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Identifying the factors governing internal
state switches during nonstationary sensory
decision-making

Zeinab Mohammadi 1 , Zoe C. Ashwood 1,2, The International Brain Labora-
tory* & Jonathan W. Pillow 1

Traditional models of perceptual decision-making fail to capture dynamic
strategy switching in non-stationary environments, and the factors governing
these switches remain unknown. To address this gap, we developed an
advanced internal state model with input-driven transitions and observations.
Our approach employs a hidden Markov model (HMM) coupled with two sets
of per-state generalized linear models (GLMs): a Bernoulli GLM for state- and
stimulus-dependent choices, and a multinomial GLM for input-dependent
transitions between states. We applied our model to a decision-making task in
a non-stationary environment, analyzing hundreds of thousands of trials from
a cohort ofmice, and found that their behavior can be accurately described by
a four-state model. This model identified two engaged states with low biases
relative to the stimulus and two disengaged states with pronounced biases
relative to the stimulus. Our analyses revealed that mice preferentially used
left-bias strategies during left-bias stimulus blocks, and right-bias strategies
during right-bias stimulus blocks, achieving high performance even in disen-
gaged states by biasing choices toward the side with greater prior probability.
Our model showed that past choices and past stimuli predicted transitions
between left- and right-bias states, while past rewards predicted transitions
between engaged and disengaged states. In particular, greater past reward
predicted transition to disengaged states, suggesting that disengagementmay
be associated with satiety. Our approach uncovers links between animal
behavior, input regressors, and state transitions, highlighting the complexity
of adaptive strategies. This provides a foundation for future research in
dynamic decision-making models.

Understanding the brain’s orchestration of behavior1–9 and decision-
making strategies10–14 is fundamental to deciphering the complex com-
putations driving adaptive behavior in dynamic environments. Extensive
research11,14–23 has characterized the computational mechanisms gov-
erning sensory decision-making across various species and tasks. Baye-
sian learning and probabilistic modeling techniques have also found

practical applications in the study of mammalian and murine
behavior24–30. Nevertheless, all of these works either assume that animals
make decisions using a single, consistent strategy or fail to account for
the non-stationary features of their decision-making environments.

A powerful approach for identifying these strategies and their
transitions from behavioral time series data involves a hidden Markov
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model (HMM) with states corresponding to distinct decision-making
rules31–38. Each of these rules is parameterized by a generalized linear
model (GLM), whose weights describe how the animal weighs sensory
inputs and other task covariates (such as recent choices and rewards)
towards a decision in that state. The resulting modeling framework,
known as GLM-HMM, has been used to reveal state-dependent deci-
sion-making during courtship behavior in flies31 and to show that mice
rely on distinct neural circuits in different states34. Recent work has
also revealed lawful relationships between states identified with GLM-
HMM and an animal’s level of arousal and uninstructed movements38.

However, these studies have not thoroughly explored the corre-
lation between animal behaviors and input regressors or state transi-
tions. One notable limitation is their challenge in identifying the
factors driving state transitions, especially in non-stationary tasks
where strategy adjustments are essential as the reward landscape
shifts. Even in tasks with stationary rewards, identifying the factors
causing an animal to switch from an engaged state to a disengaged or
biased state, and vice versa, remains crucial. Standard HMMs, which
rely on fixed transition probabilities, fail to capture these dynamics
because they assume static probabilities over time. Furthermore, while
previous work has modeled time-varying behavior using continuous
updates to decision weights, such as PsyTrack23, these approaches
primarily focus on learning dynamics during training, capturing gra-
dual changes in decision strategies. In contrast, our study examines
behavior after learning has stabilized, applying a GLM-HMM frame-
work to infer discrete latent states and their transitions. This allows us
to capture abrupt strategy shifts rather than continuous within-state
learning, providing a complementary perspective on how trained
animals dynamically engage with or disengage from the task.

Our research addresses this gap by revealing significant fluctua-
tions in animal behavior across session phases, which allows for the
identification of distinct observation and transition strategies in
dynamic contexts. Using a multinomial GLM instead of a fixed transi-
tion matrix, our approach shows that animal strategies are influenced
by internal state changes. This study explores flexible decision-making
in a non-stationary environment using a model with two GLMs,
incorporating various independent and distinct transition and obser-
vation inputs. This model implements flexibility in decision policy by
recognizing that the tuning covariates differ across various behavioral
contexts and phases.

We applied this GLM-HMM to a mouse decision-making task with
time-varying statistics. In this task, the stimulus probability alternated
randomly between left-biased and right-biased blocks, with an average
block length of 50 trials39. We fit models with different numbers of
latent states and found that a four-state model provided an accurate
yet interpretable description of decision-making behavior. We found
thatmice employed left-bias strategies during left-bias stimulus blocks
and right-bias strategies during right-bias stimulus blocks. They
achieved good performance even in disengaged states by favoring the
side with greater prior probability. Notably, past choices and stimuli
predicted bias state transitions, while past rewards predicted
engagement/disengagement transitions, suggesting a link between
disengagement and satiety. This study leverages extensive data from
tens of mice and hundreds of thousands of trials, ensuring both gen-
eralizability and reliability of our findings. Our results contribute sig-
nificantly to the sensory decision-making field, especially in
environments where stable stimulus-action associations are absent.
This highlights the need for models that account for rapid internal
state shifts and provide insights into the complexity of behavioral
dynamics.

Results
An internal state model of sensory-decision-making
In this study, we employed the GLM-HMM framework31–34,40,41, referred
to as an input-output HMM, to analyze behavioral data obtained from

mice participating in a decision-making experiment. Our model of
state-dependent decision-making incorporates two distinct general-
ized linear models: an observation GLM (GLM-O), which provides the
state-conditional probability of the animal’s choice on each trial, and a
transition GLM (GLM-T), which provides a vector of transition prob-
abilities for the state transitions after each trial. Notably, we specify
independent regressor sets for the transition and observation com-
ponents of the GLM-HMM.

The observationGLMs seek to describe how various task variables
(e.g., sensory input, past rewards) affect choice in each state, and thus
correspond to distinct decision-making strategies. The probability of a
rightward choice in state k, based on observation covariates at trial t, is
given by:

p yt = right jxob
t , zt = k

� �
=

1

1 + expð�xob
t �wob

k Þ ð1Þ

where xob
t denotes the observation GLM covariates, wob

k is the obser-
vation GLM weights for state k, and yt reflects the animal’s decision.

The transition GLM seeks to describe how task covariates (e.g.,
elapsed time in session, accumulated reward, previous choices) affect
transitions between states. For state transitions, the multinomial GLM
predicts the probability of moving to state k at trial t, based on tran-
sition covariates:

pðzt = kjxtr
t Þ=

expðwtr
k � xtr

t ÞPK
j = 1 expðwtr

j � xtr
t Þ

ð2Þ

highlighting the role of K total states and the transition weights wtr
k in

modeling transitions based on the trial’s context. Here, xtr
t denotes the

transition GLM regressors. Because we expected the factors governing
choices to be different from those governing state transitions, we used
different sets of regressors for the observation and transition GLMs
(see Methods).

To limit model complexity while still capturing covariate-driven
transitions, we used one transition weight vector per destination state
(wtr

j ), along with a baseline term for each state pair (Bij). Therefore, the
probability of transitioning from state i to state j at time t is modeled
as:

pðzt = jjzt�1 = i,x
tr
t Þ / exp Bij +w

tr>
j xtr

t

� �
ð3Þ

This structure allows transitions to depend on both the previous
state through Bij, a learned baseline transition logit from state i to j-and
the upcoming state, enabling covariate-driven transitions without
requiring separate filters for each origin state. We verified that transi-
tions into a given state did not differ significantly depending on the
preceding state, supporting this modeling choice (Supplementary
Fig. S11).

Mice employ different strategies in a non-stationary
perceptual task
We analyzed the mice decision-making dataset from the International
Brain Lab (IBL)39. In this task, mice detect the location of a Gabor patch
on the screen and subsequently turn the wheel to the right or left to
indicate the stimulus location42. Figure 1a shows an illustrative diagram
of the IBL sensory decision-making task. Each experimental trial
encompasses thepresentationof a sinusoidal grating, characterizedby
gradient values ranging from 0% to 100%. This grating stimulus is
selectively presented on either the left or right periphery of the visual
display. Subsequently, mice are mandated to discriminate the spatial
location of the grating and communicate their decision via rotational
manipulation of a wheel, resulting in a left or right turn, which corre-
sponds to the perceived location of the grating stimulus. Successful
execution of this task merits a water reward. For further insights into
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this experiment, please refer to the detailed description of the IBL
task39,42.

In this IBL task, after training mice in the foundational purely
sensory task, they were introduced to an advanced paradigm where
optimal performance necessitated the fusion of sensory perception
with recent experience. Specifically, block-wise biases were incorpo-
rated into the probability distribution of stimulus locations, thereby

influencing the more probable correct choice. Each session com-
menced with an unbiased trials block, offering an equal 50:50 prob-
ability of left versus right stimulus locations. The length of the
unbiased block was 90 trials for all sessions of the task (Fig. 1b). Sub-
sequent trial blocks alternated variably and exhibited biases toward
the right and left. Theprobability distribution skewedat a 20:80 and an
80:20 ratio for the right and left sides, respectively. The length of these

Fig. 1 | Sensory decision-making task and internal state model (GLM-HMM).
a On each trial, mice were presented with a sinusoidal grating on the left or right
side of the screen and were trained to report its side by turning a wheel. Grating
contrast was sampled on each trial from a discrete distribution over the values
{0, 6.25, 12.5, 25, 50, 100}%. Mice received a water reward for correct responses39.
b Each session started with 90 unbiased trials in which the stimulus had an equal
probability of appearing on the left or right. Subsequently, the probability of a
right-side stimulus alternated between 0.8 and 0.2 in bias blocks of random
duration. Right-bias (R Bias) blocks (red) and left-bias (L Bias) blocks (blue) lasted
50 trials on average, and switches between them were uncued. c Distribution of
bias-block lengths, which took the form of a shifted, truncated geometric dis-
tribution, where n denotes the number of trials (seeMethods). dWe used different
sets of inputs to the transition and observation GLMs, reflecting the fact that the

factors governing state switching turned out to be different from the factors
affecting choice. (For example, stimulus contrast (Δ contrast) did not help predict
state transitions, nor did past reward predict left-vs-right choice on single trials)39.
e GLM-HMM schematic. The model contains a discrete latent state variable
zt ∈ {1,…, k}, each associated with a distinct Bernoulli observation GLM and a
multinomial transitional GLM where y is animal choice. f Schematic of Bernoulli
GLM, whichmaps inputs (X) to binary choices (y) on each trial (t), whereW denotes
theGLMweights.g Schematic ofmultinomialGLM,whichmodels theprobability of
transition to each of k latent states after the current trial. Panels a andd are adapted
from Laboratory, T. I. B. et al. Standardized and reproducible measurement of
decision-making inmice. Elife 10 (2021). Source data are provided as a Source Data
file. L. Left, R. Right, Stim. stimulus, Ob, observation, Tr transition.
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biased blocks ranged from 20 to 100 trials. The transition between
these biased blocks was not overtly indicated, necessitating the mice
to extrapolate a prior estimation for stimulus location based on recent
task statistics. This intricate task compels the mice to assimilate
information across multiple trials, strategically employing their prior
knowledge to inform their perceptual decisions.

Figure 1c illustrates the distribution of biased data blocks within
the IBL experiment, specifically focusing on blocks that extend beyond
a defined length n. These extended biased blocks varied in duration,
spanning from 20 to 100 trials, with an average length of approxi-
mately 58 trials. It’s important to note that a typical experimental
session consists of several such data blocks.

Within this modeling framework, two distinct sets of inputs
were incorporated, encompassing transition and observation
inputs as presented in Fig. 1d. In this context, the observed out-
put corresponded to the animal’s decision, manifesting as a bin-
ary value indicative of the direction in which the wheel was
turned-either right or left. A multitude of covariates were addi-
tionally integrated into the model and will be elucidated herein.
Specifically, the stimulus parameter was defined as the contrast
level of a sinusoidal grating, spanning luminance variations
between 0% and 100%. For normalization, this stimulus was
divided by the standard deviation of trials across sessions. Con-
versely, the stimulus side parameter characterized the mouse’s
behavior upon receiving a reward: continued execution of the
same choice after reward receipt or a change in behavior in its
absence. This binary stimulus side was represented as −1, +1.
Furthermore, past choice was established as a binary variable,
taking values of −1 or 1, denoting left or right prior choices by the
mouse, respectively. The previous reward (pr) value was defined
as −1 or 1, corresponding to incorrect or correct decisions,
respectively. Moreover, three bases were introduced as linearly
independent vectors for the initial 100 trials of each session,
capturing the animal’s warm-up effect within the model. In the
course of this study, the term filtered covariate was employed to
reference a covariate subjected to exponential filtering, facilitat-
ing the consideration of a temporally filtered variant of the
regressor.

Taking into account this description, we included the stimulus,
past choice, stimulus side, and bias as regressors for the observation
model. Additionally, the covariates influencing GLM transition include
a filtered version of the previous choice, previous stimulus, previous
reward, and three basis coefficients to capture the warm-up effect.
Incorporating an exponentialfilter for the transitionmodel enables the
integration of a temporally filtered regressor. This innovative
approach allows for a detailed evaluation of the temporal impact of
model regressors on state transitions, enhancing our understanding of
the dynamic nature of these transitions.

The GLM-HMM framework used for this analysis is presented in
Fig. 1e, which, as mentioned, includes an HMM with a Bernoulli GLM
for observations and a multinomial GLM for transitions. We used the
IBL data, consisting of extensive data evaluating 123 mice and ana-
lyzing all sessions from 37 of them, encompassing hundreds of
thousands of trials, to ensure generalizability. From this dataset, we
selected 37 mice to fit the GLM-HMM framework with a different
number of states. Our animal selection criteria involved including
those with a minimum of 30 sessions and incorporating sessions
characterized by a low number of error trials, where the animal either
did not make a choice or timed out.

In fitting the model, we employed the Maximum A Posteriori
(MAP) approach, utilizing the Expectation Maximization (EM) algo-
rithm. Themodel parameters, denoted asΘ= fwtr,wob,πg, include the
transition weights wtr, observation weights wob, and the initial state
distribution π. Subsequently, we evaluate the model’s log-likelihood
based on this approach (see Methods).

A 4-state model captures decision-making behavior
To identify the optimal model, we fit the GLM-HMM with varying
numbers of states and computed the cross-validated log-likelihood on
a set of held-out test sessions. After evaluating the log-likelihood
values, the GLM-HMMwith four states demonstrated notably superior
performance compared to the 1-state model. Therefore, we focus on
the 4-state model because it comes close to the maximum but is more
parsimonious and interpretable than the 5-state model. These four
distinct states correspond to four distinct decision-making strategies.
The findings suggest that mice consistently employed all states for
multiple consecutive trials, with each session seeing the utilization of
various states. It was observed that in the GLM-HMM fit of both
unbiased and biased data, covariates such as the stimulus (Δ contrast),
past choice, stimulus side, and others played crucial roles in predicting
the animal’s choice.

To conduct this comparison, following the fitting of the model
with different numbers of states and computed the log-likelihood of
the testdata. The EMalgorithmwasemployed for thefitting procedure
on the training data sessions. Subsequently, in the testing step, the
likelihood of the remaining data was calculated based on the model
parameters obtained from the trainingprocedure. By summingover all
states, the log-likelihood of the test data is stated as:

L= log
XK
k = 1

αT , k

 !
ð4Þ

in which αT,k is the posterior probability of the mice's decisions from
trial 1 to T and was computed solely on the held-out sessions. We can
express αT,k as:

αT , k =p Y, zk jfXob,Xtrg
� �

ð5Þ

where Xob = xob
1 , :::, xobT is the observation input vectors, and

Xtr = xtr
1 , :::, x

tr
T presents the transition input vectors. The animal choi-

ces for the specified trials are denoted as Y = y1, . . . , yT.
First, we performed the global fit in which the model was applied

globally to the entire IBL dataset, and the normalized log-likelihood
(NLL) for this data was calculated. The defined NLL, measured in bits
per trial (bpt), provides a more intuitive understanding of the model’s
performance and facilitates meaningful comparisons across various
models and datasets. This can be expressed as:

Lbpt = ðLt � L0Þ=ðT t logð2ÞÞ: ð6Þ

In this equation, L0 represents the log-likelihood of the baseline
model, and Tt is the number of trials in the test set. The equation has
been divided by T t logð2Þ to present the value per trial. The difference
between Lt and L0 represents the enhancement in log-likelihooddue to
the performance of the GLM-HMM.

Analyzing the Test NLL plot (Fig. 2a), it is evident that the four-
state model demonstrates better performance and interpretation,
particularlywhen considering the structurednatureof bothbiased and
unbiased data. So, derived GLMweights within the context of the four-
state model unveil distinct patterns, which are shown in Fig. 2.

In Fig. 2a, for comparative analysis of different models, we com-
puted the log-likelihood for all animal data. The computation strategy
involved 5-fold cross-validation with reserved sessions. In this model,
when evaluated on the held-out data, the four-state GLM-HMM per-
formed much better than the GLM itself (1-state model). Additionally,
the GLM-HMM successfully captured the temporal pattern of inhibi-
tion influencing the animal’s decision-making process. Also, a com-
parison was drawn in terms of the Test Normalized Log Likelihood
(NLL) between the model solely incorporating the Bernoulli GLM and
the model encompassing both the GLM-O (Observation) and GLM-T
(Transition). This is presented in Fig. 2a. We can see similar effects and
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improvement for the 5-state model as shown in Supplementary
Fig. S1a. Our analysis revealed an enhanced performance of NLL in the
presence of the transition GLM (GLM-T) within our model, as opposed
to the scenario wherein the transition GLM was absent. Although the
difference between the twomodelswith andwithout GLM-T (Fig. 2a) is
not very large, this is because the results are shown in log-likelihood
per trial (in bits). Even a very small improvement in log-likelihood per
trial can result in a much better model fit (refer to Eq. 32 in the
Methods, but in this case comparing models with and without GLM-T
instead). For example, for the 4-state model, the model with GLM-T is
~0.015 bits per trial higher than the model without GLM-T. This means
that for a dataset with 400 trials, the data would be about 26 ≈ 64 times
more probable under the GLM-T than without it. For a dataset with
4000 trials, the data would be about 260 ≈ 1.15 × 1018 times more
probable under the GLM-T model. This exponential scaling highlights
how even small per-trial improvements translate into dramatically
better fits for larger datasets.

Although the NLL plot shows a slight increase for the 5-state
model, our focus here remains on the 4-state model for the sake of
simplicity and interpretability. This choice is motivated by the fact

that, in the 5-state model, four states closely resemble those in the
4-state model and the new state, named Past-choice, emphasizes the
role of past choice. However, our emphasis in this work revolves
around the stimulus and bias roles, which are crucial for analyzing
biased block data. A comprehensive description of the 5-statemodel is
available in Supplementary Figs. S1 and S2, providing insights into the
observation and transition weights, and analysis of all five states.

In Fig. 2b, state 1, Engaged-L, exhibits a substantial weight attrib-
uted to the Δ contrast (stimulus) and a moderate weight associated
with the left bias. State 2, designated as the Engaged-R state, features a
significant weight related to the stimulus and a moderate right-bias
weight. Conversely, states 3 and 4, denoted as Biased-L and Biased-R,
respectively, exhibit reduced stimulus weights. Nevertheless, bias
weights generate a strong left bias for state 3 and a right bias for state
4. Additionally, in these states, a nominal weight is assigned to the
previous choice factor.

These state-specific weights influence the shape of the psycho-
metric curves, a fundamental tool in psychophysics43,44 and decision-
making modeling. Typically characterized by a sigmoid-shaped func-
tion, the psychometric curve is intricately linked to a linear

Fig. 2 | Analysis ofGLM-HMM fits. a Test log-likelihood (LL) of the GLM-HMMwith
and without multinomial GLM transition, as a function of the number of latent
states, using pooled data from all 37 animals in our dataset. The model with GLM
transition (GLM-T) outperformed the basic GLM-HMM for all models with multiple
states. The four-state model (purple box) came close to saturating the test log-
likelihood yet had highly interpretable states, and we therefore selected it for
further analysis. Data are presented as mean test log-likelihood; error bars denote
68% bootstrap confidence intervals across cross-validation folds (5-fold cross-
validation).bThe fitted observation-GLMweights for the four-statemodel revealed
two Engaged states, which we refer to as Engaged-L and Engaged-R. In these two
states, the weight on stimulus contrast (Δ contrast) was large and the bias weight

wasnegative orpositive, respectively. Theother two states exhibited small stimulus
weight and a large left or right bias, leading us to refer to them as Biased-L and
Biased-R states. These biased or disengaged states also exhibited small weights on
previous choice, indicating a greater tendency to preserve. c State-specific psy-
chometric curves for eachof the four states in thefittedmodel,which showhowthe
GLMweights in (b)map signed stimulus contrast into the probability of a rightward
choice. d The model-based psychometric curve for an example mouse is a linear
combination of the state-specific psychometric curves shown in (c), and provides a
close match to the empirical choice data for an example mouse (green triangles).
Source data are provided as a Source Data file. Stim. stimulus.
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representation of the stimulus (Δ contrast) and augmented by a bias
term. This mathematical framework is widely adopted to capture the
relationship between stimuli and an individual’s responses. Here, the
psychometric curve graphically represents the choice probability
(right side) relative to stimulus contrast. State-specific psychometric
curves were meticulously generated within the framework of a four-
state GLM-HMM presented in Fig. 2c. The resulting curves serve as
intricate depictions of the behavioral responses observed within each
state. The psychometric curves for Biased-L andBiased-R states exhibit
shallower inclines, indicative of notable leftward and rightward biases,
respectively.

In Fig. 2d, the green triangles correspond to the experimental
choice data of themouse (alongside 95% confidence intervals). Also, to
derive the solid black line, a temporally sequenced dataset was gen-
erated to match the trial count of the example mouse. This process
involved using the meticulously fitted parameters of the GLM-HMM
specific to this animal and the actual sequence of stimuli presented
during its trials. For each trial iteration, the probability of making a
rightward choice (p(R)) was calculated for each of the nine potential
stimuli, regardless of the actual stimulus presented. This calculation
entailed averaging the per-state psychometric curves, as illustrated in
Fig. 2d while adjusting their weights according to the pertinent row in
the transition matrix, as this adjustment was contingent on the latent
state sampled in the preceding trial.

Modeling the dynamics of state transitions in animal behavior
Figure 3a represents both the stimulus and the animal’s choice on the
same trial, complemented by the transition regressors of the model.
These transition regressors include filtered stimulus side, filtered
choice, and filtered reward, providing a comprehensive illustration of
the multinomial GLM inputs in the model.

The multinomial GLM weights for transition between states are
shown in Fig. 3b. For states 1 and 3, characterized by a left-biased
component, negative weights are assigned to the filtered choice and
filtered stimulus side. This suggests that these factors contribute to the
transition towards left-biased states (Engaged-L or Biased-L). Con-
versely, for the right-biased states, including states 2 and 4, positive
weights are assigned to the filtered choice and filtered stimulus side,
indicating a tendency towards right-oriented choices. Additionally, in
disengaged states (states 3 and 4), the positive weight of the filtered
reward signifies its role in decision-making, as the animal is less
attentive to the stimulus in these states. This pattern is reversed in
engaged states (states 1 and 2), where the stimulus is pivotal, resulting
in a negative weight for the filtered reward. Therefore, past rewards
were found to predict transitions to disengaged states, suggesting a
connection to satiety. Also, transitions between left- and right-bias
states were influenced by past choices and stimuli. Notably, the term
filtered covariate here refers to transition regressors subjected to
exponential filtering, facilitating the integration of temporally filtered
versions of these regressors in the analysis.

On the other hand, Supplementary Figs. S2 and S3 present an
analysis of transitionweights and transition patterns betweendifferent
states, as well as the dwell time distribution for themodel with 5 states.
The calculation of dwell time in each state involves utilizing the diag-
onal elements of the inferred transition matrix of the 5-state model.
This allows for a nuanced examination of the temporal dynamics and
the relationships between states, contributing valuable insights into
the overall understanding of the 5-state model.

Additionally, we introduced a set of three temporal basis vectors
to capture the time dependence of state transitions at the beginning of
each session. The temporal modulation of the bases’ effect is illu-
strated in Fig. 3c. These bases were strategically integrated to capture
the gradual adaptation of the animalduring the initial 100 trials of each
session, effectively accounting for the warm-up effect within the
model. Furthermore, as depicted in Supplementary Fig. S4, we present

the impact of transition weights and the associated effects of these
bases, showing the transition weight corresponding to each basis in a
specific state for both the 4-state and 5-state models. This repre-
sentation provides insights into the influence and weight of each basis
in the warm-up effect.

Figure 3e presents the inferred transition matrix pertaining to the
four-state GLM-HMM, designed to accommodate the full IBL dataset.
Evident within this matrix are notable magnitudes along the diagonal,
serving as clear indications of a heightened probability for the system
to sustain its presence within the same state during transitions. This
prominence underscores the significant propensity for the model to
exhibit persistence and stability within individual states. Figure 3d
displays the transition bias for pooled IBL data, derived from the
intercept termsof theGLM-Tmodel (prior to inputmodulation). These
values represent themodel’s default expectations about the likelihood
of remaining in the same state or transitioning to another, indepen-
dent of trial history or covariates. Visualizing these biases provides
insights into the intrinsic stability of eachbehavioral state-for example,
higher diagonal values indicate stronger self-transitions and more
persistent states.

To compare models with different filtering parameters and
choose the best one, we compared the normalized test Log-Likelihood
(test LL) across models with various numbers of states, varying the
values of τ. Here, τ represents the time constant of the exponential
filter applied to the transition covariates and is associated with the
duration of the history considered for these covariates. Figure 3f
illustrates the normalized test LL for different values of τ while
adjusting the number of states. In Fig. 3g, a similar comparison is
shown, but for models with different numbers of states. It is evident
that the model with the specific value of τ = 4 yields the best test log-
likelihood results, and we have chosen this value for filtering the
transition covariates of the model.

Exploring the temporal patterns within the model
Ourmodel, harnessing the power of the fittedGLM-HMM, captures the
temporal dynamics and diverse decision-making strategies of mice,
enhancing our understanding of their cognitive processes. The find-
ings regarding the dynamics of the model over time are presented in
Figs. 4 and 5. This model allowed us to calculate the posterior prob-
ability of themouse’s hidden state throughout all the trials. These state
trajectories represent our best estimates of the mouse’s internal state
on each trial, considering the entire sequence of observed inputs and
choices during a session.

The plots showcase the posterior probabilities and correct/
incorrect animal choices associated with their corresponding sessions
in four distinct states, as presented in Fig. 4a. These visualizations
incorporate a background color scheme that serves to distinguish
biased blocks: the color pink corresponds to right-biased blocks, while
the blue shade denotes left-biased blocks. This color-coded repre-
sentation enhances the comprehensibility of the data, facilitating the
identification of patterns within the biased segments of the experi-
ment. This figure illustrates that states exhibiting right bias, namely
Engaged-R and Biased-R, demonstrated a greater likelihood within
blocks characterized by a right-biased orientation (designated by a
light pink background color). Left-oriented blocks with a blue back-
ground hue exhibited a similar observation, where states influenced by
left bias exhibited higher probabilities. Also, aswe can see Fig. 4a, what
emerged is a clear pattern: in most trials, one state stood out as sig-
nificantly more probable than the others, signifying a strong level of
confidence inourunderstandingof themouse’s internal state basedon
the observed data.

We made a histogram to elucidate the distribution of the first
transition into states aligningwith related bias within each data block
(Fig. 4b). This analytical approach is geared towards capturing the
number of trials spanning from the commencement of a biased data
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block until the occurrence of the first transition to the corresponding
biased states. For instance, in the context of a right-biased data
block, this entails quantifying the number of trials required for
transitions to the states characterized by a right bias, namely

Engaged-R, and Biased-R. A similar assessment ismade for left-biased
data blocks and their respective states, with a high value on the left
bias weight. The analysis underscores that the median value of this
histogram stands at 9 trials, while the maximum value observed is 6

Fig. 3 | Transitional and temporal dynamics of the model. a The stimulus (Δ
contrast) and animal’s choice, along with the transition regressors (filtered stimulus
side, filtered choice, and filtered reward), where filled yellow and open circles denote
the stimulus and choice, respectively. b The transition GLM weights indicate that left-
biased states (1 and 3) are associated with negative weights for filtered choices and
stimuli, while right-biased states (2 and 4) have positive weights. Also, engaged states
(1 and 2), shownegativeweights forfiltered rewards,whereas disengaged states (3 and
4) show positive weights for filtered rewards. This suggests that past choices and
stimuli drive transitions between left- and right-bias states, while past rewards are
linked to disengagement, potentially indicating satiety. c Temporal modulation of the
bases effect, which results from the multiplication of bases weights by bases traces
(three bases were introduced into the model to capture the animal’s warm-up effect
during the first 100 trials of each session). d The transition bias of the model for

pooled IBL data. e The deduced transition matrix for the four-state GLM-HMM, tai-
lored to the entirety ofmice IBL data. Thismatrix displays prominent values along the
diagonal, indicative of a pronounced likelihood of persisting within the same state.
f, g Comparing different models for various values of the filter time constant (τ) for
transition covariates: f Comparing models with varying numbers of states while
changing the values of τ. Analyses used pooled data from n= 37 mice (biological
replicates; independent animals from the IBL dataset). For each τ, modelswere trained
and evaluated with fivefold cross-validation (folds at the session level). Data are pre-
sented as mean normalized test log-likelihood; error bars denote 95% bootstrap
confidence intervals across cross-validation folds (fivefold cross-validation). g Plotting
normalized test log-likelihood versus τ for different models. The best plot corre-
sponds to τ=4, and this is the value we selected for our analysis. Source data are
provided as a Source Data file. Stim., stimulus; Avg., average.
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trials. This implies that, on average, it takes approximately 9 trials for
mice to transition from the start of a biased data block to a state
matched with the prevailing bias.

In Fig. 4c, the fractional occupancy of the four distinct states
across the entirety of trials for right-biased and left-biased data blocks
was analyzed. Each trial was assigned to the state that exhibited the

highest likelihood, and the proportion of trials designated to each
respective state was computed.

As evident from the analysis (derived from data of all 37 mice) for
each bias-related plot, the corresponding states were observed to
encompass a substantial portion of the entire trial set, indicating a
significant representation of the mouse’s behavioral responses within
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biased data blocks. In the context of right-biased data, the right-side
plot in Fig. 4c, Engaged-R and Biased-R (represented by red and pink
columns) exhibited notably higher values in comparison to the other
associated columns.

A similar observation was made for left-biased blocks (left-side
plot in Fig. 4c), where Engaged-L and Biased-L showed elevated values
compared to the other two states. This observation underscores the
impact of bias weights on biased data blocks, highlighting the adaptive
nature of the mouse’s decision-making process within the experi-
mental framework. Remarkably, the analysis uncovered that the mice
spend ~72% of their time in related biased states (e.g., Engaged-R and
Biased-R in right-biased blocks), with the engaged state having a
slightly higher occurrence chance. In stark contrast, themice allocated
a relatively smaller fraction of their trials, ~28%, to the other unrelated
states (e.g., Engaged-R and Biased-R in left-biased blocks).

In the plots of Fig. 5a, we depict the multiplication of transition
weights and transition inputs, providing a visual representation of the
temporal patterns exhibitedby theweighted transition regressors. The
specific data for these plots corresponds to the same three sessions of
a single mouse as in Fig. 4a. These visualizations offer insights into the
nuanced dynamics of the relationship between transition weights and
inputs across the given sessions.

Also, a histogram was created to show the frequency distribution
of inferred state changes per session across all 58 sessions of data for
this mouse in Fig. 5b. In this plot, we considered sessions with lengths
more than T trials and analyzed the firstT trials of each session. Here, T
represents the average duration of all sessions conducted for the
respective animal, which was 821 trials. Notably, in about 18% of all
sessions, the mouse exhibited fewer than 10 state changes, leading to
an average state duration of 154 trials (calculated by dividing 821 trials
by 5-state changes). This observation highlights a consistent tendency
for this mouse to remain in specific states for extended periods, par-
ticularly in high-performance states. These prolonged periods of sta-
bility were often interrupted by state changes, primarily occurring
when the mouse either adopted a new strategy or shifted its attention
to different covariate effects.

On the other hand, in themajority of sessions, approximately 63%,
themouseunderwentmore dynamic behaviorwithmore than 40 state
changes, averaging around 15 trials per state (derived by dividing 821
trials by 55 state changes). This frequent state-switching behavior
reveals a decision-making process where the mouse continuously
adapted its strategies and attention throughout the session, while still
maintaining an average of 15 trials per switch. The notable variation
within and between sessions highlights that these different rates of
state changes might be due to varying strategies, environmental fac-
tors, or animal behaviors on separate days or in different sessions.

Furthermore, our analysis delved into the dynamics of state
transitions by utilizing the diagonal componentswithin each transition
matrix. These components allowed us to calculate the expected
duration of residence, referred to as dwell time, for each animal within
distinct states, as illustrated in Fig. 5c. The median duration of resi-
dence in the Engaged-L and Engaged-R states was approximately 15
and 10 trials, respectively, while for the Biased-L and Biased-R states, it
was 10 and 12 trials. This observation indicates that the animal spent
considerable periods in all four states, shedding light on the persis-
tence of specific behavioral states in different strategies.

Analyzing each individual animal yields consistent findings
To gauge the universality of our findings, we applied the GLM-HMM to
the choice data obtained from all animals in the IBL dataset separately
(37 individual fits for all mice). As a result, two sets of GLM weights
(observation and transitionweights) for these animals are presented in
Fig. 6a, b. A notable level of substantial agreement was distinctly
apparent upon analyzing the fits of the four-state GLM-HMM in the
study. This consensus was particularly pronounced, as a significant
majority of the mice showcased discernible states, identified as
Engaged-L, Engaged-R, Biased-L, and Biased-R (Fig. 6a, b). This align-
ment in the identification of states underscores the robustness and
consistency of the applied GLM-HMM framework in capturing these
behavioral patterns across the population of interest for both obser-
vation (Bernoulli GLM) and transition weights (multinomial GLM).

The transition and observation weights for the 5-state model,
resulting from individual fits for all animals, are thoroughly presented
in Supplementary Fig. S5. As we can see, these weights exhibit mostly
similar patterns and in the near ranges across the various animals.
Notably, this consistency extends to the fifth state, Past-choice, where
the observed patterns remain consistent in both observation and
transition analyses. This shows valuable insights into theuniversality of
the observed patterns within the studied population.

Figure 6c presents an analysis of the test log-likelihood variation
considering different numbers of states for eachmouse in the studied
population. Each line on the graph represents an individual mouse’s
data, providing an overview of log-likelihood changes across different
state configurations. The solid red line shows the average across all
animals, serving as a reference point for comparison. The findings in
Fig. 6c are consistent with trends observed across the entire cohort,
indicating a strong pattern. Notably, the four-state GLM-HMM con-
sistently outperformed the single-state GLM during cross-validation.
This trend was consistent across all 37 mice in our study, reinforcing
the reliability and validity of ourmulti-state GLM-HMM framework as a
powerful tool for understanding decision-making behavior in mice
across diverse individuals. Similarly, Fig. S6 presents the GLM weights
of the 5-state model applied individually to all IBL animals, showing
both observation and transition weights. The global fit is shown as a
solid black line, with an example mouse fit overlaid as a dashed
black line.

Model performance analysis and comparison
Figure 7 presents a detailed analysis of model performance and a
comparison of models with and without GLM-T. Figure 7a shows the
difference in T90 (90th percentile response time; disengaged -
engaged) across mice, demonstrating that the model with GLM-T
(purple) achieves higher separation of engaged and disengaged states
in terms of response times for all mice, indicating better performance
in this aspect. Figure 7b illustrates the average state probabilities
across trials, with sessions interpolated to 100 points and then aver-
aged across all sessions and animals. It highlights an initial warm-up
effect in which mice start in disengaged states (orange) before tran-
sitioning to engaged states (green). Also, this plot suggests a link
between disengagement and satiety, as past rewards predict transi-
tions to disengaged states, leading to increased disengagement state
occupancy toward the endof the sessionwhenmice have accumulated
more rewards. Figure 7c further supports this relationship, showing a

Fig. 4 | Exploring chronological patterns of animal behavior. a The plots show
posterior probabilities and mice’s choices-correct (gray) and incorrect (yellow)-
during the task, for four distinct states. Based on the calculated posterior prob-
abilities, the black dashed vertical lines indicate the points where state changes
occur. The background color distinguishes biased blocks: pink indicates right-
biased blocks, while the blue shade represents left-biased blocks. b The histogram
for the number of trials of the initial transition probability into corresponding

states was generated for each block (e.g., the trial count for initial transition to
states with a right bias for right-biaseddata blocks) cAn evaluation of the fractional
occupancy pertaining to the four discrete states. This was conducted over the
entire span of trials encompassing both right-biased and left-biased blocks. The
results are presented here separately for the two different data block types. Source
data are provided as a Source Data file. Prob. probability;.
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Fig. 5 | Further exploration into the temporal dynamics of the 4-state model.
a Plots of the multiplication of transition weights and transition inputs. This
illustrates the temporal patterns of the weighted transition regressors in the
same three sessions of one mouse as in Fig. 4a (Background color marks
block bias: pink = right-biased, blue = left-biased). b The histogram illustrates

the distribution of inferred state changes per session across sessions
exceeding a duration of T. c The anticipated duration of stays, or dwell time
histograms, in different states for all mice: this was achieved by utilizing the
derived transition matrix for each individual mouse. Source data are pro-
vided as a Source Data file.
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positive correlation between filtered reward and the probability of
disengagement states.

To assess the effectiveness of GLM-T in capturing trial-dependent
dynamics, we compared model performance using synthetic data. Fig-
ure 7d presents the test log-likelihood comparison for models fitted to
data sampled from a generativemodel without GLM-T (left) and amodel
with GLM-T (right). When trial-dependent transitions are present in the
data, the GLM-T model performs better, improving by 0.009 bits per
trial. Conversely, when transitions are independent of trials, the non-
GLM-T performs almost similarly to the model with GLM-T. This net

advantage becomes particularly significant in large datasets, making the
GLM-T model more suitable for capturing structured behavioral
dynamics. This improvement of 0.009 bits per trial when the data has
trial-dependent transitions means that for a dataset with 5000 trials, the
data would be ~3.52 × 1013 times more probable under the GLM-T model
than under the non-GLM-Tmodel. Figure 7e compares the inferred states
from both models, with most data points lying above the y= x reference
line (red dashed), indicating that the GLM-T model assigns higher
probabilities to states compared to the non-GLM-T model, demonstrat-
ing its confidence in detecting states and its improved performance.

Fig. 6 | Analysis of data from each individual mouse in the IBL dataset.
aObservationweights for theBernoulli GLMcorresponding todistinct stateswithin
the four-statemodel across all IBL animals, highlighting the similarity and trends in
state-specific observation parameters. b Transition weights for the Multinomial
GLM of the same model across all animals, showcasing the dynamics and con-
sistency of transitioning between different states for all animals. c Test log-
likelihood (LL) variation for each mouse in the population, illustrated against the
number of states. Each trace represents an individual mouse, with the solid red line

indicating the average across all individual fits and the black solid line showing the
test log-likelihood for the global fit. a–c Unit of study: mouse. n = 37 mice (biolo-
gical replicates; independent animals from the IBL dataset). Each point/curve cor-
responds to one mouse. Panel c shows held-out test log-likelihood per mouse
acrossmodel sizes (fivefold cross-validation; folds at the session level). Source data
areprovided asa SourceDatafile. Stim. stimulus,Obs. observation, Tran. transition,
indiv. individual.
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These results collectively demonstrate that incorporating GLM-T
leads to better performance and more structured and behaviorally
relevant state inferences, making it a more effective framework for
modeling decision-making dynamics. Fig. S7–S10 further support this
by showing that GLM-T improves the capture of structured state
transitions, enhances the stability and clarity of posterior state prob-
abilities, and enables dynamic, trial-dependent transition probabilities
that align with block structures, whereas models without GLM-T fail to
capture these behavioral dynamics effectively. Furthermore, GLM-O
weights were similar across models with and without the GLM-T
component (Fig. S7a). This shows that the GLM-T regulates transitions
between behavioral states without substantially modifying the states
themselves, as described by the GLM-O. Fig. S11 shows that transition
probabilities into a given state are nearly identical across different
preceding states, for IBL data. This confirms that our key conclusions
are not sensitive to this aspect of the model.

Discussion
In summary, this paper presents a GLM-HMM framework for analyzing
mice’s decision-making behavior in non-stationary environments. This

model offers a nuanced understanding of transitional patterns of
behavioral states and is structured as anHMM, featuring two sets of per-
state GLMs: one for observations and one for transitions. This design
provides flexibility in capturing the impact of independent sets of cov-
ariates on mouse choices and state transitions. When applied to the
extensive IBL dataset, our analysis of 123 mice, including all sessions
from 37 of them, highlights the superior performance and interpret-
ability of the four-state GLM-HMM, revealing intricate patterns in the
data. This study underscores the model’s effectiveness in representing
animal decision behavior and transition probabilities between states,
especially in scenarios with variable stimulus probabilities.

We observed that the model with an additional GLM for transi-
tions performs better than a basic model without a transition GLM, as
evidenced by the test log-likelihood plot (Fig. 2a). For the observation
model, stimulus andmice bias played significant roles, identifying two
engaged states with low biases relative to the stimulus and two dis-
engaged states with pronounced biases. For the transition model, we
selected filtered choice, stimulus side, and reward as key covariates
based on their theoretical relevance, and they effectively captured
transitions between left- and right-bias states as well as between

Fig. 7 | Model performance. a Difference in 90th percentile response time (dis-
engaged - engaged) across mice for models with (purple) and without GLM-T
(blue), indicating a higher separation of engaged and disengaged states in terms of
response times for the model with GLM-T. This was for n = 37 mice (biological
replicates; independent IBL animals). Sessions/trials are replicates aggregated
within mouse. Points show the per-mouse difference in the 90th percentile
response time. Error bars denote 95% bootstrap percentile confidence intervals
(2.5–97.5th) computed from5000 resamples of trialswithin eachmouse.bAverage
state probabilities across trials for all mice, showing an initial warm-up effect where
mice start in disengaged states (orange) before transitioning to engaged states
(green). Additionally, this suggests a link between disengagement and satiety, as
greater past rewards predict transitions to disengaged states, leading to an
increased occupancy of disengagement states toward the end of the session when
mice have accumulated more rewards throughout the experiment. c Relationship
between filtered reward and the probability of being in the disengaged state,

showing a positive correlation between them (light blue points are data points and
blue line is the trend line). d Test log-likelihood (LL) comparison between models
for synthetic data sampled from a model without GLM-T (left) and a model with
GLM-T (right). When data has trial-dependent transitions, the GLM-T model per-
forms better, improving by 0.009 bits per trial. Conversely, when transitions are
independent of trials, the non-GLM-T model performs almost similar. The relative
improvement, shows that it provides a meaningful advantage for data with tran-
sitions. Models were run on synthetic data produced for n = 37 mice by recon-
structing each mouse’s best-fitting model and simulating session-by-session using
the true stimulus sequences. Data are presented asmean test LL; error bars denote
± standard deviation across 5-fold cross-validation. e Scatter plot of inferred states
with and without GLM-T, with a reference y = x line (red dashed). Most points lie
above the red line, indicating that GLM-T states aremoreprobable thannon-GLM-T
states. Source data are provided as a Source Data file. Diseng., Disengaged.
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engaged and disengaged states. Our analyses revealed that mice pre-
ferentially used left-bias strategies during left-bias stimulus blocks and
right-bias strategies during right-bias stimulus blocks, achieving high
performance even in disengaged states by biasing choices toward the
side with greater prior probability.

While our work has primarily focused on the 4-state model, our
findings are not limited to this configuration. Results and insights can
be generalized to a 5-statemodel, detailed in the Supp., where the fifth
state shows the effect of past choice in modeling decision behavior.
Although the cross-validated log-likelihood gain is slightly higher for
the 5-state model, the overall results remain similar in several aspects.
Furthermore, our results indicate that past rewards play a key role in
driving transitions to disengaged states, supporting the interpretation
that satiety contributes to disengagement. The four-state model
effectively captures this pattern, and the five-state model provides
additional flexibility, suggesting that disengagement may encompass
nuanced behavioral variations (Fig. S2b). While satiety is a likely con-
tributor, disengagement may also reflect adaptive shifts in strategy or
transient reductions in task engagement. Rather than indicating
uncertainty, these findings highlight the richness of behavioral states
and suggest that disengagement is not a monolithic process but may
be shaped bymultiple internal and external factors. Futurework could
further refine this interpretation by integrating physiological and
neural measures to better characterize the mechanisms underlying
disengaged states.

Looking ahead, it would be useful to investigate potential groups
or clusters in the individual fits for different animals. For example, are
some mice consistently less engaged than others, and do these
engagement rates persist across sessions? Additionally, it would be
valuable to explore a comparative analysis between the discrete state
model presented in this paper (GLM-HMM) and amodel incorporating
continuously changing states over time. This comparison could offer
deeper insights into decision-making behavior and the underlying
neural processes45–50. On the other hand, it would be useful to explore
other covariates that may influence strategy switching but were not
included in our current model. While we selected covariates based on
prior literature and theoretical reasoning, a more data-driven
approach could help identify additional predictors, such as response
time, movement vigor, or task engagement metrics, to capture
decision-making dynamics in more detail.

Future work includes advancing our understanding of neural
activity51,52 and neural decoding53–56 in relation to the discrete beha-
vioral states identified in our GLM-HMM framework. Unraveling the
intricate patterns of neural and behavioral correlations promises to be
a pivotal direction in neuroscience research57–62, especially in the
context of decision-making processes. Analyzing and comparing
neural modes across different tasks while considering a wide-ranging
behavioral repertoire63 can provide valuable insights into the animals
decision-making strategies. Using state space methods for neural data
analysis64 and comparing these neural states with behavioral data
could further enhance our understanding of how different factors
influence decision-making.

Additionally, future work could involve investigating how differ-
ent brain regions communicate using both neural and behavioral data,
analyzed through GLM-HMM or other modeling approaches. Incor-
porating data from various brain areas65,66 could enhance our under-
standing of animal decision-making strategies. Extending this research
to map multi-region and brainwide spontaneous activity to animal
behavioral patterns6 and brain states could provide deeper insights
into the mechanisms driving these behaviors.

Another promising direction could be focusing on modeling real-
time neural activity and its correlation to online behavioral data and
states, which could enhance the performance of brain-machine inter-
faces.While there has been someworkon analyzing animal data in real-
time67–72, particularly for brain-machine interfaces73,74 and their

application to control brain states75, there has been limited effort on
modeling how this neural or behavioral data is encoded or decoded in
real-time.

On the other hand, hierarchicalmodels for analyzing animal data76

offer a powerfulmeans to capture the complexity of behavioral data by
incorporating multiple levels of variability. These models can account
for individual differences in behavior, learning, and strategy adoption
while integrating neurophysiological data, enabling a deeper under-
standing of decision-making. Exploring the hierarchical version of
GLM-HMM shows promise for uncovering the complex links between
neural activity, behavioral states, and animal strategies.

In essence, our GLM-HMM framework provides a robust tool for
understanding animal decision-making, highlighting the importance
of considering both observation and transition dynamics. This
approach uncovers links between mice's strategies, input regressors,
and state transitions, emphasizing the complexity of adaptive beha-
vior. It lays a foundation for future research in dynamic decision-
making models, offering valuable insights into the mechanisms and
data patterns underlying animal behavior.

Methods
Hidden Markov Model
An HMM is a statistical model for time series data that is governed by
hidden or latent factors that cannot be directly observed. The events
that we observe are called observations, and the underlying, unob-
servable factors driving them are referred to as latent states29,30,77.

Therefore, HMM consists of two stochastic components: one
governing the latent states, and another governing the observations.
The latent process component satisfies the Markovian property. A
transition probability matrix A 2 RK ×K , where, at trial t, the element
corresponding to state j and state k presents the transition probability
between those two states and can be written as:

Pðzt + 1 = kjzt = jÞ ð7Þ

and an observable state-dependent component fytgTt = 1, for which we
have:

Pðyt jy1, y2, :::, yt�1, ztÞ=Pðyt jztÞ ð8Þ

where T is the number of considered trials. Generally, in HMM, the
probability distribution of the observed symbols is based on the
underlying, unobserved states of the system, following the principles
of a Markov chain. In many cases, observations can be grouped into
different classes, which can provide more insightful information than
the individual observations themselves. In such situations, it becomes
advantageous to model these observations using both the observable
and unobservable aspects of HMM.

Bernoulli GLM
The Bernoulli Generalized Linear Model (GLM) is a statistical model
designed for binary data, where the response variable can take values
of 0 or 1. It belongs to the broader GLM family, which includes models
like Poisson, Gaussian, and Dirichlet. The primary purpose of using
Bernoulli GLMs here is to model the relationship between a mouse’s
expected decision and the relevant regressors for each trial.

In the Bernoulli GLM, the response variable follows a Bernoulli
distribution, which is a discrete probability distribution. It takes the
value 1 with probability p (representing success) and0with probability
1−p (indicating failure). Estimating the probability p in the Bernoulli
GLM involves predictor variables, and a link function connects the
mean of the Bernoulli distribution to the linear predictor.

The linear predictor is formed as a linear combination of the
predictor variables and their respective coefficients. Subsequently, the
link function is used to transform the linear predictor to the
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probability scale. The logit link function stands as the most widely
adopted link function for a Bernoulli GLM, and it can be expressed as
logðp=ð1� pÞÞ= Fβ, where F corresponds to apredictor variablematrix,
and β represents a vector of coefficients.

In this study,we employed aBernoulli GLMto analyze the animal’s
strategies, presented in Fig. 1e, in relation to various experiment
regressors. It can map the binary values of the animal’s decision to the
weighted representations of the considered covariates. These weights
serve to depict the inputs of themodel in relation to the output, which
is the animal’s choice on each trial. Consequently, we can describe an
observational GLM using the following equation, where the animal
choice, denoted by y, can take a value of 1 or 0, indicating the mouse
turning the wheel to the right or left-side, respectively:

pðyjzt = k, xÞ �
expðywkxÞ
1 + expðwkxÞ

: ð9Þ

In this equation, as indicated by the notations, the presented GLM
is solely associatedwith the observation covariates,x, and observation
weights w for state k.

The fitting procedure of the model involves utilizing a penalized
maximum likelihood estimation. This estimationminimizes the sumof
the priors on the transition and observation weights, in addition to a
negative log-likelihood function, often referred to as the log-posterior.
The prior corresponds to a normal distribution over the weights with a
mean of zero and a variance of σ2. The negative log of this prior can be
represented as 1

2 ðwÞTw. The purposeof this prior is to imposea penalty
on themodel weights, thereby regularizing themodel by discouraging
excessively large weight values for the regressors78. Consequently, a
relevant loss function can be defined as:

LossðwÞ � � logpðYjw,XÞ+ λ 1
2
wTw: ð10Þ

Here, logpðYjw,XÞ represents the conditional probability of the
output,whichcorresponds to thedecisionsmadeby the animals, given
the model regressors. Also, the symbol λ assumes the role of a
hyperparameter that governs the regularization term’s influence on
the model. The log-likelihood function can be mathematically defined
as follows:

logpðYjw,XÞ=
XT
t = 1

logpðyt jw,xtÞ

=
XT
t = 1

ytw
>xt � logð1 + ew>xÞ

� �
:

ð11Þ

In this context, Y represents the observations from trial 1 to T,
whileX corresponds to the regressors for the GLM applied to the same
trials.

The GLM can be fitted using the maximum likelihood or MAP
estimation, and the resulting coefficients can subsequently be used to
make predictions on new data. To assess the performance of the fitted
model, we use cross-validation on held-out test data.

Multinomial GLM
Another form of the GLM is the multinomial GLM, which we will
employ to model how external covariates influence transitions
between different states. This multinomial logistic regression, also
known as softmax regression or maximum entropy classifier, serves as
an extension of logistic regression to handle data with multiple cate-
gories. Multinomial GLMs are GLMs possessing the capability to ana-
lyze data from more than one category simultaneously. By modeling
the relationship between independent variables and categorical
dependent variables, this approach allows for the determination of the

likelihood associated with each category. In the field of neuroscience,
multinomial GLMs are frequently employed to analyze the link
between brain activity and behavior, facilitating the investigation of
neural processes underlying different types of behavior.

The primary difference between Bernoulli and multinomial GLM
lies in the number of categories the models handle. Bernoulli GLM is
used for binary outcomes, modeling the probability of success (1) or
failure (0), commonly employed in binary classification. Multinomial
GLM, on the other hand, deals with data featuring more than two
categories, modeling the probabilities of each category using a mul-
tinomial logistic function. The choice between them depends on
whether you’re working with binary or multiclass categorical data. In
multinomial GLM, the expression for the conditional probability of
observing a particular outcome y, given input variables x and a set of
model parameters w, is typically formulated as follows:

pðy= cjx,wÞ= expðw>
c xÞPC

j = 1 expðw>
j xÞ

ð12Þ

wherewj corresponds to the parameters associated with j-th outcome
and C is the number of possible outcomes in which for multinomial
GLM C is more than 2. The multinomial equation finds frequent
application within the domain of multinomial logistic regression,
serving as a means to model the probability distribution across
numerous discrete outcomes or categories. This mathematical frame-
work is foundational in a multitude of machine learning and statistical
contexts, including but not limited to tasks such as text classification,
image recognition, and addressingmulticlass classification challenges.

In this paper, we delve into the exploration of the GLM-HMM,
GLM-HMM, with multinomial GLM outputs, a method capable of
estimating the likelihood of the next state (presented in Fig. 1e).
Notably, the GLM-HMM framework offers the advantage of enabling
each state to possess a multinomial GLM that effectively captures
the intricate relationship between transition covariates, such as
previous choice and previous reward, and the associated transition
probabilities.

Therefore,weconsider the animal’s behavior at trial t andproceed
to calculate transition probabilities to various states at trial t + 1 uti-
lizing amultinomial GLM. Themodel is adeptly structured to establish
associations between the vector of model transition inputs and the
unnormalized log probability of each potential future state. So our
model presents transition probabilities using a multinomial GLM, and
emission probabilities using a Bernoulli GLM, each defined by its own
set of parameters.

Structure of the GLM-HMM
GLM-HMM, or Generalized Linear Model-HMM, is a sophisticated
probabilistic model in which the core structure combines the princi-
ples of HMM and GLM31–38. At its essence, GLM-HMM is defined by a
dual-layered structure. The first layer comprises an HMM, a stochastic
process with hidden states that transition over time. These hidden
states capture latent information about the underlying dynamics of a
system. The second layer incorporates GLMs, which govern the map-
ping from inputs to outputs, and this mapping is influenced by the
current hidden state of the HMM. This dual-layer structure enables
GLM-HMM to effectively model complex, sequential data where the
relationship between observed outputs and input variables varies
depending on the underlying, unobservable state. This capacity to
incorporate state-dependent relationships within a probabilistic fra-
mework makes GLM-HMM an appropriate tool for analyzing and
understanding temporal data in various domains.

In this manuscript, we present a GLM-HMM framework that
incorporates both GLM observation and GLM transition models with
independent covariates. This approach enables us to capture the
temporal patterns of animal transitions between states, enhancing our
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understanding of decision-making dynamics in mice within non-
stationary environments. Specifically, we use a Bernoulli GLM for
observations and a multinomial GLM for transitions. The Bernoulli
GLM captures the roles of different regressors in animal choices,
establishing the relationships between observed and predictor factors
by defining the conditional distribution of the observed parameter
based on its predictors. The multinomial component captures the
intricate patterns associated with state transitions, characterizing the
transition probabilities between the hidden states. Instead of a fixed
transition matrix between states, our model uses a set of vectors, one
for each state, to capture transitions into that state, with the averaged
transition probability matrix presented in Fig. 3e. At each trial or time
point in a dynamic environment, these probabilities govern the like-
lihood of transitioning from one state to another.

Therefore, in the context of a multinomial GLM, for the transition
model, the GLM output reflects different probabilities for transitions
between states. In this case, xtr

t presents the transition covariates at
trial t andwtr

k is the transitionweights associatedwith state k. So for the
transition probability to state k at trial t, denoted as zt, we can write:

pðzt = kjxtr
t Þ=

expfðwtr
k Þ

>xtr
t gPK

j = 1 expfðwtr
j Þ

>xtr
t g

ð13Þ

here, K represents the total number of states.
Furthermore, the probability of transitioning from state i to state j

at time t, given transition covariates xtr
t , is modeled as:

pðzt = jjzt�1 = i,x
tr
t Þ / exp Bij +w

tr>
j xtr

t

� �
ð14Þ

where Bij is a learned baseline transition logit from state i to j. Also,wtr
j

is a vector of covariate weights that modulate all incoming transitions
to state j.

The log-likelihood function in a multinomial GLM is rooted in the
multinomial distribution. It quantifies the probability of observing
categorical outcomes based on the predictor variables and model
parameters. This log-likelihood function is conventionally formulated
as follows:

log LðwtrÞ=
XN
i = 1

log
expfðwtr

ki
Þ>xtr

i gPK
j = 1 expfðwtr

j Þ
>xtr

i g

 !

=
XN
i = 1

ðwtr
ki
Þ>xtr

i � log
XK

j = 1
expfðwtr

j Þ
>
xtr
i g

� � ð15Þ

in which N is the total number of outputs and xtr
i represents the

transition regressors for the i-th output. The other details of the
mathematical description of this model will be explained in the
upcoming sections. This comprehensive framework provides a robust
tool for analyzing flexible decision-making and the underlying
mechanisms in non-stationary environments.

Model inputs
In this framework, we incorporated several covariates into the model,
some of which are shown in Figs. 1d and 3a, and will be elaborated
upon in detail here.

Observation model covariates: For the GLM observation, the
covariates were stimulus, previous choice, previous stimulus and bias.
The stimulus, in the experiment, was defined as the contrast of a
sinusoidal grating, varying between 0% and 100% brightness. To fur-
ther normalize the stimulus, it was dividedby the standarddeviationof
the trials across sessions. Also, the past choice was defined as a binary
variable with values of −1 or 1, depending on whether the mouse’s
previous choice was left or right, respectively. On the other hand, the
previous stimulus was defined as the behavior of the mouse when
rewarded. If the mouse received a reward, it continued to make the

same decision; however, when no reward was given, it changed its
behavior. The previous stimulus values were binary, denoted as -1, +1.
Finally, bias is a covariate that captures the animal’s inherent tendency
to choose left or right, representing an internal preference or offset
that exists independently of external factors such as the stimulus or
choice history, and its value was set to 1 for all trials.

Transition model covariates: The covariates for the GLM tran-
sition included a filtered version of the previous choice, previous
stimulus, previous reward, and three basis coefficients. Throughout
this paper, the term filtered covariate denotes a covariate filtered
with an exponential filter, enabling the consideration of a temporally
filtered regressor to consider the impact of the regressors in the
transition between states. Therefore, the filtered previous choice and
previous stimulus are temporally filtered versions of similar GLM
observation covariates. The previous reward value was set to -1 or 1,
based on whether the previous animal’s decision was correct or not,
respectively. Furthermore, three bases were defined as linearly
independent vectors to represent the initial 100 trials of each ses-
sion. These covariates aimed to capture the animal’s warm-up effect
within the model.

Setting a prior on the model parameters
We use MAP estimation to fit model parameters, denoted as
Θ= fwtr,wob,πg. These parameters consist of the initial state dis-
tribution, transition weights, and observation weights for all states.
The observation weights are shown in Fig. 2b, and the transition
weights are presented in Fig. 3b, c.

To implement our approach, we employed the EM method, as
introduced by Dempster et al.79. This iterative technique enables the
determination of parameters within a given model by maximizing the
likelihood of the data, given the specific parameters. Previous works31,40,41

have successfully applied the EM approach to HMMs integrated with
external regressors. The parameter estimation using the EM method
involves an iterative process with two essential steps: the expectation
step, where parameter expectations are computed, and the maximiza-
tion step, optimizing data likelihood based on those parameters. This
iteration continues until optimal parameter values are determined.

In this study, we incorporated a Dirichlet prior tomodel the initial
state distribution π. As for the GLM, we employed independent zero-
mean Gaussian priors for the observation and transition weight vec-
tors, with variances denoted as σ2

ob and σ2
tr, respectively. Larger values

of these variances signify a flatter prior distribution. The entire set of
model choices and inputs is expressed as F � fY,Xob,Xtrg. Here,
Xob =xob

1 , :::,xob
T represents the observation input vectors, and

Xtr =xtr
1 , :::,x

tr
T corresponds to the transition input vectors. The animal

choices for the specified trials are denoted as Y = y1, . . . , yT. The prior
distribution considered for our GLM-HMM, p(Θ), is as follows:

pðΘÞ � pðπÞpðwob
k Þpðwtr

k Þ: ð16Þ

In this context, the model parameters encompass three distinct
categories, namely, the initial state distribution, the state-specific
observation weights and state-specific transition weights denoted by
wob

k and wtr
k , respectively. Here, k denotes the number of states, ran-

ging from 1 toK. The initial state distribution is representedbyπ 2 RK .
The prior distributions for the observation and transition weights in
the GLM are both assumed to follow normal distributions, as expres-
sed in the following equation:

pðπÞ= DirichletðπjγπÞ, pðwob
k Þ=

YK
j = 1

N ðwob
j j0, σ2

obIÞ, pðwtr
k Þ

=
YK
j = 1

N ðwtr
j j0,σ2

trIÞ:
ð17Þ
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The prior value for the initial state distribution was assigned as
γπ = 1. To determine the optimal hyperparameter value for the model
prior on weights, we conducted a grid search over a range of values,
specifically σ∈ {0.25, 0.5, 1, 2, 4, 8, 16}. We employed a held-out vali-
dation set to compare the NLL values for the different σ values within
the specified set. Subsequently, the value of σ yielding the highest NLL
on the IBL data was selected, and it was found to be σ = 4.

The GLM-HMM employs an HMM, encompassing distinct sets of
weights for both transition and observation aspects.Within themodel,
each state is governed by a state-specific Bernoulli GLM and a multi-
nomial GLM, representing the animal’s decision-making behavior
concerning choice probability and the probability of transitioning
between states, respectively. In this context, we used the notations
GLM-O and GLM-T to represent GLM observation and GLM transition,
respectively.

The transition multinomial GLM involves weights that associate
relevant regressors, denoted as xtr, with the probabilities of transi-
tioning between states. These transition probabilities are not fixed
values and are contingent upon the combination of related regressors
and the current state. They are represented by a matrix A 2 RK ×K ,
where, at trial t, the element corresponding to state j and state k pre-
sents the transition probability between those two states and can be
written as:

αjk =Pðzt + 1 = kjzt = j,xtr
t Þ: ð18Þ

It is pertinent to acknowledge that the observation Bernoulli GLM
plays a crucial role in determining the observation weights and char-
acterizing the decision behavior as a function of the input observation
regressors.

Ultimately, in the context of mice decisions, along with transition
and observation covariates, the primary goal of the EM algorithm is to
optimize the log posterior of themodel parameters. The log-posterior
can be mathematically expressed as follows:

logPðΘjF Þ= logPðYjXob,Xtr,ΘÞ+ log PðΘÞ+ const:: ð19Þ

Model fitting
The GLM-HMM employs the EM algorithm40 to optimize model para-
meters for maximizing the likelihood of observed data78. This iterative
algorithm consists of two main steps: the E-step, where the expected
complete-data log-likelihood is computed based on parameter esti-
mates and observed data, and the M-step, which maximizes model
parameters based on these expectations. The likelihood is calculated
using the forward-backward approach78, a dynamic programming
algorithm. The EM algorithm continues iteratively until convergence is
achieved, ensuring an accurate parameter estimation process.

To elaborate further, during each trial and based on the specified
GLM-HMM parameters, we compute the joint probability distribution
encompassing both the states and the animals’ decisions (left or right).
Subsequently, the log-likelihood of the model is evaluated using this
joint probability distribution. This relationship can be expressed in the
following manner:

log pðYjθ,Xob,XtrÞ
h i

= log
X
z

pðY,Zjθ,Xob,XtrÞ
" #

ð20Þ

in which as mentioned, Xob =xob
1 , :::,xob

T represents the observa-
tion covariates, andXtr =xtr

1 , :::,x
tr
T represents the transition covariates.

Additionally, we have a set of latent states denoted asZ = z1, . . . , zT, and
corresponding observations for these states denoted as Y = y1, . . . , yT.

In the model, Xob and Xtr capture relevant information related to
the observations and transitions, respectively. These covariates play a
crucial role in characterizing the underlying dynamics of the system

under consideration. The latent states, Z, represent unobservable or
hidden variables that drive the observed data. They are essential
components of themodel, as they provide insights into the underlying
processes governing the observed phenomena. The observations, Y,
are the data collected from the system, corresponding to each specific
latent state in Z. These observed data points are used in the model to
estimate and infer the hidden states and the model parameters.

In the GLM-HMM, state-dependent GLM-T weights represent
transition regressor weights, and GLM-O weights represent the sig-
nificance of observation covariates. These weights’ patterns differ
across distinct states. In the Bayesian context, where prior information
exists for unknown parameters, the EM algorithm can be used to
compute the mode of the posterior probability distribution, facilitat-
ing parameter estimation.

In the context of probabilistic graphical models and variational
inference, the E-step is often associated with variational lower bounds.
Specifically, when dealing with intractable posterior distributions or
complex models, the E-step aims to maximize a lower bound on the
log-likelihood, rather than the log-likelihood itself. This lower bound is
often referred to as the Evidence Lower Bound or the variational lower
bound. Here, during the E-step of the EM algorithm, a lower bound on
the right-hand side of the objective function referred to as Eq. (20)79,80

ismaximized. Subsequently, in theM-step, the expected log-likelihood
obtained from the E-step is maximized with respect to the GLM-HMM
parameters. In the following sections, wewill detail the calculations for
both the E-step and M-step of this estimation approach. These steps
play a crucial role in iteratively refining the parameter estimates until
convergence is achieved, enabling the determination of the mode of
the posterior probability in the Bayesian setting.

By defining the Bernoulli GLM distribution as
pðyt jzt = k, xob

t , wob
k Þ, we obtain the following equation for the expec-

ted log-likelihood during the E-step:

X
z

p zjF ,Θðt-1Þ
� �

logp Y, zjΘ,Xob, Xtr
� �

: ð21Þ

In this equation, we can express the model joint distribution,
p Y, zjΘ,Xob, Xtr
� �

, as:

pðz1Þpðy1jz1,xob
1 Þ
YT
t = 2

pðzt jzt�1,x
tr
t Þpðyt jzt ,xob

t Þ: ð22Þ

To calculate this expected log-likelihood, the E-step uses a
forward-backward approach81 to estimate the single and joint poster-
ior state probabilities. We are going to explain each one separately
here. So the process involves calculating the single posterior state
probability at trial t, given by:

p zt = kjY,Xob,Xtr,Θðt-1Þ
� �

: ð23Þ

We show this probability by ϕt,k. In the forward-backward
approach, the E-step iteratively calculates the posterior probability
of the mice decisions by going through a loop. As a result, the single
posterior state probability can be decomposed into the following
equation:

ϕt, k �
p Y½0:t�, zt = kjfXob,Xtrg½1:t�,Θðt-1Þ
� �

p Y½t + 1:T �jzt = k,Xob
½t + 1:T �,Θ

ðt-1Þ
� �

p YjXob,Θðt-1Þ
� �

ð24Þ

in which Θ(t-1) is the parameters of the model at trial t − 1.
In the E-step of the estimation process, the forward-backward

algorithm is used to compute the expectation of the desired function.
This two-stagemessage-passing algorithm is also known as thefiltering
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process during the forward pass40. The forward-backward algorithm,
through its filtering process, computes the posterior probabilities for
each time point, enabling the estimation of the latent states’ influence
on the observed data. In the following, wewill explain the forward and
backward passes of the algorithm.

Forward pass: In the E-step, the forward-backward algorithm is
employed to obtain the expectation of the desired function. This is a
two-stage message-passing algorithm40 and the forward pass is called
filtering. By assuming we have GLM-HMMparameters and observation
data, to calculate the E-step, we should form the posterior probability
as a function of latent states.

The objective of the E-step is to infer the hidden state sequence,
given the available observations and the current parameter estimates.
In the above equation for the first trial, the posterior probability is
obtained by πkp y1jz1 = k,xob

1 ,wob
k

� �
.

Here, p y1jz1 = k,xob
1 ,wob

k

� �
is the Bernoulli GLM distribution for

observations (GLM-O). In this equation, if we consider the posterior
probability of the mice decisions, αt,k, from trial 1 to t as:

αt, k =p Y½1:t�, zt jfXob,Xtrg½1:t�
� �

: ð25Þ

Based on this definition, for the first trial, we can call the posterior
probability as α1,k. Then using earlier calculations, for upcoming trials
until T, we can compute the posterior probabilities, αt,k, as:

XK
j = 1

αt�1, jαjkp yt jzt = k,xob
t ,wob

k

� �
: ð26Þ

Backward pass: In the forward-backward algorithm, the backward
step complements the forward pass, utilizing previously obtained
information to update latent state probabilities. Named backward due
to its reverse chronological order, it calculates updates essential for
theM-step. The backwardpass relies on the joint posterior distribution
of two latent states, contributing to refined GLM-HMM parameter
estimates. Its primary goal is to determine the posterior probability of
observed mouse data for all states and trials beyond the current trial.
This probability is represented as βt,k, where t denotes the trial index
and k refers to a specific state. This can be written as:

p Y½t + 1:T �jzt = k,Xob
½t + 1:T �

� �
: ð27Þ

Therefore, for trial T, we have βT,k = 1. Also, we can compute the
posterior probability, βt,j, for trials {T − 1, . . . , 1} as:

XK
k = 1

βt + 1, kαjkp yt + 1jzt + 1 = k,xob
t + 1,w

ob
k

� �
: ð28Þ

Here, it shouldbe considered that a Bernoulli GLMdistribution for
observations can be written as p yt + 1jzt + 1 = k,xob

t + 1,w
ob
k

� �
. By incor-

porating the information from both the forward and backward passes,
the model gains a better understanding of the system’s underlying
dynamics and is better equipped to estimate the latent states’ influ-
ence on the observed data, leading to improved parameter estimation
in the M-step of the EM algorithm. So, by employing the forward-
backward approach, we have:

ϕt, k =
αt, kβt, kPK
k = 1αT , k

: ð29Þ

On theother hand, for the joint posterior state probabilityμt,j,k, we
can write:

αt, jαjkβt + 1, kp yt + 1jzt + 1 = k,xob
t + 1,w

ob
k

� �
p YjXob

½1:T �,Θ
ðt-1Þ

� � ð30Þ

and by substituting the denominator using the definition of pos-
terior probabilities, we have:

αt, jαjkβt + 1, kp yt + 1jzt + 1 = k,xob
t + 1,w

ob
k

� �
PK

k = 1 αT , k

: ð31Þ

Therefore, to calculate the expected log-likelihood, we should use
the results of the posterior state probabilities which were obtained
using the forward-backward algorithm. Therefore, for a given trial t
and state k, the posterior state probability is defined by ϕt, k �
p zt = kjF ,Θðt-1Þ
� �

and the joint posterior state distribution for states at
trials t and t + 1 is given by μt, j, k � p zt + 1 = k, zt = jjF ,Θðt-1Þ

� �
. In con-

clusion, by considering the single and joint posterior state prob-
abilities, ϕt,k, μt,j,k, we can rewrite the Eq. (21) as:

XT
t = 1

XK
j = 1

XK
k = 1

μt, j, k logαjk +
XT
t = 1

XK
k = 1

ϕt, k logpðyt jzt = k,xob
t ,xtr

t ,w
ob
k ,wtr

k Þ+ Init:

ð32Þ
Here, Init is the term related to the initialization and is equal

to
PK

k = 1 ϕ1, k logπk .
M-step: The M-step of the Expectation-Maximization algorithm

updates the GLM-HMM parameters by utilizing the posterior prob-
abilities calculated during the E-step. The objective of the EM algo-
rithm is to minimize the negative log-likelihood function, which is
augmented with a prior on the GLM-HMM weights.

L-BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-Shanno
with Bound constraints) is a popular optimization algorithm used to
solve unconstrained and bound-constrained nonlinear optimization
problems. It’s an extension of the BFGS algorithm, which is a quasi-
Newton method for unconstrained optimization. L-BFGS-B is particu-
larly useful when dealing with optimization problems where the vari-
ables have certain bounds or constraints. These constraints can be
upper and lower bounds on the variables, and L-BFGS-B is designed to
handle such constraints. So L-BFGS-B is a second-order optimization
method that approximates the Hessian matrix, leading to faster con-
vergence and accurate parameter estimates. Here, the EM algorithm
employs the L-BFGS-B approach, which belongs to the class of Quasi-
Newton optimization methods.

During theM-step, the EM algorithmmaximizes the expected log-
likelihood, computed through the forward-backward algorithmduring
the E-step. This optimization process aims to identify the best para-
meters for the GLM-HMM. Consequently, in each iteration of the EM
algorithm, the initial state distribution π is updated to refine the
model’s representation of the latent state dynamics.

By iteratively performing the E-step andM-step, the EM algorithm
iteratively refines the parameter estimates until convergence is
achieved, enabling the model to accurately capture the underlying
dynamics and relationships in the data, leading to improvedparameter
estimation and enhanced model performance. The posterior plots for
a few sessions of a mouse's data are depicted in Fig. 4a. Also, for the
same sessions, the plots of themultiplication of transition weights and
transition inputs are shown in Fig. 5a, illustrating the temporal patterns
of the weighted transition regressors.

As mentioned, the EM algorithm calculates the expected log-
likelihood, which is a concave function when considering the GLM
weights, owing to the inclusion of a Bernoulli GLM in the set of func-
tions that transform external inputs into probabilities of HMM
emissions40. Since there is no closed-form solution for updating the
GLMweights, theobjectivewas to compute the globalmaximumof the
expected log-likelihood. To achieve this, the scipy optimize function in
Python82 was used, which employs numerical optimization using the
BFGS algorithm83–86.

By applying the BFGS algorithm, the EM algorithm iteratively
refines the GLM weights to maximize the expected log-likelihood,
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seeking the optimal parameters that best explain the observed data
given the GLM-HMM. This numerical optimization approach enables a
more computationally efficient determination of the parameter esti-
mates, leading to improved model performance and accurate repre-
sentation of the system’s dynamics.

So, in this study, the EMalgorithm is employedwith iterative steps
until the difference between consecutive iterations falls below a spe-
cified tolerance, ensuring convergence to a stable solution. However,
EM algorithms can get stuck in local optima due to their reliance on
initial parameter values. To overcome this issue, strategies such as
multiple initializations, regularization, and exploration of the para-
meter space are employed. These enhancements increase the chances
of finding favorable solutions. To further validate that the algorithm
converges to the global optimumrather than a local optimum, a robust
fitting procedure was adopted. The EM algorithm’s weights were
initialized several times, and for each initialization, the model was fit-
ted. The consistency of the final results across these runs demon-
strated that the algorithm consistently converged to the global
optimum. Achieving the global optimum of a likelihood function is
challenging, and different optimization techniques may be needed
depending on the specific problem. Therefore, selecting the right
optimization strategies tailored to the problem’s characteristics is
essential for optimal parameter estimation and model fitting.

Moreover, to assess the uncertainty and estimate the posterior
standard deviation of the model weights, the inverse Hessian of the
optimized log-posterior was calculated. This computation was per-
formed using Autograd, a powerful Python package and automatic
differentiation library that simplifies and enhances gradient-based
optimization.

Initialization: The initialization of the GLM-HMMweights followed
a specific procedure. The observation weights for the GLM-HMMwere
initialized using a noisy version of a simple Bernoulli GLM. Initially, a
1-state GLM was fitted, and then the GLM-HMM was initialized with
multiple states based on that basic GLM with added noise. This initi-
alization approach provided a reasonable starting point for the GLM-
HMM optimization process.

Regarding the transition weights, they were initialized with a
vector of zeros, implying no initial knowledge about the transitions
between states. Furthermore, to establish prior information for the
initialization of the latent states, a uniform distribution prior was set.
This choice of prior reflects a neutral assumption, where all states are
considered equally probable at the outset.

Due to employing this initialization strategy and setting infor-
mative priors, we reached a systematic and principled starting point
for the EMalgorithm, facilitatingmore stable and reliable convergence
to meaningful solutions during the subsequent parameter estimation
and model fitting process.

GLM-HMM fitting process. We present the results of applying the
GLM-HMM independently to each mouse in Fig. 6. However, estab-
lishing a direct relationship between the obtained states across dif-
ferent animals poses challenges. To address this, we adopted a multi-
step fitting technique. Initially, we combined the data from all mice
into a unified dataset.

For the IBL dataset, we aggregated the data from all 37 mice.
Employing Maximal Likelihood estimation and the EM algorithm, we
analyzed this pooled data using a 1-state GLM-HMM, which represents
a simpler GLM. Subsequently, we used the obtained weights from this
initial step as the initialization for the GLM weights during the fitting
process of aK-state GLM-HMM.By doing so, we obtained a global fit by
combining the dataset from all mice and fitting a K-state GLM-HMM.
This approach allows us to assess the relationship between states
across different animals and derive a unified representation of the
latent states, providing valuable insights into the underlying dynamics
observed across the entire dataset.

Following the global fit of the model, we proceeded with an
individual fit, resulting in a distinct GLM-HMM fit for each animal.
During this individual fit process, we initialized each animal’s model
using the parameter values obtained from the global fit, which were
derived from a model fitted to the pooled data from all mice. To
identify the optimal initialization parameters, we conducted 50 initi-
alizations and compared the log-likelihood values for the training
dataset, selecting the set of parameters that yielded the best fit. We
then ran the EM algorithm until convergence for each animal’s model.

By employing this individual fitting approach with the best initi-
alization parameters, there was no longer a need to permute the
retrieved states of each animal to assign logically similar states to one
another. Consequently, the recovered parameters are presented in
Fig. 6a, b, illustrating the distinct GLM-HMM fits for each mouse,
facilitating ananalysis of individual behavioral patterns andunderlying
dynamics.

In this analysis and fitting process, we incorporated Gaussian
noise into the GLM weights, enabling better discernment of the initi-
alized states.

As demonstrated here, the outlined initializationmethod exhibits
sufficient stability and reliability, enabling the recovery of GLM-HMM
parameters across a wide range of relevant parameter regimes in our
analysis. This approach ensures robust estimation and fosters con-
fidence in the model’s ability to accurately capture the underlying
dynamics of the system even under diverse conditions.

Fitting the psychometric curve. The psychometric function was
derived by plotting the percentage of choices made by the animal
against various stimulus values. In this paper, the psychometric curves
illustrate the animal’s rightward choice probability as a function of
stimulus intensity and is presented in Fig. 2c. To fit the psychometric
curve to the sigmoid function, maximum likelihood estimation was
used, resulting in the following formulation:

pð choice =RjSCÞ= 1

1 + expð�wob
1 xob

1 Þ ð33Þ

in which, the SC represents the stimulus contrast. Tominimize the
loss function, the study employed the Python package ’optimize.mi-
nimize’ from the scipy library. This package provides numerical opti-
mization tools that enable accurate minimization of the loss function,
facilitating the estimation of the model parameters and the fitting of
the psychometric curve.

K-fold cross-validation for GLM-HMM
A cross-validation approach was employed to evaluate the model’s
performance, involving random splitting of the data into 5 folds for
training and testing. Approximately four-fifths of the data sessions
were used for training the model, while the remaining randomly
selected sessionswere heldout for testing thefittingperformance. The
sessions from all participating animals were evenly considered to
ensure that mouse-to-mouse variability did not influence the cross-
validation process.

This analysis revealed that a GLM-HMM with 3 to 5 latent states
yields appropriate log-likelihood estimations. Following the fitting of
themodel with 1 to 5 states, we computed the log-likelihood of the test
data, depicted in Fig. 2a. Also, the test log-likelihoodwas calculated for
all individual fits and is presented in Fig. 6c. During the fitting proce-
dure, the EMalgorithmwas executed during the training data sessions.
Subsequently, in the testing stage, the likelihood of the remaining data
was calculated based on the model parameters obtained from the
training procedure. The forward pass was performed only once during
this stage, and the likelihoodof the test datawas obtained by summing
over all states as l =

PK
k = 1 αT , k , where αT,k was computed solely on the

held-out sessions. It is important to note that the GLM-HMM
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parameters were solely calculated during the training procedure and
used for evaluating the model’s performance on unseen data during
testing.

In our analysis, Fig. 2, we have calculated the log-likelihood using
the described procedure, which is the log of the calculated likelihood
and we call it L= logðlÞ. In some results, we have used the unit term
“bits per trial". This L with this unit is acquired by calculating L of the
test data on held-out sessions as described, and then subtracting the
log-likelihood of the identical dataset considering a Bernoulli model
for observed data. This is a baseline model and its corresponding log-
likelihood is shown by L0. Then we divided it by T t logð2Þ in which Tt is
the test set size (the number of trials). The predictability of test sets
can be greatly enhanced by even tiny amounts of log-likelihood when
expressed in bits per trial.

In our analysis, we calculated the log-likelihood using the descri-
bed procedure, denoted as L= logðlÞ and in some of the results, we
used the unit term “bits per trial" to quantify the log-likelihood.

To obtain the log-likelihood in bits per trial (L bpt), we followed a
specific process. Firstly, we computed L for the test data on held-out
sessions, as described previously. Then, we determined the log-
likelihood of the same dataset under the assumption of a Bernoulli
model for observed data and multinomial GLM for transition data,
which we refer to as the baseline model. We denoted the baseline
model corresponding log-likelihood as L0. The difference between L
and L0 represents the enhancement in log-likelihood due to the GLM-
HMM performance. Finally, to express this enhancement per trial, we
divided it byT t logð2Þ, whereTt is the size of the test set (the number of
trials).

The resulting value in bits per trial provides a measure of pre-
dictability for the test set. Even minute increments in log-likelihood,
when expressed in bits per trial, can lead to significant improvements
in the predictability of the test data compared to the baseline model.
To illustrate this, consider a numerical example where the log-
likelihood difference estimate is 0.02 bpt. This implies that the test
data is approximately 1047128.54 times more likely to have originated
from the GLM-HMM compared to the baseline model when the test
data comprises 1000 trials.

This representation in bits per trial, referred to as NLL, allows for a
more intuitive understanding of themodel’s performance and enables
meaningful comparisons between different models and dataset. So we
can write it as:

Lbpt = ðLt � L0Þ=ðT t logð2ÞÞ ð34Þ

in which bpt is an abbreviation for bit per trial unit.

Synthetic data
We simulated data (Fig. 7d) using the best-fitting model for each
individual animal from the IBL dataset. For each animal, we recon-
structed the model and generated simulated data on a session-by-
session basis. In each session, we used the true stimulus values pre-
sented to the animal and generated corresponding choices and
latent states, along with the covariate values, following the model
structure. Specifically, for each trial, latent states were sampled using
the transition model-either a fixed transition matrix (model without
GLM-T) or a multinomial GLM with input-driven transitions (model
with GLM-T). Conditioned on the latent state, choices were then
sampled from a Bernoulli GLM. This process ensured that trial-by-
trial choices and latent states were newly simulated while preserving
the structure of the task, enabling the use of ground-truth labels for
model recovery evaluation. We simulated data with K = 4 latent
states, using the original session lengths and recursively updating the
covariates to reflect the simulated trial histories. The observation

model was a Bernoulli GLM with covariates including past choice,
stimulus side, and previous reward. These covariates were updated
trial-by-trial based on the simulated choice and feedback (e.g.,
reward outcome and correct side). Simulations were run with fixed
random seeds to ensure reproducibility. For the model without GLM-
T, transitions were static and governed by a fixed transition matrix
without covariate inputs. In contrast, the model with GLM-T had a
multinomial GLM with input-driven transitions, where transition
probabilities were modulated by exponentially filtered versions of
the different behavioral covariates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
In this study, we assessed behavioral data from 123 mice in the IBL
decision-making task, analyzing all sessions froma subset of 37mice to
ensure generalizability. These 37 mice were selected based on specific
inclusion criteria: they had to have completed a minimum of 30 ses-
sions, and we prioritized sessions with a low number of error trials,
where the animal either failed to make a choice or timed out. We
studied the stationary behavior phase after the training period, con-
sidering both biased and unbiased data blocks. In unbiased blocks, the
stimulus appeared equally on both sides at the start of each session,
while in biased blocks, it appeared with an unequal probability, with
block lengths ranging from 20 to 100. The dataset is publicly available
at https://doi.org/10.6084/m9.figshare.11636748. For efficient data
access, please see https://int-brain-lab.github.io/iblenv/notebooks_
external/data_download.html and use the data tag “2023_Q1_Moham-
madi_et_al". Detailed explanations can be found in the paper’s GitHub
repository. We applied our model to this dataset; further information
about the data can be found in ref. 87. The dataset includes both male
and femalemice; however, sex was not analyzed as a variable, as it was
not the focus of this modeling study. Source data are provided with
this paper.

Code availability
The GLM-HMM code package developed for this paper, as well as the
figures presented, can be accessed at https://github.com/Zeinab-
Mohammadi/glm-hmm_final.git. We used and extended the Bayesian
SSM framework88 by adding new functionality to the GLM-HMM and
providing a code script. This code base was subsequently used for
performing model inference in this manuscript. To access the code,
please refer to our modified version of the SSM package available at
https://github.com/Zeinab-Mohammadi/ssm. For a practical demon-
stration of the package’s application in our analysis, including a gen-
erative model and its parameters recovery process, see https://github.
com/Zeinab-Mohammadi/ssm/blob/master/notebooks/2c-Input-
Driven-Transitions-and-Observations-GLM-HMM.ipynb. Additional
details can be found in https://github.com/Zeinab-Mohammadi/ssm/
blob/master/ssm/hmm_TO.py.
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