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Clonal evolution and transcriptional
plasticity shape metastatic dissemination
routes in prostate cancer
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Prostate cancer is a highly heterogeneous disease, driven by genomic and
transcriptional changes that impact disease progression and metastatic
potential. The interplay between clonal evolution, transcriptional plasticity,
and tumour microenvironment is, however, poorly understood. Here, we
leverage and integrate single-nuclei RNA sequencing and whole-genome
sequencing from 43 spatially distinct tumour samples from five patients with
locally advanced prostate cancer to reconstruct clonal evolution trajectories
and transcriptional changes driving metastasis at single-cell resolution. We
find extensive clonal heterogeneity, including both monophyletic and poly-
phyletic metastatic dissemination, and ongoing clonal evolution in the primary
tumour after metastatic spread. Metastatic seeding converges on disease
trajectories involving both genomic and transcriptional changes, including
androgen receptor independence and activation of estrogen-, WNT- and JAK-
STAT- pathway activity, in spatially distinct areas. Our findings suggest an
intricate interplay between clonal evolution and cellular plasticity driving
metastatic seeding and point toward more integrative prognostic markers for
improved patient management.

Prostate cancer is characterised by a prolonged disease course and tumoral genetic diversity complicates efforts to unravel the evolu-
substantial molecular and clinical heterogeneity*. While most patients  tionary trajectories driving metastasis. Effective management of high-
do not experience fatal outcomes, approximately one in eight patients  risk primary prostate cancer requires a deep understanding of the
progresses to aggressive metastatic disease. High intra- and inter- intricate genetic, phenotypic, and tumour microenvironment (TME)
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factors that contribute to heterogeneity and metastatic potential,
particularly in the context of multimodal therapy concepts, including
neoadjuvant and adjuvant treatments as well as targeted systemic
therapies.

Our understanding of prostate cancer evolution has primarily
come from bulk genome sequencing studies. While most of these
studies have focused on single-biopsy tumour material, multi-region
bulk sequencing studies have revealed significant intratumoural het-
erogeneity linked to distinct tumour microenvironments®*. Different
metastatic seeding patterns have been identified from locally
advanced prostate cancer, mainly involving monoclonal dissemination
(a single primary subclone seeds all metastatic lesions), but multi-
region sampling approaches have shown that polyclonal dissemina-
tion is not uncommon™*~’,

While it is believed that high clonal diversity can serve as a strong
indicator of future tumour progression?, the metastatic dissemination
in prostate cancer is, nevertheless, often driven by a single dominant
lineage®®. The characteristic properties of seeding clones in the pri-
mary tumour are poorly understood, but both intrinsic and extrinsic
factors play an important role, including tumour microenvironment
(TME)° and signalling pathway activities'®. This highlights the need for
more comprehensive approaches to unravel the intricate clonal
architecture and population evolutionary dynamics of both primary
and metastatic lesions.

The cancer cells in prostate cancer are thought to arise from a
luminal epithelial cell of origin, situated with different cell types,
including luminal, basal, hillock, and club cells, as well as stromal and
immune cells" ™, Recent advancements in single-cell and spatial tran-
scriptomic sequencing technologies have advanced our ability to
study this cellular and molecular heterogeneity, providing insights into
the spatial relationship between diverse genetic and phenotypic pro-
files of both tumour cells and TME in primary prostate cancer*™".
Despite these advancements, there has been a relative paucity of stu-
dies focusing on both the genomic and transcriptional evolutionary
aspects of prostate cancer at single-cell resolution. Understanding the
evolutionary dynamics of prostate cancer is crucial, as it can reveal the
mechanisms driving tumour progression, metastasis, and resistance to
therapy.

Here, we integrate single-nuclei transcriptomics with whole-
genome DNA sequencing (WGS) from multiregional sampling to
explore the evolutionary pathways of prostate cancer and elucidate
convergent clonal and phenotypic routes and processes involved in
metastatic dissemination.

Results

Pathology-guided whole genome sequencing and single-cell
transcriptomics of advanced prostate adenocarcinoma

We examined 43 spatially distinct specimens from five patients with
locally advanced high-grade prostate adenocarcinoma with a
pathology-guided single-cell transcriptomics workflow to study
tumour heterogeneity and metastatic potential (Fig. 1a). Four patients
were treatment-naive, while patient PCAL25 received neoadjuvant
androgen deprivation hormone therapy six weeks before surgery.
Additionally, patient PCALO3 had synchronous bone metastasis (Sup-
plementary Fig. 1A). Following radical prostatectomy and pelvic lymph
node dissection, the whole prostate specimens were processed fol-
lowing a whole prostate cryopreservation approach™®, Ten regions with
high cancer cell content (>80%) were selected and marked in a topo-
graphic pathology report (Fig. 1b). Tissue punches were obtained from
these areas and, along with corresponding regional lymph node
metastasis samples (LNM), subjected to nuclei isolation, followed by
single-nuclei RNA sequencing (snRNA) and low-pass bulk WGS (Fig. 1c).
The spatial distances from the centre of all prostate samples per
patient (centroid) to the analysed area were calculated based on the
topographic pathology report.

After quality-based filtering, including the removal of doublets,
nuclei with high mitochondrial content, and ambient RNA (“Meth-
ods”), we retained more than 356,000 single nuclei from 43 samples
(Supplementary Data 1). Each patient contributed between 5 and 9
areas and at least one LNM sample (Fig. 1d, e and Supplementary
Fig. 1B). Malignant cells were predicted using Numbat®, and cell type
assignment was determined by consensus among several reference-
based cell-type prediction approaches, including scPred® and
SELINA”. As expected, the majority of cells captured (64.9%) were
cancer cells (Fig. 1d). Two distinct cancer cell populations (Ciliated and
Proliferating cells) comprising 0.46% and 1.0% of cancer cells, were
defined by motile cilia markers (FOX/1, DNAI1, DNAH1I) and prolifera-
tion markers (MKi67), respectively (Fig. 1f). In addition, the pro-
liferating cells exclusively expressed EZH2, a component of the
polycomb repressive complex 2 (PRC2), which is implicated in lineage
plasticity and cell cycle progression in prostate cancer”’. We also
detected normal luminal- (LE, 8%), hillock- (HE, 1.29%), club- (CE, 0.6%),
and basal epithelial cells (0.1%). The immune compartment consisted
of mononuclear phagocytic cells (MNPs, 3.04%), T cells (3.95%), B cells
(2.2%) and mast cells (0.08%), while the stromal compartment con-
sisted of fibroblasts (11%) and endothelial cells (3%) (Supplementary
Data 2). The PCAL25 tumour exhibited a high degree of fibrosis, as
indicated by a substantial stromal compartment contribution of 33.9%,
compared to the other patients (median 9.27%, range 4.71-20.4%,
Fig. 1e and Supplementary Fig. 1D). In contrast, PCAL37 contained the
highest proportion of tumour cells (81%), except for the lymph node
sample (55 tumour cells). This patient also exhibited minimal immune
compartment contribution compared with the other patients (aver-
aging between 5.9 and 13.5%). We found a high degree of heterogeneity
at the tumour microenvironment (TME) level, both between and within
patient samples, with TME entropy ranging from 0.3 to 2.7 (indicating
low and high TME heterogeneity, respectively) (Fig. 1e). To estimate
the spatial distribution of cell types, we computed their Gini coefficient
(Fig. 1g), a metric for inequality and cellular heterogeneity. The Gini
coefficients for most cell types were normally distributed across
patients (Supplementary Fig. 1C), indicating similar variability in their
spatial distribution among patients. Malignant and ciliated cells were
evenly distributed across areas, as indicated by their low Gini coeffi-
cient (Gini coefficient O=perfect equality, 1=perfect inequality),
whereas LE and B cells were among the cell types exhibiting higher Gini
coefficients, reflecting greater cellular heterogeneity.

Reconstructing tumour phylogenies at spatially distinct single-
cell resolution reveals extensive multi-lineage branching
We examined intra-tumour heterogeneity at the genetic level by inte-
grating our multi-region, high-resolution snRNA-seq and WGS data. To
reconstruct the phylogenetic trees for each tumour, we first inferred
copy number alteration (CNA) profiles for all areas. We integrated
genomic segments from both area-specific snRNA-seq and bulk low-
pass WGS data (Supplementary Figs. 2-4), to build phylogenetic trees
representing local tumour evolution (Fig. 2a-c, and Supplementary
Fig. 5). For comparison, we built phylogenetic trees from single-biopsy
bulk-WGS data (Supplementary Fig. 5, 6, and Supplementary Data 3)*.
All patient tumours exhibited extensive genetic heterogeneity at
the single-cell level, with numerous intra-prostatic lineages (Supple-
mentary Fig. 5). Our single-biopsy bulk-WGS tree structures were
overall in agreement with the single-cell multi-region phylogenetic
trees, but only captured a minor fraction of the clonal diversity. We
note that the branch length of our high-resolution phylogenetic trees
is based on the number of CNAs, and is, therefore, only a simplistic
estimate of the actual evolutionary timing. In the case of PCAL37, clone
PCAL37-C18 represented the most recent common ancestor (MRCA),
characterised by copy number losses of chromosomes 8p (NKX3-1),
17p (TP53), 18, and smaller deletions on chromosomes 1q, 2p, and 4q,
along with an 8q arm gain including MYC (Supplementary Fig. 5A, B).
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Fig. 1| Multiregional sampling of radical prostatectomy patient tumours. a Five
locally advanced prostate cancer patients with radical prostatectomy: PCAL37,
PCAL34, PCAL25, PCAL10 and PCALO3. Created in BioRender. Weischenfeldt, J.
(2025) https://BioRender.com/jglk9y9. Prostate organs were sliced according to
the schematic. Prostate zones are coloured. PZ., Peripheral Zone (light orange); TZ.,
Transition Zone (purple); CZ., Central Zone (red); AFS, Anterior Fibromuscular
Stroma (green); Tumour (grey); LNM, lymph node metastasis (brown).

b Representative example of pathologist 3D prostate slices and areas selected for
analysis (red dots). Prostate zones are marked in dashed lines, coloured as in (a),
and tumour-containing areas in grey. ¢ Single nuclei were extracted from fresh-
frozen tissue punches and used for both snRNA-seq and bulk low-pass WGS. Right,
spatial 3D representation of selected areas relative to the centroid of the prostate.
Created in BioRender. Weischenfeldt, J. (2025) https://BioRender.com/5tar688.

d UMAP showing the integrated data from all five patients. Semi-supervised inte-
gration was used to integrate datasets based on cell-type identity. Four major cell
type clusters were present with the following cell type groupings: immune com-
partment (mast cells (light pink), MNPs (dark purple), T cells (dark pink) and B cells
(coral)); stromal compartment (fibroblasts (light blue), endothelial cells (dark
blue)); normal epithelial cells (luminal epithelial (LE, light green), club epithelial
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(CE, olive green), hillock epithelial (HE, yellow), basal (amber) and glial cells (mint
green)); malignant epithelial cells (malignant (teal green), proliferating (light pur-
ple) and ciliated (orange)). e Barplot showing cell-type composition across areas for
each patient, coloured by cell type as in (d). Tiles above show the number of cells
captured per area, tumour content, TME entropy, distance from centroid, prostate
anatomical zones, and Gleason grade. f Dot plot of cell-type specific marker genes.
Dot size represents the percentage of cells within a group expressing the marker,
and colour indicates scaled average expression within the cell group. Avg.exp.,
average expression. g Cell type variation. Left - bar plot of the Gini coefficient by cell
type across all samples with cell types and number of samples for LE (43), Fibro-
blasts (35), Basal (10), Endothelial (34), MNPs (37), T cells (24), CE (6), Mast (6), B
cells (13), HE (2), Glial (1), Malignant (43), Proliferating (22), Ciliated (10). Middle -
box plot of cell type proportions, aggregated across all samples. Coloured by cell
type asin (d). Right - tile plot of the percentage of samples in which each cell type is
present. Panels (d-g) represent the integrated data of 356,860 single nuclei from
43 samples from all five patients. Box plots show the median (line), interquartile
range (box), whiskers extending to the most extreme data points within 1.5x the
interquartile range, and individual points beyond the whiskers representing
outliers.
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PCAL37 diverged into two main branches, one marked by a 19q13
amplification, which further evolved into multiple lineages. Addition-
ally, we found support for a subclonal shattering of chromosome 19 in
this clade (Supplementary Fig. 4). We identified several lines of evi-
dence for convergent evolution, for example, with clones PCAL37-Cl1
and PCAL37-Cé6 both acquiring independent subclonal 12p (CDKN1B)
losses. The PCAL37-Cl1 clone, responsible for metastatic seeding to the
lymph node, constituted the majority of the PCAL37 tumour (cancer
cell fraction (CCF) of 0.498). Areas TO5 and TO8, which were spatially
close in the prostate (1 unit pairwise distance, with a median 2.6 units,
and a standard deviation of 1.2 units for all areas from patient PCAL37),
were also similar at the expression and clonal composition level
(Fig. 1e, Supplementary Fig. 5A, B and 7A, B). Clones detected in more
than one area were from areas in close spatial proximity, as expected.
Interestingly, the MRCA clone (PCAL37-C18) was located at the basis of

the prostate, far from the largest tumour lesion, suggesting extensive
intra-tumour dissemination.

We found numerous subclonal and recurrent copy number gains
in PCAL34 (Supplementary Fig. 5C, D). Truncal events included losses
of chromosomes 8p and 13, 8q gain, and small deletions on chromo-
somes 2, 5, and 6. The earliest branching event was characterised by
whole-genome doubling (WGD). The other clade remained diploid but
further split into multiple lineages, all characterised by large genomic
gains of chromosomes 1q21.2-44, 3, and 7. Tumour cells in area TO9
contained both tetraploid and diploid clades while a distinct lineage,
comprising clones PCAL34-C6 and PCAL34-C5, was restricted to area
TO6 (Supplementary Fig. 7C). This clone acquired additional copy
number gains across the genome, including on chromosomes 3, 6, 12,
14, 17q, 19 and 21 (Supplementary Fig. 4). The observed convergent
evolution of independent copy number gains of chromosomes 3 and 7
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Fig. 2 | Reconstructing phylogenetic trees from multiregional sampling
uncovers genomic heterogeneity and transcriptional plasticity during tumour
evolution. a Heatmap showing copy number gains and losses across the genome of
PCALIO (n=46,404 cells). Gains are depicted in red and losses in blue, colour
intensity corresponds to the level of copies lost or gained. Baseline, 2N or 4 N, is
neutral (Neu, white). The left side bars show clustering of cells, coloured by clone
ID, area ID, and ploidy. 2 N, diploid; 4 N, tetraploid. b UMAP of all cancer cells for
patient PCAL10 (n = 46,388 cells). Cells are coloured by clone ID as in A. Cells
clustering together from the same area are circled, coloured by area ID as in (a).
Tumour areas are LNM1 (dark red); TO2 (red); TO3 (orange); TO4 (light orange); TOS
(yellow); TO6 (light green); TO7 (teal); TO9 (blue); T10 (purple). ¢ Reconstructed
phylogenetic trees of PCAL1O tumour. Top left, WGS-based tree from a bulk DNA
single biopsy (dashed grey rectangle). Colour indicated the closest clone found ina
single-cell tree. Right, multi-region scRNA-seq based tree. Branch length and the
number on the branch indicate the number of events. Major events are marked,
such as WGD (yellow star) and MSH2 locus deletions: focal deletion (chr2:42.8-47.9
Mbp, red arrow), large locus deletion (chr2:42.5-69.3 Mbp, orange arrow) and
whole 2p arm (blue arrow). Seeding clones are represented with a dashed red
rectangle. d Pathologist report for PCAL1O showing the clonal composition of
cancer cells in each captured area. A lymph node is also shown, with an arrow

pointing from a seeding clone. Subclones deriving from the same lineage are shown
within the clone. Prostate zones are marked in dashed lines and tumour spread in
grey. PZ., Peripheral Zone (light orange); TZ., Transition Zone (purple); CZ., Central
Zone (red); AFS, Anterior Fibromuscular Stroma (green). e Mean pathway activity
for each clone in each area (n = 46,388 cells) in colour scale from -1 (blue) to 1 (red).
Clone colour marked as in c, the seeding clone is highlighted. f Box plots showing
pathway activities in seeding (PCAL10-C2 clone, n = 24,412 cells, green) versus non-
seeding cells (n=19,073 cells, grey) for Androgen (P=9 x107>*) JAK-STAT
(P=<1x10"2%), Oestrogen (P=2.4 x10™), and WNT (P <1x107%°), Statistical
comparisons between seeding and not seeding cells were performed using a two-
sided Wilcoxon rank-sum test. Effect size was estimated using rank-sum correla-
tion. Asterisks show p values; 8, effect size. g Mean activities of selected tran-
scription factors (TFs) per clone in colour range from -2 (blue) to 2 (red) in for
clones separated by proliferation marker (pink), AR positive (yellow) or none
(white), based on values in (e). Violin plot shows AR activity for each clone
(n=46,388 cells). The central line indicates the median; the box limits represent the
interquartile range (IQR; 25th-75th percentiles); whiskers extend to the minimum
and maximum values. Box plots show the median (line), interquartile range (box),
and whiskers extending to the most extreme data points within 1.5xinterquartile
range. Clone colour marked as in (c).

suggests a selective advantage in this prostate tumour. This is sup-
ported by the retention of four copies of these chromosomes after
WGD, while most of the genome was reduced to a 3 N state (Supple-
mentary Fig. 5D). The PCAL34-Cl14 clone from area T10 seeded the
lymph node and acquired additional gains of chromosomes 5p and 14.

PCALO3 was the largest tumour (Supplementary Fig. 1A). Despite
an early WGD event, PCALO3 surprisingly showed the lowest clonal
diversity (Supplementary Fig. 5E, F). We found 8p deletion and gains of
chromosomes 8q and 20q to be early events, with WGD followed by
several whole chromosome losses, present in the majority of the
clones, which was supported by our DNA-based WGS copy number
profiles across the examined areas (Supplementary Fig. 3A). The lar-
gest clone PCALO3-C2 (CCF 0.579) spanning four areas (Supplemen-
tary Fig. 7E, F), acquired additional rearrangements on chromosome
11p, and gave rise to smaller subclones PCAL03-C3, PCALO3-C5 and
PCALO3-C7, CCF of 0.043, 0.276 and 0.127, respectively (Supplemen-
tary Fig. 5E, F). A branching event gave rise to one leaf clone spanning
areas TO9 and T10 and another leaf giving rise to metastatic seeding,
with an additional 4q focal gain and 7p loss following lymph node
dissemination. We note that two different LNMs were subjected to
single-biopsy deep WGS and to snRNA-seq from PCALO3. Interestingly,
while the phylogenetic trees were comparable in the primary tumour,
the single-biopsy WGS-based phylogenetic tree inferred a different
seeding clone (Supplementary Fig. 7C), suggesting polyphyletic
metastatic dissemination, where several distinct clones in the primary
tumour independently seed metastases.

Acquired mismatch repair deficiency and JAK-STAT signalling in
metastasising lineage

Genomic instability is associated with aggressive disease and meta-
static competency®**. We found a particularly striking example of
copy number instability in PCAL10, with early truncal deletions of
chromosomes 6q13-23.3, 8p, and 18, followed by WGD in one branch,
which was not detected in the single-biopsy bulk WGS tree, while the
other branch remained diploid (Fig. 2a, c). In the diploid lineage,
clone PCAL10-C2, with the least percentage of genome altered (PGA),
emerged as the largest clone (CCF = 0.459), spanning three areas
with the highest proportion of proliferating tumour cells (Fig. 1,
Supplementary Fig. 8). We also identified monophyletic seeding from
PCAL10-C2 to the lymph node. Expression-based clustering identi-
fied TO4 as the most likely metastatic seeding area (Fig. 2b-d).
Interestingly, we found the lowest Gleason grade in this area (Fig. 1e),
suggesting that pathology-based tumour grading should be accom-
panied by genomic-based analysis to identify clones with metastatic

potential. A second branching event in the diploid lineage gave rise
to clones with major genomic losses/gains, all confined to areas TO9
and T10. Moreover, both areas contained clones from diploid and
tetraploid lineages (Fig. 2d), pointing to local migration and inter-
mixing of distinct clonal lineages within an individual prostate
tumour. To further investigate somatic alterations in these regions,
we performed deeper WGS on areas TO2 and T09. Area T02, which
contained the PCAL10-C2 clone, exhibited a biallelic deletion at the
MSH2/6 locus (2p21-p16.3, expression log2 fold-change =-3.7, T02
versus T0O9) and concomitant increased levels of the DNA mismatch
repair (MMR) mutational signatures SBS15 and SBS21, and a micro-
satellite instability (MSI) phenotype compared with area TO9 (Sup-
plementary Fig. 9).

WGD is a prevalent event observed across various cancer types
and is strongly associated with genomic instability, metastatic disease
and poor clinical outcomes®*?. Relying solely on bulk WGS makes it
challenging to accurately determine the subclonal composition of a
sample. For example, our multi-region WGS alone indicated area TO5
to be 4 N, with subclonal single-copy losses of chromosomes 1, 3 and
20 (Supplementary Fig. 10), but our snRNA-seq-based clonality
revealed two distinct cell clusters in almost equal proportions, with
divergent loss of chromosomes 1 and 3 in clone PCAL10-C5 and
chromosome 20 in clone PCAL10-C4.

Metastatic seeding is a crucial step in the progression of localised
prostate cancer to lethal metastatic disease. Therefore, we aimed to
identify pathway activity unique or shared across subclones within the
entire tumour, as well as specific to the seeding clone, using
decoupleR?. As expected, pathway activity was similar between clones
derived from the same lineage within an area (Fig. 2e). For instance,
clones PCAL10-C4 and PCAL10-CS5 clustered together based on path-
way activity, in contrast to PCAL10-C2 from areas T02, TO4, and T06.
We found enriched JAK-STAT activity, associated with lineage plasticity
and resistance to Androgen Deprivation Therapy (ADT)?, exclusive to
the PCAL10-C2 clone, regardless of the area (Fig. 2e, f). Notably, the
seeding clone and metastatic clones (in the LNM) exhibited low
androgen activity. Based on mean androgen activity, we grouped
clones into androgen-positive and androgen-negative, which was fur-
ther confirmed by inferred AR transcription factor (TF) activity (Fig. 2g
and Supplementary Fig. 11A). AR-positive clones had higher NCOA3
activity, a steroid receptor coactivator’’, while AR-negative clones
were enriched in SHOX2 and MECP2, both of which promote cell
growth and proliferation®*?. These findings suggest that AR-negative
copy number unstable lineages can drive the clonal evolution towards
metastatic seeding.
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Fig. 3 | Multiclonal seeding to regional lymph nodes. a Reconstructed phylo-
genetic trees of PCAL25 tumour. Top left, WGS-based tree from a bulk DNA single
biopsy (dashed rectangle). Right, multi-region scRNA-seq based tree (see Fig. 2 for
details). Dotted red line represents clones detected within the lymph node. WGD
(yellow star) and chromothripsis (blue triangle) is shown. b Pathologist report for
PCAL2S showing the clonal composition of cancer cells in each captured area. Both
lymph nodes are shown; arrows point from an area most likely containing the
seeding clone. Subclones deriving from the same lineage are shown within the
clone. Prostate zones are marked in dashed lines and tumour spread in grey. PZ.,
Peripheral Zone (light orange); TZ., Transition Zone (purple); CZ., Central Zone
(red); AFS, Anterior Fibromuscular Stroma (green). ¢ UMAP of all cancer cells of
patient PCAL2S. Cells are coloured by clone ID as in (a). Cells clustering together
from the same area are circled and marked. Tumour areas are LNM1 (dark red);
LNM2 (red); TO2 (orange); TOS (light yellow); TO6 (light green); TO8 (teal); T10

(purple). d Mean pathway activity for each clone in each area. Clone colour marked
as in (a). e Mean activities of selected transcription factors (TFs) per clone in the
area. Violin plot shows AR activity. The central line indicates the median; the box
limits represent the interquartile range (IQR; 25th-75th percentiles); whiskers
extend to the minimum and maximum values. Clone colour marked as in (a).
fUMAP showing cancer cells in lymph node 1. Top - coloured by clone ID, bottom—
by ploidy. 4 N, tetraploid; 2 N, diploid. g Genome view plots for cancer cells of LNM1
grouped by ploidy. Top - genome-wide copy number segmentation for 4 N and 2N
groups; bottom—genome-wide b-allele frequency (BAF) of each ploidy group.
Window size 1 Mb; coloured by ploidy. h UMAP of LNML1 cancer cells coloured by
cell clusters. Clone separated into three UMAP-based cell clusters #1, #2 and #3.
Bottom violin plot shows gene expression counts (y-axis) of selected genes for each
cell cluster and clone (x-axis). Panels c, d, e, n=23,081 cells from PCAL25. Panels
f, g, h, n=803 cells from PCAL25.

Early chromothripsis followed by polyphyletic metastatic
seeding to regional lymph nodes

Chromothripsis is a one-off genomic shattering process, often
encompassing simultaneous disruption of several cancer genes and
associated with aggressive disease™. Although the clonality analysis

included a limited number of samples (see Methods), our clonal
reconstruction of PCAL25 primary tumour identified clone PCAL25-C3
in area T10 as the MRCA, with TP53 loss and chromothripsis of chro-
mosome 6 (Fig. 3a and Supplementary Fig. 3C). We found the MRCA to
branch off, leading to parallel multi-lineage dissemination to two

Nature Communications | (2025)16:11338


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-66704-w

regional lymph nodes, LNM1 and LNM2. Single-cell analysis revealed
that metastatic tumour clades originated from polyphyletic clonal
lineages within the primary tumour (Fig. 3b). In contrast, only a single
monophyletic metastatic spread was detectable in the single biopsy
bulk WGS tree (Fig. 3a). We observed two clades seeding LNM1, a direct
descendant of PCAL25-C3 in T10, and another with acquired WGD in
areas TO2 and TOS. This was followed by multiple subclonal amplifi-
cations in chromosomes 7, 10, 11, 13, and 20, as well as large deletions
in chromosomes 2, 4, 9, 15, 16q, and 22q (Supplementary Fig. 5H). We
traced a third metastatic seeding to LNM2 back to area T10 (Fig. 3a, b).

Next, we examined common pathway activities for clones of dif-
ferent lineages within each lymph node and seeding clones in the
primary tumour. Again, we found low androgen activity in seeding
clones (Fig. 3¢, d). The PCAL25-C3 metastatic lineage displayed tran-
scriptional plasticity, with exclusive WNT activity in the metastatic
LNM1, while AR and JAK-STAT pathway activity was increased in the
other metastatic area, LNM2. In support, we found differential
enrichment of TFs in each LNM (Fig. 3e, Supplementary Fig. 11B), with
LNML1 and the seeding area having higher activity of SATB2 and TCF7,
a TF negatively regulated by AR*. Both TFs are implicated in activating
the WNT pathway and epithelial-mesenchymal transition (EMT)***,

Samples with low tumour purity are often excluded from WGS
analysis, as low CCF can hinder the detection of somatic mutations and
lead to inaccurate reconstruction of clonal structures®. Using our
snRNA-seq approach, we estimated LNM1 CCF to be 0.172. Despite low
tumour purity, we were able to detect multi-lineage seeding events. In
total, we identified 14% of the tumour cells to be diploid (114 cells) and
86% of tetraploid lineages (689 cells) (Figs. 3f, g, 2N cells (PCAL25-C2;
C3; C4) in orange. 4 N cells (PCAL25-Cl) in blue), providing further
support for WGD following the initiating chromothripsis event on
chromosome 6. The single-cell resolution also allowed us to explore
further clonal heterogeneity (Fig. 3h and Supplementary Fig. 12). We
detected heterogeneous expression of long non-coding RNAs, impli-
cated in prostate cancer tumorigenesis, such as ARLNCI and SChLAPT®’.
All 4 N clones exhibited higher expression of OVECUT2, a TF implicated
in suppression of AR and progression to lethal disease®. Notably,
PCAL25-C2 from the 2 N lineage was the most distinct from all LNM1
resident clones, while PCAL25-C3/C4 clones clustered together with a
subset of C1 cells.

These findings suggest convergent transcriptional programmes
across different lineages, including AR suppression, JAK-STAT and
WNT activity, even with distinct genotypes.

The impact of spatial organisation on clonal evolution and
transcriptomic profiles in primary prostate cancer
The clonal composition of adjacent areas was more similar than distant
ones, as expected (Figs. 2, 3). We also found a positive correlation
between the phylogenetic distance between tumour cells and the TME
composition (P=0.01, R=0.25, Pearson correlation, Supplementary
Fig. 13A). To complement our centroid-based distance analysis (Fig. 1),
we also computed pairwise Euclidean distance between each tumour
area, to investigate the spatial relationships between individual clones.
Neither the phylogenetic distance nor TME were proportional to the
pairwise distance between areas (Supplementary Fig. 13B, C), sug-
gesting a connection between TME and tumour cell composition at
shorter distances, but also that tumour and normal cell types follow
non-linear distributions at larger distances within a prostate tumour.
We observed tumour cells preferentially in the peripheral and central
zones, with higher clonal diversity (entropy) in the central zone
(Supplementary Fig. 13E, D). In contrast, the transition zone was
occupied by fewer tumour cells with lower clonal diversity (Supple-
mentary Fig. 13F), suggesting that clonal expansions may be more
constrained in this region.

Our spatially resolved analyses implied a strong interplay between
transcriptional programmes and the clonal evolution in prostate

cancer. AR signalling is the most common driver for prostate cancer
growth, but accumulating evidence suggests AR-independent tran-
scriptional reprogramming can drive lineage plasticity in tumour
cells?*. Overall, pathway activities exhibited varying degrees of intra-
and inter-tumour heterogeneity, with, for example, Oestrogen,
androgen and JAK-STAT pathway activity having high and low intra-
tumour heterogeneity, respectively (Gini index, Supplementary
Fig. 14F), and with the majority of pathways exhibiting patient-specific
activities (pairwise variance test, Supplementary Data 4 and Supple-
mentary Fig. 15). For example, PCAL25 (ADT-treated) was among the
tumours with the lowest AR activity, as expected. To investigate the
contribution of transcriptional programmes to the clonal evolution
and metastatic seeding areas across all patient samples, we integrated
and compared TME components, tumour cell states, which represent
gene modules derived from a pan-cancer single-cell RNA-sequencing
study*® including prostate cancer, and key pathways within and
between patient samples using principal component analysis (PCA)
(Fig. 4a). We found PC1 (20.79%) to be explained primarily by (posi-
tively correlated with) tumour content and negatively correlated with
MNPs, TME diversity, Grade group and T cell proportion. PC2 (12.66%)
was explained primarily by lymphocyte content and normal luminal
prostate cells. The presence of areas with low tumour content, high
immune cell content and high Gleason grade (Fig. 4a and Supple-
mentary Fig. 16) suggests immunologically ‘warm’ areas in the prostate
with tumour-immune interactions driving more aggressive cell phe-
notypes. High immune cell content also correlated with MSH2 homo-
zygous deletion, whereas TP53 loss (17p) and MYC gain (8q) were both
linked with immune cell content depletion and low JAK-STAT signalling
(Supplementary Fig. 16B), supporting the previously established
immune suppressive roles of TP53and MYC mutations in cancer*-*2. We
also found a strong contribution of proliferating tumour cell content
and JAK-STAT activity in PC2 (Fig. 4a). JAK-STAT activity, which we also
found elevated in the seeding area of PCALIO (Supplementary
Fig. 14C-F), can drive immune evasion and increased lineage plasticity
in prostate cancer in an AR-independent manner®. Changes in EMT
signalling and mast cells correlated with PC3, whereas PC4 was mainly
explained by ciliated tumour cells, endothelial and fibroblasts, as well
as metal response, which is linked with homoeostasis, cell differ-
entiation, and proliferation*°. PC5 was explained by stress signalling
and tumour areas towards the periphery of the tumour (high centroid
distance).

Interestingly, we found metastatic seeding areas correlating with
PC6 and PC7 together with ciliated and proliferating tumour cells. To
further characterise these cells, we investigated their spatial properties
and key signalling pathways. We found ciliated cells to be located
preferentially near the centre of the prostate gland (anti-correlation
with centroid distance), whereas the metastatic seeding areas were
located preferentially towards the periphery (Fig. 4b, Supplementary
Fig. 16). Ciliated tumour cells were also enriched for TRAIL (Tumour
necrosis factor-related apoptosis-inducing ligand) pathway and
depleted for WNT signalling. In agreement, WNT signalling is known to
repress TRAIL-induced apoptosis and immune response modulation®’.

Hormone signalling plays a pivotal role in prostate cancer dis-
semination. Whereas androgen response genes were reduced at the
transcriptional level in the metastatic seeding area, we found sig-
nificant enrichment of oestrogen pathway response genes (P=0.017,
R=0.39, Pearson correlation, Fig. 4b), which are important for pro-
gression in primary untreated prostate cancer****. We also found
seeding areas to exhibit a trend towards increased WNT and TRAIL
signalling, both markers of cell plasticity.

These findings imply spatially distinct areas with different clonal
and TME compositions, and suggest that seeding clones, phylogen-
etically closely related to the metastasis, are localised in spatially
confined regions in the primary tumour. These regions tend to localise
towards the periphery of the prostate, populated by tumour cells with
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elevated levels of oestrogen and WNT signalling and reduced andro-
gen pathway signalling (Fig. 4c), accompanied by extensive and
recurrent rewiring of transcriptional programmes in primary
tumour cells.

Discussion

Metastasis is the single most important clinical event in the progres-
sion of prostate cancer. However, the characteristics of primary
tumour cells with metastatic potential have been difficult to study due
to the inherent heterogeneity of the disease. Here, we have approa-
ched this key question through a detailed investigation of the tumour
cell types, TME composition, transcriptional changes and their spatial
relationship at the single cell level. Reconstructing phylogenetic trees
revealed both monophyletic and polyphyletic dissemination, with
instances of several metastatic tumour clades from polyphyletic clonal

lineages within the primary tumour. We find tumour areas that are
phylogenetically closely related to the metastasis to exhibit distinct
transcriptional and genomic characteristics, including androgen
independence. This suggests that seeding clones are located in spa-
tially confined regions, often located toward the periphery of the
prostate. Despite our comprehensive multi-region sampling approach,
we acknowledge that the spatial resolution of our sampling is, never-
theless, limited, and that the presence of metastatic clones in a given
region does not exclude their existence elsewhere in the tumour. In
extension, spatial relationships within a prostate tumour can be con-
voluted, following non-Euclidean paths, and additional analyses are
warranted to explore and verify this finding. We also found that single
biopsy bulk-WGS, the current standard for clonal evolution analysis,
only captures a fraction of the tumour heterogeneity, including
metastatic seeding areas. Combined with our finding that Gleason
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grade does not always correlate with metastatic potential, as sup-
ported by prior studies®*® this has implications for clinical manage-
ment of prostate cancer. Our findings imply that single-area biopsies
assessed by genome sequencing and/or pathology grading will be
suboptimal in detecting locally advanced disease. An important goal in
prostate cancer genomics is to identify molecular alterations that can
distinguish high-risk patients who require definitive treatment. We
found extensive clonal divergence in all five analysed patients, with
occasional polyphyletic seeding, and minimal convergence in somatic
driver aberrations in the seeding clones. Although methods involving
single-cell and spatially resolved analyses of prostate cancer genomics
are gaining momentum, they are currently limited to academic
research due to cost and lack of clinical evidence. Our results suggest
that the current standards of single-biopsy panel sequencing or shal-
low WGS are likely to miss important metastatic seeding events, and
that spatially resolved analyses may have clinical benefits. Moreover,
the androgen-independent seeding may have direct implications for
ADT treatment efficacy, as these cells are likely to harbour pre-existing
resistance mechanisms against systemic treatment.

We also find substantial evidence for lineage plasticity as a key
step in metastatic potential, including suppression of AR signalling and
up-regulation of JAK-STAT, oestrogen-like signalling and the WNT
pathway. Androgen independence is known to be an important step in
disease progression, but has been identified primarily in castration-
resistant prostate cancer (CRPC)". Interestingly, a recent study iden-
tified four major subtypes, including a WNT- subtype, present in 5-7%
of CRPC, and involving the transcription factor TCF7*°, a key cancer
driver of lineage plasticity**—also expressed in WNT-activated cells in
PCAL25. We note that this patient received prior ADT, which could
impact the cellular plasticity towards a WNT-subtype. The identifica-
tion of key characteristics of primary tumour regions with metastatic
potential holds promise for integrative biomarker discovery. Lineage
plasticity can give rise to distinct tumour cell populations and increase
the ability of the tumour to change and adapt to treatments. We also
identified two rare and poorly characterised cancer cell states*’; cili-
ated and proliferating. The latter were characterised by high £ZH2 and
low AR expression, and a near-uniform spatial distribution, suggesting
that they may represent a rare but important subtype of cancer cells.
TME, such as hypoxia and stress, correlated with the presence of cili-
ated cells*’. However, their significance in prostate cancer is poorly
described, although ciliated epithelial cells have been reported in cri-
briform prostate cancer®. It is conceivable that the ciliated cancer cell
state is an alternative differentiation endpoint triggered by a harsh
local TME®. Future studies, including functional assays, will be needed
to elucidate the function and relevance of these cells in prostate
cancer.

While our study provides a step-change in our understanding of
the genetic heterogeneity and transcriptional plasticity leading to
intra-tumour heterogeneity and metastatic dissemination, it is not
without limitations. First, while our study investigated more than
350,000 cells from 43 tumour areas, larger and better-powered study
cohorts will be needed for validation. We find evidence for transcrip-
tional plasticities across the cohort, but note that our cohort is not
powered to draw broader conclusions on the prevalences of e.g. JAK-
STAT-, Oestrogen- and WNT signalling. Second, additional transcrip-
tional programmes and clonal evolution patterns not present in our
cohort are likely to contribute to driving metastatic dissemination, e.g.
stem-like and neuroendocrine programmes®. While CNAs were suffi-
cient to identify the majority of the clonal heterogeneity, using single-
nucleotide variants would provide even greater resolution, in parti-
cular for copy-number-stable tumours. Third, we used locoregional
lymph nodes as metastatic sites to investigate dissemination patterns.
Distant metastatic organs such as bone and liver are considered opti-
mal proxies for aggressive metastatic disease. However, a recent study
on genetic heterogeneity from multi-region primary and metastatic

sites found that locoregional lymph nodes represented a good marker
for aggressive disease’.

Future therapeutic interventions will need to address the intra-
tumour heterogeneity of the disease. Prostate cancer is considered an
immunologically ‘cold” tumour, and clinical trials with immu-
notherapies have been disappointing®™ in the metastatic setting. We
found areas with low tumour content and high Gleason grade to be
infiltrated with lymphocytes, suggesting the presence of immunolo-
gically warm areas inside the prostate tumour. We also observed
tumour areas containing clones with homozygous MSH2 loss with
higher lymphocyte infiltration. This finding aligns with previous
studies®’, which highlight the potential for immunotherapy for pros-
tate cancer patients with MSH2-mutated tumours. Moreover, the
extensive heterogeneity also implicates a high likelihood of resistant
clades of tumour cells. Our study emphasises both the need to sample
multiple regions of prostate tumours and motivates integration of
both genetic and transcriptional biomarkers to identify and target
clones with metastatic competency.

Methods
Patient material
Sample collection, consent and clinical data. Five prostate cancer
patients with high-risk, locally advanced primary prostate adeno-
carcinomas were selected from the German ICGC cohort®. Written
informed consent and ethical approval from the patients were
obtained in accordance with ICGC guidelines. The study was approved
by the Ethics Committee of the Arztekammer Hamburg (Hamburg
Medical Association) under protocols PV3552 and PV4679. The study
followed the Declaration of Helsinki guidelines and did not use sta-
tistical methods to determine sample size due to its exploratory nat-
ure. All patients underwent radical prostatectomy with lymph node
dissection as the primary treatment for prostate cancer, except for
patient PCAL25, who received neoadjuvant androgen deprivation
therapy (Gonadotropin-Releasing-Hormone (GnRH) analogue) 6 six
weeks before surgery. Patient PCALO3 presented with oligometastatic
disease with bone metastasis at the time of surgery. Two different
synchronous LNMs were obtained from this patient, one for the initial
single biopsy WGS and another LNM for multi-region snRNA-seq.
After surgery, following a predefined scheme as described in
Gerhauser et al.”?, specialised pathologists dissected each prostate. A
single biopsy was isolated and subjected to deep bulk WGS?. The
precise location of this sample in the 3D coordinate system of the
prostate is unknown. For multi-region sample-isolation, tissue blocks
were embedded in a tissue-freezing medium, cryopreserved and
stored at —80 °C. 10 punches (1.5 mm in diameter) were taken from
different areas of the primary tumour and matching lymph node
metastases from each patient. In total, we obtained 66 samples: 50
primary tumour biopsies, 16 lymph node biopsies. The selected
tumour areas had more than 80% of tumour cell content, according to
the pathologist. Gleason grading was reported for each biopsy.

Single-nuclei transcriptomics

Tissue dissociation. Fresh-frozen prostate cancer tissue punches were
processed using an adapted version of Pfisterer et al. protocol®. Shortly,
frozen tissue punctures were mechanically dissociated using dounce-
homogenizer: 5-10 strokes with pestle A, following 20-25 strokes with
pestle B, in an ice-cold homogenization buffer (HB): NIM with 1mM DTT
(Invitrogen), 1X Protease inhibitors (Roche), 0.4 U/ul RNAse inhibitors
(Takara), 0.2 U/ul Superasin (Invitrogen) and 0.1% (v/v) Triton X-100. To
make HB we first made a nuclei isolation medium (NIM): 250 mM
sucrose, 25 mM KCI, 5 mM MgCl,, and 10 mM tris buffer, pH 8. Homo-
genised tissue suspensions were filtered through a 40 um mesh filter and
centrifuged at 1000 x g for 8 min, 4 °C. To remove debris, samples were
subjected to equilibrium density centrifugation: sample pellets were first
resuspended in 250 ul HB and then mixed 1:1 with 50% iodixanol solution

Nature Communications | (2025)16:11338


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-66704-w

(50% v/v OptiPrep™ (Sigmay), 25 mM KCI, 5 mM MgCl,, 10 mM tris buffer,
pH 8.0, 1mM DTT, 1X Protease inhibitors, 0.4 U/ul RNAse inhibitors, 0.2
U/ul Superasin). 500 ul of the resulting suspension was layered over
500ul 29% iodixanol solution (29% v/v of 50% iodixanol, diluted
with NIM, supplemented with DTT (1 mM), Protease inhibitors (1X),
RNAse inhibitors (0.4 U/ul), Superasin (0.2 U/ul)) in a 22ml Ultra-
Clear Centrifugation Tube (Beckman Coulter). Samples were cen-
trifuged at 14,000 x g for 22 min, 4 °C. Then, the remaining nuclei pellet
was resuspended in 1X PBS, supplemented with 2.5mM MgCl,, 1mM
DTT, 0.50% BSA and 0.2 U/ul RNAse inhibitors. Sample quality was
assessed under a microscope and nuclei were counted with a
hemocytometer.

snRNA-seq library preparation and sequencing. Single-nuclei sus-
pensions containing 16,000 nuclei were loaded to the Chromium
NextGEM chip (10X genomics), aiming to capture 10,000 nuclei per
area. snRNA-seq libraries were constructed either with Chromium Next
GEM Single Cell 3’ v3 or v.3.1 Reagent Kit, following manufacturer’s
protocol. 10X single-nuclei libraries were sequenced on Illumina
NovaSeq-6000 platform, using NovaSeq S4 flow cell with paired-end
150 bp mode (28 x 10 x 10 x 281 bp configuration), at the Department
of Genomic Medicine at Rigshospitalet, Denmark. We sequenced on
average 46,000 reads (range 22.5K-92K) per cell (Supplemen-
tary Data 1).

snRNA-seq processing. We used 10X Cell Ranger software (version
5.0.0) with default parameters for alignment to human genome
reference hg38 (including intronic sequences), demultiplexing, bar-
code processing and gene x cell count quantification. To remove
technical artefacts from ambient RNA contamination, CellBender**
(version 0.2.0) was used with the following parameters: 10,000
expected cells, 25,000 total droplets included, a low count threshold
of 15, and all remaining parameters set to default. In samples with
higher background RNA contamination, the low count threshold
parameter was increased accordingly.

The resulting corrected and raw gene x cell count matrices were
analysed with scCustomize package (R 4.2.0) to create Seurat objects
(version 4.3.0). Cells with fewer than 500 genes and genes present in
fewer than five cells were excluded from further analysis. The SCP
package (version 0.5.1, available from: https://github.com/zhanghao-
njmu/SCP) was used to compute quality control metrics and perform
initial filtering. Doublets were predicted using scDblFinder (available
from: https://github.com/plger/scDblFinder) with default parameters,
and cells with mitochondrial transcript content exceeding 1% were
excluded.

An additional filtering step was implemented to remove low-
quality or dying cells, based on the assumption that mitochondrial
reads should be minimal in single-nuclei data. Apoptosis scores for
each cell were calculated as the ratio of mitochondrial percentage to
total RNA counts. The mean apoptosis score was then calculated for
each cluster, and clusters with a mean apoptosis score exceeding one
standard deviation above the mean were excluded from further
analysis.

The filtered and corrected snRNA-seq data were normalised
using the “SCTransfrom” function from Seurat (version 4.3.0) with
vst.flavour = “v2”, while regressing out mitochondrial percentages,
keeping all other parameters at their default settings. We used the
“FindVariableFeatures” function to identify 3000 variable genes, the
“RunPCA” function for dimensionality reduction with npcs = 20, and
the “FindNeighbors” function to identify nearest neighbours,
exploring a range of resolutions between 1 and 2. Dimensionality
reduction was further performed using the “RunUMAP” function
based on the first 20 principal components. All the above functions
are from the Seurat package (version 4.3.0), with default settings for
the remaining parameters.

Cell annotation and Integration. scPred, version 1.9.2%° was used for
single-nuclei preliminary data annotation with publicly available
prostate cancer datasets*>*, SELINA.py tool, version 0.1%, with “--dis-
ease” mode and default parameters, was used for cell-type prediction.
We labelled cell types using each dataset as a reference, which inclu-
ded a literature-based reference set'>'**, In addition, “normal pros-
tate” and “NSCLC” references, provided by SELINA, were used for
prediction. For cell cluster identity assignment, we took the consensus
of all predictions, except for the assignment of proliferating and cili-
ated cells. We calculated the G2M score and a custom literature-based
ciliated gene-set using JASMINE (vl, available from: https://github.
com/NNoureen/JASMINE). Cells that had a high ciliated or proliferating
score (>threshold=median+one standard deviation) were assigned as
ciliated or proliferating, respectively. To integrate all patient data, we
utilised STACAS, version 2.2.1, a semi-supervised method developed
by Andreatta et al.”’. We employed cell type annotation as input, using
the default parameters. Cancer cell fraction was subset, normalised
with “SCTransform” normalisation (Seurat v5) on raw counts, and
clustered for visualisation.

Pathway, transcription factor activity and cell state scores analysis.
We computed pathway activity inference on single-cell count data with
decoupler-py®, version 1.8.0, together with a curated collection of
pathways from PROGENy*® and transcription factor (TF) database from
CollecTRI”. For each pathway set, we used the top 500 genes ranked
by p-value and Multivariate Linear Model (mlm) method for pathway
activity analysis. TF enrichment scores were inferred by running the
Univariate Linear Model (ulm) method. The resulting activity scores
represent the predicted regulatory activity of each pathway or TF in
individual cells, based on the expression of their downstream targets.
These scores are relative within each dataset, making them compar-
able between patient samples. Scores reflect the direction and mag-
nitude of pathway activity compared to other cells in the same
patient’s sample, rather than providing an absolute measure across
patients. Mean pathway/TF activity per cell group was calculated and
visualised with pheatmap using R version 4.3.3., python version 3.9.16.

Cell state scores were calculated on normalised single-cell
expression data using the AddModuleScore function from Seurat
(version 4.3.0.1). Gene sets defining cell states were obtained from
Barkley et al.*°. We calculated the proportions of cells exhibiting cell
state activity per sample, using two different cutoff strategies based on
the overall distribution of activity values. For each area and each cell
state, if the mean percentage of active cells for a given signature was
<70%, a binary cutoff of 0 was applied. Otherwise, the signature’s mean
activity was used as the threshold.

Gini index, Shannon entropy, weighted phylogenetic dissimilarity,
cell population dissimilarity and physical distance. We assigned
each biopsy sample a 3D coordinate on a Cartesian map and calculated
pairwise Euclidean distances. The pathology-provided tumour dia-
meter was used to estimate the unit conversion, with 1 unit corre-
sponding to 1cm. The resulting pairwise distances were as follows:
PCAL37 (median: 2.6 units, sd: 1.2), PCAL10 (median: 2.8 units, sd: 1.4),
PCALO3 (median: 3.6 units, sd: 1.7), PCAL25 (median: 3.0 units, sd: 1.4),
PCAL34 (median: 2.9 units, sd: 1.3). For each patient, we calculated the
geometric centroid of the prostate gland based on the 3D coordinates
of its biopsies and we then calculated the Euclidean distances from
each biopsy to the geometric centroid.

To quantify the distribution of cell types across samples, we cal-
culated the Gini coefficient for the proportions of each cell type across
all samples using the ineq R package (version 0.2-13) with the para-
meter type = “Gini”. Gini coefficients for each cell type were calculated
on a per-patient basis using the same package and parameters.

We developed a pairwise clonal phylogenetic distance metric,
termed the weighted phylogenetic distance, to assess clonal
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heterogeneity between two samples from the same patient. This
metric ranges from O to 1, where a score of 0 indicates identical clonal
composition and a score of 1 reflects no similarity in clonal composi-
tion between samples. The dissimilarity score between sample pairs
was computed as follows: first, we calculated the normalised absolute
difference in their clone proportions. These differences were then
weighted by their phylogenetic distances, considering only clones
present in both samples. The weighted differences were summed, and
the resulting dissimilarity matrix was normalised by the product of the
number of clones present in each sample.

To assess the pairwise cell type dissimilarity, we calculated the
inverted Jaccard index between pairs of samples. The Jaccard index
was computed for each pair of cell type composition vectors as fol-
lows: the intersection of the cell types present in both samples was
divided by the union of cell types present in either sample, yielding a
value between 0 and 1. A value of O indicates complete similarity, while
a value of 1 indicates no shared cell types. To obtain a dissimilarity
measure, the Jaccard index was inverted such that higher values
represented greater dissimilarity. The pairwise Jaccard indices were
calculated for all combinations of samples.

Shannon entropy was calculated to assess the diversity of TME
cell types and clonal proportions per sample. The entropy was
computed on the frequency distribution of all TME cell types and
clone proportions for each sample, using the entropy function
(version 1.3.1) (base-2 logarithm) and rounding the values to two
decimal places.

CNA analysis and phylogenetic tree building. We used Numbat,
version 1.3.2-1"° with default parameters to classify tumour cells. Het-
erozygous germline SNPs, previously obtained from deep-WGS*, were
used for genome phasing. Numbat was then applied again to identify
CNAs from the tumour cells. To remove artefact CNAs, we utilised a
“segs_consensus_fix” mode, for which we obtained high-confidence
genome segments, either losses or gains, from low-pass WGS, with
coordinates adjusted from deep-WGS, or area-specific high-confidence
CNAs from the second Numbat run. To resolve areas with mixtures of
two or more distinct clones, we further subset the data and ran
Numbat “segs_consensus_fix” for each clone individually. To construct
the phylogenetic trees, we first cleaned the CNA profiles by assigning
deletions or amplifications to all cells in the area if the event was clonal
based on WGS data. For distinct cell clusters, we assigned CNA events
where the majority had supporting BAF and/or expression evidence.
For PCAL37, most of the chromosome 19 CNAs were excluded from the
analysis due to difficulties in accurately detecting clusters of small
deletions in this region.

Next, we binned the genome for each clone and merged all data
together per patient. For PCAL25, we excluded areas TO6 and TO8 due
to inconclusive CNA profiles obtained from low-pass WGS, as well as
the whole chromosome 1 from phylogenetic tree building due to
inconclusive Numbat results. The resulting CNA matrix was then used
as input for MEDICC2, version 1.0.2, to build the phylogenetic tree®.
The cancer cell fractions’ clonal composition in each area was visua-
lised using cloneMap, v1.0.0 (available from: https://github.com/
amf71/cloneMap).

Single-cell pseudobulk BAF calculation. We utilised SNP pileup from
Numbat to calculate BAF for each cell with a coverage minimum cutoff
of 100. We next computed a mean BAF for each clone. For clone-
specific BAF plotting, we used the Sequenza “windowBf” function, with
a bin size of 1 Mb. The function calculates the allele frequency for each
bin using a peak-finding algorithm to identify the highest values in the
allele frequency distribution, ranging from 0 to 1. It reports for each
bin the highest peak for the B-allele frequency, which corresponds to
values equal to or lower than 0.5.

Bulk WGS

DNA extraction. After 10X genomics snRNAseq library prep, high
molecular weight DNA was extracted from the same population of
nuclei using Gentra Puregene Buccal Cell kit (Qiagen, 158845) follow-
ing the manufacturer’s instructions. Briefly, nuclei were lysed using
300 ul of Cell Lysis Solution, followed by proteinase K treatment
incubation at 55 °C, for 1 h. Next, samples were treated with RNase by
adding 1.5 pl RNase A solution and incubation for 15 min at 37 °C. After
5min on ice, 100 ul Protein Precipitation Solution was added to the
lysate to remove proteins. After centrifuging for 1 min at 15,000 x g,
precipitated proteins form a tight pellet. The supernatant was trans-
ferred into a clean 1.5 ml microcentrifuge tube with 300 pl isopropanol.
A final wash with 300 ul of 70% ethanol was done to remove the
remaining impurities. DNA was resuspended in 100 ul DNA Hydration
Solution and incubated at 65°C for 1h to dissolve the DNA. DNA
concentration was measured by Qubit dsDNA BR Assay Kit (Thermo
Fisher Scientific, Q32850), purity by Denovix spectrophotometer (DS-
11Fx) and DNA integrity by electrophoresis in 0.8% agarose gel.

WGS Library preparation and sequencing. Whole genome sequen-
cing libraries were prepared using 200 ng of genomic DNA following
the NEBNext Ultra Il FS DNA Library Prep Kit for Illumina (New England
Biolabs, E7805S). Briefly, DNA was enzymatically fragmented for
12 min at 37 °C to get 450 bp fragments on average. After size selec-
tion, end repair, dA-tailing and UDI Adaptor Ligation, final libraries
were amplified by 5 PCR cycles, quantified by Qubit ssDNA Assay Kit
(Thermo Fisher Scientific, Q10212). Size distribution was assessed by
Bioanalyzer High Sensitivity DNA Kit (Agilent, 5067-4626). Finally,
libraries were combined at 2 nM concentration pool and paired-end
sequenced using 300 cycles on NovaSeq 6000 S2 Reagent Kit v1.5, 300
cycles (Illumina, 20028314).

WGS pre-processing and somatic copy-number calling. FastQ files
containing sequencing reads were quality-checked using FastQC
version 0.11.8 (https://github.com/s-andrews/FastQC) and aligned to
the human reference genome (GRCh38) with BWA MEM® version
0.7.15. Data preprocessing followed the GATK best practices (Van der
Auwera G, O’Connor B. Genomics in the Cloud. 2020), using GATK
version 4.1.9.0. PCR and optical duplicates were identified using the
“MarkDuplicates” tool, and base quality score recalibration was
performed with “BaseRecalibrator” followed by “ApplyBQSR.” Cov-
erage statistics were obtained using “CollectWgsMetrics” and
mosdepth® version 0.3.1. Final BAM files QC was conducted with
“CollectAlignmentSummaryMetrics,”,  “CollectBaseDistributionBy-
Cycle,” “CollectGceBiasMetrics,” “CollectinsertSizeMetrics,” and
“QualityScoreDistribution.” QC results were manually reviewed using
MultiQC®>%* version 1.9. The average sequencing depth was 16X for
WGS and 0.3X for low-pass WGS.

To estimate tumour purity and ploidy and to obtain somatic copy-
number alterations and genomic segments for low-pass WGS, ACE**
version 1.9.3 was used, with bin sizes of 100, 500, 1000 and ploidy of 2
and 4; for deeper sequenced WGS samples, Sequenza® version 3.0.0
was used, with default parameters. Sex chromosomes were omitted
from the analysis.

Variant calling and annotation. High-confidence somatic single-
nucleotide variants (SNVs) were called for each deep WGS tumour-
normal pair using MuTect2 (following GATK best practices, using
GATK version 4.1.9.0) and Strelka®® version 2.9.10. MuTect2 was run
using the “1000g_pon.hg38.vcf.gz” panel of normals and the “gno-
mAD” germline resource as additional controls. For each pair, a con-
sensus callset was obtained using SomaticSeq®’. Functional annotation
of the variants was performed using the Ensembl Variant Effect Pre-
dictor 99.0°7°%,
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Microsatellite instability. Microsatellite instability (MSI) status was
calculated with MSlsensor2 with default parameters, tumour only
mode (Niu, 2024, available from: https:/github.com/niu-lab/
msisensor2). Next, mutations were classified based on mutational
signatures of Single Base Substitutions (SBS). SBS signatures were
assigned to individual samples using SigProfilerAssignment (version
0.1.7)%°. Using variant calling format (VCF) files, the assignment was
conducted with COSMIC reference signatures (version 3.4) (available
from https://cancer.sanger.ac.uk/signatures/).

Copy number analysis and clonal reconstruction from deep WGS.
Subclonal copy number segments were identified by estimating cancer
cell fractions (CCF) using B-allele frequency and depth ratio data.
Allele-specific copy number profiles were generated using Sequenza®,
which models the most likely sample cellularity (p) and ploidy ().

Segmentation was performed jointly across all samples from each
donor. This strategy ensures that copy number aberrations present in
any sample are consistently represented across all related samples. As
a result, segments not detected in a particular sample are assigned a
CCF of zero, while segments observed in one or more samples reflect
their respective CCFs.

We assumed that all subclones share the same overall ploidy but
differ in cellularity. Subclonal segments were defined as those differing
by +1 copy from the clonal copy number state. To identify these, we
applied a grid search for each segment®, to find the best-fitting sub-
clonal cellularity values. This approach accounts for the presence of
both clonal cancer cells and normal diploid cells®. Segment-specific
CCFs were then approximated by dividing the local cellularity of each
segment by the sample’s overall cellularity. We note that B-allele fre-
quency data were only attainable for samples with deep whole-genome
sequencing (coverage >30X). For samples with lower coverage, the
depth ratio was used to estimate copy number states.

For each of the five patients, we inferred the number of subclones
and their cellular fractions using DPclust’’. To reconstruct phyloge-
netic relationships, we applied the “pigeonhole principle” (PHP) to
mutational clusters. This principle states that if the combined CCFs of
two mutations exceed 100%, at least one cell must carry both muta-
tions—indicating they lie on the same branch of the phylogenetic tree.

Statistics & reproducibility. All quantification and statistical analysis
were performed as described in the figure legends. No statistical
method was used to predetermine sample size. Only data failing our
objective QC criteria were excluded. No other data were excluded
from the analyses, and the experiments were not randomised.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw transcriptomic and genomic data generated in this study are
available on request on the European Genome-phenome Archive
under accession number EGAS50000000927. All researchers can
obtain access by submitting a project proposal to the Data Access
Committee (DAC). Source data are provided with this paper. The
sequencing data analysed in this study contain sensitive patient
information and are therefore only available under restricted access to
protect confidentiality. Access may be granted to qualified researchers
upon request to the corresponding author (J.W.), with responses
provided within 10 business days. Approved access will be valid for 12
months under a data use agreement. Publicly available prostate cancer
datasets used in this study for cell type prediction include: human data
from SCP864”, GSE181294', GSE176031%; EGAD00001008340°%.
Databases used in this study include the curated pathway database
PROGENy (https://saezlab.github.io/progeny/)*® transcription factor

database CollecTRI (https://github.com/saezlab/CollecTRI)’>. The
remaining data are available within the Article, Supplementary Infor-
mation or Source Data file. Source data are provided with this paper.

Code availability
Source code for the analysis is available at https://bitbucket.org/
weischenfeldt/prostate_multiregion_sc_clonality.
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