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Inherent instability of simple DNA repeats
shapes an evolutionarily stable distribution
of repeat lengths

Ryan J. McGinty 1,3, Daniel J. Balick1,3, Sergei M. Mirkin 2 &
Shamil R. Sunyaev 1

Using the Telomere-to-Telomere reference, we assemble the distribution of
simple tandem repeat lengths present in the human genome. Analyzing over
three hundred mammalian genomes, we find remarkable consistency in the
shape of the distribution across evolutionary epochs. All observed genomes
harbor an excess of long repeats, which are potentially prone to developing
into repeat expansion disorders. Wemeasuremutation rates for repeat length
instability, quantitatively model the per-generation action of mutations, and
observe the corresponding long-termbehavior shaping the repeat tract length
distribution. We find that short repetitive sequences appear to be a straight-
forward consequence of random substitution. Evolving largely independently,
longer repeats (above roughly 10 nt) emerge and persist in a rapidly mutating
dynamic balance between expansion, contraction, and interruption. These
mutational processes, collectively, are sufficient to explain the abundance of
long repeats, without invoking natural selection. Our analysis constrains
properties of molecular mechanisms responsible for maintaining genome
fidelity that underlie repeat instability.

Over 2.5% of human genomic DNA consists of simple DNA repeats1.
Also known as short tandem repeats (STRs) or microsatellites, simple
repeats consist of direct tandem repetitions of short sequencemotifs,
e.g., mononucleotides, dinucleotides, trinucleotides, and so forth. In a
randomized DNA sequence, the probability of encountering a simple
repeat is exponentially decreased with increasing tract length. Yet this
relationship fails to predict the enormous overrepresentation of long
simple repeats in most genomic sequences, including in humans2–4.
The origin of this abundance remains to be elucidated.

This overrepresentation is even more striking in light of the
existence of repeat expansion disorders, a growing list of severe
human diseases caused by disruption of gene function due to long
STRs5,6. Decades of study have demonstrated that repeat tract lengths
vary between andwithin individuals7, owing to frequent expansion and
contraction mutations. The rate of these mutations increases with the
length of a repeat, a phenomenon known as repeat length instability8.

Length instability is commonly ascribed toDNA strand slippage during
replication and/or DNA repair, although a variety of other molecular
mechanisms can also contribute8. Instability rates differ between var-
ious repeat motifs, particularly for motifs that form non-B DNA sec-
ondary structures9. Importantly, when repeat length exceeds a
threshold of approximately 75–90 nt, carriers frequently transmit a
substantially longer repeat to the next generation. Known as ‘genetic
anticipation’, this effect continues to compound in subsequent gen-
erations, which leads tomore severe presentation and/or earlier age of
onset6. Recently developed techniques, such as ExpansionHunter10

and long-read sequencing, have accelerated the discovery of patho-
genic repeats; in particular, the growing number of repeat expansion
disordersmapped to introns and other non-coding regions sheds light
on repeat disease biology beyond coding regions. Repeat expansions
are also observed in various cancers11–13 and serve as hotspots for
genomic rearrangements14.
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While numerous studies focus on the instability of disease-length
repeats, comparatively less is known about shorter repeats, including
the so-called ‘long-normal’ alleles that sit immediately below the
disease-length threshold. Carriers of long-normal repeat alleles are
healthy, but risk transmitting a disease-length allele due to the higher
rate of repeat expansion; additionally, some long-normal alleles con-
tain protective interruptions that, if lost, result in reversion to disease
length6. Complementing our understanding of long disease-causing
repeats, a recent finding identified an autosomal dominant thyroid
disorder linked to a (TTTG)4 repeat, with a recurrent deletion to
(TTTG)3 in affected individuals15. Additionally, instability of A8 and C8

repeats in the coding sequences of mismatch repair (MMR) genes
MSH3 and MSH6, respectively, promotes tumor adaptability via fre-
quent frameshifts and subsequent reversions16. The latter examples
suggest that relatively short repeats, which comprise a much larger
portion of the genome, also have biomedical relevance.

In light of the rapidly growing list of repeat-associated diseases, it
is surprising to find repeats harbored in abundance in the genome.
Interest in this discrepancy goes back at least three decades2 and has
led to speculation that natural selection preserves longer repeat
lengths, despite the risk of disease17. The best-supported examples of
functionality are specific to telomeric and centromeric repeats9,17,18,
though some recent studies have suggested that simple repeats play a
role in gene regulation17. However, before assuming the

overabundance of repeats is evidence of functionality, a more basic
explanation shouldbe considered: the excess of repeats in the genome
is solely a consequence of mutational processes. Several studies, lar-
gely pre-dating the human genome era, considered this premise, but
were limited by the availability of sufficiently long genome sequences,
lacked robust direct measurements of repeat instability, and/or con-
sidered oversimplified mutational models3,4,19–33. Indeed, all such stu-
dies of simple repeats have been limited by long-standing technical
challenges to sequencing repetitive regions34–37. Technological devel-
opments led to the release of the human Telomere-to-telomere gen-
ome (T2T-CHM13), which more than doubled the number of mapped
simple repeats compared to the previous reference genomeGRCH381.
This warranted a fresh look at the distribution of repeat lengths and
whethermutational processes, in the absence of selection, can explain
their abundance.

In this study, we measured genome-wide distributions of repeat
lengths acrossmammals, observing that the distribution, including the
prevalence of long repeats, is remarkably stable over evolutionary
timescales. We modeled the effects of repeat length instability on the
evolution of the distribution, finding that the observed repeat length
distribution can emerge and be maintained solely due to the interplay
between distinct mutational processes. After incorporating empirical
estimates and inference of repeat length instability rates, the most
parsimonious explanation for the abundance and stability of long
repeats does not require invoking selection; rather, extreme mutation
rates cause long repeats to emerge as independently evolving ele-
ments. We discuss how this collection of observations may inherently
constrain mechanistic properties of DNA replication and repair.

Results
Features of the repeat length distribution and evolutionary
stability
Using T2T-CHM13, we first assembled a genome-wide distribution of
repeat tract lengths (henceforth, DRL) for each simple tandem repeat
motif, pooling over bioinformatically indistinguishable permutations
(see Supplementary Fig. 1a, “Methods” section). Each distribution was
assembled by counting contiguous, uninterrupted repetitions of a
specified motif, allowing for straightforward bioinformatic assembly
of the DRL (see “Methods” section). Each DRL showed amarked excess
of repeats longer than ~10 nt, relative to a randomly shuffled control.
Thiswas apparent for nearly allmotifs (Supplementary Fig. 1b)butwith
motif-specific variation in the shape of the extended tail of long tract
lengths. Figure 1a plots the DRLs after pooling motifs of the same unit
length (e.g., mononucleotide repeats, dinucleotide repeats, etc., up to
hexamer repeats), each with a clear tail of long repeats. We found that
short read sequencingwas sufficient to reconstruct thewell-populated
length classes of nearly all DRLs, lacking estimates only for the very
longest repeats (Supplementary Fig. 1c). We were therefore able to
estimate distributions from genome sequences of over 300 mammals
from the Zoonomia project38 and compare them to humans. Due to
differences in total assembly length, direct comparisonwasperformed
on the normalized DRL (see Supplementary Fig. 2, “Methods” section).
Therewas surprisingly little variation in the shape of theDRLs between
primates; DRL shapes were qualitatively similar but more variable in
mammalian DRLs, consistent with the longer divergence time. This
comparison is shown in Fig. 1b for mono-A/mono-T repeats, which are
themost prevalent in the human genome and are the primary focus of
our subsequent analyses (normalized DRLs for additional motifs
shown in Supplementary Fig. 3). Consistency of the shape of the DRLs
across the primate lineage suggests that both the repeat tract length
distributions and, as a corollary, maintenance of the underlying
mechanisms, were largely stable for at least 70 million years. This
highly conserved DRL evolution directly suggests the emergence of a
steady state equilibrium.
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Fig. 1 | Distributions of repeat tract lengths (DRLs) by motif length and across
phylogenies. a Counts of repeats in human T2T genome pooled by motif unit
length (e.g., unit length 1 pools DRLs for A/T and C/G). Dashed lines represent
counts in a randomly shuffled human genome sequence. Canonical centromeric
and telomeric motifs are excluded from unit lengths 5 and 6, respectively, due to
qualitative differences in the DRLs. b Normalized DRLs of mononucleotide-A
repeats in mammals (blue; n = 315), primates (orange; n = 37) and hominids (green;
n = 6). (See Supplementary Fig. 3 for other motifs.) Counts are necessarily nor-
malized to account for different genome lengths (see “Methods” section, Supple-
mentary Fig. 2). Solid line indicates median values per length bin. Phylogenies are
inclusive (e.g., primates are included as a subset of mammals). Thin lines show
individual species. Similarity within phylogenies suggests long-term stability of
the DRLs.
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The empirical DRLs extend to lengths that, at disease loci, would
be subject to genetic anticipation, risking progression to repeat
expansion disorders in subsequent generations5; despite the asso-
ciated disease risk, this tail of long repeats appears to be a generic and
evolutionarily conserved feature of repeat length distributions. One
proposed explanation is that longer repeats confer a selective advan-
tage due to some repeat length-specific biological function17. As an
alternative, we propose that long repeats emerge and are maintained
by the complex interplay between distinct mutational forces. Though
these hypotheses are notmutually exclusive, we sought to understand
the extent to whichmutagenesis, alone, can maintain the shape of the
distribution, without introducing natural selection.

Mutational transitions in repeat tract length
As described above, literature suggests that repeat instability emerges
as a very rapid increase in the rate of length changes as tract length
increases, with the longest repeats mutating nearly every generation.
In light of such high mutation rates, the observation that the DRL
evolves in steady state over long timescales is somewhat surprising,
suggesting that the maintenance of the distribution results from a
dynamic balance between the ensemble of mutational processes that
alter repeat length.

To better understand the genome-wide distribution, we therefore
require a comprehensive understanding of all involved mutational
processes (e.g., nucleotide substitution, insertion, deletion; see Fig. 2
for a schematic ofmutational processes) and how they differ by repeat
length. Estimating repeat tract lengths from sequencing data is a
notorious bioinformatic challenge, particularly for homopolymer
repeats34–37. Published results only sparsely cover the full range of
lengths observed in the genome, largely focusing on disease-relevant
lengths and loci39–45. In contrast, there is little information about
mutation rates at short tract lengths, despite comprising the vast
majority of repeats in the genome.

In order to study mutations across a wide range of tract lengths,
we first subdivided insertions and deletions into repeat-relevant
mutational categories; we refer to expansions and contractions as
mutations that alter repeat length by whole motif units and maintain

one contiguous repeat tract, in contrast to partial deletions and non-
motif insertions. Rates of each mutagenic process were estimated by
pooling existing short-read trio sequencing datasets (n = 9387 trios;
henceforth, ‘pooled trio’ dataset). This data was sufficient to directly
estimate length-dependent rates for short repeats (up to roughly
L = 6—8 units, depending on motif, where L is the number of repeated
units in a tract), but we found that sequencing errors dramatically
reduced mutation counts for longer repeat tract lengths (see “Meth-
ods” section). We complemented these estimates by length-stratifying
data from a recent study45 that used a population structure-aware
caller (named ‘popSTR’) to study repeat mutations in the mid-to-long
length range in short-read trio data (n = 6084). Due to a variety of
technical considerations (see “Methods” section), estimates were only
reliable within a limited range of tract lengths for each motif, which
differed by dataset.

It was previously observed that themajority of mutations within a
repeat increase or decrease length by one unit (i.e., L→ L ± 1)46,47. To
expand on this, we length-stratified the mutation data and found that
single-unit length changes dominate above a clear length threshold,
consistent with the onset of repeat instability (Fig. 3a and Supple-
mentary Fig. 4). Accordingly, we estimated the rates of single-unit
length changes, separately estimating the contraction, expansion, and
non-motif insertion rates from the pooled trio data; popSTR-based
estimates combine expansion and non-motif insertion rates due to
technical limitations (see “Methods” section). For mono-A repeats, all
instability rates increase rapidly between roughly 5−10 nt (Fig. 3b and
see Supplementary Fig. 5 for all motifs), consistent with a threshold-
like onset of repeat instability in this length range (detailed below). The
popSTR-based estimates suggest that repeat instability rates continue
to increase monotonically, at least until the length range where the
dataset becomes noisy (Fig. 3b and Supplementary Fig. 5).

The combination of both datasets recapitulates the hallmark of
repeat instability5,6,8,9: a rapid increase in the rates of expansion and
contraction as length increases. Beyond confirming this property,
available data were insufficient to robustly estimate the length
dependence of each mutational process across the tract length range
observed in the genome. Suchanestimate is a necessary component of

Fig. 2 | Mutational processes as transitions in repeat tract length. a Distinct
mutational processes, using the example of transitions to and from repeat tract
lengthL = 6. ‘A’ represents a givenSTRmotif; ‘B’ represents anyother sequencewith
length equal to A. Arrows indicate mutations, either substitutions (left) or indels
(right), that affect the length of A repeat tract(s). Mutations can lengthen/shorten

(top) or interrupt/rejoin (bottom) repeat tracts. The latter we term repeat 'fission’
and ‘fusion,’ respectively. b Depiction of the same mutational processes as length
transitions in the DRL. Lengthening/shortening mutations increase or decrease
length by one unit (‘local’ transitions) andmaintain the same total count of repeats
(‘conservative’), while fission/fusion processes are non-local and non-conservative.
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any quantitative understanding of the approach of the DRL towards
the steady state (as observed in primates). For further analyses, the
length dependence of these mutation rates was extended to longer
tract lengths via parameterization in an inference framework descri-
bed below.

Computational modeling of DRL dynamics
We sought to assess whether our three observations—the empirical
human DRL, the existence of a long-term steady state, and the esti-
mated mutation rates could be simultaneously incorporated into a
self-consistentmodel of repeat length evolution. To this end,webuilt a
computational model that incorporates the length-changing effects of
substitutions, expansions, contractions, and non-motif insertions in
order to track the evolution of the DRL towards a steady state. We
modeled the distribution of mono-A repeats, in part, because they are
subject to the simplest ensemble of mutational changes in length
(related to the lack of distinction between tract length and the number
of repeated units). As a consequence of counting contiguous repeats

to assemble the DRL, mutational processes alter the length of a given
repeat in one of fourways (Fig. 2): lengthening, shortening, joining two
repeats into one (which we term ‘fusion’), or splitting one repeat into
two (i.e., repeat interruption, which we term ‘fission’). This treatment
of interruptions as effectively splitting one repeat into two is con-
sistent with previous observations that interruptions result in locus-
wide rates that scale with the longest contiguous subunit48–54 or,
equivalently, a rate reduction that scales with distance from the repeat
boundary7.

To reduce the computational time required to evolve a whole
genome sequence and simultaneously count contiguous repeat tracts,
we directly evolved the DRL by manipulating the occupancy of each
length bin. In this formulation, length-altering mutations are reframed
as transitions between length bins (see Fig. 2b), and the DRL evolves
under repeated application of mutations over many generations.
However, the elementary step of the process is deceptively complex,
as repeat fusion precludes framing the mutational process as a stan-
dard transition rate matrix, and both fission and fusion are non-
conservative transitions. We treated the aggregate mutational effects
as deterministic, ignoring stochasticity in the mutational process and
due to factors like genetic drift, to approximate the expectation of the
DRL at late times. We interpret this late-time expectation as an
approximation to the steady-state distribution, if one exists, resulting
from the modeled mutational processes.

Bayesian inference and parametric model comparison
We constructed a Bayesian inference procedure (Fig. 4) to constrain
properties of repeat instability that are consistentwith the steady-state
evolution of the observed human DRL (see “Methods” section). The
computational model uses explicit length-dependent rates for each
mutational process as inputs. We directly incorporated the subset of
estimated rates from the pooled trio data shown in Fig. 3b (i.e., for
L = 1—8); the instability rate curves were then extended to longer
lengths to model a rapid, monotonic increase with length. The inclu-
sion of empirical estimates at low lengths, which include a rapid rate
increase, limits the number of parameters required to describe com-
plex length-dependent rates of repeat instability with both a rapid
transition and a distinct asymptotic functional form for long repeats.

Resemblance to the monotonic increase seen in popSTR esti-
mates at intermediate lengths (Fig. 3b) motivated a class of para-
meterizations with a power-law increase in the mutation rates (see
Table 1, “Methods” section). We first specified a model with minimal
degrees of freedom (DoF) that describes equal rates of expansion and
contraction (i.e., rates for L > 8 represent a simplistic model of repli-
cation slippage based on previous literature8,19,22,27). Thiswas treated as
a null model for comparison to parameterizations with additional DoF
that characterize expansion-contraction bias. We used the popSTR-
based rate estimates to define plausible, empirically based Bayesian
priors for each parameter space, representing varying degrees of
confidence in this dataset (Supplementary Fig. 6), including a (naively
uninformed) uniform prior. We then used the results of our compu-
tationally modeled DRLs in an Approximate Bayesian Computation
(ABC) framework (following the prescription in Wilkinson, 201355) to
compute a posterior probability distribution for each parametric
model. We used the range of primate DRLs to define a rejection
probability by comparing them to the human DRL (using Kullback-
Leibler (KL) divergence to quantify the difference between two dis-
tributions). The same quantity was computed for each computation-
ally modeled DRL and used to approximate the posterior probability
distribution over the parameter space (see “Methods” section for
details).

The results of our inference for each parameterization are sum-
marized in Table 1. We assessed the relative statistical support for
various model comparisons via the Bayes factor ratio (see “Methods”
section). The relative Bayes factors strongly suggested discarding the
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Fig. 3 | Estimated instability rates stratified by repeat tract length.
aDependenceof indel size on repeat tract length (x-axis) for repeat unit lengths 1–4
(different colors). y-axis measures fraction of all indels that result in single unit
length changes (i.e., number of inserted/deleted bases is equal to repeat unit
length). Point estimates shown for pooled trio (squares; n = 9387) and popSTR
datasets (circles; n = 6084). Above a threshold of ~5 units, repeat instability pri-
marily consists of ±1 unit changes. Tract lengths subject to severe technical artifacts
were omitted for clarity. See Supplementary Fig. 3 for additional detail. b Mono-
nucleotide-A mutation rate estimates from pooled trio and popSTR datasets for
expansions (blue), contractions (orange), and non-motif insertions (green; note
that the popSTR dataset combines expansions and non-motif insertions). Rates
calculated only from ±1 unit changes. Point estimates from pooled trio (squares;
n = 9387) and popSTR datasets (circles; n = 6084); statistical error bars represent
95% confidence intervals assuming Poisson mutation counts. Gray dashed and
dotted lines showpoint estimates of substitution ratesμ (A > B,whereB =C,G, orT)
and v (B > A), respectively. Tract lengths subject to severe technical artifacts were
omitted (see Supplementary Fig. 4 for complete estimates and additional motifs).
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two-parameter null model in favor of further DoF that introduce
asymmetry (i.e., bias) between the expansion and contraction rates.
The power-law parameterization with the largest Bayes factor,
regardless of prior, was a three-dimensional model of expansion and
contraction with distinct exponents and related multiplicative con-
stants (see Table 1, “Methods” section). This model is a modest
improvement over the four-parameter description (i.e., completely
decoupled expansion and contraction rates), which otherwise pro-
vides a dramatically better description than lower-dimensional
parameterizations.

To test how reliant these conclusions are on the power-law
functional form, we defined an alternate class of parameterizations
with logarithm-based growth rates (i.e., with slower-growing rates at
large lengths to better approximate saturation). Model comparison
within this class of parameterizations provided qualitatively consistent
results to those comparing power law parameterizations (see Table 1).
The inequivalence of priors across functional forms (along with addi-
tional necessary approximations; see “Methods” section) suggests
caution should be taken in direct comparisons between models with
distinct functional forms. Due to the relative analytic simplicity of the
functional form, subsequent analyses were focused on power-law
parameterization results.

Inference of instability rates from the steady-state repeat length
distribution
Amongst power-law models, we focused on the three-parameter
multiplier-coupled model, as it showed the strongest statistical sup-
port, regardless of the choice of prior. Above L = 8, this model is
parameterized by exponents, τϵ. and τκ , and a common multiplier m

(representing a discrete jump in rates immediately above the empirical
estimates; explicit definition in “Methods” section), which together
characterize the length dependence of expansion ϵ L;m, τϵ

� �
and

contraction κ L;m, τκ
� �

(see “Methods” section, Table 1 for full defini-
tions). The common multiplier for expansion and contraction, which
limits the dimensionality,maybe interpreted as representing the onset
of repeat instability due to some common biological mechanism. Our
trio rate estimates rapidly rise in the length range where they lose
accuracy;m, which describes a potentially dramatic jump immediately
above this range, can provide an oversimplified characterization of a
rapid transition to power-law-like behavior. To limit further DoF, we
assumed that the length dependence of non-motif insertions is dic-
tated by τϵ, the expansion rate exponent, due to their parallel increase
in de novo rates (Fig. 3b) and because they likely arise from the same
biological mechanism (e.g., synthesis of the inserted nucleotides by an
error-prone polymerase). The parameter space we explored includes
the possibility of a constant per-nucleotide rate (i.e., τ =0, analogous
to the constant per-nucleotide substitution rates), linearity (i.e., τ = 1), a
natural conceptual model for length dependence associated with
repeat instability, and more rapid growth on par with popSTR-based
estimates (Fig. 3b). However, the parameterization itself is not inten-
ded to represent a specific biological model; the true rate curves are
likely more complex due to multiple contributing mechanisms.

To interpret the resulting posteriors, we first approximated
highest density regions (HDRs) comprising 68%, 95%, and 99.7% of
posterior probability on the finite grid for the multiplier-coupled
model (Fig. 5a and Supplementary Fig. 7a; alternate parameterizations
shown in Supplementary Figs. 8 and 9). The posterior is largely loca-
lized along a ridge of constant values of Δτ � τκ � τϵ (roughly, Δτ �
0.3—0.6) and roughly between multipliers m = 1.6—6.4; the difference
between expansion and contraction rate exponents appears to be
more relevant than their specific values. Under theuniformprior, some
parameter combinations within the 95% HDR deviate from this range
ofΔτ (extending to both lower values ofΔτ and lower τϵ, τκ ; Fig. 5a) but
are excluded when applying the popSTR-based prior, which requires
consistency with the larger estimated instability rates (Fig. 5a and
Supplementary Fig. 7a).

We computed the posterior-weighted DRL (i.e., the expectation
value of the DRL; see “Methods” section) and the range of DRLs con-
sistent with the 95% HDR (Fig. 5b). The posterior-weighted DRLs clo-
sely resemble the human genome-wide distribution, while the 95%
HDR parameters roughly span the range of primate DRLs used in our
inferenceprocedure. This demonstrates that the coarse features of the
empirical DRL can be recapitulated from mutational dynamics alone.

We then computed the posterior-weighted length-dependent
rates of expansion and contraction for each prior and found rough
consistency with popSTR-estimated rates (Fig. 5c). One salient feature
emerged, regardless of prior: expansion bias at intermediate tract
lengths transitions to contraction bias at longer lengths due to the
faster increase in contraction rate with length (i.e., τκ > τϵ; see Fig. 5a,
c). This likely explains the preference for the multiplier-coupled
model, which necessarily inherits a modest initial expansion bias
directly from empirical rate estimates. However, if the apparent
expansion bias at L = 8 is simply a consequence of homopolymer
sequencing errors, correcting the direction of this bias would lead to
statistical rejection of the multiplier-coupled model in favor of the
four-parameter model (which lacks the a priori imposition of initial
expansion bias on the parametrized rates). Regardless, inference
results under the four-parametermodel recapitulate the importanceof
a transition from expansion to contraction bias (Supplemen-
tary Fig. 10).

To gain intuition for the preference of expansion-to-contraction
biased parameters in the multiplier-coupled model, we contrasted the
DRLs to the parameter combinations outside of the 95% HDR.
Excluding slowly evolving rates, the remaining parameter space

Fig. 4 | Schematic representation of the Bayesian inference procedure. Infer-
ence of parameters representing length-dependent instability rates via Approx-
imate BayesianComputation (ABC). Empirical data sources informing the inference
are shown in purple. First, expansion and contraction rates are parameterized at
lengthswhere estimates are unreliable or unavailable. Eachparameter combination
specifies a complete set of mutation rates for repeats of all lengths. Given an initial
state, mutational transitions (see Fig. 2) are repeatedly applied to evolve the DRL
for a large number of generations. The late-timeDRL is treated as an approximation
to the steady-state DRL (when applicable). For each parameter combination, the
differencebetween the late-timeDRLand thehumanT2TDRL is summarizedby the
Kullback–Leibler (KL) divergence. The approximate posterior is proportional to the
product of the prior and the probability of acceptance under an ABC rejection
strategy55. The prior is informed by popSTR-estimated mutation rates. The accep-
tanceprobability is treated asGaussian-distributed in theKL divergence, withmean
zero and variance defined by divergences for an ensemble of primates (see
“Methods” section). This quantity is calculated for each parameter combination
and subsequently normalized over parameter space to approximate the posterior
probability distribution.
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broadly separates into three qualitative categories, largely character-
ized byΔτ:Δτ ≳0:6 yields DRLs that underestimate the long repeat tail
(i.e., early truncation), while 0 <Δτ ≲0:2 yields distributions that
overestimate the long tail (Supplementary Fig. 11). The roughly half of
parameter space with Δτ <0 showed a clear reason for near-zero
posterior probabilities: regardless of multiplier, these parameter

combinations do not converge to steady state at late times and are
subject to explosive growth in all length bins (Supplementary
Figs. 11 and 12a).

In addition to Δτ values outside of the high posterior ridge, larger
values of m generally remained beyond the 95% HDR. This was likely
due, in part, to the discrete jump between estimated and

Table 1 | Repeat instability rate parameterizations and Bayesian inference results

Model name Parameters Functional form Prior Bayes factor (ratio
to null)

Max posterior
[mean posterior]

Symmetric power law†

(L < 9 from empirical rates)
2;
θ= ðc, τÞ

ϵ L>8ð Þ= κ L>8ð Þ=c L
9

� �τ Uniform 5.1e-18 (1.0) θ= (4.3e-8, 0.6)
[(4.3e-8, 0.67)]

Permissive 2.8e-21 (1.0) θ= (4.3e-8,1.2)
[(4.1e-8, 1.3)]

Restrictive 7.6e-31 (1.0) θ= (2.7e-8, 3.0)
[(3.4e-8, 2.8)]

Decoupled power laws
(L < 9 empirical)

4;
θ= ðcϵ,cκ , τϵ, τκ Þ

ϵ L>8ð Þ= cϵ L
9

� �τϵ
κ L>8ð Þ= cκ L

9

� �τκ
Uniform 2.0e-5 (3.9e12) θ= (2.7e-8, 1.7e-8, 1.6, 2.0)

[(2.9e-8, 1.8e-8, 1.9, 2.3)]

Permissive 1.9e-5 (6.9e15) θ= (2.7e-8, 1.7e-8, 3.0, 3.5)
[(3.9e-8, 2.5e-8, 2.9, 3.3)]

Restrictive 2.2e-5 (2.9e25) θ= (4.3e-8, 2.7e-8, 3.1, 3.6)
[(4.7e-8, 2.9e-8, 3.1, 3.6)]

Power laws with independent
constants
(L < 9 empirical)

3;
θ= ðcϵ,cκ , τÞ

ϵ L>8ð Þ= cϵ L
9

� �τ
κ L>8ð Þ= cκ L

9

� �τ Uniform 1.3e-5 (2.6e12) θ= (1.7e-8, 1.1e-8, 0.9)
[(2.0e-8, 1.2e-8, 0.6)]

Permissive 9.9e-14 (3.5e7) θ= (1.7e-8, 1.1e-8, 1.0)
[(1.7e-8, 1.1e-8, 1.0)]

Restrictive 2.8e-31 (3.7e-1) θ= (2.7e-8, 2.7e-8, 3.0)
[(3.4e-8, 3.4e-8, 2.8)]

Power laws with independent
exponents
(L < 9 empirical)

3;
θ= ðc, τϵ, τκ Þ

ϵ L>8ð Þ= c L
9

� �τϵ
κ L>8ð Þ= c L

9

� �τκ
Uniform 9.7e-7 (1.9e11) θ= (2.7e-8, 0.6, 0.1)

[(2.7e-8, 2.3, 2.1)]

Permissive 2.3e-6 (8.2e14) θ= (2.7e-8, 3.4, 3.3)
[(2.8e-8, 3.3, 3.2)]

Restrictive 2.0e-6 (2.6e24) θ= (2.7e-8, 3.6, 3.5)
[(2.9e-8, 3.5, 3.4)]

Multiplier-coupled power
laws
(L <9 empirical)

3;
θ= ðm, τϵ , τκ Þ

ϵ L>8ð Þ= ϵ 8ð Þ×m L
9

� �τϵ
κ L>8ð Þ=κ 8ð Þ×m L

9

� �τκ
(ϵ 8ð Þ, κ 8ð Þ from empirical estimates)

Uniform 1.8e-4 (3.5e13) θ= (2.5, 1.6, 2.0)
[(2.7, 1.9, 2.3)]

Permissive 1.4e-4 (4.8e16) θ= (4.0, 2.8, 3.3)
[(3.6, 2.9, 3.3)]

Restrictive 1.3e-4 (1.7e26) θ= (4.0, 3.1, 3.6)
[(4.3, 3.1, 3.6)]

Symmetric logarithmic power††

(L < 9 from empirical rates)
2;
θ= ðc, τÞ ϵ L>8ð Þ= κ L>8ð Þ =c logðL�7Þ

log 2

� �τ Uniform 8.4e-18 (1.0) θ= (2.7e-8, 0.8)
[(3.2e-8, 0.7)]

Permissive 3.4e-19 (1.0) θ= (2.7e-8, 0.9)
[(3.4e-8, 0.7)]

Restrictive 8.3e-29 (1.0) θ= (4.3e-8, 1.0)
[(4.2e-8, 1.0)]

Decoupled logarithmic power
(L < 9 empirical)

4;
θ= ðcϵ,cκ , τϵ, τκ Þ

ϵ L>8ð Þ = cϵ log L�7ð Þ
log 2

� �τϵ

κ L>8ð Þ = cκ log L�7ð Þ
log 2

� �τκ

Uniform 1.8e-4 (2.1e13) θ= (2.7e-8, 1.1e-8, 2.1, 2.8)
[(3.4e-8, 1.4e-8, 1.7, 2.4)]

Permissive 5.1e-4 (1.5e15) θ= (4.3e-8, 1.7e-8, 2.0, 2.7)
[(3.8e-8, 1.4e-8, 2.1, 2.9)]

Restrictive 1.8e-3 (2.2e25) θ= (4.3e-8, 1.7e-8, 2.0, 2.7)
[(3.8e-8, 1.3e-8, 2.2, 3.1)]

Multiplier-coupled logarithmic
power
(L < 9 empirical)

3;
θ= ðm, τϵ, τκ Þ

ϵ L>8ð Þ = ϵ 8ð Þm log L�7ð Þ
log2

� �τϵ

κ L>8ð Þ = κ 8ð Þm log L�7ð Þ
log 2

� �τκ

(ϵ 8ð Þ, κ 8ð Þ from empirical estimates)

Uniform 3.9e-4 (4.6e13) θ= (2.5, 1.3, 0.9)
[(2.8, 1.0, 1.2)]

Permissive 2.7e-4 (7.7e14) θ= (4.0, 1.4, 1.7)
[(3.5, 1.5, 1.8)]

Restrictive 1.7e-4 (2.0e24) θ= (4.0, 1.8, 2.1)
[(4.0, 1.9, 2.2)]

Pure power law
(parameterized at all lengths)

4;
θ= ðλϵ, λκ , τϵ, τκ Þ

ϵ Lð Þ=μ L
λϵ

� �τϵ

κ Lð Þ= ν L
λκ

� �τκ

(empirically estimated sub. rates μ, ν)

Uniform 3.1e-17 θ= (9, 13, 3.6, 4.0)
[(9.1, 12.9, 3.7, 4.0)]

Restrictive 8.7e-17 θ= (9, 12, 3.8, 4.0)
[(9.0, 12.5, 3.7, 4.0)]

null model for †power-law and ††logarithmic power models; bold: largest Bayes factor amongst power-law models
Parametric models of instability rates and summary of Bayesian inference results. For each parameterization used in our analyses, this table specifies the model name (as referred to in the text), the
tract lengths described by the parameterization, the inference parameters, the functional forms for length-dependent expansion and contraction rates, and a summary of inference results. For each
model, the following quantities are given for each prior: Bayes factor (and Bayes factor ratio to null model within the same nesting, denoted by symbols), parameter combination with maximum
posterior probability, andmean posterior parameter combination. The primarymodel considered is shown in bold text. Further details on prior construction, calculation of Bayes factors (andmodel
comparison), and expectation used to compute mean posterior parameters are provided in the “Methods” section.
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parameterized rates at L = 9 that results in a discontinuous DRL, which
can artificially inflate the KL divergence. To investigate this, we repe-
ated our inference after smoothing the instability rate length depen-
dences via interpolation around this transition (Supplementary Fig. 8).
The results suggested that a (naively more realistic) interpolated
length dependence results in less penalization for larger multipliers
and posterior probabilities more robust to the choice of prior. Addi-
tionally, inference using interpolated rates under the restrictive
informative prior results in posterior-weighted instability rate esti-
mates that overlap the popSTR estimates (Supplementary Fig. 8c); this
suggests a smoother length dependence may represent more realistic
instability rates. Indeed, this mutational model incorporates all avail-
able data and describes a self-consistent picture of a steady-state DRL
shaped only by mutational dynamics.

To better understand the approach to steady state for realistic
parameterswithin the 95%HDR,we followed the temporal evolutionof
the DRL, starting from a highly diverged initial state (see “Methods”
section, Supplementary Fig. 12b). This analysis suggested a two-stage
equilibration process with two distinct timescales. The bulk of the long
repeat tail establishes exponentially quickly, followed by a slower fine-
scale equilibration of mutational processes at each length. Finally, we

tested for robustness to potential confounders (e.g., differing initial
conditions, use of a step-wise speed-up factor, lack of stochastic fluc-
tuations, etc.) and found no major changes in the qualitative results
(see “Methods” section, Supplementary Fig. 13). Collectively, these
results show that mutational dynamics, rather than natural selection,
may be responsible for the maintenance of an excess of mid-to-long
tract length repeats in the human genome.

Maintenance of the repeat length distribution in steady state
To understand the complex interplay between mutational processes
that shapes and stabilizes the distribution of repeat lengths, we con-
structed an analytic model of the dynamics. This analytic approxima-
tion captures the behavior of the DRL after the mutational process
reaches steady state (see “Methods” and “Supplementary Note”),
focusing primarily on the previously described multiplier-coupled
three-dimensional parameterization. A number of previous studies
have constructed mathematical models of repeat instability to study
repeat length evolution19,22,25–29,31,33,56, including a notable study by Lai
and Sun30 that incorporates many of the elements detailed herein.
However, the combination of empirical rate estimates, a robust gen-
ome assembly, and our phylogenetic observations motivated the
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Fig. 5 | Inference results and self-consistency of a mutation-only model. a
Bayesian posterior probabilities inferred for the three-parameter multiplier-based
power-lawmodel ofmono-A repeat instability rates; uninformative prior (top row),
popSTR-based informative prior (bottom row; restrictive condition, see Supple-
mentary Fig. 5). Eachcoordinate represents a distinct setof length-dependent rates
defined by parameters (m; τϵ; τκ); τϵ (x-axes) and τκ (y-axes) determine the power
laws for expansion and contraction, respectively, and m (columns) represents a
multiplicative jump at L = 9 (parameterization in Table 1). Color indicates the
highest density range (HDR) of the posterior for various total probabilities; the
black region sums to 0.01% of the probability. Red arrows show the maximum
posterior for each prior. Informative prior results in a more rapid increase in
instability rates with length. Supplementary Figs. 6–9 show posteriors under var-
ious parameterizations. b Comparison of inference to empirical DRLs. DRLs are
necessarily normalized for comparison (conditional on L > 3, see “Methods” sec-
tion); the y-axis indicates normalized fractions (parentheses) and counts rescaled
to match the number of repeats in the T2T genome (bold labels). Blue lines
represent posterior-weighted DRLs (average of all DRLs weighted by the posterior

probability for each parameter combination; see “Methods” section) for informa-
tive (dashed) and uninformative (solid) priors; modeled DRLs are largely con-
sistent with the empirical T2T DRL (black). The green region shows the minimum
andmaximum counts at each length bin across all parameters within the 95%HDR
(uninformative prior). Purple region shows min-max range generated from non-
human primate genomes (n = 34, after removing the twomost-diverged DRLs and
truncating each DRL where raw counts drop below 30; see “Methods” section).
Overlap between these regions indicates that the posterior under the unin-
formative prior largely reflects the ensemble of primates. c Posterior-weighted
repeat instability rates. Tract length dependencies of expansion (blue) and con-
traction rates (orange) for uninformative (solid) and informative (dashed) priors.
Empirical estimates from pooled trios (squares; directly incorporated in the
model) and popSTR data (circles; used to construct informative priors) are shown
for comparison. Informative prior imposes consistency with popSTR-estimated
rates, while the posterior-weighted DRL (b) remains consistent with the T2T
genome.

Article https://doi.org/10.1038/s41467-025-66725-5

Nature Communications |           (2026) 17:93 7

www.nature.com/naturecommunications


construction of a model from first principles that is directly informed
by this collection of observations. In addition to differences in math-
ematical machinery, the analytic construction differs from previous
efforts by incorporating pervasive length-dependent expansion-con-
traction bias (Fig. 3b and Supplementary Fig. 5) and explicit effects
from non-motif insertions.

We first constructed a discrete equation for the change in the
number of repeats at a given length in a single generation due to the
deterministic action of mutations (i.e., in the absence of selection and
stochasticity in the mutational process, consistent with our compu-
tationalmodel).We then imposed a steady state conditionby requiring
that the sum of all changes in and out of each length class vanishes at
each time step after equilibration. Despite the simplifying assumption
of steady state, the full dynamical equation cannot be solved gener-
ically. However, our estimates of de novo mutation rates suggested a
dichotomy exists in the primary driver of changes in length between
short and longer repeats (i.e., primarily substitutions for L<8
A-mononucleotide repeats vs expansions and contractions for L > 10;
see below for direct inference of this length range). Accordingly, short
and long repeat dynamics can be treated as separable (i.e., under the
approximation of a separation of repeat length scales), leading to
simpler approximations of both length regimes. Transitions between
the short and long repeat regimes, while present, remain negligible in
all realistic scenarios (see “Supplementary Note”).

For short repeats, we treated indel mutations as negligible and
showed that a geometric distribution (see Methods, Eq. 8) exactly
solves the steady state equation under two-way substitutions alone
(see “Supplementary Note”). For longer repeats, we constructed a
partial differential equation (PDE) that approximates the discrete
equation and studied its time-independent properties in steady state;
dynamical equations are derived in the “SupplementaryNote” in terms
of generic parameterization of the length-dependent instability rates.
Focusing on the multiplier-coupled parameterization, we obtained
numerical solutions to the steady-state dynamical equations under
various approximations and under the assumption that fusion-based
contributions are negligible to long repeats (see “Methods” section,
Eqs. 9—11 and Supplementary Note). These solutions, along with the
geometric distribution for short repeats, accurately describe the late-
time DRLs produced by our computational model across the range of
parameters that approach a steady state (Fig. 6, Supplementary
Figs. 14–17, and Supplementary Note). Using these comparisons, we
found that, within someparameter regimes, the dynamics simplify to a
less complex balance of mutational processes (see ”Methods” section,
Eqs. 10—11 and Supplementary note) and assessed the appropriate
regime of validity (Fig. 6a, b and Supplementary Figs. 14–17). To more
directly test the accuracy of the PDE, we used our computational
results to decompose the per-generation fluxes in and out of each
length class into relative contributions fromeachmutational type. This
allowed for identification of the dominant mutational processes
maintaining steady state (Fig. 6c and Supplementary Note); the accu-
racy of each approximation was confirmed by analyzing the net mag-
nitudes of fission and fusion within each length class and regime
(Supplementary Figs. 18–20).

We used this model to study the shape and stability of the
empirical DRL and distinctions between repeats in different length
regimes under mutational forces alone. Expansions and contractions
remain non-negligible for any long repeat across the space of para-
meters that lead to stable late-time DRLs, highlighting the importance
of repeat length instability to the maintenance of long repeats. For
extreme parameters that stabilize (i.e., τκ≫ τϵ), the dynamics of all long
repeats are dominated by expansion and contraction, alone, leading to
a DRL that truncates more rapidly than under substitutions alone (i.e.,
a depletion of long repeats relative to a geometric distribution). In
contrast, for realistic parameters (i.e., within the 95% HDR for
A-mononucleotide repeats), an intermediate length regime emerges,

characterized by the relevance of repeat fission. An accurate descrip-
tion of the shape of the DRL requires fission to account for the loss of
repeats from the extreme tail (i.e., the longest populated length bins)
and gain of intermediate length repeats. The relative contributions of
fission due to substitutions and non-motif insertions are parameter-
dependent; within the rough neighborhood of themaximumposterior
parameters (informative prior), substitution is the primary driver of
fission up to lengths of ~20 nt, while longer repeats are primarily
interrupted by non-motif insertions (see “Supplementary Note”).
Fission-based losses in the extreme tail are insufficient to fully coun-
teract length increases due to expansion, independent of the muta-
tional mechanism and parameter values. Instead, contraction is
primarily responsible for truncating the DRL at finite repeat length but
can be bolstered by both substitution- and non-motif insertion-based
fission. The dynamics of the long repeat regimedecouples from that of
short repeats such that rapidly mutating long repeats effectively
become independently evolving genomic elements, categorically dis-
tinct from random sequences of the same length. The abundance of
long repeats in the genome may therefore be a consequence of their
largely unencumbered evolution caused by rapid changes in length.

Inferring the onset of instability from the shape of the DRL
We sought to better characterize the length at which repeats become
independently evolving genomic elements. Our analyses thus far
suggest that this occurs roughly at the length where expansion and
contraction rates exceed substitution rates. This length was explicitly
fixed in our inference via reliance on empirical rate estimates at L = 1—
8; however, this precluded exploration of the onset length of repeat
instability. To study the encoding of this information within the shape
of the DRL, we defined fully parameterized rate curves (omitting all
empirical rate estimates) that include the length at which instability
rates exceed substitution as an explicit parameter. Expansion and
contraction rates are each parameterized by an independent power
law at all lengths (i.e., with no reference to empirical estimates) in
terms of an exponent τ and λ, the length at which the rate intersects
the relevant substitution rate (μ for expansion, ν for contraction; full
parameterizations defined in Table 1, see “Methods” section). This
four-parameter model depicts an oversimplified rate dependence but
serves as a toy model to probe the instability onset length λ.

Applying the same Bayesian inference pipeline, we estimated the
posterior probability using both a uniformprior (i.e., excluding all rate
data) and a prior informed by the combined set of empirical rate
estimates (i.e., from both the pooled trio and popSTR data; see
“Methods” section). Wemarginalized the posterior to specify values of
the onset lengths for expansion (λϵ) and contraction (λκ) and found
highly restrictive marginal distributions with 95% HDRs isolated to
λϵ =9, λκ = 12—13 (informative prior: λϵ, λκ =9, 12; Supplementary
Fig. S21 and Table 1). This recapitulates the range of lengths observed
in direct empirical rate estimates, despite excluding all such data from
the inference (i.e., isolating the influence of the shape of the DRL). The
posterior-weighted DRLs reproduce the informative features of the
human DRL (e.g., deviation from the substitution-driven geometric
distribution at roughly 10 nt; Supplementary Fig. 21b), despite the
oversimplified model of instability. This suggests that the transition in
shape of the DRL corresponds to the onset length of repeat instability,
allowing for rough estimation of this key feature fromvisual inspection
of the distribution.

Application to repeats with longer unit length
Given that the DRL is informative about the onset length of repeat
instability, we next compared this quantity across motifs of differing
unit lengths (e.g., dinucleotides, trinucleotides). Empirical rate esti-
mates for all motifs showed qualitatively similar properties to mono-A
repeats (i.e., predominantly single-unit expansions and contractions
with rates that scale rapidly with tract length; Fig. 3a and
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Fig. 6 | Dynamical regimes distinguishable by dominant mutational effects.
a Slice of parameter space for the three-parameter multiplier-based model (para-
meterization in Table 1). Five example parameter combinations with m = 4 and
τε + τκ = 3.5 are shown, corresponding to plots in (b, c). Colors roughly divide the
parameter space into dynamical regimes. b Comparisons between computational
model results and numerical solutions of approximate steady state equations (see
“Methods” section, SupplementaryNote). The short length regime at equilibrium is
geometrically distributed (blue dashed lines). For long repeats, numerical solu-
tions are shown for three nested approximations to the steady state equation in the
continuum limit (L≫ 1) in the absence of fusion (due to negligible rates); solutions
to approximations in Eqs. 10–12 are shown in orange, red, and purple, respectively.
Local transitions (L to L ± 1) were modeled as a combination of symmetric (diffu-
sive) and asymmetric (directional bias) components. L* represents the length at
which expansion and contraction rates are equal. For strong asymptotic
contraction-bias (b: i), all three approximations remain valid, indicating that the
dynamics are well approximated by neglecting fission entirely (orange curve

aligns). For moderate contraction bias (b: ii), outflux due to fission becomes non-
negligible (orange begins to deviate). For realistic parameter combinations with
lower contraction bias (b: iii), outflux due to fission is required at all lengths
(orange fails); influx due to fission is required at intermediate lengths (red devi-
ates); fusion remains negligible (purple remains accurate). Plots (b: iv–v) display
non-equilibrium dynamics leading to a rapid increase in repeat counts and
explosive growth in genome size. Under universal expansion bias (b: v), DRL
extends indefinitely above the boundary imposed at L = 200 (for computational
feasibility). Steady-state analytics do not apply. c Relative contributions from each
mutational transition to net flux (in minus out) per length bin, produced by
computational model. Dashed line indicates DRL truncation (counts < 1). Con-
sistent with analytic predictions, fission is subdominant under strong contraction
bias, has relevant outflux under moderate to weak contraction bias, and relevant
influx at intermediate lengths under weak contraction bias. Equilibrium distribu-
tion is stabilized in detailed balance (net influx = outflux). Influx > outflux (c: iv–v)
leads to non-equilibrium dynamics and indefinite genome growth.
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Supplementary Figs. 4 and 5), suggesting an analogous dynamical
competition between substitutions and repeat instability that shapes
the steady state DRL.We compared two distinctmeasures of the onset
of repeat instability, representing long- and short-timescale informa-
tion: first, rough lengths at which empirical DRLs first deviate from
geometric decay (i.e., the expectedDRLunder substitutions alone) and
second, the approximate lengths at which per-repeat expansion and/
or contraction rates first exceed either substitution rate (i.e., rates
comparable to μ or ν that perturb the geometric dependence on L).
Both measures showed reasonable agreement confined to a range of
onset lengths between roughly 6 and 12 nt, despite differing unit
lengths (Supplementary Fig. 22a). This suggests a universal description
of repeat dynamics that shapes the extended tail of the DRL, despite
apparent differences in the geometric portion at short lengths. Rapid
geometric falloff is an immediate consequence of increasing the unit
length (Supplementary Fig. 22b): while a single substitution is suffi-
cient to shorten tract lengths regardless of motif, lengthening of
repeat tracts can require multiple substitutions (up to the unit length
of the motif). Given initially comparable expansion and contraction
rates acrossmotifs, longermotifs show amore immediate transition to
the repeat instability-dominated dynamics when measured in the
number of repeated units but largely agree when measuring the onset
length of repeat instability in nucleotides (Fig. 1a).

Discussion
Motivated to understand the origin, prevalence, and maintenance of
simple tandem repeats in the genome, we constructed a model of
repeat evolution under mutagenesis alone that bridges short- and
long-timescale observations of repeat length instability. We demon-
strate that mutations alone are sufficient to explain the shape of the
genome-wide distribution of tract lengths. The abundance of long
repeats in the genome reflects the rapid onset of repeat instability with
an initial expansion bias, rather than natural selection. This observa-
tion does not preclude selection at specific loci, whether beneficial or
disease-associated, provided these comprise a small portion of repeats
in the genome.

Length-dependent expansion-contraction bias is evident in our de
novo estimates; incorporating this property into themutationalmodel
is sufficient to truncate the distribution at finite lengths due to sub-
stantial contraction-bias. The long length tail of the distribution is
produced and maintained in a dynamic balance between expansion,
contraction, and fission. This implicitly prevents the growth of repeats
to disease-relevant lengths, suggesting natural selection as a disease-
prevention mechanism may not be essential. If selection, rather than
contraction bias, is responsible for terminating the distribution below
disease length, it would have to be enormously efficient to counteract
instability-driven expansion rates and act globally across all sufficiently
long repeats. If pervasive selection plays a role in shaping the dis-
tribution, this must be inferred as a deviation from the DRL under
mutation alone, built on a more complete model of repeat
mutagenesis.

Our analysis of the genome-wide properties of repeats is com-
plementary to studies of individual loci harboring disease, which
generally occurs at or above the longest lengths present in the
reference genome (i.e., stochastically driven length classes in the
present context). Such elongated repeats can form motif-specific
secondary structures that can disrupt replication and repair, causing
instability with qualitatively distinct properties8,9. Furthermore, even
amongst repeats of the same motif, locus-specific properties can
introduce variability in the length-dependent rates of expansion and
contraction and directional differences in bias (e.g., for long CAG
repeat loci7). One well-studied example is the CAG repeat locus
responsible for Huntington’s disease. A recent analysis showed that a
secondary phase of expansion-biased, accelerated instability rates
best explains somatic repeat expansion and its association with

disease progression56. This locus-specific inference does not conflict
with our observation that contraction bias terminates the bulk of the
genome-wide distribution; indeed, this may indicate that, at lengths
well-above those studied in the present manuscript, additional
directional flips in bias may occur. This, along with potential inter-
locus variability, may contribute to the modest number of repeats at
lengths above the truncation point.

Our analysis offers a potential explanation for the prevalence of
repeats at lengths that risk progression to disease. First, the dynamics
of short and long repeats decouple due to the rapid onset, and sub-
sequent dominance, of repeat length instability. Short repeat dynam-
ics are dictated by substitutions alone, such that repeats within this
regime are roughly indistinguishable from random strings of nucleo-
tides of the same length. Longer repeats are primarily subject to dis-
tinct mutational forces, exhibiting rapid expansions and contractions
and a higher rate of repeat fission, which increases the total number of
repeat tracts. Amongst long repeats, those of mid-length primarily
experience substitution-based fission, while mutations in the longest
repeats are effectively substitution-independent (i.e., fission is driven
by non-motif insertion). This is inconsistent with previous literature
that suggested substitutions prevent disease by providing a stopping
force that counteracts indefinite expansion44,48,54,57–59; instead, our
analyses suggest this is primarily a consequence of contraction bias at
long tract lengths (similar to previous proposals based on very early
data24,26,32,46). Given the negligible role of substitution, there is little
overlap in the mutational forces—and, subsequently, the underlying
mechanisms—between the shortest and longest repetitive sequences
included in our analyses. In this sense, long repeats emerge as inde-
pendently evolving genomic elements (with parallels to the concept of
selfish genetic elements60–62). Monotonically increasing instability
rates generate length-dependent dynamics under which expansions
lead to further instability, while decreasing length is effectively stabi-
lizing; the former results in frequent forays into long length bins that
may be the precursors to disease. The onset of this process leads to a
natural definition for the shortest ‘unstable’ repeat (roughly 6—12 nt,
far below disease length). This dynamical definition is distinct from
measuring the lowest length where expansion or contraction rates
start exceeding thebackground indel rate (as lowas twounits formany
motifs; Fig. 3b and Supplementary Fig. 5), whichmay better inform the
molecular underpinnings of repeat instability. This difference in sci-
entific goals underlies the debate in the literature concerning the
definition of unstable repeats63.

Provided selection plays little role in directly modifying repeat
length, the conservation of the distribution in steady state implies that
the underlying mutational mechanisms (i.e., DNA replication and
repair) are highly conserved. Generically, such mechanisms play a
broad role in maintaining sequence fidelity of the entire genome,
primarily preventing single-nucleotide mutations; due to the sub-
stantially larger target size, it is unlikely thatmachinery responsible for
both single-site mutations and instability-driven length changes are
optimized to properties of the latter. The abundance of long repeats
may thus be an inescapable consequenceof the pleiotropic function of
the machinery maintaining genome-wide sequence fidelity.

It remains unclear which biological mechanisms control the key
properties of repeat length instability described in our study. The
proposed mechanism(s) should be able to explain length dependen-
cies of instability rates (Fig. 3b and Supplementary Fig. 5) that show: (a)
rapid onset from ~6—12 nt, surpassing the rate of substitutions, (b)
greater-than-linear increase in the expansion/contraction rate per
target above ~10 nt, (c) generically asymmetric rates of expansion and
contraction with initial expansion-bias, followed by terminal contrac-
tion-bias, (d) single-unit expansions/contractions, regardless of tract
length, and (e) parallel expansion and non-motif insertion rates, sug-
gesting a common origin (Fig. 3a and Supplementary Fig. 4). Surpris-
ingly, these observations appear to be largely independent of both
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motif sequence and unit length (Supplementary Fig. 5), suggesting a
common biological origin.

Two widely studied mechanisms, replication slippage and
mismatch repair (MMR), likely explain part of the story8,9,64–68. Slip-
page, when newly synthesized DNA partially unwinds and realigns out
of register, should stronglydependon theunit length; however, we see
only minor variation associated with unit length (Supplementary
Fig. 5). While slippage during DNA replication produces loop-outs on
both strands symmetrically67, subsequent small loop-processing by
MMR preferentially results in contractions69 due to bias towards the
nascent strand70. Slipped-strand structures may be a motif-
independent source of loop-outs subject to the same MMR-proces-
sing; in contrast, other secondary structures are motif-specific and
therefore cannot be the primary source of repeat instability but can
potentially explain differences between motifs71 (Supplementary
Fig. 1b). Importantly, the observation ofmostly single-unit expansions/
contractions argues against mechanisms involving larger structures
(e.g., long hairpins that cannot be processed by MutSβ72–77), as these
would be expected to generate multi-unit indels.

Single-unit expansions have also been observed in a different
context: Okazaki fragment maturation by flap-endonuclease FEN178.
Imprecise removal of the flap formed by the displaced 5’-flank of an
Okazaki fragment may lead to expansion bias79 and introduce an
associated length scale. A secondarymechanism takes over when flaps
exceed 30nt80; speculatively, long repeats could give rise to long flaps.
Likewise, another flap-endonuclease, FAN1, which recently emerged as
a genetic modifier of several repeat expansion disorders, was impli-
cated in the processing of various slip-outs and demonstrated differ-
ential activity depending on flap length81. Altogether, this illustrates
how different mechanistic explanations may apply to repeats of dis-
tinct lengths, generating emergent properties like length-dependent
expansion-contraction bias.

In addition to advancing amechanistic understanding, substantial
effort continues to be dedicated to both assembling datasets and
developing estimation techniques specific to repeat instability, due to
the inherent difficulties associated with repetitive DNA. Given the
difficulty of this task, the present work demonstrates how direct rate
estimates can be informed by orthogonal data. The comparative
robustness of estimates of the distribution of repeat lengths provides
constraints on properties of instability that can serve as a new means
for evaluating the quality of differing rate estimates. The DRLmay also
serve as a summary statistic informative about the evolutionary history
of mutation rates and mechanisms, including in species where no
population data exists. Indeed, our rapidly improving understanding
of repetitive elements, which have historically evaded sequencing
efforts, unlocks a range of new questions about the composition and
evolution of the genome.

Methods
Genome sources
Genome fasta files for T2T-CHM13_2.0 were downloaded from UCSC:
http://hgdownload.soe.ucsc.edu/downloads.html#human. Alternate
human assemblies and mammalian genomes were downloaded from
the NCBI genome database: https://www.ncbi.nlm.nih.gov/datasets/
genome/.

Motif labeling
Throughout the present study, repeat motifs are given a standardized
label according to alphabetical order within the list of all cyclical per-
mutations of a givenmotif (e.g., CAG, AGC, and GCA) and their reverse
complements (e.g., CTG, GCT, and TGC). Outside of coding regions,
cyclical permutations of a motif become mostly indistinguishable,
both bioinformatically and biologically (after exceeding someminimal
length relevant to processes such as protein binding site recognition).
Likewise, if not considering specific hypotheses such as transcription

direction, reverse complementary motifs should be treated as
equivalent because Watson and Crick strands are indistinguishable
outside of telomeres. The present study does not investigate any of
these specific biological hypotheses, and so we combine results for all
equivalent motifs under a single label to increase statistical power. In
this arrangement, well-studied motifs may receive a label that differs
from that commonly used in the literature (e.g., Huntington’s disease
(CAG)n repeats and myotonic dystrophy (CTG)n repeats are both
labeled ‘AGC’).

Generation of empirical repeat tract length distributions
Repeat tract length distributions were generated by counting con-
secutive completemotifs (i.e., perfectmotifs, no interruptions, and no
partial motifs). Each distribution was assembled by counting con-
tiguous, uninterrupted repetitions of a specified motif. Instead of
introducing an arbitrary tolerance for interruptions when counting
repeats of a given length, this strict definition allows for straightfor-
ward bioinformatic assembly of the DRL. The regex pattern ‘([ATGC]
{1,6}?)\1+’ detects arbitrarily long tracts of repeated nucleotides, find-
ing any motif with a unit length of 1–6 nt. Using a ‘regex’ imple-
mentation in Python 3 (pypi.org/project/regex/, version 2024.11.6), all
motifs can bedetected simultaneously by using the ‘finditer’ command
with the ‘overlapped = True’ option. Because this pattern detects
repetitions of motifs, separate regex patterns were used to detect
single instances of each motif (i.e., L = 1), taking the form ‘([ATGC]{n})
\1{0}(?!\1)’, where n is each motif unit length 1–6. The results of all
regex searches were combined to generate a histogram of counts for
each motif (pooled under the appropriate label) at all tract lengths
present in the genome (i.e., the DRL). Histograms representing counts
of non-motifs (i.e., the lengths of contiguous regionswhere aparticular
motif is absent; required for computationalmodeling) were generated
on a per-motif basis, using the regex pattern ‘(?:(?!’ +motif + ‘)[ATGC])
+‘ and combining the results for all cyclical and reverse-
complementary permutations of the given motif.

Bootstrap confidence intervals were generated around the T2T-
CHM13 repeat length distribution. The genome was divided into 1Mb
contiguous non-overlapping segments, discarding any sub−1Mb
chromosome ends. DRLs were measured for each segment. A dis-
tribution for the full-length genome was then reconstituted by ran-
domly sampling from these segments, allowing replacements, and
summing the distributions from each segment. This process was
repeated 1000 times and 95% confidence intervals were generated by
separately taking the minimum and maximum in each length bin after
removing the top and bottom 25 counts.

For the various mammalian genomes, the same counting proce-
dure was applied. Assemblies generated from short-read sequencing
frequently contain many short contigs, which typically originate from
poorly sequenced regions containing transposable elements; any
contig of length < 10 kbwas discarded. Taxonomic data were retrieved
from https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/. The median dis-
tribution of a given taxonomic group was assembled by gathering the
normalized DRLs (see below) for every member of the group (i.e., for
primates, this includes humans, and for mammals, this includes pri-
mates) and taking the value of the median species for each length bin.

Distribution normalization
After initially computing theDRL for eachmotif from the T2T genome,
we sought to compare the shape of each histogram of raw counts to
those assembled from distinct human reference assemblies (Supple-
mentary Fig. 1c) and from references for various species (Fig. 1b and
Supplementary Fig. 2). To compare distributions estimated from
assemblies with differing total target size, it was necessary to nor-
malize each distribution (i.e., divide by the total number of counts,
summing over length bins) to standardize the overall scale.We refer to
the normalized DRL as the probability distribution of repeat lengths,
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which we interpret as an estimate of the probability of randomly
sampling a repeat of length L from the set of all contiguous motifs
(including L = 1) in the assembly; when specific length classes are
omitted, this becomes a related conditional probability distribution
(i.e., P LjL> Lmin

� �
). Shorter assemblies (particularly those with lower

quality and read depth at repetitive loci) have a reduced overall
number of sequenced repeats and a threshold for statistical (and
potentially stochastic dynamical) noise at a lower length. To ensurewe
are comparing estimates robust to statistical noise, we truncate each
DRL above the lowest length bin containing less than 30 counts. This
results in otherwise comparable normalized DRLs (assuming the same
motif) with distinct truncation points based on non-normalized
counts. Qualitative differences between the shape of the resulting
normalizedDRLs in remaining comparable length bins are indicative of
differences in the evolutionary parameters (e.g., mutation rate, selec-
tion, etc.) or systematic error profiles (or both) between compared
assemblies.

In addition to normalization for empirical comparisons, the
empirical DRL and parameterized theoretical DRLs generated by our
computational model were normalized by summing only over length
classes above a specified minimum length to produce a comparable
normalized DRL, conditional onL≥ Lmin. This improved the summary
statistic used to characterize differences between these distributions.
Further details and justification for the specific choice of Lmin are
provided in the Bayesian inference procedure, below. To make figures
easier to interpret, normalized DRLs from the computational model
were subsequently rescaled (where noted) to match the non-
normalized counts for T2T-CHM13 by multiplying each normalized
DRL by the sum of counts for bins L≥ Lmin in the T2T-CHM13 DRL.

Bioinformatic estimation of substitution and indel rates
De novo mutation datasets were acquired as VCF files (or equivalent)
from various published sources82–89, representing a total of 10,912
parent-child trios with available SNVdata and 9,387 trios with available
indel data. This dataset was compiled inMcGinty and Sunyaev, 202390,
and comprised of all freely available trio samples at the time of ana-
lysis; samples from distinct VCFs were pooled to increase statistical
power. We assumed that all individuals have the same underlying
mutation rates. Variants weremapped to GRCh38 either in the original
study, or subsequently, using ‘pyliftover’ (pypi.org/project/pyliftover/,
version 1.3.2). The average substitution rate was estimated to be
1.2 × 10−8, calculated as: number of substitutions/approximate number
of sequenceable nucleotides in the diploid genome (see below)/num-
ber of offspring genomes in the dataset. We classified substitutions
according to six categories based on trinucleotide context and the
motif in question, as follows: for the example of mono-A motifs, using
B to represent non-A nucleotides, we determined rates (in par-
entheses) of ABB > AAB and BBA >BAA (4.58 × 10−9) representing
repeat-lengthening events, AAB >ABB and BAA >BBA (7.74 × 10−9)
representing repeat-shortening events, ABA >AAA (2.74 × 10−9) repre-
senting fusion events, AAA>ABA (4.35 × 10−9) representing fissions,
BBB > BAB (3.80 × 10−9) representing the rate of A1 creation, and
BAB >BBB (6.17 × 10−9) representing the loss of A1. Rates for all other B-
substitution processes were not estimated.

We calculated indel rates as a function of repeat tract length.
Using positional information, upstream and downstream sequences
for each event were pulled from the reference genome, under the
assumption that the sequence of the parental genome is identical to
the reference genome. For every focal motif, we used the reference
sequence to determine tract length. Indel rates per tract length per
motif were estimated by dividing by the number of repeats of that
length, obtained by generating DRLs in a GRCh38 genomemasked for
low-quality regions (see below). Each indel was classified as an
expansion, contraction, or non-motif insertion, additionallymeasuring
how many motif units were added/removed in the event. We limited

mutations in our computational model to +1/−1 unit changes in length
at appropriate rates. We also measured the rate of indels for all B
positions (with respect to each motif; mono-A rates in parentheses),
separately estimating the rates of BB >BBB (1.38 × 10−10), BBB >BB
(4.37 × 10−12), andABA>AA (2.76 × 10−10) events. Because B stringswere
not modeled as having length-dependent instability, wemeasured the
average rate, i.e., the rate per unit.

Limitations of the VCF file format, namely the lack of any infor-
mation at unmutated positions, force the treatment of the pooled-trio
VCFs as a complete record of variants in all individuals. At a coarse
level, this problem was minimized by assuming that 100 kb regions
lacking any substitutions across the combined dataset suffer from
regional mappability issues. These regions were masked in GRCh38
when estimating the denominator for rate calculations. At the fine
level, this issue persists: mutations may have been filtered (prior to
populating the VCF file) due to localized drops in sequencing quality,
resulting in false negative calls and undercounting in the pooled esti-
mates. This results in an underestimate of mutation rates, because
counts from GRCh38 used in the denominator remain static. This may
particularly affect estimation of instability rates as repeat tract length
increases, because long repeats are known to interfere with several
facets of the sequencing and bioinformatic processes34–37. We believe
this systematic error mode, leading to progressively more severe
underestimation of instability rates with increasing tract length, is the
underlying cause of non-monotonicity observed in these rate esti-
mates (Supplementary Fig. 5). Mononucleotide repeats may be espe-
cially susceptible to systematic rate underestimation, as they are
among the most difficult motifs to sequence37.

The popSTR repeat instability dataset, representing 6,084 parent-
child trios, was acquired from the supplement of Kristmundsdottir
et al., 202345. This dataset was incorporated into our inference due to
the unique methodology, which provided high-quality calls of muta-
tions extending beyond short tract length repeats that allowed us to
produce length-stratified rate estimates. Files ‘bpinvolved_extended’
and ‘mutRateDataAll.gz’ were downloaded from https://github.com/
DecodeGenetics/mDNM_analysisAndData. Due to our focus on unin-
terrupted repeats, we measured the longest contiguous repeat tract
within the provided coordinates for each event. We limited the dataset
to loci where the popSTR-reported reference tract length agreed with
our own measurement in GRCh38. The ‘bpinvolved_extended’ file
contains amixof phased andunphaseddata;where theparental length
for a given mutation was not assigned by phasing, we assumed that it
originated from the parental copy, which minimizes the difference in
tract length between the proband repeat and any of the parental
repeats. Skipping this phasing step under the assumption that all
events originated from the reference length allele (but retaining the
size and direction of the event), as we do for the pooled-trio dataset,
results in relatively minor differences in counts per length bin. The
‘mutRateDataAll.gz’ file contains information on the number of trios
where all three samples passed sequencing quality filters at a given
locus, and the length of the repeat tract at each locus in GRCh38, but
lacks information on the parental genotypes for each of these loci (i.e.,
the file does not report pass/fail counts stratified by parental tract
length). For the denominator of the popSTR mutation rates, we thus
generated a distribution of passing counts (using the reference length
for each locus), multiplied by two parental alleles. This assumption
leads to some amount of misestimation of rates: loci containing long
repeats show higher tract length variance in the population (due to
higher instability rates), and thus individuals are more likely to differ
from the reference genome. It is unclear whether a related effect
(owing to the absenceof lociwith reference tract lengths below 10nt in
the popSTR dataset), or some other unknown error mode, is respon-
sible for the apparent overestimation of popSTR-based rates at shorter
tract lengths where direct comparisons to reliable pooled-trio esti-
mates are possible (Supplementary Fig. 5).
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Wenote that the popSTR dataset differs from the pooled trio data
in several aspects: the popSTR caller provides no estimates for refer-
ence tract lengths below 10 nt; mutations are classified by length
change, failing to distinguish between expansions and non-motif
insertions; and, due to data access limitations, we were unable to
assess the nature and magnitude of potential systematic errors
detailed above. These distinctions precluded direct merging of
instability rate estimates with the pooled trio data; popSTR-based
estimates were instead incorporated into our inference by informing
the prior (see below). Insertion rates, which are the sum of expansion
and non-motif insertion rates, were used as a surrogate for expansion
rates under the assumption that non-motif insertion remains far more
infrequent than expansion (consistent with estimates from the pooled
trio data at roughly 1% of total insertions).

For substitution and indel rate estimates based on either the
pooled-trio or popSTR datasets, we calculated 95% confidence inter-
vals based on 200 Poisson samples of the mutation counts, removing
the top 5 and bottom 5 values per length bin (see Fig. 3b and Supple-
mentary Fig. 5). We note that error bars provided on each estimate
represent onlyPoissondistributed statistical error bars associatedwith
point estimated counts in the numerator of each rate and are therefore
subject to the above and any additional systematic errors underlying
variant calling.

Computational modeling of repeat length dynamics
We used a custom-written script in Python 3 that models repeat
dynamics by directly manipulating the distribution of repeat lengths.
We simultaneously tracked andmanipulated the length distribution of
B strings. As detailed above, we assumed a binary genome consisting
only of A and B sites, whereA is a repeat unit and B represents any non-
A unit; as a result, B strings do not a priori represent repetitive
sequences. Mutations are applied in aggregate such that, in each
generation, repeats transition between integer length bins according
to rules associated with each mutational process, while the B dis-
tribution is updated accordingly (e.g., a substitution that lengthens a
repeat simultaneously shortens a B string). Mutation rates were
restricted to be sufficiently low to model only a single mutation event
per repeat per generation. The non-normalized distribution was
evolved and subsequently normalized to create a probability dis-
tribution for comparison to empirical data. This approach is far more
computationally efficient than simulating an entire genomic sequence,
subsequently applying mutations and generating a distribution; com-
putational time in our script scales with the number of length bins
rather than with the length of the genome. Tracking only the dis-
tribution discards information about the location of particular muta-
tions, instead generating an expected number of mutations for each
category per length bin per generation. Except where specified, we
used a deterministic approximation to assess the behavior of the
expectation value of each bin as the distribution evolves toward steady
state via repeated application of the mutation kernel. To understand
the impact of stochastic fluctuations on the steady state distribution,
we additionally implemented a model that represents fluctuations by
Poisson sampling the expected change to each length bin per gen-
eration. We model stochastic fluctuations around the applicable rates
by sampling mutational counts, but without constraining individual
transitions (i.e., a net number ofmutationsmay leave a given class, but
the number introduced elsewhere, as a result, is appropriately dis-
tributed only on average due to an independent sampling procedure).
All subsequent analyses were performed using the deterministic
results, as modeling independent fluctuations in each bin showed no
qualitative differences (Supplementary Fig. 13e).

Mutations affect the distribution via the following well-defined
rules for substitutions and indels (see Fig. 2 for illustration). These
rules assume that each mutation adds, subtracts, or substitutes a
single, complete repeat unit (i.e., the most prevalent class of length

changes, seen in Fig. 3a and Supplementary Fig. 4). Using the
example of a repeat of L = 6, a lengthening substitution subtracts one
count from the L = 6 bin and adds one to the L = 7 bin. A shortening
substitution subtracts one from the L = 6 bin and adds one to the L = 5
bin. A substitution causing repeat fission subtracts one from the L = 6
bin and adds two new repeats, either one L = 1 and one L = 4, or one
L = 2 and one L = 3 (when evolving the distribution in aggregate, both
occur simultaneously with appropriate relative rates). The reverse
process of fission is fusion, in which an L = 6 repeat can be generated
by fusing an L = 1 with an L = 4, or by fusing one L = 2 and one L = 3
repeat, while themutated B unit is replaced with an A unit and added
to the repeat length. Lengthening and shortening substitutions act
locally (i.e., counts leave the L bin and move to the adjacent L+ 1 and
L� 1 bins, respectively). Substitution of an L = 1 in the A distribution
also corresponds to fusion of B strings; the reverse, i.e., substitution
of a length one B string, generates fusion in the A distribution. Fission
and fusion substitutions inherently act non-locally in length space:
fission results in the loss of one count in the L bin and gain of two
counts that are evenly distributed across all bins of length ≤ L� 2;
fusion evenly subtracts two counts from bins ≤ L� 2 to add a count
to L. The net effect of substitutions conserves the total length of the
genome, i.e., the sumof the length of all A repeats plus the sumof the
length of B strings remains constant under substitutions alone.

The rates of lengthening, shortening, fission, and fusion sub-
stitutions per generation are separately estimated using the three-unit
context: BBA >BAA (or ABB >AAB) for lengthening substitutions,
AAB > ABB (or BAA >BBA) for shortening substitutions, AAA>ABA for
fissions, and ABA >AAA for fusions. All substitution rates were
assumed to be independent of repeat length, based on our previous
observations showing little to no rate increase with increasing repeat
length90. The target size for lengthening substitutions is twoper repeat
(i.e., the two sites adjacent to each repeat boundary). Likewise, the
target size for shortening substitutions is also two per repeat, repre-
senting the two boundary units of the repeat (assuming L> 1). The
target size for fission substitutions is L� 2 per repeat, representing all
non-boundary units within the repeat. The target size for all fusion
events is proportional to the L = 1 count of theBdistribution. Equations
governing these processes are described in detail in the
Supplementary Note.

Indel mutations operate under an analogous logic, but with a
few important distinctions. Indels, by definition, do not conserve the
length of the genome. Expansions and contractions act strictly
locally, but the location of the event is indistinguishable within the
repeat, affecting any of the units rather than just the boundaries; this
results in a per-repeat target size L for thesemutations, rather than 2.
Non-motif insertions (i.e., AA > ABA) cause fission, resulting in the
loss of one count in the L bin and gain of two counts that are evenly
distributed across all bins of length ≤ L� 1; deletion of a B string of
L = 1 (i.e., ABA > AA) causes fusion, which evenly subtracts two counts
from bins of length ≤ L� 1 and adds one count to bin L. Indel rates
for expansions and contractions are incorporated in a length-
dependent manner, described above, in contrast to substitution
rates. We did not model length dependence for B indels, as most B
strings represent a combination of nucleotides and not necessarily
STRs with any biological relevance. This assumption should not
impact the evolution of the A distribution after normalization, which
is only coupled to the L = 1 class of the B distribution; this length class
is dominated by substitution rate dynamics and not subject to repeat
instability.

Time-rescaling using a constant speed-up factor. Due to the large
number of iterations required to reach a steady-stateDRL, propagating
the mutational process directly was computationally prohibitive.
Instead, we approximated the DRL by first rescaling time by multi-
plying all mutation rates by the same constant 10r such that each
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iteration represents 10r generations of evolution for a total of T = 10Ir

generations (assuming a constant r at all time points run for I itera-
tions); r was limited to integer values for convenience. This defines a
set of time-rescaled substitution, expansion, contraction, and non-
motif insertion rates as a function of length.

Due to the rapid growth of instability rates with increasing length,
these rates quickly saturate, reaching probabilities of one at some
length L. To avoid multiple mutations per repeat per iteration, we
defined a saturation length Lmax as the length at which the sum of all
mutation rates first exceeds 0.1 (e.g., Lmax ! 1 if the sum of rates
remains below 0.1 at all lengths). Lmax thus demarcates the linear
mutation regime, below which multiple mutation events remain rare.
In addition to dependence on the instability rate parameters, Lmax is
dependent on r: increasing the speed-up factor increases mutation
rates by 10r , which decreases Lmax. To ensure reasonable computa-
tional time, Lmax was limited to amaximumof 200 (i.e.,minfLmax, 200g,
computed separately for A-repeats and B-string lengths), which
extends well beyond the empirical DRLs. To prevent loss of mass
associated with the finite length grid, we imposed a reflective bound-
ary condition at Lbound = minfLmax, 200g (i.e., all transitions from
lengths L< Lbound to L≥ Lbound were assigned to Lbound). This results in
artefactual behavior near the boundary but provides a reasonable
approximation when the expected number of counts drops below one
at lengths far below Lbound. Substantial counts at the boundary are
indicative of unrealistic distributions (often associated with diverging
total genome size), provided Lbound is sufficiently far from the max-
imum well-populated lengths in the comparable empirical
distribution.

For a given parameterization, producing a grid of DRLs requires
choosing a constant speed up r and the boundary length Lbound
appropriate for each parameter combination (the required computa-
tional time is largely determined by the number of parameter combi-
nations with the lowest value of r). This procedure can be used to
produce a coarse grid of parameters (e.g., for comparison to alter-
native approximations), but it proved computationally prohibitive for
the dense grid needed for inference.

Step-wise speed-up procedure. To produce finer grids of DRLs (for
several parameterizations), we implemented a procedure that reduces
overall computational time, while producing approximately the same
DRL as that under a constant speedup (described above). This proce-
dure models the evolution of the DRL by performing several, discrete
phases of evolution, each with successively smaller time-rescaling
factors 10r . Each stage is allowed 106 iterations of evolution under the
specified r (and the associated reflective boundary at
Lbound = minfLmax, 200g for each parameter combination); r = 3 for the
first stage, and is reduced to r =2, 1, and0 for subsequent stages. Lbound
is altered at each stage to maintain the linear mutation regime (i.e.,
ensuring Lmax ≥ Lbound). In total, parameter combinations can experi-
ence up to four stages (equivalent to 4 × 106 iterations, or 1:111 × 109

generations).
For computational efficiency, we first separated parameter

combinations that rapidly equilibrate in a single stage of 106 itera-
tions under a sufficiently large rescaling factor r ≥ 3 (easily identified
by Lmax ≥ Lbound = 200; equivalent to propagation using a single,
constant speed-up factor). Thesewere each run at the largest allowed
integer r for the equivalent of 109 generations and removed from the
grid. All other parameter combinations were subjected to several
stages with progressively decreased r; after each stage, parameter
combinations deemed equilibrated were removed from the grid
(again identified by Lmax ≥ 200, determined by the preceding r-
rescaled instability rates). For parameter combinations with
Lmax < 200 in the absence of any speed-up factor (r =0), counts in all
length bins between Lmax and 200were set to zero prior to analysis of
the DRL.

To ensure that the multi-step procedure provides a reasonable
approximation to the DRL produced under a constant speed-up, we
compared inference results over a coarse grid of parameter combi-
nations and found negligible differences (Supplementary Fig. 13).
Intuitively, this procedure takes advantage of the fastermutation rates
at longer lengths, which equilibrate much more quickly than shorter
length bins.

Initial conditions at t =0. The computational model was initialized
with an initial distribution that is approximately geometric (created by
propagating substitutions alone, setting all instability rates to zero) for
the equivalent of 1010 generations (using the largest allowable rescal-
ing, r = 5). Using this approximation to the substitution-only steady-
state as a pre-simulation substantially reduces equilibration times
because the lowest length bins (i.e., those dominated by substitutions)
require the most time to equilibrate due to low mutation rates.

Although the eventual steady-state DRL should not depend on the
initial state, the choice of initial distributions can dramatically affect
equilibration times. We confirmed that the final timepoint DRLs are
effectively independent of choice of initial condition by comparing the
results of twodistinct initial conditionswith similar equilibration times
(geometric vs geometric plus uniform; Supplementary Fig. 12), finding
only minor differences in the deterministic late-time distribution.

Computational model inputs and outputs. The script relies on the
following as inputs: an initial distribution for A and B (i.e., motif and
non-motif) repeat lengths, per-target substitution rates in three-unit
context, and per-target mutation rate curves for expansions, contrac-
tions, and non-motif insertions. Substitution rates and length-
dependent indel rate curves are imported from external files (see
above for estimated substitution rates, below for generation of para-
meterized rate curves); these files, along with the initial repeat length
distribution table, can be replaced with appropriate tables for other
purposes, if desired. This table must specify rates for each mutational
process at all lengths intended to be computationally modeled (i.e.,
from 1 to Lbound). For normalized length distributions that reach steady
state, the initial distribution can be chosen arbitrarily, in principle, but
any specific choice affects equilibration time; due to equilibration time
differences, minor differences between the deterministic late time
distributions arise from distinct initial conditions (see Supplementary
Fig. 13 for comparison between two initial distributions).

Stochastics can be introduced using a command line option to
model fluctuations in the mutational process; the number of muta-
tions in and out of each length bin are separately Poisson-sampled
(using numpy.random.poisson, version 2.2.1) around the expected
number of mutational counts in each iteration.

After each run, we output a file containing repeat length counts
reported at various time points to show the temporal evolution of the
distribution. We subsequently normalized the resulting distributions
by dividing each length bin by the total number of repeats in the
distribution (see Methods on normalization).

The relative contribution of each mutational force was assessed
by producing a single-generation plot of the transitions in and out of
each length bin at the final time point (i.e., once steady state was
reached, if applicable). To produce these plots (see Fig. 6), we applied
the mutation kernel for a single generation and separately computed
the number of fissions, fusions, and local changes due to substitutions
and indels. For each length bin, the magnitude of total flux in and out
was normalized to one. Length bins that have equilibrated should
contain equal fluxes in and out; steady state occurs only when all bins
show equilibrated fluxes.

Bayesian inference procedure. Given our observations indicating a
stable distribution of repeat lengths over phylogenetic time scales, we
sought to identify mutation rates capable of explaining this
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observation. To study the extent to which mutational processes alone
can recapitulate the repeat tract length distribution, we constructed a
Bayesian inference framework to compare models (i.e., para-
meterizations) of the length-dependent rates of repeat instability. Each
parameterization describes the length-dependent rates of expansion
and contraction via a simple functional form; as discussed above,
substitution rates are assumed to be length independent in all cases.
Within the Bayesian framework, a prior probability distribution on the
parameter space is specified (several priors were used for interpreta-
tion) and used to weight the likelihood to calculate a posterior prob-
ability that a given parameter combination accurately describes the
length dependence of the repeat instability rates. In the present set-
ting, the likelihood is constructed by comparing the empirical repeat
tract length distribution to the late-time distribution generated by
computationally modeling a given parameter combination. Due to the
analytic intractability of this likelihood, we used ABC55 to approximate
the posterior probability distribution, which avoids specifying the
likelihood explicitly. Additionally, length bins are presumably corre-
lated due to the complex mutational transitions underlying the dis-
tribution, complicating naïve construction of the likelihood. In
contrast, ABC-based inference circumvents this issue by approximat-
ing the posterior in terms of summary statistics that appropriately
characterize the DRL (see discussion of summary statistics below).
After specifying summary statistics, the late-time distribution for each
parameter combination was summarized for comparison to the
empirical distribution (e.g., mononucleotide A repeat tract lengths in
T2T-CHM13). For eachparameterization, we specified adiscrete grid of
parameters for comparison to the empirical distribution, the result of
which was weighted by the prior probabilities for those parameters
(equivalent to randomly sampling the prior as prescribed in ABC55; see
below for specific priors used) to compute the posterior.

We chose to use the KL divergence, a well-established statistic for
distribution comparison, to characterize the difference between the
empirical (Pemp

L ) and parameterized repeat tract length distributions.
The KL divergence quantifies the extent to which each parameterized
distribution diverges from the empirical distribution and was calcu-
lated for all parameter combinations (denoted θ below)on the discrete
grid using the following definition.

DKL =
XL= Lmax

L= Lmin
Pemp
L log

Pemp
L

PL θð Þ

� �
ð1Þ

Wenote that comparing the empirical distribution to itself results
in a divergence of zero such that the KL values are equivalent to the
difference between the modeled and empirical distributions (i.e.,
ΔDKL =DKL PL θð Þ, Pemp

L

� �� DKL Pemp
L , Pemp

L

� �
= DKLðPL θð Þ, Pemp

L Þ). To
define a cutoff for ABC rejection, we estimated the divergence
between the human empirical distribution and the ensemble of pri-
mate genomes using the same statistic. Under the assumption that
primates evolved towards the same steady state (i.e., the mutational
parameters remain constant across the phylogeny), we proceeded
under the assumption that differences between the repeat tract length
distributions in distinct species are due to a combinationof stochastics
and bioinformatic errors due to the lower coverage and short read
technologies used to assemble primate reference genomes. Due to the
difference in assembly lengths, we added a pseudocount of one to all
length classes in all species to avoid divergence of the statistic and
confirmed that our results were qualitatively independent of the
choice of pseudocount between 0.01 and 100. Lmax was set to the
longest modeled length bin, L=200. We set the lower bound to
Lmin = 4 to ensure that the ordering of DKL statistics computed for all
primates remains roughly consistent: setting Lmin ≥4 resulted in the
smallest values for the humanHG38 reference (whichwasnot included
in subsequent analyses) and the largest values for the most divergent
primates (i.e., those on the loris branch). We used the range of 36

computed primate KL values to very roughly define a rejection
threshold by throwing out the largest 2 values; we considered the
remaining 34 values (i.e., roughly, the closest 95% of ranked primates;
denoted 'p95' in the following) and used this to approximate the var-
iance of DKL (i.e., σ2

DKL
� ðDp95

KL =2Þ2) associated with stochasticity and
sequencing errors.

We approximated the posterior probability (up to a normalization
constant) following the prescription in Wilkinson55 wherein ABC is
applied with a soft rejection threshold by rejecting values of DKLðθÞ
with the following probability based on the primate-estimated var-
iance.

Pr θjdatað ÞPr datað Þ=Pr datajθð ÞPr θð Þ � Pr θð Þe
�D2

KL
ðθÞ

2σ2
DKL

ð2Þ

Here, Pr θjdatað Þ is the posterior probability distribution over the grid
of parameter combinations θ, PrðθÞ is the prior, and the Gaussian fal-
loff is the rejection probability (up to normalization) for a given
parameter combination. This soft-rejection procedure provides a
slightly better approximation for the posterior distribution than
rejection with probability one (e.g., reject all parameter combinations
with DKL θð Þ>Dp95

KL , roughly corresponding to the primate-estimated
95% confidence interval). Additionally, Wilkinson argues that the
Gaussian rejection probability quantifies model misspecification
inherent in the procedure, as all parameterizations (i.e., models)
employed herein are imperfect approximations of the true instability
rate parameters.

Model comparison using Bayes factors. To assess the relative
explanatory power of each parameterization Mθ modeling the length
dependence of repeat instability, we computed a Bayes factor for each
model BF Mθ

� �
using the definition below.

BF Mθ

� �
=
Z

dθ Pr θjMθ

� �
Pr datajθ,Mθ

� � �
Z

dθ Pr θð Þe
�D2

KL
ðθÞ

2σ2
DKL

ð3Þ

Here, the right-hand side is our previously computed approximation to
the posterior, integrated over the parameter space for a given model.
As we were only interested in the relative Bayes factor between
models, proportionality constants can be ignored, including the
overall normalization and an assumed uniform prior over model
space. The Bayes factor for a model naturally controls for the number
of DoF in each parameterization because integration over the
weighted posterior is performed in parameter spaces with differing
dimensionalities. Once computed, models were compared by inter-
preting the Bayes factor ratio (BFR) as indicative of the relative
statistical support between two parameterizations of interest.

BFR M1 , M2

� �
=BFðM1Þ=BFðM2Þ ð4Þ

We then used Jeffreys' scale to interpret the strength of statistical
support for each model.

Parameterizations of repeat instability rates. We tested several
parameterizations to assess consistency with the empirical DRL. We
focused on mononucleotide A repeats, as both the distributions and
rate estimates were supported by the most empirical data. For com-
putational convenience, we defined a sequence of nested para-
meterizations (see Supplementary Fig. 23) that could be computed
simultaneously across the grid of the parameter combinations under
the model with the largest number of DoF. To define the most general
set of length-dependent instability rate models, we parameterized
expansion and contraction rates, ϵ Lð Þ and κ Lð Þ, respectively, as
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independent power law functions at all lengths L>8.

ϵ L>8ð Þ= cϵ
L
9

� �τϵ

, κ L>8ð Þ= cκ
L
9

� �τκ
ð5Þ

Rates for L= 1–8were takendirectly fromempirical rate estimates;
the expansion and contraction rates at longer lengths were para-
meterized in termsof cϵ and cκ , which denote their respective values at
L=9 (i.e., the first parametrized length bin). Guided by our empirical
estimates, we assumed that the rate of non-motif insertion ι Lð Þ is
directly related to the rate of expansion with the same length depen-
dence at 1% of the rate (i.e., ι Lð Þ= ϵðLÞ=100 at all lengths. This results in
instability rates characterized by four independent parameters
ðcϵ, τϵ, cκ, τκÞ. We then constructed a series of nested lower-
dimensional models for comparison. A natural way to reduce the
dimensionality of the parameter space is to introduce symmetries
corresponding to cϵ = cκ and/or τϵ = τκ. The simplest model assumes
fully symmetric expansion and contraction rates (i.e., both cϵ = cκ � c
and τϵ = τκ � τ) with a two-dimensional parameter space (c, τ). We
treat this as a null model corresponding to a frequently
discussed8,19,22,27 biological interpretation of repeat slippage. The
parameter space can be reduced to three DoF by restricting to either
cϵ = cκ or τϵ = τκ, which need not have straightforward biological
interpretations. We constructed an additional 3 DoF model para-
meterized by ðm, τϵ, τκÞ by treating the expansion and contraction
rates at L=9 as increased by a common multiplier m relative to their
values at L=8 (i.e., ϵ 9ð Þ=m ϵ 8ð Þ, κ 9ð Þ=m κð8Þ). For computational
expediency,weembedded thismodelwithin the four-dimensional grid
of parameters by appropriately choosing intervals for cϵ and cκ when
defining the grid discretization.

We used two distinct, non-nested parameterizations for sub-
sequent analyses. To test the reliance of our inference on the func-
tional form of the length dependence (i.e., power-law
parameterization), we defined an additional parameterization by
replacing the length dependence for L>8 with logarithmic growth in
the following form:

ϵ L>8ð Þ= cϵ
log L� 7ð Þ

log 2

� �τϵ

, κ L>8ð Þ= cκ
log L� 7ð Þ

log2

� �τκ

ð6Þ

Here, the dependence on log 2 ensures that cϵ and cκ parameterize the
values at L=9 of the expansion and contraction rates, respectively.
Under this parameterization, empirical estimates were again used for
all lengths L≤8. This functional form retains monotonicity while
growing more slowly at longer lengths to model a saturation-like
effect.

We analyzed a second version of the power-law parameteriza-
tion that extends the functional form to all lengths such that the rates
are fully independent of empirical estimates. We re-parameterized
the functional dependence in terms of the parameters ðλϵ, τϵ, λκ , τκÞ,
where λϵ and λκ correspond to the length at which each instability
rate exceeds the relevant substitution rate (i.e., ϵ λϵ

� �
=μ and

κ λκ
� �

= ν).

ϵ Lð Þ=μ L
λϵ

� �τϵ

, κ Lð Þ= ν L
λκ

� �τϵ
ð7Þ

Here, μ and ν are point estimates of the average lengthening and
shortening substitution rates, respectively, for a givenmotif; note that
this parameterization is defined at all tract lengths (including L≤8).
This allowed us to directly infer the length scale of the instability-
substitution rate crossover and assess the extent to which our
inferences from the above parameterizations rely on direct use and
accuracy of empirical rate estimates below L=9. After confirming that
expansion-biased parameters do not approach steady state DRLs, the
parameter space was further limited to asymptotically contraction-

biased parameter combinations (i.e., with τκ > τϵ) to limit
computational time.

The functional form of each of the aforementioned para-
meterizations is specified in Table 1.

Construction of prior distributions. For each parameterization, we
constructed an uninformative prior by treating each parameter com-
bination as equally probable with probability equal to 1=n, where n is
the number of computationally modeled points on a discrete grid. We
next generated informative priors using approximations derived from
our empirical estimates of the expansion and contraction rates. For
power-law parameterizations that include empirical estimates at low
lengths (Models 1–5 in Table 1), weperformeda linearfit to the popSTR
rate estimates (at lengths L = 11–29) in log-log space to estimate para-
meters of best-fitting power laws. Curve fitting was performed in
Python 3 (scipy.optimize.curve_fit(), version 1.15.1)with the sigmaoption
to specify an array of approximately symmetric log error bars (i.e.,
approximating a rescaled Poisson as log-normal).We note that Poisson
regression does not appropriatelymodel statistical noise due to target
size rescaling when estimating rates from mutational counts. We fit
using rate estimates at all available lengths. However, we artificially
inflated the variance at lengths above and below L = 13–21 to model
potential systematic errors that generate observed non-monotonicity,
likely due to miscalling at the shortest and longest lengths accessible
to popSTR. The optimization package produced a covariance matrix
for the best-fit line expressed in terms of the slope and intercept in log-
log space. We used this covariance matrix to approximate lines
representing the 95% confidencebounds around the best-fit line. Using
these lines, we estimated the value of the best-fit line and standard
deviation at L=9. Assuming no correlation between expansion rate
and contraction rate parameters, we used these values to approximate
a block diagonal covariance matrix for the parameters ðcϵ, τϵ, cκ , τκÞ in
the four-dimensional model. We then inflated the variance by a con-
stant (100-fold for ‘restrictive’ informative prior; 1000-fold for ‘per-
missive’ prior) and used the rescaled covariance matrix to define a
multivariate normal distribution centered at the point-estimates for
the best-fit parameters. The informative prior for the four-parameter
model was constructed by normalizing this multivariate normal over
the discrete grid. Analogous priors for nested models were defined by
restricting to the appropriate subset of parameter space, maintaining
the relative weights specified by the normal distribution, and nor-
malizing by the number of discrete grid points in this subset.

The approximate nature of our ABC-based inference procedure
prohibited the construction of strictly uninformative priors (i.e., Jef-
freys priors) for fair comparison between models with differing para-
metric functional forms. We instead treated the uniform prior as
naively uninformative; however, despite the similarity of their para-
meters, we caution that uniform priors are inequivalent for distinct
functional forms. To facilitate very rough model comparison, we
constructed a restrictive prior for the logarithm-basedmodel by again
fitting the functional form to popSTR rates using scipy.optimize.-
curve_fit(). This produced a point estimate of the best-fit parameters
thatwasused to specify themeanof amultivariatenormaldistribution.
To attempt to define amultivariate normal very roughly comparable to
the priors for the power-law parameterizations, we defined the normal
distribution in terms of the covariance matrix estimated under the
four-parameter power-law model. This comparison relies on the fact
that both parameterizations use the same parameters to represent
nearly identical quantities (i.e., parameters cϵ, τϵ, cκ , and τκ define
constants and exponents in the same way). The procedure described
above was then used to define restrictive and informative priors (with
100-fold and 1000-fold inflated variances, respectively) for two- and
four-dimensional logarithm-based parameterizations from four-
dimensional multivariate normal distributions with appropriately
shifted means.
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To construct priors for pure power-law models, we again used a
uniform prior over the discrete grid to define a naively uninformative
prior over the parameter space. Informative priors were defined by
again using scipy.optimize.curve_fit to estimate best-fit parameters and
a covariance matrix from empirical instability rate estimates. Unlike
the previous models, rates at all lengths (including L≤8) were fully
parameterized by Eq. 7 (see also Table 1); data from both the pooled
trio and popSTR datasets were used to estimate the mean and covar-
iance matrix by fitting the functional form to expansion and contrac-
tion rate estimates for L = 4–15. The covariance matrix was again
inflated by a factor of 100 and used to define a four-dimensional
multivariate normal around the point-estimated mean values
of ðλϵ, τϵ, λκ , τκÞ.

Calculation of expectation values from posterior probability dis-
tribution. In addition to identifying maximum posterior probability
parameter combinations, we used the posterior distribution to weight
various quantities to calculate their expectation values. Expectations
of an arbitrary parameter-dependent function f ðθÞ were computed as:
E f θð Þ½ �= R

dθ f θð ÞPr θjdatað Þ. Here, the ABC-approximated posterior
was used for Pr θjdatað Þ after normalizing over the discrete computa-
tional grid of parametersθ such that E 1½ �= R

dθ Pr θjdatað Þ= 1.Weused
this to compute: the length dependence of the posterior-weighted
repeat instability rates E½ϵ L;θð Þ� and E κ L;θð Þ½ � for comparison; and the
posterior-weighted DRL E½PðL;θÞ� (see Fig. 5).

Analytic modeling of repeat length dynamics
To better understand the underlying dynamics that generate the
genome-wide repeat length distribution, we attempted to analytically
model the effect of eachmutational type on the number of repeats at a
given length L from first principles. We were interested in describing
the steady state distributions that emerge for a subset of parameter
combinations, as seen in the results of our computational model. Our
goal was to capture the balance between relevant mutative forces,
which can vary by repeat length, by writing an appropriate approx-
imation to the steady state equation; the solutions to these equations
describe the shape of the normalized repeat length distribution, P Lð Þ,
restricted to the regime of validity of each approximation. Within this
section,we have used the notation PL to represent the distribution P Lð Þ
more compactly when detailing the relevant equations. Each para-
meter combination defines a functional form for the per-target (i.e.,
per unit) expansion, contraction, and non-motif insertion rates at
lengths L≥9: ϵ L≫1ð Þ= ϵ0Lτϵ , κ L≫1ð Þ= κ0L

τκ , and ι L≫1ð Þ= ι0Lτι , respec-
tively, where the constants ϵ0, κ0, and ι0 are set by the empirical value
of these rates at L = 8 and themultiplierm (noting thatwe set τι � τϵ to
limit the number of free parameters; see inference Methods). Again,
these length-dependent rates, in either discrete or continuous form,
are denoted with a subscript L (e.g., ϵL � ϵ Lð Þ) in this section for
brevity. For substitutions, we refer herein to rates μ � μA!B and ν �
μB!A for lengthening and shorteningmutations, respectively, but later
specify separate mutation rates based on three-unit context (e.g.,
μABB!AAB) when comparing directly to computational model results.
While the mutation rates may be well defined by these rates, the
combined effect of substitutions and indels on the repeat length dis-
tribution requires a description of a number of complicated behaviors,
including both local and non-local transitions between lengths across
the distribution, non-conservation of the number of repeats due to
fission and fusion, and non-linear dependence on the state of the
distribution due to fusion (i.e., the generic dynamics are non-Marko-
vian). As a result, our aim was not to describe an exact solution, but
instead an expression for the effective dynamics that dominate the
maintenance of the distribution in steady state, specifically in the
asymptotic regimes associated with the shortest and longest length
repeats. Note that this analytic description was motivated by and is
strictly applicable to mononucleotide repeat dynamics, where the

species of repeat length-changing mutations are fewer, but the con-
ceptual findings may be generalizable to longer motif repeats (Sup-
plementary Fig. 3).

Short repeat regime. First, we focused on the regime of asymptoti-
cally short repeats, as their behavior is more straightforward. By
assessing the relative rates of substitution and indel processes in the
estimated per-target rates (Fig. 2b), one can immediately see that
substitutions must dominate the dynamics for the lowest length
repeats. Short repeats can be characterized by a straightforward bal-
ance between opposing types of substitutions, μ and ν, which is
equivalent to sequence evolution under a two-way point mutation
process. At steady state, the resulting distribution is equivalent to the
probability of randomly assembling specific strings of length L when
the whole genome is randomly sampled between A and B bases with
probability pA =μ= μ+ νð Þ and pB = ν= μ+ νð Þ, respectively. The fre-
quency of a length L string of A’s (i.e., an A repeat) is geometrically
distributed in proportion to pA

L (i.e., sampling an A, L successive
times).

PL≪10 / μ
μ+ ν

� �L

ð8Þ

Here, we have omitted a normalization constant that determines the
relative weight of this geometric distribution to the weight of the long
repeat tail. For comparison to the computational model (or the
empirical distribution), we fixed the normalization constant using the
mass of the L= 1 bin. The approximation that the effects of expansion,
contraction, and non-motif insertion are negligible breaks down at a
length determined by the estimated relative rates in Fig. 3b; the regime
of validity for this approximation extends roughly to lengths of
order L= 10.

Long repeat regime. The dynamics of long repeats, i.e., for asymp-
totically large repeat lengths L≫1, the analysis is complicated by the
numerous length-dependent (and parameter-dependent) forces that
can potentially contribute to stabilizing the distribution. While
expansion and contraction describe inherently local transitions from L
to L+ 1 and from L to L� 1, respectively, the effects of non-motif
insertions and substitutions on extended repeats are not strictly local.
To model this regime, we first wrote a finite difference equation that
describes the change in the distribution in a single time step Δt:
ΔPL � PL t +Δtð Þ � PL tð Þ, where PL tð Þ=P L, t;μ, ν, ϵL, κL, ιL

� �
is implicitly

dependent on the length scaling of each rate (see Supplementary
Note). From this discrete equation, we derived a partial differential
equation (PDE) in the large-length continuum limit ΔL= 1≪L that
approximates the dynamics in the large length regime (derivation
provided in the SupplementaryNote). This PDE includes explicit terms
depicting the combined local effects of repeat instability due to
expansion and contraction, each occurring at distinct length-
dependent rates, and the separate effects of repeat fission and
fusion, each introducing an integral that captures the aggregate effects
of non-local transitions in length. Expansion and contraction collec-
tively generate both symmetric (i.e., bidirectional) and asymmetric
local length transitions, which correspond to a diffusion term repre-
sented by a second derivative and directional flux term expressed as a
first derivative, respectively, each appropriately accounting for length-
dependent rates.

While local effects from substitutions and non-motif inser-
tions exist (specifically, transitions L ! L+ 1 or L ! L� 1), as well,
they are negligible in comparison to expansion and contraction
due to their low relative rates at long lengths and finite target size
of two per repeat. Fissions due to both substitutions and non-
motif insertions were accounted for as separate non-local con-
tributions to the change in PL: Importantly, the probability of
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fission due to substitution is proportional to the target size
L� 2ð Þ � L; for insertions, the rate itself harbors an additional
length dependence such that the per-repeat rate of fission scales
as L1 + τϵ . As a result, the relative importance of fission compared
to local contributions is highly dependent on the parameters τϵ
and τκ ; similarly, the relative importance of substitution- and
insertion-based fission are parameter dependent due to distinct
dependencies on length. Thus, a unified description across
parameter space requires the inclusion of fission in full form and
captures all four mutational effects. While we were able to
explicitly describe the integral effects of length changes due to
repeat fusion in the continuum (see Supplementary Note), the
inherent non-locality is additionally complicated by the non-
linearity introduced by pairing two repeats randomly sampled
from the distribution. To make further progress, we proceeded
under the assumption that fusion remains subdominant at large
lengths, which we confirmed via our computational model to be
generically true across parameter space. Stochastic fluctuations
in the mutation rates were omitted, resulting in a deterministic
approximation for the expected repeat length distribution.

Next, we imposed the assumption of steady state (i.e.,
dP=dt =0), reducing the PDE to an ordinary differential equation
(ODE) in length to solve for the shape of the distribution in
equilibrium. Despite excluding complications from fusion, the
remaining approximation to the steady state equation is, strictly
speaking, a second-order integro-differential equation, for which
no explicit closed-form solutions exist. The following equation
approximates the steady state dynamics in the absence of fusion
(i.e., when fusion is subdominant). Here, ∂x represents a deriva-
tive with respect to x (noting that partial derivatives with respect
to L become total derivatives in steady state), and PL is the steady
state value of the continuous repeat length distribution at large
length L≫1 up to an overall normalization constant (along with an
arbitrary constant set to zero). Again, all continuous functions
describing mutation rates (e.g., ϵL, κL) are expressed here as per-
target rates.

dPL

dt
=0 � 1

2
∂2L ϵL + κL

� �
LPL

� 	� ∂L ϵL � κL

� �
L PL

� 	� ν+ ιL
� �

L PL + 2
Z 1

L
dλ ν+ ιλ

� �
Pλ

ð9Þ

In order from left to right, the terms appearing on the right hand
side describes: length-dependent diffusion (arising from local transi-
tions due to expansion and contraction), a length-dependent local
directional flux (due to the bias between expansion and contraction), a
net loss of due to fissions that break up length L repeats (i.e., sub-
stitutions or insertions that interrupt the repeat sequence; referred to
herein as fission out), and a net gain due fissions of repeats longer than
L (referred to as fission in). Fission in represents the sole integral effect,
which substantially complicates our analysis; elimination of the inte-
gral dependence is discussed below and results in a third-order ODE
that maps to this second-order integro-differential equation.

Contraction-biased rates stabilize the distribution. Importantly, we
found that steady state could only be reached for the subset of para-
meter combinations with τκ > τϵ, corresponding to cases for which
local transitions are asymptotically contraction-biased: limL!1ðκL �
ϵLÞ>0 (note that the edge case where τκ = τϵ is asymptotically
expansion-biased based on observations at L=8 and implications of
our parameterization). We therefore denote this as the contraction-
biased regime, which is characterized by defining the variable
Δτ � τκ � τϵ. When Δτ> 0, the distribution is stabilized at some arbi-
trarily large length L= Ltrunc by sufficiently large contraction rates in
excess of all processes that increase repeat length; a truncation of the
distribution (i.e., when less than one repeat is expected in a genome of

given size) occurs due to the more rapid increase of contraction rates
than expansion rates that leads to contraction-biased dynamics at
some point L< Ltrunc. The necessity of asymptotic contraction-bias
contrasts the notion that length-dependent interruptions (due to
substitutions and non-motif insertions) counteract expansion at suf-
ficiently long lengths, stabilizing the distribution44,48,54,57–59 based on
our estimatedmutation rates, this effect does not lead to a steady state
in the absence of contractions, as the per-repeat rate of expansions far
exceeds that of repeat fission (i.e., interruptions) at long lengths. As
discussed below, the length at which the contraction rate is equal to
the expansion rate L* (i.e., L* is the unique length L≥8 where κL = ϵL,
whichmay occur at non-integer values) is highly informative about the
dynamics in each regime, as well as the behavior when all effects
captured in Eq. 9 are simultaneously relevant; L* is exponentially
dependent on Δτ and more weakly controlled by the multiplier m,
notably occurring at the same length across lines of constant Δτ in the
parameter space (for a given m). For m>2:5, the dynamics are nearly
identical for parameter combinations with the same Δτ, effectively
collapsing the ðτϵ, τκÞ plane to a single dimension. The functional
dependenceof L* on the parameters and further discussion is provided
in the Supplementary Note.

Effectiveequationsapproximating steady statedynamics. Given the
complexity of Eq. 9 introduced by the nonlocal effects of fission, we
first searched for subsets of the contraction-biased parameter space
that could be well approximated under a further reduction of the
dynamics. Such simplifications are, in principle, possible because the
length scaling of each term in Eq. 9 is distinct; specifically, parameter
combinations exist where the nonlocal behavior (i.e., the integral
representing fission in) becomes subdominant and can be neglected in
our analysis. Neglecting the integral results in a second-order ODE
approximation to the steady state equation. We identified two distinct
dynamical regimes within the Δτ >0 region, which are each well-
approximated by a subset of contributions that dominate the
dynamics in their respective regimes of validity.

Balance between local dynamics in the highly contraction-
biased regime. For parameter combinations with very large positive
values of Δτ (i.e., for τκ≫τϵ), the dynamics are entirely dominated by
the diffusion and local directional flux terms appearing in Eq. 9, as the
contraction rate quickly outcompetes both the rate of fission in and
fissionout. This results in an effective steady state equationdominated
only by local transitions.

1
2
∂2L ϵL + κL

� �
L PL

� 	� ∂L ϵL � κL

� �
L PL

� 	 � 0 ð10Þ

In this case, the contraction rate exceeds the expansion rate
almost immediately above the short length regime (i.e., L* is of order
10) such that the dynamics are effectively uniform across the long
length regime. The long-length tail of the distribution decays in a
super-exponential fashion such that the truncation occurs at low
values of Ltrunc � 20, which dramatically limits the lengths of repeats
that occur in a genome of realistic size. In this regime, a further sim-
plification leads to an approximate closed-form analytic solution for
the rough asymptotic shape of the distribution, however, this
approximation is only valid near the truncation point and rapidly loses
accuracy. Amore general solutionwasobtained by numerically solving
the effective steady state equation (Eq. 10) for comparison to com-
putational model results. To obtain numerical values, two additional
constraints must be applied, as with any second-order ODE, which
conceptually correspond to an overall normalization constant (in this
case, fixing the relative weights of the short length and long length
distributions) and a linear coefficient that defines the relative weights
of two real solutions, if both exist. These constraints can be imposed
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by fixing the value of the distribution at two specific lengths, L1 and L2,
(i.e., fixing PL1

= Pcomp
L1

and PL2
=Pcomp

L2
, where Pcomp

L is the value of the
computationally modeled distribution at length L), with both lengths
chosen to lie long length regime L> 10 where the continuum approx-
imation remains valid. For consistency, we chose to constrain the
numerical solutions at the two lengths of theoretical interest in stable
distributions: L1 = L

* (rounded to the nearest integer) and L2 = Ltrunc,
both of which definitionally remain in the long length regime at a
location with finite occupancy in a realistic genome and are well
defined for all values of Δτ>0. All numerical solutions were obtained
using the NDSolve function in Mathematica 14.091. Comparisons
between computational model results and numerical solutions to
Eq. 10 showed that this approximate steady state equation remains
highly accurate across the Δτ≫1 regime (see Supplementary Note).

Relevant effects of fission out in the intermediate contraction-
biased regime. We found that, at less extreme values ofΔτ, roughly on
the order of Δτ � 1 (e.g., roughly 1:5 >Δτ>0:7 for m=4), the integral
contributions to Eq. 9 remained subdominant, but the effects of fission
could not be omitted completely. In this regime, fission out non-
negligibly impacts the dynamics, leading to an effective steady state
equation that only omits incoming contributions from fission.

1
2
∂2
L ϵL + κL

� �
L PL

� 	� ∂L ϵL � κL

� �
L PL

� 	� ν + ιL
� �

L PL � 0 ð11Þ

In this regime, contraction is aided by the length-reducing effects
of fission out. However, the relevance of this contribution is limited
roughly to lengths below L*; above L*, the distribution remains well-
described by Eq. 10 (see Supplementary Note). This indicates that
contraction is largely responsible for truncating the distribution, even
when fission is involved in shaping the distribution. This defines a
range of intermediate lengths below L* with distinguishable dynamics
from asymptotic lengths, but this range is limited by the relatively
small values of L* on the order of L* �15—20. The approximation in
Eq. 11 is again a second-order ODE, but is complicated by the intro-
duction of an additional length scaling associated with substitution-
based fission. However, even when substitution rates are negligible
(e.g., for m≫1), no exact solution could be found due to the generic
power laws associated with our parameterization. For comparison to
the computational model, numerical solutions were obtained by again
constraining the solution at lengths L1 = L

* and L2 = Ltrunc. We found
that the effective steady state equation (Eq. 11) is a highly accurate
approximation to the dynamics in this regime of moderate values of
Δτ. Additionally, this approximation remains accurate at large values
of Δτ (i.e., Eq. 11 is applicable to the full subspace Δτ≳1), as the
approximation in Eq. 10 is nested in Eq. 11; the latter includes the
additional effect of fission out, which becomes negligible for Δτ≫1.

Inclusion of the nonlocal dynamics in the weakly contraction-
biased regime. For values Δτ≲0:5 (roughly Δτ<0:7 for m = 4), the
nonlocal effects described by the integral term in Eq. 9 become rele-
vant to the maintenance of the steady state. To further analyze this
regime, we first eliminated the integral dependence by applying an
overall length derivative to all terms on the right-hand side of Eq. 9,
such that the equation becomes the following.

∂L
dPL

dt


 �
=0 � 1

2
∂3L ϵL + κL

� �
LPL

� 	� ∂2
L ϵL � κL

� �
L PL

� 	� ∂L ν + ιL
� �

LPL

� 	� 2 ν+ ιL
� �

PL

ð12Þ
This third-order ODE now represents a constraint on the net flux,

which must equal a time-independent constant. This can be seen by
swapping the order of the derivatives on the left-hand side of Eq. 12:
∂L dPL=dt
� 	

=d ∂LPL

� 	
=dt =0. Taking this overall length derivative

maps the nonlocal contributions from the fission of all repeats longer

than L to an effectively local boundary effect on the net flux ∂LPL

through length L. However, this is not equivalent to steady state until
applying an additional constraint that this net flux vanishes (i.e., the
special casewhere the constant is zero, ∂LPL = 0).Obtaining numerical
solutions to this third-order ODE requires three constraints, including
the constraint that the net flux vanishes. For comparison to the com-
putational model, this was imposed by again specifying L1 = L

* and
L2 = Ltrunc along with the additional constraint PL3

= Pcomp
L3

at length
L3 = L2 � 1, chosen for convenience. We found good agreement
between the resulting numerical solutions and our computational
model results. Additionally, solutions to this equation accurately
describe the parameter regimes that are well approximated by
Eqs. 10 and 11, as the latter represent nesteddynamics characterizedby
Eq. 12 that discardnegligible contributions. Thus, Eq. 12 has a regimeof
validity that extends across the entire set of parameter combinations
that result in stable distributions Δτ>0. As a corollary, the accuracy of
this approximation to the full steady state dynamics across the space
of computational model results indicates that the effects of repeat
fusion remain negligible throughout. However, this statement is only
applicable to the long repeat dynamics for L> 10; the effects of repeat
fusion are everywhere relevant for short repeats, which, in part, shape
the geometric distribution at steady state.

Details on the derivation, relevant approximations, dynamical
regimes, and comparison between numerical and computational
model results are provided in depth in the Supplementary Note.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets analyzed during the current study are freely available
from theNCBI, the UCSCGenomeBrowser (https://genome.ucsc.edu),
and other studies as cited in refs. 83–90. Instructions for accessing
specific datasets are further detailed in the code repository (see “Code
availability”). DRLs for mammalian genomes analyzed in this study are
provided in Supplementary Data 1. Length-dependent instability rates
calculated in this study are provided in Supplementary Data 2.

Code availability
The code to perform the analysis in the current study is available
in a GitHub repository (https://github.com/ryanmcggg/repeat_
distributions)92. Software/packages (including version numbers)
are further detailed therein.
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