100
times with different random seeds, and the test accuracies of all
100 samplings were averaged for the main analysis.

To measure trial-event-specific neural measures, we used fMRI
data scanned in the corresponding time bin. We recorded the timings
of the following trial events: Fixation 1, Stimulus 1 (representing the
first state S1), Choice 1 (A1), Fixation 2, Stimulus 2 (S2), Choice 2 (A2),
Fixation 3, and Stimulus 3 (S3). The timings of the eight events were
recorded for each trial. Regarding the sluggish hemodynamic
response, we used the first fMRI volume recorded immediately after
the occurrence of a specific event as the neural response elicited by
that event. However, choices 1 and 2 were always followed by instant
fixation cues (Fixations 2 and 3, respectively). As a result, each fixation
cue after a choice always preceded the scanning of the choice-specific
response volume. Therefore, we labeled volumes scanned after Fixa-
tion 2 and 3 as choice-specific activity (A1 and A2, respectively).

We performed decoding analyses on voxel-level multivariate
patterns from ROIs of each participant. Decoding accuracy was
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calculated as a single value per participant basedonmultiple trials. The
group-level statistical tests were performed, treating each participant
as a random sample. No multiple comparisons correction was per-
formed since we tested pre-defined ROIs’ results individually and did
not perform an exploratory search for some specific effect using
multiple samples.

The association between a neural measure and a behavioral
measure was assessed using Pearson’s correlation coefficient across
participants. Here, investigating the relationship between neural and
behavioral measures via correlation were exploratory. Therefore, we
performed correlation analyses across all eight ROIs and corrected for
multiple comparisons using the Benjamini-Hochberg procedure (FDR,
q = 0.05). All correlation results (Figs. 3c, 4b) reflect this correction,
and the adjusted p-values are reported.

Shattering analysis
To investigate the representational geometry of goal and uncertainty
in multi-voxel patterns of brain regions, we computed the shattering
dimensionality (SD)11,41 by averaging test accuracies of all linear sup-
port vector machines (SVM) trained to dichotomize task variables.
Accordingly, the SD quantifies the separability of neural embeddings
associated with each class of a task variable. The number of total
dichotomies, which is equivalent to the number of ways of binary
labeling, is determined by the number of task variable classes. There
are 2C ways of binary labeling with the C classes. The actual number of
dichotomies required to be tested reduces to 2C−1 − 1 after excepting
the two cases of all positive or negative labeling and removing half of
the duplicated cases due to the symmetry of binary labeling. Since it is
based on binary classifiers, the chance level is 0.5.

To investigate the mixed embedding structure of specific goals
and uncertainty, we performed a shattering analysis on goal-
uncertainty combined classes (red-low, blue-low, yellow-low, red-
high, blue-high, yellow-high).We categorized all dichotomies based on
six classes into four types of classification: goal, uncertainty, linear, and
nonlinear (Supplementary Fig. 6). The goal type included three
dichotomies that separated each goal class from the others (e.g., red-
low& red-high vs. the other classes), and the goal SDwasdefined as the
average test accuracy of these three dichotomies (Fig. 3b). Similarly,
the uncertainty type included one dichotomy separating the low vs.
high uncertainty conditions (3 classes vs. 3 classes), and its test accu-
racy defined the uncertainty SD.

To determine linear and nonlinear type dichotomies, we assessed
linear separability in a random dataset with a linearly mixed repre-
sentation. Neural activity due to goal and uncertainty was expressed as:

y=Wgg+Wuu+b

where y is the N-dimensional neural response, g is a 3 × 1 one-hot
vector representing one of the three specific goals, u is a binary scalar
variable representing uncertainty, Wg and Wu are the linear weight
parameters for the two variables, and b is the N-dimensional bias
parameter independent of goal and uncertainty. Using N=3, we
generated 1000 sets of random parameters and assessed the linear
separability of all dichotomies for the six classes. MATLAB’s ‘percep-
tron’ function was used for linear classification. Nine dichotomies not
linearly separable across all random seeds were categorized into the
nonlinear type. Dichotomies not categorized into the goal, uncer-
tainty, or nonlinear types were categorized into the linear type.

Cross-condition generalization performance
To examine how the context condition (uncertainty) influences the
neural embedding of the goal, we quantified cross-condition general-
ization performance (CCGP), defined as the generalized accuracy of a
linear decoder across contexts. Because the uncertainty condition is
binary, two cross-decoding directions arise: (i) training on low-

uncertainty trials and testing on high-uncertainty trials, and (ii) the
reverse. The CCGP is defined as the mean test accuracy obtained from
these two directions.

A high CCGP indicates that the decoded variable (specific goals) is
disentangled fromcontextual condition (uncertainty levels). If the goal
representation is modulated by uncertainty, the CCGP will be lower
than the within-condition decoding accuracy. To capture the perfor-
mance decrease by comparing CCGPagainst the SD, we performed the
cross-uncertainty goal decoding analysis consistent with the shatter-
ing analysis. Specifically, we implemented three linear dichotomies
that discriminate each specific goal from the other two (red vs. blue,
yellow; blue vs. red, yellow; yellow vs. red, blue) and averaged their test
accuracies.

Consistent with all other classification analyses, we adopted a
leave-one-session-out validation scheme: each fMRI scanning session
served as the test set, while the remaining sessions constituted the
training set. For CCGP, this procedure was repeated in both cross-
condition directions (e.g., training on low-uncertainty data from the
remaining sessions and testing on high-uncertainty data from the held-
out session, and vice versa). The CCGP value is the mean of the two
resulting test accuracies.

All other analysis settings matched those used in the shattering-
dimension analysis.

Statistical analysis
Unless otherwise stated, hypothesis-driven tests were evaluated at
α = 0.05 (two-tailed). Because each ROI was selected a priori on the-
oretical grounds, statistical tests were performed independently for
every ROI without a family-wise correction across ROIs (Figs. 2, 3b,
4a)73,98,99. Where a single test involved several task events or SD cate-
gories within the same ROI, these comparisons were likewise planned
and reported without additional correction.

In contrast, the correlations between neural metrics and behavior
(Figs. 3c, d, 4b) were exploratory. Here we corrected across the eight
ROIs using the Benjamini-Hochberg false-discovery-rate procedure
(q = 0.05) and report the adjusted q-values. Exact p- and q-values are
provided in Supplementary Tables 2–4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human behavioral data used in this study are available in the
GitHub repository at https://github.com/brain-machine-intelligence/
RLdim-mvpa-model. The processed fMRI data generated in this study
(ROI-masked EPI) have been deposited in the OSF database (https://
osf.io/2gyue). The data used to create the figures in this paper are
provided in the Source Data file. Source data are provided with
this paper.

Code availability
The code used for the neural and simulation analyses in this study is
available in the GitHub repository (https://github.com/brain-machine-
intelligence/RLdim-mvpa-model) and archived at Zenodo (https://doi.
org/10.5281/zenodo.17412741)100.
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