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Germline polymorphisms in the
immunoglobulin kappa and lambda loci
underpinningantibody light chain repertoire
variability
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Variation in antibody (Ab) responses contributes to variable disease outcomes
and therapeutic responsiveness, the determinants of which are incompletely
understood. This study demonstrates that polymorphisms in immunoglobulin
(IG) light chain loci dictate the composition of the Ab repertoire, establishing
fundamental baseline differences that influence functional Ab-mediated
responses. Using long-read genomic sequencing of the IG kappa (IGK) and IG
lambda (IGL) loci, we resolve genetic variation, including structural variants,
single nucleotide variants, and gene alleles. By integrating these genetic data
with Ab repertoire profiling, we find that all forms of IG germline variation
contribute to inter-individual gene usage differences for >70% of light chain
genes in the repertoire, directly impacting the amino acids of expressed light
chain transcripts. The genomic locations of usage-associated variants in both
intergenic and coding regions indicate that IG polymorphisms modulate gene
usage via diverse mechanisms, likely including the modulation of V(D)J
recombination, heavy and light chain pairing biases, and transcription/trans-
lation. Finally, relative to IGL, IGK is characterized by more extensive linkage
disequilibrium and genetic co-regulation of gene usage. These results firmly
establish the critical contribution of IG light chain polymorphism in Ab
repertoire diversity, with important implications for investigating Ab respon-
ses in health and disease.

Antibodies (Abs) are critical components of the adaptive immune system
and are one of the most diverse protein families in the human body. The
circulating Ab repertoire comprises hundreds of millions of unique
antibodies1,2, and its composition varies significantly between
individuals1–3. Thevariability likely contributes to thediverseAb responses

observed across clinical settings, including infection4–8, autoimmunity9,
and cancer10. Identifying the factors that contribute to variation in B cell-
mediated immunity will inform disease diagnosis and treatment.

Human Abs are composed of two pairs of identical ‘heavy’ chains
and ‘light’ kappa or lambda chains, encoded by genes located at three
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primary loci in the genome: the immunoglobulin (IG) heavy chain locus
(IGH; 14q32.33), and the IG lambda (IGL; 22q11.2) and kappa (IGK;
2p11.2) loci11. Across the IG loci, there are >240phylogenetically related
functional/open reading frame variable (V), diversity (D) (specific to
IGH), and joining (J) genes12–15. Selection of individual IGheavy and light
chain genes during V(D)J recombination is a foundational step in the
process of Ab generation. Increasing evidence indicates that genetic
variation within the IG loci modulates the generation of the formation
of the human Ab repertoire, contributing to the observed receptor
diversity seen between individuals. This was initially supported in twin
studies, which demonstrated that both naïve and antigen-stimulated
Ab repertoires possess heritable characteristics16–18. Additionally, non-
coding and coding IG heavy chain12,19–26 and light chain20,27–29 germline
variants have been shown to affect Ab gene usage and antigen
specificity.

Utilizing matched adaptive immune receptor repertoire (AIRR)-
seq and comprehensive long-read sequencing-based genotyping of
IGH in a cohort of 154 individuals, we recently demonstrated that
approximately half of common germline variants in IGH were asso-
ciated with variation in usage frequencies of the majority of IGHV,
IGHD, and IGHJ genes within the IgM (naïve-enriched) repertoire12.
Subsequently we showed that these genetic variants contribute to
repertoire variation in early B cell developmental stages in the bone
marrow, indicating direct impacts on V(D)J recombination30. This has
raised the prospect that variants within the IGK and IGL loci exert
similar effects on the formation of the light chain repertoire, and will
associate with inter-individual Ab variation in the periphery. The heavy
and light chains of an Ab must be paired and compatible to achieve
specificity and functionality, and both heavy and light chains con-
tribute to antigen binding. The identification and characterization of
antigen-specific and disease-associated Abs requires comprehensive
models of naïve and antigen-experienced repertoires, for which a
detailed understanding of genetic variation in all three loci is essential.
To this end, it is critical to recognize that IG loci are enriched with
structural variants (SVs), including segmental duplications and inser-
tions, limiting the utility of short-read sequencing to characterize
genetic variation12–15,31–34. We previously demonstrated that long-read
sequencing of diverse IGH12,13,33, IGL14, and IGK15 haplotypes identifies
genetic variation not recorded in reference databases, including cat-
alogues of single-nucleotide variants (SNVs) and gene alleles.

Here, we pair long-read genomic sequencing of IGK and IGL with
AIRR-seq at population-scale to identify cis-acting variants that explain
inter-individual variation in light chain Ab repertoire features. We find
that genetic variants in IGK and IGL associate with gene usage fre-
quency for themajority of light chain V and J genes. These associations
between germline polymorphism and gene usage persisted even in
antigen-experienced Ab repertoires. Analysis of lead variants revealed
mechanisms by which genetic sequence can impact gene usage fre-
quencies, including missense and nonsense substitutions, as well as
substitutions in regulatory elements, such as recombination signal
sequences.We finddistinct structures of linkage disequilibrium (LD) in
IGK and IGL, with relatively high LD in IGK associating with coordi-
nated usage of multi-gene clusters. Finally, we demonstrate that
genetic effects on gene usage contribute to amino acid variation in V
genes, as well as physicochemical properties of the CDR3, linking
germline variants to Ab features that contribute to antigen binding.

Results
Long-read genomic sequencing and genotyping of IGK and IGL
loci and expressed light chain antibody repertoire sequencing
We combined targeted long-read sequencing of IGK and IGL loci in 177
healthy individuals with newly and previously12 generated AIRR-seq for
nearly all donors in the cohort (IGK, n = 164, IGL, n = 168). Donors
ranged in age from 18 to 57 years (mean: 32.4), representing both
biological sexes (male, n = 87; female, n = 84), and diverse genetic

ancestry groups (Supplementary Data 1). Using our previously pub-
lished method13, we performed targeted long-read single molecule
real-time (SMRT) sequencing of the IGK proximal and distal regions15,
and the IGL locus14 (see SupplementaryMaterial). From these data, we
generated sample-level SNV and SV callsets, and IGK/L gene and allele
germline sets (see Supplementary Material). Importantly, this dataset
allowed for the identification of uncatalogued variants, including >300
germline IG alleles as well as SNVs and SVs (Supplementary Fig. 2).

To profile expressed IGK and IGL transcripts, AIRR-seq data was
generated using 5’ rapid amplification of complementary DNA ends (5’
RACE) on total RNA isolated from PBMCs. With germline IGKV, IGKJ,
IGLV, and IGLJ alleles for each individual, we limited V and J germline
allele calls to thosepresent in the germline on aper-individual basis. To
enrich for antigen-naïve BCR sequences, we selected those containing
V and J segments that matched germline allele sequences with 100%
identity, unlikely to have undergone somatic hypermutation (SHM)
(i.e. unmutated). The opposite approach was used to enrich for
antigen-experienced BCR sequences, for which either the J or V (or
both) segment varied from the germline allele sequence (i.e., were
mutated). Importantly, personalized germline sets allowed us to
account for thepresenceof previously undocumented alleles, and thus
more accurately infer SHM. The usage frequencies of V and J genes
among all unmutated or mutated unique BCR sequences were calcu-
lated for each individual. Together, these datasets allowed us to
resolve comprehensive variant callsets to perform genetic association
analyses with gene usage variation observed in the expressed light
chain Ab repertoires.

Light chain gene usage is strongly associated with common IGK
and IGL genetic variants in both antigen naïve and experienced
repertoires
Throughout the genome, genetic variation has been associated with
molecular traits such as gene expression and splicing35–38. We pre-
viously demonstrated that genetic variants in the IGH locus mediate
the composition of peripheral IgM and IgG repertoires through effects
on IGHV, IGHD, and IGHJ gene usage12. Here, we followed this same
quantitative trait locus (QTL) framework to test if light gene usage was
associated with IGK and IGL variant genotypes in cis. Allele assign-
ments to AIRR-seq reads were derived from a personalized germline
allele set for each individual. This permitted disambiguation of IGK
gene paralogs for individuals wherein each allele of a proximal paralog
was distinct from each allele of the distal paralog, including IGKV1-12
and IGKV1D-12, IGKV1-13 and IGKV1D-13, and IGKV6-21 and IGKV6D-21
(SupplementaryData 5). Paralog pairs forwhich at least 160 individuals
could not be disambiguated included IGKV1-33/1D-33, IGKV1-37/1D-37,
IGKV1-39/1D-39, IGKV2-28/2D-28, and IGKV2-40/2D-40, and are referred
to as ambiguous or “ambi” (e.g. IGKV1-39/1D-39 is IGKV1-39ambi).

We performed genetic association tests on unmutated (“antigen
naïve”) andmutated (“antigen experienced”) sets separately to identify
cis effects in each of the two repertoire sets. In the unmutated IGK
repertoire, after Bonferroni multiple-testing correction (P < 5.0e−05),
we identified 2352 unique variants (2350 SNVs, 2 SVs) that were sta-
tistically associated with gene usage changes in 21 IGKV and 3 IGKJ
genes (Fig. 1, Supplementary Data 6). In the unmutated IGL repertoire,
a set of 911 unique variants (910 SNVs, 1 SV) were associated with gene
usage changes in 22 IGLV and 3 IGLJ genes (Fig. 1, Supplementary
Data 6). Notably, a large fraction of the genes identified in both the IGK
(n = 13 genes) and IGL (n = 19 genes) unmutated repertoires also had
significant gene usage QTLs (guQTLs) in the mutated repertoires
(Supplementary Figs. 7–9, SupplementaryData 7). However, guQTLs in
the unmutated repertoires tended to have lower P values and explain
more variance (R2) in gene usage (Supplementary Fig. 7).We also noted
stronger genetic effects in IGK relative to IGL; this included the
observation that overall genetic similarity among subjects associated
with more highly correlated IGK gene usage, a signal that was blunted
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Fig. 1 | IGK and IGL variants impact gene usage in the naïve Ab repertoire.
AGeneral structure of V and J genes in the IGK and IGL loci, including location of the
recombination signal sequences (RSS).B,C Per gene (x axis, all panels) statistics from
linear regression guQTL analysis for the repertoire of unmutated IGK (B) and IGL (C)
light chains, including: (i) the number of associated variants after Bonferroni

correction (IGK; P< 3.7e−5, IGL; P< 1.9e−5), (ii) −log10(P value) of the lead guQTL, (iii)
adjusted R2 for variance in gene usage explained by the lead guQTL, (iv) the location
and (v) typeof variant for the leadguQTL and (vi) the fold change inmeangeneusage
between genotype groups at the lead guQTL. Summary statistics are provided in
Supplementary Data 6. (A) Created using (https://BioRender.com/l3h23u7).
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in IGL (see Supplemental Material, Supplementary Fig. 10). Together,
these results show that usage of IG light chain genes is broadly
impacted by germline genetic variants, and while these genetic effects
are more prominent in the antigen naïve repertoire, for many genes,
those effects persist even following antigen exposure.

Genomic locations of guQTLs implicate genetic roles in
coding and non-coding driven processes underlying
antibody repertoire formation
Features of IG J genes include a single exon and RSS sequence,
whereas V genes include an RSS sequence, first exon, intron, and
second exon that encodes the antigen binding variable region (V-
region) (Fig. 1A). While the majority of lead guQTLs across the
unmutated repertoires were intergenic (n = 19, IGK; n = 20, IGL),
coding lead variants were identified for 7 IGK genes (IGKJ3, IGKV2-29,
IGKV1-5, IGKV1-13, IGKV1D-13, and IGKV1-39ambi) (Fig. 1B, Supple-
mentary Fig. 8) and 4 IGL genes (IGLV8-61, IGLV5-48, IGLV7-46, IGLV3-
21) (Fig. 1C, Supplementary Fig. 8). In addition, 1 IGK lead guQTL and
5 IGL guQTLs fell within RSSs; these were lead variants for IGKV1-6,
IGLV5-37, IGLV3-16, IGLV1-44, IGLV3-19, and IGLV5-48 (Fig. 1B, C,
Supplementary Fig. 8).

Examples of lead guQTLs in coding, RSS, and intergenic regions
are shown in Fig. 2, including IGKV2-29, IGKV1-5, IGLV3-16, and IGLV9-
49. The SNV-driven guQTL in this dataset with the lowest P value was
for IGKV2-29 (P value = 7.4e−55, Fig. 2A). This variant introduced a
stop codon in V-region amino acid position 93 (Fig. 2B), resulting in
decreased usage of IGKV2-29 (Fig. 2C). We also identified a lead guQTL
associated with missense variants. In the case of IGKV1-5, two linked
lead guQTLs (r2 = 1) within codon 50 associatedwith a lysine to aspartic
acid (AAG→GAT, K50D) change, resulting in an alteration of residue
charge (Fig. 2D, E). Individuals homozygous for K50 alleles, which
represented six different IGKV1-5 coding alleles in this cohort, had
lower gene usage (Fig. 2F, G). As an example of a guQTL in the RSS, two
lead variants in perfect LD were identified at positions 8 and 23 of the
spacer for IGLV3-16 (Fig. 2H–J). The reference haplotype had a C at
position 8, whichwas represented among consensus bases (C and T) at
this position (Supplementary Fig. 11), whereas the alternate haplotype
had aG (Fig. 2I). Among the C/C andG/G leadguQTL genotype groups,
IGLV3-16 usage varied 3.7-fold on average (Fig. 2J). As noted above, the
majority of leadguQTLs in this datasetwere in non-coding regions. For
example, the lead guQTL for IGLV9-49 was 86 bp upstream of the first
exon, and guQTLs were not identified in coding sequence or the RSS
(Fig. 2K). Mean IGLV9-49 usage varied by 3.5-fold between
homozygous-reference and homozygous-alternate individuals at this
lead guQTL (Fig. 2L).

Consistent with previous observations in IGH12, many guQTLs
within IGL overlapped curated transcription factor binding sites,
representing an enrichment over background SNVs (see Supplemen-
tary Material, Supplementary Figs. 12, 13), suggesting likely roles for
non-coding variants in the regulation of V(D)J recombination. Addi-
tionally, in IGK, we noted that both coding and non-coding regulatory
variants altered proximal and distal gene usage biases (see Supple-
mentary Material, Supplementary Figs. 14, 15).

Finally, in addition to SNV guQTLs, SVs resulting in gene copy
number changes also made significant impacts on gene usage. Speci-
fically, SVs were lead guQTLs for the genes IGKV1-NL1, IGKV1D-8, and
IGLV5-39. In all cases, differential usage between genotypes followed
an additivemodel in which gene usage increased with every additional
haploid gene copy (Fig. 2M). The lead variant associatedwith IGKV1D-8
usage was the SV deletion of the entire IGKV distal region (see Sup-
plementary Fig. 4). We noted that the number of diploid IGLJ2-3 cas-
sette copies associated with the usage of IGLJ1 and IGLJ2-3ambi
(Supplementary Fig. 16); however, this CNV was not the lead QTL for
these genes. The complexity of this SV will likely require analysis in

larger cohorts and more detailed assessment of potential haplotype-
specific effects.

In summary, these results indicate that many forms of genetic
variation are associated with gene usage variation in the IGK and IGL
repertoire. The variable localization of guQTLs in intergenic, RSS, and
coding regions implicates causative roles for these genetic variants in
plausibly regulating V(D)J recombination, transcription, and transla-
tion, as well as contributing to differential heavy-light chain pairing
dynamics and antigen selection.

guQTLs within large linkage disequilibrium blocks in IGK create
expansive networks of genes with correlated usage
In our previous study of IGH guQTLs, we observed that many SNVs
were associated with the usage of individual genes. This included
instances inwhich genes and associated guQTLs extended 10’s to 100’s
of Kb; notably, these genes exhibited correlated usage patterns12,
suggestive of coordinated gene regulation. We sought to investigate
whether similar features were present in the IGK and IGL loci.

First, within the unmutated repertoire, we observed a greater
number of guQTLs in IGK compared to IGL (Fig. 1B, C). This was not
simply explained by the number of SNVs genotyped in the two loci,
as we identified twice as many common variants in IGL relative to
IGK; among all common SNVs in each locus, 84.2% in IGK and 17.5% in
IGL were significantly associated with usage of at least one gene
(Fig. 3A). Compared to IGL, we found that a larger fraction of IGK
guQTL variants were shared between at least two genes (n = 1995,
83.3%) (Fig. 3B). Likewise, at gene-level, a greater number of IGK
guQTL genes shared at least one significant variant with >5 other
genes (Fig. 3C).

To visualize these relationships between genes and guQTLs, we
constructed networks in which nodes represented genes and edges
represented connections between genes sharing at least one guQTL
SNV. From these networks, we identified multi-member cliques, in
which 2 or more genes were connected by at least one shared guQTL.
For IGK, 21 of the 24 guQTL genes formed a single super clique, with
embedded subcliques in which all genes were connected to one
another through guQTL variants (Fig. 3D). Demonstrative of inter-
connected gene usage, the largest subclique was composed of 9
guQTL genes associated with a single guQTL SNV (Fig. 3E). In contrast
to IGK, 13 of the 25 guQTL IGL genes were represented by 4 distinct
cliques, all of which were smaller than the large clique observed in IGK
and disconnected from one another (gene membership range =
2–5; Fig. 3D).

The stark difference in IGK and IGL clique sizes (Fig. 3D) sug-
gested likely differences in the genetic haplotype structure between
the two loci. To explore this, we estimated pairwise linkage dis-
equilibrium (LD) between all common SNVs (MAF ≥ 5%) and deter-
mined blocks of LD39,40 (Supplementary Data 9, seeMethods). LD was
more extensive in IGK (Fig. 4A) relative to IGL (Fig. 4B), with LD
blocks >20 Kbp comprising 53.5% and 12.9% of the IGK and IGL loci,
respectively, (Fig. 4C, Supplementary Data 10). The three largest LD
blocks in IGK were 122 Kbp, 110 Kbp, and 76 Kbp, compared to the
three largest LD blocks in IGL that were 34 Kbp, 26 Kbp and 24 Kbp
(Fig. 4D). As expected, the number of SNVs per block was positively
correlated in both loci. The overall density of common SNVs was
about 1.8 times higher in IGL relative to IGK (Fig. 4E). Additionally,
larger sets of genes in IGK fell within large LD blocks (Fig. 4F; Sup-
plementary Fig. 17, 18). IGK guQTL SNVs were alsomore frequently in
large LD blocks (Fig. 4G).

These data demonstrate that a larger proportion of IGK sequence,
genes, and guQTLs are contained within large LD blocks as compared
to IGL. The overlap of LD blocks with guQTL and gene cliques suggests
that extended haplotype structures within both loci likely contribute
to coordinated gene regulation.
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guQTLs are linked to missense variation in coding regions and
physicochemical CDR3properties in the IGKand IGL repertoires
Together, the data presented so far demonstrate that genetic var-
iants within IGK and IGL associate with shifts in gene usage in the
light chain repertoire. While themajority of lead guQTLs in both loci
occurred in intergenic space, we wanted to see whether genetically
driven usage shifts also associated with (1) germline changes in V

gene coding sequence spanning complementarity determining and
framework regions (CDR1, CDR2, FWR1, FWR2, and FWR3); and (2)
amino acid properties of CDR3 sequences spanning germline
codons and junctions of recombined V and J genes. We reasoned
that such associations would link changes in gene usage to BCR
features likely to impact preferential pairing of available heavy and
light chains and antigen binding. This has direct relevance to
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germline variants contributing to Abs associated with disease and
vaccination20–22,24–26,41.

First, we found thatmany lead guQTLswere associatedwith shifts
in coding allele usage within the repertoire, representing LD between
coding and non-coding SNVs. This was consistent with our previous
investigation of IGH guQTLs12. Specifically, for 16/26 (62%) tested IGK
genes, individuals within different guQTL genotypes exhibited differ-
ential coding allele frequencies (two-way Fisher’s exact test, Bonfer-
roni; P < 0.002). Likewise, in IGL we noted such associations for 8/23
(35%) guQTL genes (two-way Fisher’s exact test, Bonferroni;
P < 0.002) (Fig. 5A, B, SupplementaryData 11). Among these genes, 12/
16 (75%) in IGK, and 7/8 (88%) in IGL involved alleles carrying amino
acid changes (Fig. 5C, D). For the remaining genes in each locus, genes
either exhibited allelic variation, but did not associate with guQTL
genotype, or lacked appreciable allelic variation (major allele fre-
quency >95%; Fig. 5C, D). Examples of genes with coding allele varia-
tion linked to lead non-coding guQTL variants include IGKV2-30 and
IGLV10-54, for which gene alleles were distributed differently among
the non-coding lead guQTL genotypes (Fig. 5E, F). In the case of IGKV2-
30, the *02 allele, which harbored a missense variant in CDR1, was
carried by 95.9% of individuals with genotype A/A at the lead guQTL
variant, compared to only 7.9% of individuals with genotype G/G
(Fig. 5E). Likewise, in the case of IGLV10-54, the *04 allele, which har-
bored an amino acid change in FWR3, was carried by 100% of indivi-
duals with guQTL genotype G/C and by 4.5% of individuals with
genotype C/C (Fig. 5F).

We next asked whether shifts in gene usage also resulted in shifts
in CDR3 physicochemical properties. To do this, we conducted an
unbiased test for associations between variation in nine CDR3 prop-
erties and genotypes at all variants across IGK and IGL (Supplementary
Data 12). In IGK, we identified SNVs associated (Bonferroni, P < 3.7e
−05)withCDR3properties of aromaticity, aliphaticity, acidity, polarity,
bulk, and GRAVY index (Fig. 6A; Supplementary Fig. 19). Likewise, in
IGL, SNVs were associated (Bonferroni, P < 1.9e−05) with CDR3 aro-
maticity, aliphaticity, GRAVY index, bulk, basicity, polarity, charge, and
length (Fig. 6B; Supplementary Fig. 19). Lead variants in both loci
overlapped guQTLs, linking CDR3 properties with gene usage varia-
tion. For example, the lead variant associated with IGK CDR3 aroma-
ticitywas also a guQTL for seven IGKVgenes (Fig. 6A, C–E) that arepart
of a previously described network clique (Fig. 3D). Among these genes,
we focused on those with usage patterns that were negatively corre-
lated, and thus considered to differentially represent the guQTL gen-
otypes. Specifically, IGKV1-13/1D-13 usage was highest in individuals
with high CDR3 aromaticity. In contrast, the usage of IGKV2-40ambi,
IGKV1-39ambi, and IGKV1D-12 were highest in individuals with low
CDR3 aromaticity (Fig. 6D, E). To determine whether these genes
explain CDR3 aromaticity variation between genotype groups, we
computed CDR3 aromaticity for BCRs utilizing only IGKV1-13/1D-13,
IGKV2-40ambi, IGKV1-39ambi, or IGKV1D-12 (Fig. 6F). This demon-
strated IGKV1-13/1D-13-encoded BCRs had higher aromaticity than
those encoded by all of the other three genes. This was regardless of

the J gene contribution (Supplementary Fig. 20), indicating the genetic
effect on CDR3 aromaticity is through influence on V gene usage.

In IGL, CDR3 aliphaticity and aromaticity shared the same lead
variant; this variant was also the lead guQTL for both IGLJ1 and IGLJ2-
3ambi, linking genetic regulation of IGLJ gene usage with CDR3
properties (Supplementary Fig. 21). At this variant, A/A individuals had
relatively higher CDR3 aliphaticity and IGLJ2-3ambi usage, whereas G/
G individuals had relatively higher CDR3 aromaticity and IGLJ1 usage.
Analysis of BCRs using one or the other of these IGLJ genes revealed
that sequences containing IGLJ2-3ambi have relatively high CDR3 ali-
phaticity, whereas sequences containing IGLJ1 have relatively high
CDR3 aromaticity (Supplementary Fig. 21). Together, these data link
genetic effects on IGLJ gene usage with IGL CDR3 properties.

In summary, IGLV and IGKV genes showed significant variation in
coding alleles among lead guQTL genotype groups, indicating LD
between non-coding variants and gene alleles. Additionally, we show
that variation in gene usage also contributes to biases in CDR3 prop-
erties, at least in part explained by contributions of germline encoded
amino acids at the 3’ of V genes and 5’ end of J genes. This is note-
worthy, as it indicates that guQTLs not only impact general variation in
gene usage, but also have the potential to modulate the availability of
germline encoded residues in the baseline unmutated repertoire.

Discussion
Akin to other hypervariable immune loci, the IG loci exhibit extensive
haplotype diversity at the population level, and are among the most
structurally complex regions in the human genome12,14,15,33,42. This
complexity has limited our ability to accurately characterize inter-
individual IG haplotype diversity and delineate its role in shaping the
composition of the Ab repertoire41. Here, by leveraging the strengths
of long-read sequencing, we were able to overcome this barrier. We
characterized complete genotype callsets for SNVs and SVs across the
IGL and IGK loci, and combined these with matched light chain
repertoires. First, this comprehensive dataset allowed for the dis-
covery of tremendous population-level genetic variation within the
IGK and IGL loci, including descriptions of previously uncatalogued
SNVs, SVs, and coding alleles. These discoveries alone will now facil-
itate significant improvements in existing germline database resources
for the IG loci (Peres et al., in prep). Second, we were able to directly
utilize personalized germline reference sets for each individual to
increase the accuracy of V and J gene/allele assignments, including
resolution of duplicated paralogs between the proximal and distal
duplicated regions of the IGK locus. Third, with these data in hand, we
expanded our previous work in IGH12 to demonstrate that IGK and IGL
polymorphisms also contribute to variation in light chain repertoire
gene usage and associated changes in the composition and availability
of V, J, and CDR3 encoded amino acids among expressed Ab tran-
scripts. Together, these findings solidify the pervasive impact of IG
genetics on the adaptive immune system.

Across the IGK and IGL loci, genetic variants were statistically
associated with usage variation in the majority of V and J genes. For a

Fig. 2 | Examples of coding and non-coding lead guQTLs. A Manhattan plot
showing the −log10(P value) for all SNVs in IGK tested for association with usage of
IGKV2-29, with SNVs colored according to LD (r2). B Sequence alignment of the
germline IGKV2-29 alleles in this cohort from codons 90 to 95, with the lead variant
indicated. Alleles encoding C93 and X93 (STOP codon) alleles are indicated.
C Boxplot of IGKV2-29 usage in lead guQTL genotype groups. DManhattan plot of
associations (−log10(P value)) between all IGK SNVs and usage of IGKV1-5, with
SNVs colored according to LD (r2) with the lead variant. E Sequence alignment of
the reference and alternate haplotypes at the lead guQTL, with two missense var-
iants in perfect LD in codon 50 indicated, resulting in K50D in the alternate hap-
lotype.FBoxplotof IGKV1-5usage in leadguQTL (shown in (D,E)) genotypegroups.
G Alignment of translated germline IGKV1-5 alleles with codon 50 boxed.
HManhattan plot of associations (−log10(P value)) between all IGL SNVs and usage

of IGLV3-16, with SNVs colored according to LD (r2) with the lead variant. Two lead
variants in perfect LD are in the RSS spacer. I Sequence of the RSS spacer in
reference and alternate lead guQTL haplotypes. J Boxplot of IGLV3-16 usage in lead
guQTL genotype groups. K (Top) Manhattan plot of associations (−log10(P value))
between all IGL SNVs and usage of IGLV9-49, with SNVs colored according to LD (r2)
with the lead variant (marked with an X). (Bottom) Zoom-in on an 8 Kbp window
centered on IGLV9-49 with the lead non-coding variant indicated. L Boxplot of
IGLV9-49 usage in lead guQTL genotype groups. M Gene usage boxplots of genes
for which the lead variant was a deletion (“DEL”) SV, including IGKV1-NL1, IGKV1D-8,
and IGLV5-39. Boxplots display the median, 25th percentile, 75th percentile, and
whiskers that extend up to 1.5 times the inter-quartile range (IQR) from the
respective percentiles. Data points outside the whiskers are also plotted.
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Fig. 3 | Genetic coordination of IG light chain gene usage is more prevalent in
IGK relative to IGL.A Stacked bar plot showing the proportion of total IGK and IGL
common SNVs that are a guQTL. B Bar plot showing the number of IGK and IGL
SNVs (guQTLs) significantly associated with varying numbers of genes (n = 1–9).
For IGK, this includes a large number of SNVs (n = 2049) that were associated with
>1 gene.C For each gene, the number of genes sharing at least one guQTL variant is
plotted for indicated IGK (left) and IGL (right) genes (x-axis). D Network analysis
identified a large clique of genes and guQTLs in IGK (left) and 4 cliques for IGL

(right), demarcating groups of genes associated with overlapping sets of guQTLs.
For each clique, genes are shown as nodes, connected by edges color coded
according to the number of shared guQTL variants. E Genotype at a single variant
associates with usage of the nine plotted IGK genes in the unmutated repertoire
(linear regression; P value < 3.7e−5). Boxplots display the median, 25th percentile,
75th percentile, and whiskers that extend up to 1.5 times the inter-quartile range
(IQR) from the respective percentiles.
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Fig. 4 | IGK has larger LD blocks and lower density of SNVs relative to IGL.
A, B LD heatmaps of the IGK (A) and IGL (B) loci. LD blocks are illustrated as
triangles. C Stacked bar plot of the percent of each locus (IGK, IGL) that is within
LD blocks of various lengths (colors). D Plots of LD blocks in IGK and IGL

depicting the length of each block (y-axis) and number of SNVs in each blot (x-
axis). E Bar plot of the overall SNV density in the IGK and IGL loci. F,G Barplots of
the counts of IGK or IGL genes (F) and guQTL SNVs (G) in LD blocks with lengths
indicated along y-axes.
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subset of IGKV genes, for example, we found that even single guQTLs
could explain over 75% of the usage variation among donors. Notably,
however, although we found that most guQTLs and associated genes
were common between unmutated and mutated repertoires, the
extent of variance in gene usage explained by guQTLs in the unmu-
tated repertoire was on average higher for both IGK and IGL; V genes
also had stronger genetic associations relative to J genes in both loci.
The blunted genetic effects in themutated repertoiremay reflect shifts
in usage in thememory repertoire driven by interactions with antigen.
However, it is notable that even in antigen-experienced repertoires,
variation can still be explained by genetic factors, indicating some
degree of genetic constraint, consistent with observations in IGH12,16.
We also noted that on average, R2 values were lower in IGL; however,
because this analysis only included an assessment of lead guQTLs, we
have not accounted for additional variants that may make additional
genetic contributions. We previously showed that secondary guQTLs
in IGHwere able to increase the variance in gene usage explained by cis
genetic factors12. As cohorts increase in size, we expect it will be pos-
sible to characterize additional guQTLs in IGK and IGL.

An assessment of guQTL positions within each locus provided
initial evidence of the mechanisms by which they may exert their
effects on the repertoire. Early studies in IGKwere thefirst to show that
IG polymorphism can directly impact the usage of particular genes in
the repertoire. These specifically linked variation within the RSS of
IGKV2D-29 and its usage frequency28,43,44, demonstrating that RSS
polymorphisms have the potential to influence the binding of RAG1/2
and the selection of genes by V(D)J recombination. Here, we found
additional direct evidence for effects of RSS variants on several IGK
and IGL genes. However, consistent with previous observations in
IGH12, the majority of light chain guQTLs were intergenic SNVs. The
factors underlying the effects of non-coding guQTLs require further
study, but are expected to influence various regulatory mechanisms
(e.g., enhancer and promoter function; formation of topologically
associating domains) in the IG loci duringV(D)J recombination45–49. It is
notable that in IGLwe observed overlap between a subset of intergenic
guQTLs and known TFBSs (Supplemental Fig. 12); this included
enrichments in binding sites for CTCF, a transcription factor known to
be critical to the chromatin landscape within IG loci50. We also found

Fig. 5 | Linkage between IGKV and IGLV coding region alleles and lead guQTL
genotypes. A,B Variation in the proportion of different coding gene alleles among
lead guQTL genotype groups was determined by two-way Fisher’s exact test for
guQTL genes in IGK (A) and IGL (B). Barplots shows −log10(P value) (Bonferroni;
P < 0.002). C, D For each gene, the frequency of coding alleles in the cohort is
shown, with unique alleles color coded. Genes that lack appreciable allelic variation

(major allele frequency >95%) are indicated with an asterisk. Circles above each
gene indicate whether coding allele variation is linked to the lead guQTL. guQTLs
linked to coding allele variation are associated with missense or nonsense variants.
E, F Stacked bar plots showing the distributions of the respective coding allele
genotypes across individuals partitioned by guQTL genotype for IGKV2-30 (E) and
IGLV10-54 (F).
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that SVs were the lead guQTLs for three genes (IGKV1D-8, IGKV1-NL1,
and IGLV5-39). In all cases these SVs altered the number of diploid
copies (range = 0–2) and thus the chance they could be selected by
V(D)J recombination. We identified multiple less common SVs
(MAF < 5%) that will require study in larger sample sizes to more fully
assess their contribution to gene usage. Overall, however, we noted
that thenumber of genes impactedby SVs in eachof the light chain loci
were comparatively fewer than reported in IGH12, which is likely a

reflection of the fact that the IGH locus overall has a greater num-
ber of SVs.

We also observed examples in which guQTLs were localized to
intronic and V gene coding sequences, the latter of which included
examples resulting in the introduction of premature stop codons and
amino acid changes. These examples indicate that, rather than effects
on V(D)J recombination, some guQTLs potentially influence the light
chain repertoire composition by impacting transcription and
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translation, with implications for light chain selection during B cell
development. For example, we would expect that B cells expressing
non-functional alleles would undergo receptor editing and/or negative
selection in the bone marrow, leading to their absence in the
periphery51–53. Likewise, it is plausible that some light chain coding
alleles within an individual may serve as less optimal partners for
rearranged heavy chains54, leading to a decrease in their frequency
within the mature naïve repertoire. This would be somewhat analo-
gous to shifts in light chain gene distributions noted in the memory
repertoire, which have been attributed to light chain coherence55.
However, fully delineating the roles of genetics in heavy and light
pairing and in the context of different antigen-driven effects, will
require careful investigation of guQTLs across developmental time
points, and will need to consider combined effects of polymorphisms
across the three loci.

To date, differences in the genetic architecture of the IGK and IGL
loci have been underexplored. Previous comparisons of a small num-
ber of IGK and IGL haplotypes indicated that SNV densities were lower
in IGK compared to IGL31. Our data confirmed this pattern at the
population level, revealing that the number of common SNVs was
almost 2-fold higher in IGL. Additionally, we found that IGL was also
characterized by less extensive LD. These stark differences in genetic
architecture were reflected in the interconnectedness of gene usage
profiles in the repertoire, specifically that a greater proportion of
genes in the IGK repertoire shared overlapping guQTLs. Given these
observations, we could expect the regulatory landscapes to also be
different. To date, our knowledge of the regulation of V(D)J recombi-
nation in the light chain loci come from studies in mice; however, it is
unlikely that we can extrapolate much detail from these studies, as
these loci show little structural resemblance to those in humans56.
Given the ordered engagement of IGK and IGL genes in the formation
of functional BCRs duringB cell development51,56, it is plausible that the
differences in genetic structure have been shaped by their differing
functional roles. For example, it has been suggested previously that
natural selection has favored the occurrence of inverted genes within
the IGK locus as a means to facilitate repeated rounds of V(D)J
recombination on a given haplotype during receptor editing56. Simi-
larly, more recent work looking at IG locus genetic features across a
range of vertebrate species suggest co-evolution of the light chain
loci57.

Throughout the humangenome,more LDblocks permegabaseof
DNA implies higher recombination rates and haplotype diversity, and
vice-versa58–60. The relatively large stretches of LD and lower density of
common SNVs in IGK may reflect limited meiotic recombination. This
should result in extended blocks of linked coding variants with more
tightly orchestrated regulation of V(D)J recombination and gene usage
profiles. By contrast, smaller LD blocks and a higher density of com-
mon SNVs in IGL are consistent with higher rates of meiotic recombi-
nation and haplotype diversity, which can provide opportunities for a
wide range of potentially advantageous variants to persist within
populations. Furthermore, it could be speculated that the risk of
potentially deleterious variants in IGL is not a major expense to the
overall probability of functional BCR generation as IGK is the initial
source of expressed light chains. Instead, greater IGL haplotype

diversity could both serve as a source of diversity to broaden antigen
recognition in the context of infection and/or provide a greater
breadth of light chains for rescuing autoreactive BCRs. Early studies
from a limited number of individuals showed that autoreactive anti-
bodiesweremore likely to include an IGK chain, but could be rendered
non-autoreactive by swapping in light chains encoded by alternative
genes61. Interestingly, among the genes capable of reducing auto-
reactivity (termed “editors”) in select cases were IGKV3-15, IGLV2-14
and IGLV1-4061; in our cohort, these genes were used at relatively high
frequencies and were not associated with guQTLs (Supplementary
Fig. 9). It is possible that selective pressures across populations have
favored retention and higher usage of these genes, as theymay reduce
the likelihood of autoreactivity.

These data highlight the impacts of germline variation on gene
usage variation in the repertoire, and their underlyingmechanisms.We
argue that the influence of genetics should be considered when
seeking to understand how inter-individual differences in repertoire
composition directly contribute to antigen-driven responses19–22,24,62–67.
Given coding differences between genes, usage variation by default
alters the landscape of available germline encoded residues among
expressed BCRs, which can also bias SHM patterns68. Here, we
demonstrate that guQTLs are also directly linked to amino acid dif-
ferences between alleles of individual genes; thus, while some coding
variants may be present within the genome of an individual, their
frequency within the repertoire is dependent on guQTL genotype.
Taking this a step further, we showed that gene usage also correlated
with variation inCDR3properties, drivenbydirect contributions of 3’V
and 5’ J gene germline-encoded bases to junction amino acids. This is
consistent with observations of CDR3 comparisons between mono-
zygotic twins and unrelated individuals17. The link between guQTLs
and amino acid features among expressed light chain transcripts ele-
vates the likelihood that guQTLs significantly impact the antigen-
binding landscape of expressed Abs.

Together, these findings advance our basic understanding of
repertoire development, illuminating regions of IGK and IGL that not
only regulate gene usage but establish biases in the amino acid
diversity observed among expressed Abs. In combination with our
previous work in the IGH locus, our data lay a foundation for inte-
grating genetic contributions from all three IG loci to establish more
complete and precise models of sequence diversity in the expressed
repertoire. This will be critical for refining our understanding of Ab
repertoire dynamics in health and disease.

Methods
Sample information
PBMCs (n = 177) were procured from STEMCELL Technologies (Van-
couver, Canada). Sample-level demographic information, including
age, biological sex, and ancestry informativemarker (AIM)-determined
ancestry are reported in Supplementary Data 1.

Single-molecule real-time (SMRT) long-read library preparation
and sequencing
DNAwas extracted from ~3–5million PBMCs per donor using theDNA/
RNA co-extraction AllPrep kit (Qiagen, Germantown, MD, USA), and

Fig. 6 | IGK and IGL variants impact CDR3 physicochemical properties in the
naïve Ab repertoire. (A, B) For each CDR3 physicochemical property (x-axis),
mean values were computed for each individual and tested for association (linear
regression) with all common variants in IGK (A) and IGL (B). Barplots show (i) the
number of QTL variants (Bonferroni-corrected) for each property, (ii) the −log10(P
value) for lead variants, and (iii) the number of guQTL genes identified for the lead
CDR3 property QTL variant. Summary statistics are provided in Supplementary
Data 12. C Manhattan plot shows the −log10(P value) for all SNVs in the IGK locus
tested for association with CDR3 aromaticity, with QTLs colored dark red and the

lead QTL labeled. D Boxplot of the mean IGK CDR3 aromaticity with individuals
separated by genotype at the lead QTL. E Boxplots of usages for seven IGK genes
that are guQTLs at the lead CDR3 aromaticity variant (linear regression; P value <
3.7e−5). F BCR sequences that used the indicated V genes were selected from the
Ab repertoire, then mean CDR3 aromaticity of each repertoire subset was com-
puted and plotted with individuals separated by genotype at the lead CDR3 aro-
maticity QTL. Boxplots display the median, 25th percentile, 75th percentile, and
whiskers that extend up to 1.5 times the inter-quartile range (IQR) from the
respective percentiles. Data points outside the whiskers are also plotted.
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genomic DNA was processed using our published “IG-capture” tar-
geted long-read sequencing protocol12–15. Briefly, high molecular
weight DNA (~2.5μg) was sheared to ~15 Kbp using g-tubes (Covaris,
Woburn, MA, USA) and size-selected using Pippin systems (Sage Sci-
ence, Beverly, MA, USA) using the “high pass” protocol to select frag-
ments greater than 5 Kbp. Size-selected DNA was ligated to universal
barcoded adapters and amplified, and small fragments and excess
reagents were removed using 0.7X KAPA Pure beads (Roche, India-
napolis, IN, USA). Individual sampleswere pooled in groups of six prior
to IGK and IGL enrichment using customRocheHyperCapDNAprobes
described previously14,15. Targeted fragments were amplified after
capture to increase total mass for sequencing library construction.

Enriched IGK and IGL libraries were prepared for sequencing
using the SMRTBell Express Template Prep Kit 2.0 (Pacific Biosciences,
Menlo Park, CA, USA) and SMRTBell Enzyme Cleanup Kit 1.0 (Pacific
Biosciences), according to the manufacturer’s protocol. Resulting
SMRTbell libraries were multiplexed in pools of 12 and sequenced
using one SMRT cell 8M on the Sequel IIe system (n = 134) (Pacific
Biosciences) using 2.0 chemistry and 30-hour movies. For Revio
sequencing (n = 43), SMRTbell libraries were pooled in 36-plexes and
sequenced using one SMRT cell 25M on the Revio system (Pacific
Biosciences) using Revio Polymerase Kit v1.0 (PacBio; 102-739-100)
and 30 hour movies. High Fidelity (“HiFi”) intramolecular circular
consensus reads with accuracies >99.9% (Q20) were generated on
instrument and used for all downstream analyses.

IGK and IGL AIRR-seq
AIRR-seq libraries were prepared and sequenced for 164 individuals
(IGK) and 168 individuals (IGL). RNA was extracted from ~3-5 million
PBMCs per donor using the AllPrep DNA/RNA Kit (Qiagen). AIRR-seq
libraries were generated using a 5’ Rapid Amplification of cDNA Ends
(RACE) approach. For IGK and IGL 5’RACE AIRR-seq, libraries were
produced using the SMARTer Human BCR Profiling Kit (Takara Bio,
San Jose, CA, USA), according to the manufacturer’s instructions.
Quality and quantity of individually indexed IGK libraries were deter-
mined using the 2100 Bioanalyzer High Sensitivity DNA Assay Kit
(Agilent, Santa Clara, CA, USA) and IGL libraries with the Qubit 3.0
Fluorometer dsDNA High Sensitivity Assay Kit (Life Technologies,
Carlsbad, CA, USA). Libraries were pooled at 10 nM and sequenced on
the Illumina NextSeq system using 300bp paired-end reads with the
600-cycle NextSeq P1 Reagent Kit (n = 160) or with the 600-cycle
MiSeq Reagent Kit v3 (n = 11) (Illumina, San Diego, CA, USA).

Construction of a custom linear reference assembly
We used our previously described custom linear reference15, which
includes modifications to the IGH12,13 and IGK15 loci to include
sequences not present in the GRCh38 assembly. To include IGL
sequences not present in GRCh38, chromosome 22 was removed and
replaced with the T2T (CHM13v2.0) chromosome 22, including the
IGLV5-39 structural variant (SV, insertion) sequence. In addition,
46,423 bp of sequence (chr22:23315600-23362023) is from a Human
Pangenome Reference Consortium (HPRC) haplotype from sample
HG00621, which includes a 16,093 bp insertion relative to the
CHM13v2.0 reference, reflecting 3 additional copies of the IGLJ-C3
cassette relative to theCHM13v2.0 reference. This reference is publicly
available at https://github.com/Watson-IG/immune_receptor_
genomics/tree/main.

Phased assembly of IGK and IGL
Phased assemblies were generated as described previously15. HiFi
reads were used to generate haplotype-phased de novo (i.e. reference-
agnostic) assemblies using hifiasm69 (v0.18.2-r467) with default para-
meters. For each sample, hifiasm contigs were concatenated into a
FASTA file, then redundant contigs were filtered out using the seqkit
toolkit70 command ‘seqkit rmdup --by-seq <hifiasm_contigs.fasta > ’

(seqkit v2.4.0). Hifiasm contigs were mapped to the custom reference
assembly usingminimap2 (v2.26) with the ‘-x asm20’option. HiFi reads
were also processed using IGenotyper13; the programs “phase” and
“assemble” were run with default parameters to generate phased
contigs and HiFi read alignments to the custom reference.

For each sample, aligned HiFi reads as well as aligned hifiasm-
generated contigs and IGenotyper-generated contigs were viewed in
the Integrative Genomics Viewer (IGV) application71 for manual selec-
tion of phased contigs. Contigs were evaluated for read support from
mapped HiFi reads, and contigs harboring one or more SNVs that
lacked read support were not selected during manual curation. Where
a hifiasmand an IGenotyper contigwere identical throughout a phased
block, the hifiasm contig was selected, as described previously15.
Curated, phased assemblies were aligned to the custom reference
using minimap272 with the ‘-x asm20’ option.

To assess accuracy of manually curated assemblies, personalized
references were first generated by N-masking the IGK (chr2:88837160-
90280100) and IGL (chr22:22378775-23423320) loci of the custom
reference and, for each sample, appending the reference FASTA with
IGK and IGL curated contigs. All HiFi reads from each individual were
aligned to the corresponding personalized reference using minimap2
with the ‘-x map-hifi’ preset; coverage and read length metrics were
extracted from these alignments. Positions in assemblies with > 25% of
aligned HiFi reads mismatching the assembly were identified by par-
sing the output of samtools (v1.17) ‘mpileup’; assembly accuracy was
determined using the formula [total (diploid) bases without a mis-
match/total (diploid) assembly length (bp)] * 100 = % accuracy (Sup-
plementary Data 1). These scripts, including our custom reference
assembly, are available at https://github.com/Watson-IG/wasp.

Identification of IGK and IGL gene alleles
Sequences (alleles) corresponding to V, J, and C exons were obtained
from assembly BAM files using code available at https://github.com/
Watson-IG/wasp; these scripts include metrics of read support from
HiFi reads. Briefly, for each sample, curated IGK and IGL assembly
contigs were appended to our custom reference with the IGK and IGL
loci N-masked to generate a personalized reference FASTA, as descri-
bed above. All HiFi reads from IG-capture for a given individual were
mapped to the personalized reference using minimap2 with the ‘-ax
map-hifi’ preset, then the resulting BAM file was input to samtools
‘mpileup’ with iteration over allele coordinates in the personalized
reference. The outputs of this script are in Supplementary Data 3 (IGK)
and Supplementary Data 4 (IGL), and include a column for total
number of HiFi reads spanning the allele (‘Fully_Spanning_Reads’) and
a column for the number of HiFi reads spanning the allele with 100%
sequence identity (‘Fully_Spanning_Reads_100%_Match’). A complete
description of HiFi read support metrics for alleles is available at
https://vdjbase.org/.

Genetic ancestry
IGenotyper13 was used to call SNVs at ancestry-informative markers
(AIMs) by aligning, phasing, and locally assembling reads at AIM
regions, then directly identifying SNVs from the assembled sequences.
Genetic ancestry was determined using these AIMs and the STRUC-
TURE program73. SNV VCFs were processed to extract AIM-specific
data from IG-Capture libraries using vcftools (v0.1.16; code available at
https://github.com/oscarlr/IGenotyper/tree/master/IGenotyper/
ancestry). Coverage of AIMs was assessed using BAM files and the
pysam (v0.21.0) library, ensuring a minimum read depth threshold for
inclusion. Genotypes were converted into haplotypes by separating
phased alleles, and samples were coded alongside reference popula-
tions from the 1000 Genomes Project. STRUCTURE (v2.3.4) was run
withK = 5, representing five global ancestry groups (European, African,
East Asian, South Asian, and American), using default admixture and
allele frequency models. For each sample, the two highest ancestry
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proportions were identified. If the difference between these two pro-
portions was less than or equal to 5%, the sample was classified as
“Mixed.” Otherwise, the sample was assigned to the ancestry category
with the highest proportion.

Processing AIRR-seq data and calculating gene usage
Paired-end sequences (“R1” and “R2”) were processed using the pRE-
STO/Change-O toolkit74,75. All R1 and R2 reads were trimmed toQ = 20
using the function “FilterSeq.py trimqual”. Constant region (IGKC and
IGLC) primers were identified with an error rate of 0.3 and corre-
sponding chains were recorded in the fastq headers using “MaskPri-
mers align.” The 12 base UMI, located directly after the constant region
primer, was extracted using “MaskPrimers extract.” Annotations
betweenmate pairs, includingUMI barcodes and constant region calls,
were synchronized using PairSeq.py to sort reads into mate pairs and
remove unpaired reads.

UMI groups sharing the same barcode were processed to gen-
erate consensus sequences using the BuildConsensus.py function.
The following criteria were applied: a minimum UMI group size of
one, a maximum mismatch error rate of 10%, and at least 60%
agreement on the constant region call within the group. Reads with
lower-quality consensus sequences (Q < 30) were masked using Fil-
terSeq.pymaskqual. Duplicate counts (“Dupcounts”) were recorded,
and duplicate sequences were collapsed using CollapseSeq.py to
retain one representative sequence per cell, with the total number of
sequences contributing to each consensus recorded as “Con-
scount.” Collapsed consensus sequences supported by fewer than
two contributing reads (Conscount < 2) were discarded using
SplitSeq.py. Samples containing fewer than 100 unique sequences
were excluded from downstream analysis; after filtering, 164 indi-
viduals were included for IGK analyses and 168 individuals were
included for IGL analyses (171 individuals total; Supplementary
Data 1). After processing, the repertoires contained amean of 33,167
unique BCR sequences (IGK) and 13,310 (IGL) (Supplementary
Data 1, Supplementary Fig. 3).

Germline allele designations were assigned to sequences using a
personalized allele database during the IgBLAST step. For each indi-
vidual, IGK and IGL germline allele databases were generated from the
set of alleles identified in genomic assemblies derived from long-read
sequencing. Separate BLAST databases were created for V and J seg-
ments using makeblastdb (v2.5.0). The resulting databases were used
as input for the igblastn function in the Change-O toolkit (v1.3.01)75,
and IgBLAST output files (“Change-O” tables) of unique BCRs were
generated for IGK and IGL separately. This process permitted theore-
tical disambiguation of IGK gene paralogs for individuals wherein the
sequence of each allele of a proximal paralog was distinct from the
sequence of each allele of the distal paralog (results in Supplementary
Data 5). In the case of IGKV1-13 and IGKV1D-13, a subset of the cohort
(n = 104) met this disambiguation criteria and was carried forward to
identify guQTLs for these genes.

Due to sequence identity between IGKV paralog allele sequences,
genes collapsed into a single ambiguous (“ambi”) entity in Change-O
tables included:
1) IGKV1-37 and IGKV1D-37 replaced with IGKV1-37ambi
2) IGKV1-39 and IGKV1D-39 with IGKV1-39ambi
3) IGKV2-40 and IGKV2D-40 with IGKV2-40ambi
4) IGKV1-33 and IGKV1D-33 with IGKV1-33ambi
5) IGKV2-28 and IGKV2D-28 with IGKV2-28ambi

In addition, IGLJ gene calls that corresponded to a IGLJ2 or IGLJ3
cassette (IGLJ2, IGLJ3-1, IGLJ3-2, IGLJ3-3, IGLJ3-4) were collapsed to
“IGLJ2-3ambi”.

Change-O tables of unique BCRs were analyzed using the alaka-
zam (1.3.0) package75. To enrich for antigen-naïve BCRs, only unmu-
tated light chain sequences with 100% identity to the assigned

germline V and J alleles were included in downstream analyses. For
analysis of mutated sequences (i.e. the fraction of sequences enriched
with those containing SHM), sequences with less than 100% identity to
either the germline V or J allele were included. Gene usage was quan-
tified for IGK and IGL light chains using the countGenes function with
the parameters gene = “v_call” and “j_call”, groups = “sample_id”, mode
= “gene”, and genes with a sequence count (seq_count) of at least 10 in
at least one sample were retained. Am× n usagematrix C was created,
where m are the genes and n are the samples. Each value in C repre-
sented usage frequency among all unique (unmutated or mutated)
BCR sequences for a given gene in a given sample.

CDR3 physicochemical properties were computed using the
aminoAcidProperties function75 with options seq = “junction”, trim =
TRUE, label = “cdr3”; resulting values were then averaged across all
sequences within each sample to obtain sample-level means.

Selecting common variants for gene usage QTL analysis
SNVs were genotyped from curated assemblies as described
previously15. Variants were called from assemblies using ‘bcftools
mpileup’ (bcftools v1.15.1) with options ‘-f -B -a QS’, then ‘bcftools call’
with options ‘-m --ploidy 2’. A mutli-sample VCF file was generated
using ‘bcftoolsmerge’with the ‘-mboth’ option.Multiallelic SNVs were
split into biallelic records using the ‘bcftools norm’ command with
options ‘-a -m-’. The VCF file was annotated for V-exon, introns, L-Part1,
RSS sequences (heptamer, nonamer, spacer), were added using
vcfanno76 (v0.3.3) and BED files corresponding to our reference
(available at https://github.com/Watson-IG/immune_receptor_
genomics/). Biallelic SNVs with MAF ≥ 5% were selected using
bcftools viewwith options “-m2 -M2 -v snps -i ‘INFO/MAF> =0.05’” and
used for guQTL analysis.

All SVs in IGKV and IGLV gene regions were genotyped bymanual
inspectionusing IGV71. SVswith aMAF less than0.05were not included
in the guQTL analysis.

Gene usage QTL analysis
Genotypes at common SNVs and SVs were tested for association with
usage using linear regression to determine significance and additional
metrics (e.g., beta coefficients and R2 values) using R (v4.3.1). To adjust
for multiple comparisons, a Bonferroni correction was applied on a
per-gene basis. Pairwise r2 (LD) values were computed using vcftools
‘--geno-r2’77. Variants in complete linkage disequilibrium (LD r2 = 1)
were considered as a single variant during correction, representing
only one association test.

Haplotype block analysis
LD blocks were computed and visualized using “LDBlockShow”39 using
the multi-sample VCF of common SNVs (MAF ≥ 5%) as input,
with options ‘-SeleVar 2 -BlockType 1’ to use normalized linkage
disequilibrium coefficients (D’) as described by described by Gabriel
et al. (2002)40 to determine haplotype blocks. The program was
run using ‘-Region chr2:88837160-90280100’ for IGK and ‘-Region
chr22:22378775-23423320’ for IGL. LD block boundaries, sizes, and
SNVs within blocks are included in Supplementary Data 9. Genes
overlapping LD blocks were identified using bedtools78 ‘intersect’
(bedtools v2.30.0).

Network analysis
Variants significantly associated with IGK and IGL gene usage (after
Bonferroni correction) were compiled to create a set of guQTL
variants for each gene. Pairwise comparisons between genes were
performed to calculate Jaccard similarity indices, defined as the ratio
of shared variants to the total unique variants across the two genes
being compared. Only gene pairs with nonzero similarity (i.e., at
least one shared variant) were included in the analysis. Separate IGK
and IGL network graphs were constructed and visualized using
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igraph79 and ggraph80 (IGL),. In these graphs, nodes represented
individual genes and were positioned using the Fruchterman-
Reingold force-directed algorithm, edges connected pairs of genes
that shared guQTL variants, and edges were labeled to reflect the
number of shared guQTL variants.

Regulatory analysis
ENCODE transcription factor binding site data were obtained from the
UCSC Genome Browser under the group “Regulation,” track “TF
Clusters,” and table “encRegTfbsClustered.”SNVs associatedwith gene
usage were overlapped with this track and enrichment over all SNVs
overlapping each track was calculated using a one-sided Fisher Exact
Test (Supplementary Data 8).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Long-read sequencing data and AIRR-seq datasets generated in this
study have been deposited in the BioProject repository https://www.
ncbi.nlm.nih.gov/bioproject/?term=PRJNA1274485. Previously pub-
lished AIRR-seq datasets are available in the BioProject repository
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA555323. Meta-
data and sequencing summary statistics for this study are provided in
Supplementary Data 1.
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