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Large-scale efforts by the BRAIN Initiative Cell Census Network (BICCN) are

generating a comprehensive reference atlas of cell types in the mouse brain. A
key challenge in this effort is mapping diverse datasets, acquired with varied
imaging, tissue processing, and profiling methods, into shared coordinate
frameworks. Here, we present mouse brain mapping pipelines developed
using the Advanced Normalization Tools Ecosystem (ANTsX) to align MERFISH
spatial transcriptomics and high-resolution fMOST morphology data to the
Allen Common Coordinate Framework (CCFv3), and developmental MRI and
LSFM data to the Developmental CCF (DevCCF). Simultaneously, we introduce
two novel methods: 1) a velocity field-based approach for continuous inter-
polation across developmental timepoints, and 2) a deep learning framework
for automated brain parcellation using minimally annotated and publicly
available data. All workflows are open-source and reproducible. We also pro-
vide general guidance for selecting appropriate strategies across modalities,

enabling researchers to adapt these tools to new data.

Over the past decade, there have been significant advancements in
mesoscopic single-cell analysis of the mouse brain. It is now possible to
track single neurons’, observe whole-brain developmental changes at
cellular resolution?, associate brain regions with genetic composition®,
and locally characterize neural connectivity’. These scientific
achievements have been propelled by high-resolution profiling and
imaging techniques that enable submicron, multimodal, 3D char-
acterizations of whole mouse brains. Among these are micro-optical
sectioning tomography*®, tissue clearing methods"’, spatial
transcriptomics®’, and single-cell genomic profiling'®, each offering
expanded specificity and resolution for cell-level brain analysis.
Recent efforts by the NIH BRAIN Initiative have mobilized large-
scale international collaborations to create a comprehensive reference
database of mouse brain structure and function. The BRAIN Initiative
Cell Census Network has aggregated over 40 multimodal datasets
from more than 30 research groups", many of which are registered to

standardized anatomical coordinate systems to support integrated
analysis. Among the most widely used of these frameworks is the Allen
Mouse Brain Common Coordinate Framework (CCFv3)". Other CCFs
include modality-specific refs. 13-15 and developmental atlases'" that
track structural change across time.

Robust mapping of cell type data into CCFs is essential for inte-
grative analysis of morphology, connectivity, and molecular identity.
However, each modality poses unique challenges. For example, dif-
ferences in tissue processing, imaging protocols, and anatomical
completeness often introduce artifacts such as distortion, tearing,
holes, and signal dropout’® . Intensity differences and partial repre-
sentations of anatomy can further complicate alignment. Also, while
alternative strategies for mapping single-cell spatial transcriptomic
data exist (e.g., gene expression-based models such as Tangram?*) this
work focuses on image-based anatomical alignment to common
coordinate frameworks using spatially resolved reference images.
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Given this diversity specialized strategies are often needed to address
the unique, modality-specific challenges.

Existing mapping solutions fall into three broad categories. The
first includes integrated processing platforms that provide users with
mapped datasets (e.g., Allen Brain Cell Atlas”, Brain Architecture
Portal®®, OpenBrainMap”, and Image and Multi-Morphology
Pipeline’®). These offer convenience and high-quality curated data,
but limited generalizability and customization. The second category
involves highly specialized pipelines tailored to specific modalities
such as histology”™', magnetic resonance imaging (MRI)**,
microCT>?, light sheet fluorescence microscopy (LSFM)*~%, fluores-
cence micro-optical sectioning tomography (fMOST)"*°, and spatial
transcriptomics, including multiplexed error-robust fluorescence
in situ hybridization (MERFISH)***2, While effective, these solutions
often require extensive engineering effort to adapt to new datasets or
modalities. Finally, general-purpose toolkits such as elastix*,
Slicer3D*, and the Advanced Normalization Tools Ecosystem
(ANTsX)* have all been applied to mouse brain mapping scenarios.
These toolkits support modular workflows that can be flexibly com-
posed from reusable components, offering a powerful alternative to
rigid, modality-specific solutions. However, their use often requires
familiarity with pipeline modules, parameter tuning, and tool-specific
conventions which can limit adoption.

Building on this third category, we describe a set of modular,
ANTsX-based pipelines specifically tailored for mapping diverse
mouse brain data into standardized anatomical frameworks. These
include two new pipelines: a velocity field-based interpolation model
that enables continuous transformations across developmental time-
points of the DevCCF, and a template-based deep learning pipeline for
whole brain segmentation (i.e., brain extraction) and structural ana-
tomical regional labeling of the brain (i.e., brain parcellation) requiring
minimal annotated data. In addition, we include two modular pipelines
for aligning MERFISH and fMOST datasets to the Allen CCFv3. While
the MERFISH dataset was previously published as part of earlier BICCN
efforts*, the full image processing and registration workflow had not
been described in detail until now. The fMOST workflow, by contrast,
was developed internally to support high-resolution morphology
mapping and has not been previously published in any form. Both
pipelines were built using ANTsX tools, adapted for collaborative use
with the Allen Institute, and are now released as fully reproducible,
open-source workflows to support reuse and extension by the com-
munity. To facilitate broader adoption, we also provide general gui-
dance for customizing these strategies across imaging modalities and
data types. We first introduce key components of the ANTsX toolkit,
which provide a basis for all of the mapping workflows described here,
and then detail the specific contributions made in each pipeline.

The Advanced Normalization Tools Ecosystem (ANTsX) has been
used in a number of applications for mapping mouse brain data as part
of core processing steps in various workflows®*¢*’, particularly its
pairwise, intensity-based image registration capabilities®® and bias field
correction®. Historically, ANTsX development is based on founda-
tional approaches to image mapping®*™*, especially in the human
brain, with key contributions such as the Symmetric Normalization
(SyN) algorithm®. It has been independently evaluated in diverse
imaging domains including multi-site brain MRI®’, pulmonary CT*, and
multi-modal brain tumor registration”’. More recent contributions for
mouse-specific  applications showcase multimodal template
generation'® and anatomy-aware registration ANTsX functionality.

Beyond registration, ANTsX provides functionality for template
generation®®, segmentation®’, preprocessing’°, and deep learning®. It
has demonstrated strong performance in consensus labeling®, brain
tumor segmentation®?, and cardiac motion estimation®. Built on the
Insight Toolkit (ITK)**, ANTsX benefits from open-source contribu-
tions while supporting continued algorithm evaluation and innovation.
In the context of mouse brain data, ANTsX provides a robust platform

for developing modular pipelines to map diverse imaging modalities
into CCFs. These tools span multiple classes of mapping problems:
cross-modality image registration, landmark-driven alignment, tem-
poral interpolation across developmental stages, and deep
learning-based segmentation. As such, they also serve as illustrative
case studies for adapting ANTsX tools to other use cases. We describe
both shared infrastructure and targeted strategies adapted to the
specific challenges of each modality. This paper highlights usage
across distinct BICCN projects such as spatial transcriptomic data from
MERFISH, structural data from fMOST, and multimodal developmental
data from LSFM and MRI.

We introduce two novel contributions to ANTsX developed as
part of collaborative efforts in creating the Developmental Common
Coordinate Framework (DevCCF)™. First, we present an open-source
velocity field-based interpolation framework for continuous map-
ping across the sampled embryonic and postnatal stages of the
DevCCF atlas'®. This functionality enables biologically plausible
interpolation between timepoints via a time-parameterized diffeo-
morphic velocity model®, inspired by previous work®. Second, we
present a deep learning pipeline for structural parcellation of the
mouse brain from multimodal MRI data. This includes two novel
components: 1) a template-derived brain extraction model using
augmented data from two ANTsX-derived template datasets®”*®, and
2) a template-derived parcellation model trained on DevCCF P56
labelings mapped from the AllenCCFv3. This pipeline demonstrates
how ANTsX tools and public resources can be leveraged to build
robust anatomical segmentation pipelines with minimal annotated
data. We independently evaluate this framework using a longitudinal
external dataset®®, demonstrating generalizability across specimens
and imaging protocols. All components are openly available through
the R and Python ANTsX packages, with general-purpose function-
ality documented in a reproducible, cross-platform tutorial (https://
tinyurl.com/antsxtutorial). Code specific to this manuscript, includ-
ing scripts to reproduce the novel contributions and all associated
evaluations, is provided in a dedicated repository (https://github.
com/ntustison/ANTsXMouseBrainMapping). Additional tools for
mapping spatial transcriptomic (MERFISH) and structural (fMOST)
data to the AllenCCFv3 are separately available at (https://github.
com/dontminchenit/CCFAlignmentToolkit).

Results

Mapping multiplexed error-robust fluorescence in situ hybridi-
zation (MERFISH)

We developed an ANTsX-based pipeline to map spatial transcriptomic
MERFISH data into the AllenCCFv3 (Fig. 1a). This approach was used in
recent efforts to create a high-resolution transcriptomic atlas of the
mouse brain*®. The pipeline maps spatial gene expression patterns
from MERFISH onto anatomical labels in the AllenCCFv3. It includes
MERFISH-specific preprocessing steps such as section reconstruction,
label generation from spatial transcriptomic maps, and anatomical
correspondence mapping. Alignment proceeds in two stages: 1) 3D
affine registration and section matching of the AllenCCFv3 to the
MERFISH data, and 2) linear + deformable 2D section-wise alignment
between matched MERFISH and atlas slices. These transformations are
concatenated to produce a complete mapping from each MERFISH
data to AllenCCFv3.

MERFISH imaging was performed on cryosectioned brains from
C57BL/6 mice using previously described protocols*. Brains were
placed into an optimal cutting temperature (OCT) compound (Sakura
FineTek 4583) stored at —80°. The fresh frozen brain was sectioned at
10 um on Leica 3050 S cryostats at intervals of 200 um to evenly cover
the brain. A set of 500 genes was selected to distinguish - 5200
transcriptomic clusters. Raw MERSCOPE data were decoded using
Vizgen software (v231). Cell segmentation was performed using
Cellpose’®” based on DAPI and PolyT stains which was propagated to
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Fig. 1| Overview of ANTsX pipelines for mapping MERFISH and fMOST data to the AllenCCFv3. Diagram of the two ANTsX-based pipelines for mapping (a) MERFISH
and (b)fMOST data into the space of AllenCCFv3. Each generates the requisite transforms to map individual images to the CCF.

adjacent slices across z-planes. Each MERFISH cell was assigned a
transcriptomic identity by mapping to a scRNA-seq reference
taxonomy.

Alignment quality was evaluated iteratively by an expert anato-
mist, guided by expected gene-marker correspondences to
AllenCCFv3 regions. As previously reported*, further assessment of
the alignment showed that, of the 554 terminal regions (gray matter
only in the AllenCCFv3), only seven small subregions did not contain
cells from the MERFISH dataset post registration: frontal pole, layer 1
(FRP1), FRP2/3, FRP5; accessory olfactory bulb, glomerular layer
(AOBgl); accessory olfactory bulb, granular layer (AOBgr); accessory
olfactory bulb, mitral layer (AOBmi); and accessory supraoptic group
(ASO). A broader discussion of evaluation design choices and evalua-
tion rationale is included in the Discussion.

Mapping fluorescence micro-optical sectioning tomography
(fMOST) data

We also constructed a pipeline for mapping fMOST images to the
AllenCCFv3 using ANTsX (Fig. 1b). The approach leverages a modality-
specific average fMOST atlas as an intermediate target, adapted from
previous work in human and mouse brain mapping?'¢*%7275_ The
atlas was constructed from 30 fMOST images selected to capture
representative variability in anatomical shape and image intensity

across the population. Preprocessing includes cubic B-spline down-
sampling to match the 25 um isotropic AllenCCFv3 resolution, stripe
artifact suppression using a 3D notch filter implemented with SciPy’s
frequency-domain filtering tools, and N4 bias field correction®. A one-
time, annotation-driven alignment registers the fMOST atlas to
AllenCCFv3 using landmark-based registration of key structures. This
canonical mapping is then reused. New fMOST specimens are first
aligned to the fMOST atlas using standard intensity-based registration,
and the concatenated transforms yield full spatial normalization to the
AllenCCFv3. This same mapping can be applied to neuron recon-
structions to facilitate population-level analysis of morphology and
spatial distribution.

fMOST imaging was performed on 55 mouse brains with sparse
transgenic labeling of neuron populations’®”” using the high-
throughput  fMOST  platform’”.  Voxel resolution  was
0.35x0.35x1.0um>. Two imaging channels were acquired: GFP-
labeled neuron morphology (green), and propidium iodide counter-
staining for cytoarchitecture (red). Alignment was performed using
the red channel for its greater contrast, though multi-channel mapping
is also supported.

The canonical mapping from the fMOST atlas to AllenCCFv3 was
evaluated using both quantitative and qualitative approaches. Dice
similarity coefficients were computed between corresponding
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anatomical labels in the fMOST atlas and AllenCCFv3 following regis-
tration. These labels were manually annotated or adapted from exist-
ing atlas segmentations. Representative Dice scores included: whole
brain (0.99), caudate putamen (0.97), fimbria (0.91), posterior choroid
plexus (0.93), anterior choroid plexus (0.96), optic chiasm (0.77), and
habenular commissure (0.63). In addition to these quantitative
assessments, each registered fMOST specimen was evaluated qualita-
tively. An expert anatomist reviewed alignment accuracy and con-
firmed structural correspondence. Neuron reconstructions from
individual brains were also transformed into AllenCCFv3 space, and
their trajectories were visually inspected to confirm anatomical plau-
sibility and preservation of known projection patterns. A broader
discussion of evaluation design choices and evaluation rationale is
included in the Discussion.

Continuously mapping the DevCCF developmental trajectory
The DevCCF is an openly accessible resource for the mouse brain
research community'®, comprising symmetric, multi-modal MRI and
LSFM templates generated using the ANTsX framework®, It spans key
stages of mouse brain development (E11.5, E13.5, E15.5, E18.5, P4, P14,
and P56) and includes structural labels defined by a developmental
ontology. The DevCCF was constructed in coordination with the
AllenCCFv3 to facilitate integration across atlases and data types.

Although this collection provides broad developmental coverage,
its discrete sampling limits the ability to model continuous transfor-
mations across time. To address this, we developed a velocity
flow-based modeling approach that enables anatomically plausible,
diffeomorphic transformations between any two continuous time
points within the DevCCF range (Fig. 2). Unlike traditional pairwise
interpolation, which requires sequential warping through each inter-
mediate stage, this model, defined by a time-varying velocity field (i.e., a
smooth vector field defined over space and time that governs the
continuous deformation of an image domain), allows direct computa-
tion of deformations between any two time points in the continuum
which improves smoothness and enables flexible spatiotemporal align-
ment. This functionality is implemented in both ANTsR and ANTsPy (see
ants.fit time varying transform to point sets(...)) and
integrates seamlessly with existing ANTsX workflows. The velocity field
is represented as a 4D ITK image where each voxel stores the x,y,z
components of motion at a given time point. Integration of the
time-varying velocity field uses uses 4% order Runge-Kutta
(ants.integrate velocity field(...))%.

Each DevCCF template includes over 2500 labeled anatomical
regions, with spatial resolutions ranging from 31.5 to 50 um. For the
velocity flow modeling task, we identified a common set of 26 bilateral
regions (13 per hemisphere) that were consistently labeled across all
timepoints. These regions span major developmental domains
including the pallium, subpallium, midbrain, prosomeres, hypothala-
mus, hindbrain subregions, and key white matter tracts (Fig. 3).

Developmental CCF velocity
flow model

E18.5

E115

Prior to velocity field optimization, all templates were rigidly
aligned to the DevCCF P56 template using the centroids of these
common label sets. Pairwise correspondence between adjacent time-
points was then computed using ANTsX’s multi-metric registration via
ants.registration(...). Instead of performing intensity-based
multi-label registration directly, we constructed 24 binary label masks
per atlas pair (one per structure) and optimized alignment using the
mean squares similarity metric with the SyN transform®°.

To generate the point sets for velocity field optimization, we
sampled both boundary (contour) and interior (region) points from
the P56 labels and propagated them to each developmental stage
using the learned pairwise transforms. Contours were sampled at 10%
of available points and regions at 1%, yielding 173,303 total points per
atlas (Neonrour = 98, 151; Nyegion = 75,152). Boundary points were assigned
double weight during optimization to emphasize anatomical boundary
correspondence.

The velocity field was optimized using the seven corresponding
point sets and their associated weights. The field geometry was defined
at [256, 182, 360] with 11 integration points at 50 um resolution,
yielding a compressed velocity model of ~ 2GB. This resolution
balanced accuracy and computational tractability while remaining
portable. All data and code are publicly available in the accompanying
GitHub repository.

To normalize temporal spacing, we assigned scalar values in [0, 1] to
each template. Given the nonlinear spacing in postnatal development, we
applied a logarithmic transform to the raw time values prior to normal-
ization. Within this logarithmic temporal transform, P56 was assigned a
span of 28 postnatal days to reflect known developmental dynamics (i.e.,
in terms of modeling the continuous deformation, the morphological
changes between Day 28 and Day 56 are insignificant). This improved the
temporal distribution of integration points (Fig. 4, right panel).

Optimization was run for a maximum of 200 iterations using a 2020
iMac (3.6 GHz 10-Core Intel Core i9, 64 GB RAM), with each iteration
taking ~ 6 min. During each iteration, the velocity field was updated
across all 11 integration points by computing regularized displacement
fields between warped point sets at adjacent time slices. Updates were
applied using a step size of §=0.2. Convergence was assessed via
average displacement error across all points, with final convergence
achieved after -~ 125 iterations (Fig. 4, left panel). Median errors across
integration points also trended toward zero, albeit at varying rates. To
benchmark performance, we compared the velocity model’s region-
based alignment to traditional pairwise registration using SyN, a widely
used diffeomorphic algorithm. The velocity model achieved comparable
Dice scores at sampled timepoints while additionally offering smooth
interpolation across the entire developmental trajectory.

Once optimized, the velocity field enables the computation of
diffeomorphic transformations between any pair of continuous time
points within the DevCCF developmental range. Figure 5 illustrates
cross-warping between all DevCCF stages using the velocity flow

Fig. 2 | Continuous developmental mapping enabled by the DevCCF velocity flow model. The spatial transformation between any two time points within the
continuous DevCCF longitudinal developmental trajectory is available through the use of ANTsX functionality for generating a velocity flow model.
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conventional pairwise SyN registration and (2) velocity flow-based deformation,
across intermediate timepoints. Using region-based pairwise registration with SyN
as a performance upper bound, the velocity flow model achieves comparable
accuracy while also enabling smooth, continuous deformation across the full
developmental continuum.

model. In addition to facilitating flexible alignment between existing
templates, the model also supports the synthesis of virtual templates
at intermediate, unsampled developmental stages. As shown in Fig. 6,
we demonstrate the creation of virtual age templates (e.g., P10.3 and
P20) by warping adjacent developmental atlases to a target timepoint
and constructing an averaged representation using ANTsX’s template-
building functionality.

All usage examples, scripts, and supporting data for full repro-
ducibility are publicly available in the associated codebase.

Automated structural labeling of the mouse brain

Structural labeling strategies for the mouse brain are essential for
understanding the organization and function of the murine nervous
system®. By dividing the brain into anatomically or functionally
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Fig. 5| Visualization of DevCCF templates warped across developmental time points. Mid-sagittal visualization of DevCCF templates warped to every other time point.
Each row is a reference space; each column is a warped input. Diagonal entries show original templates.

Fig. 6 | Generation of virtual DevCCF templates at intermediate developmental stages. Example of generating “virtual” DevCCF templates at intermediate time points
(e.g., P10.3, P20) by warping adjacent stages to a shared time and averaging using ANTsX.

defined regions, researchers can localize biological processes, relate
regional features to behavior, or quantify spatial variation in gene
expression patterns®>®, While deep learning techniques have yielded
robust segmentation and labeling tools for the human brain (e.g.,
SynthSeg®, ANTsXNet*), analogous development for mouse data
(e.g., MEMOS®) has been limited. Mouse neuroimaging often presents
unique challenges, such as highly anisotropic sampling, that compli-
cate transfer of existing tools. At the same time, high resolution
resources like the AllenCCFv3 and DevCCF provide reference label sets
that can serve as training data. We demonstrate how ANTsX can be
used to construct a full structural labeling pipeline for the mouse brain
(Fig. 7), including both whole brain segmentation (i.e., brain extrac-
tion) and the subsequent template-based region segmentation.

To develop a general-purpose mouse brain extraction model, we
constructed whole-head templates from two publicly available T2-
weighted datasets. The first dataset, from the Center for Animal MRI
(CAMRI) at the University of North Carolina at Chapel Hill®’, includes 16
isotropic MRI volumes acquired at 0.16 x 0.16 x 0.16 mm?® resolution.
The second dataset®® comprises 88 specimens acquired in three
orthogonal 2D views (coronal, axial, sagittal) at 0.08 x 0.08 mm? in-
plane resolution with 0.5mm slice thickness. These orthogonal 2D
acquisitions were reconstructed into high-resolution 3D volumes using
a B-spline fitting algorithm®®. Using this synthesized dataset and the
CAMRI images, we created two ANTsX-based population templates®®,
each paired with a manually delineated brain mask. These served as the
basis for training an initial template-based brain extraction model.
Deep learning training of the network employed aggressive data

augmentation strategies, including bias field simulation, histogram
warping, random spatial deformation, noise injection, and anisotropic
resampling. This enabled the model to generalize beyond the two
templates. The initial model was released through ANTsXNet and
made publicly available.

Subsequent community use led to further improvements.
A research group applying the tool to their own ex vivo T2-weighted
mouse brain data contributed a third template and associated
mask (acquired at 0.08 mm isotropic resolution). Incorporating
this into the training data improved robustness and accuracy
to an independent dataset and extended the model’s generalizability.
The refined model is distributed through ANTsPyNet via
antspynet.mouse brain extraction(...).

The AllenCCFv3 atlas and its hierarchical ontology, along with the
DevCCF, provide a strong foundation for developing region-wise
anatomical labeling models for multi-modal mouse brain imaging.
Using the allensdk Python library, we generated a coarse segmen-
tation scheme by grouping anatomical labels into six major regions:
cerebral cortex, cerebral nuclei, brainstem, cerebellum, main olfactory
bulb, and hippocampal formation. These labels were mapped onto the
P56 T2-weighted DevCCF template to serve as training targets. We
trained a 3D U-net-based segmentation network using this template
and the same augmentation strategies described for brain extraction.
The model is publicly available via ANTsXNet (antspynet.mou-
se brain parcellation(...)) and supports robust anatomical
labeling across diverse imaging geometries and contrasts. The inclu-
sion of aggressive augmentation, including simulated anisotropy,
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Fig. 7 | Deep learning pipelines for mouse brain extraction and parcellation.
The mouse brain cortical labeling pipeline integrates two deep learning compo-
nents for brain extraction and anatomical region segmentation. Both networks rely
heavily on data augmentation applied to templates constructed from open

datasets. The framework also supports further refinement or alternative label sets
tailored to specific research needs. Possible applications include voxelwise cortical
thickness estimation.
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Fig. 8 | Evaluation of ANTsX brain extraction across an independent dataset.
Evaluation of the ANTsX mouse brain extraction on an independent, publicly
available dataset consisting of 12 specimens x 7 time points = 84 total images. Dice
overlap comparisons with the user-generated brain masks provide good agreement
with the automated results from the brain extraction network.

enables the model to perform well even on thick-slice input data.
Internally, the model reconstructs isotropic probability and label
maps, facilitating downstream morphometric analyses. For example,
this network integrates with the ANTsX cortical thickness estimation
pipeline (antspynet.mouse cortical thickness(...)) to pro-
duce voxelwise cortical thickness maps, even when applied to aniso-
tropic or limited-resolution mouse brain data.

For evaluation, we used an additional publicly available dataset®
that is completely independent from the data used in training the brain
extraction and parcellation networks. Data includes 12 specimens each
imaged at seven time points (Day O, Day 3, Week 1, Week 4, Week 8,
Week 20) with in-house-generated brain masks (i.e., produced by the
data providers) for a total of 84 images. Spacing is anisotropic with an
in-plane resolution of 0.1 x 0.1 mm? and a slice thickness of 0.5 mm.

Figure 8 summarizes the whole-brain overlap between manually
segmented reference masks and the predicted segmentations for all
84 images in the evaluation cohort. The proposed network

demonstrates excellent performance in brain extraction across a wide
age range. To further assess the utility of the parcellation network, we
used the predicted labels to guide anatomically informed registration
to the AllenCCFv3 atlas using ANTsX multi-component registration,
and compared this to intensity-only registration (Fig. 9). While
intensity-based alignment performs reasonably well, incorporating the
predicted parcellation significantly improves regional correspon-
dence. Dice scores shown in Fig. 9c were computed using manually
segmented labels transformed to AllenCCFv3 space.

Discussion

The diverse mouse brain cell type profiles gathered through BICCN
and associated efforts provide a rich multi-modal resource to the
research community. However, despite significant progress, optimal
leveraging of these valuable resources remains an ongoing challenge.
A central component to data integration is accurately mapping novel
cell type data into common coordinate frameworks (CCFs) for sub-
sequent processing and analysis. To meet these needs, tools for
mapping mouse brain data must be both broadly accessible and cap-
able of addressing challenges unique to each modality. In this work, we
described modular ANTsX-based pipelines developed to support three
distinct BICCN efforts encompassing spatial transcriptomic, morpho-
logical, and developmental data. We demonstrated how a flexible
image analysis toolkit like ANTsX can be tailored to address specific
modality-driven constraints by leveraging reusable, validated
components.

As part of collaborative efforts with the Allen Institute for Brain
Science and the broader BICCN initiative, we developed two modular
pipelines for mapping MERFISH and fMOST datasets to the
AllenCCFv3. These workflows were designed to accommodate the
specific requirements of high-resolution transcriptomic and morpho-
logical data while leveraging reusable components from the ANTsX
ecosystem. The MERFISH pipeline incorporates preprocessing and
registration steps tailored to known anatomical and imaging artifacts
in multiplexed spatial transcriptomic data. While the general mapping
strategy is applicable to other sectioned histological datasets, these
refinements demonstrate how general-purpose tools can be custo-
mized to meet the demands of specialized modalities. The fMOST
workflow, in contrast, emphasizes reusability and consistency across
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Fig. 9 | Performance of ANTsX deep learning-based mouse brain parcellation.
Evaluation of the ANTsX deep learning--based mouse brain parcellation on a
diverse MRI cohort. a T2-weighted DevCCF P56 template with the six-region par-
cellation: cerebral cortex, nuclei, brain stem, cerebellum, main olfactory bulb, and
hippocampal formation. b Example segmentation result from a representative

CerebralCortex

CerebralNuclei

BrainStem
Cerebellum
HippocampalFormation
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subject (NR5, Day 0) using the proposed deep learning pipeline. ¢ Box plots show
Dice overlap across subjects for each registration approach and region. The centre
line is the median; box bounds are the interquartile range (25th--75th percentiles);
whiskers extend to the minimum and maximum values within 1.5 x IQR of the lower/
upper quartiles; points beyond the whiskers are outliers.

large datasets. It introduces an intermediate, canonical fMOST atlas to
stabilize transformations to the AllenCCFv3, reducing the need for
repeated manual alignment and enabling standardized mapping of
single-neuron reconstructions to a common coordinate framework.
Evaluation of both workflows followed established QA/QC pro-
tocols used at the Allen Institute, emphasizing biologically meaningful
criteria such as expected gene-marker alignment (MERFISH) and
accurate reconstruction of neuronal morphology (fMOST). These

domain-informed assessments, also used in prior large-scale mapping
projects*®, prioritize task-relevant accuracy over other possible
benchmarks such as Dice coefficients or landmark distances. While
formal quantitative scores were not reported for these specific pipe-
lines, they both demonstrate reliable, expert-validated performance in
collaborative contexts. Additional documentation and evaluation
commentary are available in the updated CCFAlignmentToolkit
GitHub repository.
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For developmental data, we introduced a velocity field-based
model for continuous interpolation between discrete DevCCF time-
points. Although the DevCCF substantially expands coverage of
developmental stages relative to prior atlases, temporal gaps remain.
The velocity model enables spatio-temporal transformations within
the full developmental interval and supports the generation of virtual
templates at unsampled ages. This functionality is built using ANTsX
components for velocity field optimization and integration, and offers
a novel mechanism for interpolating across the non-linear develop-
mental trajectory of the mouse brain. Such interpolation has potential
utility for both anatomical harmonization and longitudinal analyses.
Interestingly, long-range transformations (e.g., P56 to E11.5) revealed
anatomy evolving in plausible ways yet sometimes diverging from
known developmental patterns (e.g., hippocampal shape changes)
reflecting the input data and offering insight into temporal gaps. These
behaviors could assist future efforts to determine which additional
time points would most improve spatiotemporal coverage.

We also introduced a template-based deep learning pipeline for
mouse brain extraction and parcellation using aggressive data aug-
mentation. This approach is designed to reduce the reliance on large
annotated training datasets, which remain limited in the mouse ima-
ging domain. Evaluation on independent data demonstrates promising
generalization, though further refinement will be necessary. As with
our human-based ANTsX pipelines, failure cases can be manually
corrected and recycled into future training cycles. Community con-
tributions are welcomed and encouraged, providing a pathway for
continuous improvement and adaptation to new datasets.

The ANTsX ecosystem offers a powerful foundation for con-
structing scalable, reproducible pipelines for mouse brain data analy-
sis. Its modular design and multi-platform support enable researchers
to develop customized workflows without extensive new software
development. The widespread use of ANTsX components across the
neuroimaging community attests to its utility and reliability. As a
continuation of the BICCN program, ANTsX is well positioned to
support the goals of the BRAIN Initiative Cell Atlas Network (BICAN)
and future efforts to extend these mapping strategies to the
human brain.

Methods

The following methods are all available as part of the ANTsX ecosystem
with analogous elements existing in both ANTsR (ANTs in R) and
ANTSsPy (ANTs in Python), underpinned by a shared ANTs/ITK C++
core. Most development for the work described was performed using
ANTSsPy. For equivalent functionality in ANTsR, we refer the reader to
the comprehensive ANTsX tutorial: https://tinyurl.com/antsxtutorial.

General ANTsX utilities

Although focused on distinct data types, the three pipelines presented
in this work share common components that address general chal-
lenges in mapping mouse brain data. These include correcting image
intensity artifacts, denoising, spatial registration, template generation,
and visualization. Table 1 provides a concise summary of the relevant
ANTSsX functionality.

Standard preprocessing steps in mouse brain imaging include
correcting for spatial intensity inhomogeneities and reducing image
noise, both of which canimpact registration accuracy and downstream
analysis. ANTsX provides implementations of widely used methods for
these tasks. The N4 bias field correction algorithm®, originally devel-
oped in ANTs and contributed to ITK, mitigates artifactual, low-
frequency intensity variation and is accessible via ants.n4 bias -
field correction(...). Patch-based denoising®® has been imple-
mented as ants.denoise image(...).

ANTSsX includes a robust and flexible framework for pairwise and
groupwise image registration®°. At its core is the SyN algorithm®, a
symmetric  diffeomorphic model with optional B-spline

regularization®. In ANTsPy, registration is performed via ants.re-
using preconfigured parameter sets (e.g.,
antsRegistrationSyNQuick[s], antsRegistrationSyN [s]) sui-
table for different imaging modalities and levels of computational
demand. Resulting transformations can be applied to new images with
ants.apply transforms(...).

ANTsX supports population-based template generation through
iterative pairwise registration to an evolving estimate of the mean
shape and intensity reference space across subjects®. This function-
ality was used in generating the DevCCF templates'®. The procedure,
implemented as ants.build template(...), produces average
images in both shape and intensity by aligning all inputs to a common
evolving template.

To support visual inspection and quality control, ANTsPy provides
flexible image visualization with ants.plot(...). This function
enables multi-slice and multi-orientation rendering with optional
overlays and label maps.

gistration(...)

Mapping fMOST data to AllenCCFv3

Mapping fMOST data into the AllenCCFv3 presents unique challenges
due to its native ultra-high resolution and imaging artifacts common to
the fMOST modality. Each fMOST image can exceed a terabyte in size,
with spatial resolutions far exceeding those of the AllenCCFv3 (25 um
isotropic). To reduce computational burden and prevent resolution
mismatch, each fMOST image is downsampled using cubic B-spline
interpolation via ants.resample image(...) to match the tem-
plate resolution.

Stripe artifacts (i.e., periodic intensity distortions caused by
nonuniform sectioning or illumination) are common in fMOST and can
mislead deformable registration algorithms. These were removed
using a custom 3D notch filter (remove stripe artifact(...))
implemented in the CCFAlignmentToolkit using SciPy frequency
domain filtering. The filter targets dominant stripe frequencies along a
user-specified axis in the Fourier domain. In addition, intensity inho-
mogeneity across sections, often arising from variable staining or
illumination, was corrected using N4 bias field correction.

To facilitate reproducible mapping, we first constructed a con-
tralaterally symmetric average template from 30 fMOST brains and
their mirrored counterparts using ANTsX template-building tools.
Because the AllenCCFv3 and fMOST data differ substantially in both
intensity contrast and morphology, direct deformable registration
between individual fMOST brains and the AllenCCFv3 was insulffi-
ciently robust. Instead, we performed a one-time expert-guided label-
driven registration between the average fMOST template and
AllenCCFv3. This involved sequential alignment of seven manually
selected anatomical regions: 1) brain mask/ventricles, 2) caudate/
putamen, 3) fimbria, 4) posterior choroid plexus, 5) optic chiasm, 6)
anterior choroid plexus, and 7) habenular commissure which were
prioritized to enable coarse-to-fine correction of shape differences.
Once established, this fMOST-template-to-AllenCCFv3 transform was
reused for all subsequent specimens. Each new fMOST brain was then
registered to the average fMOST template using intensity-based
registration, followed by concatenation of transforms to produce the
final mapping into AllenCCFv3 space.

A key advantage of fMOST imaging is its ability to support single
neuron projection reconstruction across the entire brain”’. Because
these reconstructions are stored as 3D point sets aligned to the original
fMOST volume, we applied the same composite transform used for
image alignment to the point data using ANTsX functionality. This
enables seamless integration of cellular morphology data into
AllenCCFv3 space, facilitating comparative analyses across specimens.

Mapping MERFISH data to AllenCCFv3
MERFISH data are acquired as a series of 2D tissue sections, each
comprising spatially localized gene expression measurements at
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Table 1| Sampling of ANTsX functionality

ANTsPy: Preprocessing

bias field correction

n4 bias field correction(...)

image denoising

denoise_image(...)

ANTsPy: Registration

intensity image registration

registration(...)

label image registration

label image_ registration(...)

image transformation

apply transforms(...)

template generation

build template(...)

landmark registration

fit _transform to paired points(...)

time-varying landmark reg.

fit_time varying transform to_point_sets(...)

integrate velocity field

integrate velocity field(...)

invert displacement field

invert_displacement field(...)

ANTsPy: Segmentation

MRF-based segmentation

atropos(...)

Joint label fusion

joint_label fusion(...)

diffeomorphic thickness

kelly kapowski(...)

ANTsPy: Miscellaneous

Regional intensity statistics

label stats(...)

Regional shape measures

label geometry measures(...)

B-spline approximation

fit_bspline_object_to_scattered data(...)

Visualize images and overlays plot(...)
ANTsPyNet: Mouse-specific
brain extraction mouse brain extraction(...modality="t2"...)

brain parcellation

mouse_brain parcellation(...)

cortical thickness

mouse_cortical thickness(...)

super resolution

mouse_histology super_resolution(...)

ANTsX provides state-of-the-art functionality for processing biomedical image data. Such tools, including deep learning networks, support a variety of mapping-related tasks. A more comprehensive
listing of ANTsX tools with self-contained R and Python examples is provided as a gist page on GitHub (https://tinyurl.com/antsxtutorial).

subcellular resolution. To enable 3D mapping to the AllenCCFv3, we
first constructed anatomical reference images by aggregating the
number of detected transcripts per voxel across all probes within each
section. These 2D projections were resampled to a resolution of 10 um
x 10 um to match the in-plane resolution of the AllenCCFv3.

Sections were coarsely aligned using manually annotated dorsal
and ventral midline points, allowing initial volumetric reconstruction.
However, anatomical fidelity remained limited by variation in section
orientation, spacing, and tissue loss. To further constrain alignment
and enable deformable registration, we derived region-level anatomi-
cal labels directly from the gene expression data.

To assign region labels to the MERFISH data, we use a cell type
clustering approach previously detailed*. In short, manually dissected
scRNAseq data was used to establish the distribution of cell types
present in each of the following major regions: cerebellum, CTXsp,
hindbrain, HPF, hypothalamus, isocortex, LSX, midbrain, OLF, PAL,
SAMY, STRd, STRv, thalamus and hindbrain. Clusters in the scRNA-seq
dataset were then used to assign similar clusters of cell types in the
MERFISH data to the regions they are predominantly found in the
scRNA-seq data. To account for clusters that were found at low fre-
quency in regions outside its main region we calculated for each cell its
50 nearest neighbors in physical space and reassigned each cell to the
region annotation dominating its neighborhood.

A major challenge was compensating for oblique cutting angles
and non-uniform section thickness, which distort the anatomical shape
and spacing of the reconstructed volume. Rather than directly warping
the MERFISH data into atlas space, we globally aligned the AllenCCFv3
to the MERFISH coordinate system. This was done via an affine trans-
formation followed by resampling of AllenCCFv3 sections to match the
number and orientation of MERFISH sections. This approach

minimizes interpolation artifacts in the MERFISH data and facilitates
one-to-one section matching.

We used a 2.5D approach for fine alignment of individual sections.
In each MERFISH slice, deformable registration was driven by
sequential alignment of anatomical landmarks between the label maps
derived from MERFISH and AllenCCFv3. A total of nine regions,
including isocortical layers 2/3, 5, and 6, the striatum, hippocampus,
thalamus, and medial/lateral habenula, were registered in an empiri-
cally determined order. After each round, anatomical alignment was
visually assessed by an expert, and the next structure was selected to
maximize improvement in the remaining misaligned regions.

The final transform for each section combined the global affine
alignment and the per-structure deformable registrations. These were
concatenated to generate a 3D mapping from the original MERFISH
space to the AllenCCFv3 coordinate system. Once established, the
composite mapping enables direct transfer of gene-level and cell-type
data from MERFISH into atlas space, allowing integration with other
imaging and annotation datasets.

DevCCF velocity flow transformation model

The Developmental Common Coordinate Framework (DevCCF)*
provides a discrete set of age-specific templates that temporally
sample the developmental trajectory. To model this biological pro-
gression more continuously, we introduce a velocity flow-based
paradigm for inferring diffeomorphic transformations between
developmental stages. This enables anatomically plausible estimation
of intermediate templates or mappings at arbitrary timepoints
between the E11.5 and P56 endpoints of the DevCCF. Our approach
builds on established insights from time-varying diffeomorphic
registration®®, where a velocity field governs the smooth deformation
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of anatomical structures over time. Importantly, the framework is
extensible and can naturally accommodate additional timepoints for
the potential expansion of the DevCCF.

We first coalesced the anatomical labels across the seven DevCCF
templates (E1L5, E13.5, E15.5, E18.5, P4, P14, P56) into 26 common
structures that could be consistently identified across development.
These include major brain regions such as the cortex, cerebellum,
hippocampus, midbrain, and ventricles. For each successive pair of
templates, we performed multi-label deformable registration using
ANTsX to generate forward and inverse transforms between anato-
mical label volumes. From the P56 space, we randomly sampled
approximately 1e6 points within and along the boundaries of each
labeled region and propagated them through each pairwise mapping
step (e.g., P56 - P14, P14 - P4, ..., E13.5 - E11.5). This procedure
created time-indexed point sets tracing the spatial evolution of each
region.

Using these point sets, we fit a continuous velocity field over
developmental time using a generalized B-spline scattered data
approximation method®. The field was parameterized over a log-
scaled time axis to ensure finer temporal resolution during early
embryonic stages, where morphological changes are most rapid.
Optimization proceeded for approximately 125 iterations, minimizing
the average Euclidean norm between transformed points at each step.
Ten integration points were used to ensure numerical stability. The
result is a smooth, differentiable vector field that defines a diffeo-
morphic transform between any two timepoints within the
template range.

This velocity model can be used to estimate spatial transformations
between any pair of developmental stages—even those for which no
empirical template exists—allowing researchers to create interpolated
atlases, align new datasets, or measure continuous structural changes. It
also enables developmental alignment of multi-modal data (e.g., MRI to
LSFM) by acting as a unifying spatiotemporal scaffold. The underlying
components for velocity field fitting and integration are implemented in
ITK, and the complete workflow is accessible in both ANTsPy
(ants.fit time varying transform to point sets(...)) and
ANTsR. In addition the availability of the DevCCF use case, self-
contained examples and usage tutorials are provided in our public
codebase.

Automated brain extraction and parcellation with ANTsXNet
To support template-based deep learning approaches for structural
brain extraction and parcellation, we implemented dedicated pipelines
using the ANTsXNet framework. ANTsXNet comprises open-source
deep learning libraries in both Python (ANTsPyNet) and R (ANTsRNet)
that interface with the broader ANTsX ecosystem and are built on
TensorFlow/Keras. Our mouse brain pipelines mirror existing
ANTsXNet tools for human imaging but are adapted for species-
specific anatomical variation, lower SNR, and heterogeneous acquisi-
tion protocols.

Deep learning training setup. All network-based approaches were
implemented using a standard U-net® architecture and hyperpara-
meters previously evaluated in ANTsXNet pipelines for human brain
imaging®. This design follows the ‘no-new-net’ principle®, which
demonstrates that a well-configured, conventional U-net can achieve
robust and competitive performance across a wide range of biome-
dical segmentation tasks with little to no architectural modifications
from the original. Both networks use a 3D U-net architecture imple-
mented in TensorFlow/Keras, with five encoding/decoding levels and
skip connections. The loss function combined Dice and categorical
cross-entropy terms. Training used a batch size of 4, Adam optimizer
with an initial learning rate of 2e-4, and early stopping based on vali-
dation loss. Training was performed on an NVIDIA DGX system (4 x
Tesla VIOO GPUs, 256 GB RAM). Model weights and preprocessing

routines are shared across ANTsPyNet and ANTsRNet to ensure
reproducibility and language portability. For both published and
unpublished trained networks available through ANTsXNet, all training
scripts and data augmentation generators are publicly available at
https://github.com/ntustison/ANTsXNetTraining.

Robust data augmentation was critical to generalization across
scanners, contrast types, and resolutions. We applied both intensity-
and shape-based augmentation strategies:

* Intensity augmentations:

- Gaussian, Poisson, and salt-and-pepper noise: ants.add -
noise to image(...)
- Simulated intensity inhomogeneity via bias field modeling:
antspynet.simulate bias field(...)
- Histogram warping to simulate contrast variation®’:
antspynet.histogram warp image intensities(...)
* Shape augmentations:

- Random nonlinear deformations and affine transforms:
antspynet.randomly transform image data(...)

- Anisotropic resampling across axial, sagittal, and coronal
planes: ants. resample image(...)

Brain extraction. We originally trained a mouse-specific brain extrac-
tion model on two manually masked T2-weighted templates, gener-
ated from public datasets®”“®. One of the templates was constructed
from orthogonal 2D acquisitions using B-spline-based volumetric
synthesis via ants.fit bspline object to scatter-
ed data(...). Normalized gradient magnitude was used as a
weighting function to emphasize boundaries during reconstruction®.

This training strategy provides strong spatial priors despite lim-
ited data by leveraging high-quality template images and aggressive
augmentation to mimic population variability. During the develop-
ment of this work, the network was further refined through community
engagement. A user from a U.S.-based research institute applied this
publicly available (but then unpublished) brain extraction tool to their
own mouse MRI dataset. Based on feedback and iterative collaboration
with the ANTsX team, the model was retrained and improved to better
generalize to additional imaging contexts. This reflects our broader
commitment to community-driven development and responsiveness
to user needs across diverse mouse brain imaging scenarios.

The final trained network is available via ANTsXNet through the
function antspynet.mouse brain extraction(...). Addition-
ally, both template/mask pairs are accessible via ANTsXNet. For
example, one such image pair is available via:

* Template: antspynet.get antsxnet data ("bspli-
neT2MouseTemplate")
* Brain mask: antspynet.get antsxnet data("bspli-

neT2MouseTemplateBrainMask")

Brain parcellation. For brain parcellation, we trained a 3D U-net model
using the DevCCF P56 T2-weighted template and anatomical seg-
mentations derived from AllenCCFv3. This template-based training
strategy enables the model to produce accurate, multi-region parcel-
lations without requiring large-scale annotated subject data.

To normalize intensity across specimens, input images were
preprocessed using rank-based intensity normalization (ants.ran-
k intensity(...)). Spatial harmonization was achieved through
affine and deformable alignment of each extracted brain to the P56
template prior to inference. In addition to the normalized image input,
the network also receives prior probability maps derived from the atlas
segmentations, providing additional spatial context.

This general parcellation deep learning framework has also been
applied in collaboration with other groups pursuing related but dis-
tinct projects. In one case, a model variant was adapted for T2-
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weighted MRI using an alternative anatomical labeling scheme; in
another, a separate model was developed for serial two-photon
tomography (STPT) with a different parcellation set. All three models
are accessible through a shared interface in ANTsXNet: antspy-
net.mouse brain parcellation(...). Ongoing work is further
extending this approach to embryonic mouse brain data. These inde-
pendent efforts reflect broader community interest in adaptable par-
cellation tools and reinforce the utility of ANTsXNet as a platform for
reproducible, extensible deep learning workflows.

Evaluation and reuse. To assess model generalizability, both the brain
extraction and parcellation networks were evaluated on an indepen-
dent longitudinal dataset comprising multiple imaging sessions with
varied acquisition parameters®. Although each label or imaging
modality required retraining, the process was streamlined by the
reusable ANTsX infrastructure enabled by rapid adaptation with
minimal overhead. These results illustrate the practical benefits of a
template-based, low-shot strategy and modular deep learning frame-
work. All trained models, associated training scripts, and supporting
resources are openly available and designed for straightforward inte-
gration into ANTsX workflows.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The following datasets were used in this study and are publicly
available: « Allen Common Coordinate Framework (AllenCCFv3):
Available from the Allen Institute for Brain Science at https://atlas.
brain-map.org/atlas. « Developmental Common Coordinate Frame-
work (DevCCF) MRI and LSFM datasets: Publicly available via the Kim
Lab https://kimlab.io/home/projects/DevCCF/index.html. « MERFISH
spatial transcriptomics data: Previously published*https://portal.
brain-map.org. « Developmental datasets for brain extraction and
segmentation: — High-resolution MRI data of brain C57BL/6 and BTBR
mice in three different anatomical views: https://data.mendeley.com/
datasets/dz9x23fttt/1. - CAMRI Mouse Brain Data: https://openneuro.
org/datasets/ds002868/versions/1.0.1» Evaluation dataset for brain
extraction and segmentation: A longitudinal microstructural MRI
dataset in healthy C57BI/6 mice at 9.4 Tesla https://www.frdr-dfdr.ca/
repo/dataset/9ea832ad-7f36-4e37-b7ac-47167c0001cl. « ANTsXNet-
pretrained templates and models: Available through ANTsPy at
https://github.com/ANTsX/ANTsPyNet. Source data are provided
with this paper.

Code availability

All processing pipelines and supporting code are openly available at:
+https://github.com/ntustison/ANTsXMouseBrainMapping(DevCCF
velocity model and deep learning parcellation). Also contains the text,
scripts, and data to reproduce the manuscript (including figures).
+https://github.com/dontminchenit/CCFAlignmentToolkit(MERFISH
and fMOST workflows).
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