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Risk factors for mortality in patients with
kidney failure on hemodialysis identified by
proteomic analysis of CRIC and PACE studies

Yue Ren 1, Mark R. Segal2, Tariq Shafi3, Alexander R. Pico4, Min-Gyoung Shin4,
Michela Traglia4, Hongzhe Li 1, Sylvia E. Rosas5, Hernan Rincon Choles 6,
Panduranga S. Rao7, Zeenat Bhat7, Amanda H. Anderson8, Jing Chen9,
Jiang He 10, Steven Sozio 11, Bernard Jaar11, Michelle M. Estrella12, Wei Chen13,
GlennM. Chertow14, Rulan S. Parekh15, Peter Ganz 16,22, Ruth F. Dubin 9,22 &
the CRIC Study Investigators*

More than 50% of patients with kidney failure undergoing maintenance
hemodialysis die within 5 years, a fate unexplained by traditional risk factors.
To identify biological risk factors, we analyze 6287 circulating proteins and
mortality in 893 participants undergoing hemodialysis in the Chronic Renal
Insufficiency Cohort (CRIC) and Predictors of Arrhythmic and Cardiovascular
Risk in End-Stage Renal Disease (PACE) studies. Proteins are measured shortly
after (incident period) and one year after (prevalent period) dialysis initiation.
In CRIC prevalent period, Sushi von Willebrand factor type A EGF and pen-
traxin domain-containing protein 1(SVEP1), R-spondin 4, tetranectin and 24
other proteins attain Bonferroni significance (p < 7 × 10-6). At false discovery
rate<0.05, 184 proteins are significant in CRIC; 123/184 remain significant after
adjustment for covariates including those linked to inflammation. Pathways
related to insulin-like growth factor are prominent. In the pooled CRIC + PACE
cohort, prevalent time period, AUC(95%CI) for a 3-protein model of 5-year
mortality is 0.826 (0.742, 0.896), compared to 0.629 (0.528, 0.722) for a
Cohort Clinical model (p < 0.001). Adding the 3 proteins (SVEP1, R-spondin 4
and tetranectin) to the Cohort Clinical model significantly improves the AUC
(p <0.001). These biomarkers should be validated in future studies and their
roles as potential disease mediators elucidated.

Despite implementation of modern guidelines for dialysis efficiency,
vascular access andmedical management, patients with kidney failure
receiving maintenance hemodialysis continue to suffer exceptionally
high mortality rates out of proportion to age and conventional risk
factors1,2. Patients treated withmaintenance hemodialysis for less than
3 months have a 5-year mortality rate of 60%2,3. Compared to such
‘incident’ patients, ‘prevalent’ patients who have undergone three or

more months of hemodialysis have slightly better survival4. Patients
receivingmaintenance hemodialysis represent a wide spectrum of age
and comorbidities. Many patients expect hemodialysis to provide a
bridge to kidney transplantation, yet only a minority remain healthy
enough to meet typical waitlisting criteria or to survive until a
deceased donor kidney becomes available. Regrettably, trials of dia-
lysis dose5, new drugs for anemia6 and calcimimetics7 have not shown
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clear benefit. More than 50% of deaths on hemodialysis are due to
cardiovascular disease (CVD)8, yet risk factors observed in populations
with normal or near normal kidney function such as dyslipidemia and
obesity have neutral or negative associations with CVD outcomes in
the kidney failure population9; in fact, large trials of HMG-CoA reduc-
tase inhibitors (statins) showed no benefit for patients undergoing
hemodialysis10,11. Antagonists of aldosterone pathways lack the same
therapeutic benefits for patients on dialysis as in other populations,
and risk worsening hyperkalemia12,13. A novel approach is warranted to
identify non-traditional biological risk factors in patients receiving
dialysis.

Clinical risk factors and risk scores for death exist in this popu-
lation, but since they are largely based on non-modifiable factors such
as age and comorbidities, their utility lies in predicting costs of care14

or guiding end-of-life discussions15, rather than identifying individuals
apt to benefit from a particular therapy. Amodified comorbidity index
based on the Charlson Comorbidity Index16 was developed by Liu
et al.17 for use in incident and prevalent patients undergoing hemo-
dialysis, whereby a score >6wasassociatedwith 40%2-year unadjusted
mortality17. Wagner et al. developed a mortality risk score for incident
patients, comprised of comorbidities and routine laboratory
measures18. Several additional risk factors are non-modifiable, such as
reduced residual urine volume19. Partially modifiable risk factors
include markers of malnutrition and inflammation such as lower body
mass index, lower serum albumin and higher C-reactive protein20.
Identification of modifiable risk factors would greatly benefit this
population.

In order to identify biological risk factors for mortality in patients
receiving hemodialysis, we conducted a large-scale proteomics inves-
tigation of cryopreserved plasma samples from participants under-
going maintenance hemodialysis enrolled in the National Institute of
Diabetes and Digestive and Kidney Diseases (NIDDK)-sponsored
Chronic Renal Insufficiency Cohort (CRIC) study, and validated our
findings in participants enrolled in the NIDDK-sponsored Predictors of
Arrhythmic andCardiovascular Risk in End-Stage Renal Disease (PACE)
study. In many different settings, multi-protein risk models predict
clinical outcomes as well as or better than traditional clinical
models21,22 or genetic scores23. In both cohorts, we thusmeasured 6287
proteins with SomaScan V4.1, at the first study visit following hemo-
dialysis initiation and then at a subsequent visit for participants who
remained on hemodialysis one year later, aligning with incident and
prevalent time periods.We prioritized the prevalent time period when
the circulating proteome ismore likely to have achieved a steady state.
Our aims were 1) to rank individual circulating proteins by effect size
and statistical significance for their association with the primary out-
come of mortality; 2) to ascertain whether a change in circulating
protein concentrations predicted mortality; 3) to understand biologi-
cal themes among proteins associated with mortality; and 4) to con-
struct risk models of mortality based on proteins and compare their
performance to clinical models or hybrid clinical-protein models.

Herein, we report the top proteins and biological pathways
associated withmortality, and we show that a 3-protein riskmodel has
superior performance to clinical models in these cohorts.

Results
Characteristics of CRIC and PACE participants
Baseline characteristics for participants from CRIC and PACE are
shown in Supplemental Data 1. In both cohorts, about 60% were male,
and Black participants outnumbered white participants. CRIC partici-
pants were older than PACE participants (median[Interquartile ran-
ge(IQR)] 62[54, 69] vs. 55[48, 63] years), and more CRIC participants
had diabetes (74% vs.59%) or prevalent CVD (67% vs. 29%). In both
cohorts, most participants had kidney failure attributed to diabetes or
hypertension. Fifty-two (13%) of PACE participants had kidney failure
due to glomerulonephritis, whereas glomerulonephritis was not

specifically adjudicated as a cause of kidney failure in CRIC (active
immunosuppression was an exclusion criterion for CRIC enrollment).
Fewer PACE participants had arteriovenous vascular access for
hemodialysis (34% vs. 68%), and PACE participants had higher para-
thyroid hormone (PTH) (median[IQR] 428 [273, 621] pg/ml vs 194 [125,
300] pg/ml). Median[IQR] comorbidity index (without gastrointestinal
disease, which was not available) calculated as a baseline score in CRIC
and PACE were 6 [3, 8] and 4 [3, 6] respectively; scores > 6 correlate
with 40%2-yearmortality in prior studies17. Proteomicswereassayed at
two time points in each cohort. At the first proteomics time point in
CRIC,median[IQR]months ondialysis was 5.7 [3.0, 8.2] and in PACE3.7
[2.7, 5.8]. At the second proteomics time point in CRIC, median[IQR]
months on dialysis 18.5 [15.0, 22.8] and in PACE, 17.0 [15.4, 19.4].

Deaths in CRIC and PACE
All-cause 5-year mortality rates subsequent to study baselines in CRIC
and PACE were 33% and 40%, respectively (where baseline is the first
study visit following hemodialysis initiation, occurring during the
incident time period). Subsequent to the second time point (when
patients had been on hemodialysis ≥1 year, referred to as prevalent
time period), 5-year mortality was virtually identical in CRIC and PACE
(40% and 39%, respectively) and CVD death was higher in CRIC than in
PACE (14% vs. 10%, respectively). In PACE, sudden cardiac deaths
occurred in 7% over 5 years in either time period, and for the current
analyses these events are included in CVD deaths. In CRIC, sudden
cardiac death was not adjudicated; fewer deaths were attributed to
non-cardiovascular causes andmoredeathswere labelled as “unknown
cause” (Supplemental Data 2).

Single proteins associated with mortality in CRIC and PACE
We performed our initial survey using proteins normalized to median
absolute deviation(MAD), as itmay bemore robust for skewed protein
distributions. Both normalization strategies are shown in the Supple-
ment, but for clarity only HR per log2 is reported here. In CRIC, we
observed higher numbers of significant protein associations in the
prevalent compared to the incident time period (184 vs. 80 proteins
significant at false discovery rate(FDR) < 0.05), and in PACE, 68 pro-
teins met criterion for validation for the prevalent time period vs. 48
proteins in the incident time period. These findings motivated us to
prioritize analyses in the prevalent time period; accordingly, we focus
on these results here, while analogous results for proteins measured
during the incident time period are found in Supplemental Data 3–5.

Overall, in CRIC prevalent period, there were 27 proteins sig-
nificant at Bonferroni p < 7 × 10-6 and 184 at FDR <0.05; over half were
inversely associatedwithmortality (Fig. 1 and Supplemental Data 6–8).
In order toprioritize biological risk factors common toCRIC andPACE,
we selected 68 proteins significant at FDR <0.05 in both cohorts, and
among these, we focused on 28proteinswith themost extremehazard
ratios(HR), to highlight in Tables 1 and 2. Sushi von Willebrand factor
type A EGF and pentraxin domain-containing protein 1 (SVEP1) was
directly associated with mortality during the prevalent time period in
both cohorts (p < 7 × 10-6). Three of these proteins are related to
insulin-like growth factor 1(IGF-1): Insulin-like growth factor-binding
protein 7, insulin-like growth factor-binding protein complex acid
labile subunit, and IGF-1.

In order to identify factors most likely to generalize across
demographic subgroups and to represent specific pathophysiology,
we adjusted protein associations for sociodemographics, comorbid-
ities, and markers of malnutrition and/or inflammation. Among 184
proteins significant in CRIC, prevalent time period, at FDR <0.05, 123
proteins were independently associated with mortality at FDR <0.05
after full adjustment (Supplementary Data 9). In Table 3, we show 10
proteins selected from Tables 1 and 2, including those positively
associated with mortality such as SVEP1 and R-spondin 4, and those
negatively associated with mortality such as IGF-1, growth
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differentiation factor 11/8, tetranectin, and Complement C1q tumor
necrosis factor-related protein 3.

Within-subject longitudinal changes in proteins
Overall, absolute and percent within-subject changes in protein levels
during an average 1-year interval were small. In CRIC, themedian [IQR]
absolute change was 11.1 [4.0, 52.3] relative fluorescent units (RFU) per
year, percent change: 1.9% [1.1%, 3.4%] per year. To provide context of
the magnitude of these changes, the split duplicate median [IQR]
aggregate coefficient of variation (CV) was 3.2% [2.4,4.6]; longitudinal
change aggregate CV was 8.8% [6.0,13.7] (Supplementary Data 10). In
PACE, the median[IQR] absolute change was 15.2 [4.6, 51.4] RFU per
year, percent change: 1.9% [0.8%, 4.5%] per year. In CRIC, an increase in
chitinase-3-like protein 1(CHI3L), an inflammatory mediator that has
been proposed as a marker for atherosclerotic CVD24, was directly
associated with mortality at p = 1.2 × 10-6. Changes in insulin-like
growth factor binding proteins (IGFBP) 2 and 5 were associated with
mortality at p <0.01. After adjustment for the protein level at first time
point, these had higher significance: CHI3L p = 2.1 × 10-8, IGFBP2
p = 3.7 × 10-7, IGFBP5 p = 8.8 × 10-7 (Supplementary Data 11). In PACE,
proteins whose change associated with mortality included SVEP1
(p = 1.1 × 10-5) and neuroligin 1 (p = 6.9 × 10-6), and after adjustment for
first protein level, SVEP1 (p = 4.8 × 10-7) and neuroligin 1 (p = 2.7 × 10-6)
(Supplementary Data 12). There were 24 proteins whose change in
both cohorts was associated in concordant direction of HR above or
below 1 at p <0.05 (Supplementary Data 13).

Functional enrichment of proteins associated with mortality
In order to better understand biological processes underlying the
excessive mortality rates in this population, we mapped individual
proteins to biological networks using functional enrichment. We
selected 144 proteins significant at FDR<0.1 in both cohorts during the
prevalent time period, and performed over-representation analyses
using Gene Ontology, Reactome, Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Wikipathways. Other than inflammatory

pathways, the Reactome pathway related to IGF-1 uptake and transport
had themost extreme level of statistical significance (FDRq= 3.2× 10-10.)
Top KEGG terms include the JAK-STAT (FDR q= 1.2 × 10-5) and HIF-1
pathways (FDR q= 2 × 10-4) (Supplementary Data 14). We then queried
this same list of 144 proteins in the Search Tool for the Retrieval of
Interacting Genes/Proteins(STRING) interaction database. Of the 154
proteins returned, the largest network was comprised of 55 proteins,
including 8 IGF-related proteins and 24 inflammatory proteins. In Fig. 2
we show that multiple biochemical interactions converge on IGF-1.

Risk models for five-year mortality developed in CRIC,
prevalent period
In order to gauge replication for clinical and protein models, we first
developed riskmodels usingCRIC for derivation andPACE for external
validation. We based the Comorbidity Model on the modified
Comorbidity Index published by Liu et al.17 that was developed and
validated in >200,000 incident and prevalent patients undergoing
hemodialysis. The published score includes diabetes, myocardial
infarction, stroke, peripheral arterial disease, chronic obstructive
pulmonary disease, arrhythmia, malignancy, gastrointestinal bleeding
and heart failure. We did not include gastrointestinal bleeding in our
model because it was not adjudicated in CRIC or PACE. Our Clinical
Modelwasbased on themodel publishedbyWagner et al.18, developed
and validated in >5000 patients. Their model is comprised of age, sex,
self-reported race, diabetes, etiology of kidney failure, CVD, diabetes x
CVD, smoking, and serum creatinine, hemoglobin, albumin, and cal-
cium. We did not include serum creatinine due to missingness of the
variable in PACE and a non-significant coefficient for creatinine within
the model in CRIC. Complete methods relevant to Comorbidity and
Clinical models are found in Online Methods. To treat the clinical and
proteomics models similarly, we refit variables in the Comorbidity and
Clinical models to CRIC, and these models and refit coefficients were
validated in PACE. Variables in the multi-protein and protein-clinical
hybridmodelswere selectedusing elastic net inCRIC, then coefficients
were fit to CRIC using a traditional Cox model and validated in PACE.
Elastic net algorithms are described in Online Methods.

Model discrimination and calibration for models developed in
CRIC prevalent period are summarized in Fig. 3. In the CRIC 20%
testing set, Area Under the Curves(AUC) (95%CI) were similar for the
Comorbidity (0.599 (0.48, 0.73)) and Clinical models (0.590(0.47,
0.71)). AUC (95%CI) for a 14-protein model was 0.695 (0.58, 0.81) and
for a hybrid model (age + 10 proteins) 0.710 (0.59, 0.82), both
numerically higher than Comorbidity and Clinical models without
reaching significance of p <0.05. In PACE, protein and hybrid models
validated with higher AUCs than in CRIC (0.709 (0.64, 0.77) and 0.727
(0.66, 0.79), respectively.) In PACE, AUCs for these models were both
significantly better than the Comorbidity model, which had an AUC
(95%CI) of 0.552 (0.48, 0.65) (p < 0.001), but similar to the Clinical
model, 0.694(0.62, 0.76). Variables and coefficients for models fit to
CRIC are listed in Supplementary Data 15 and 16.

Risk models for five-year mortality developed in the pooled
cohort, prevalent period
While highmortality rates lent sufficient statistical power to analyses in
separate cohorts, we nevertheless recognized that analyses would be
facilitated by a larger sample size in a pooled cohort of CRIC + PACE.
For these analyseswe refit the variables in theComorbidity andClinical
models to the 80% training set of the pooled cohort and tested dis-
crimination in 20%. Additionally, we devised aCohort ClinicalModel as
a benchmark comparison for proteinmodels.We considered variables
included in the Comorbidity or Clinical Model, as well as variables
associated with mortality at p < 0.05 in either cohort (diastolic blood
pressure(DBP), body mass index(BMI), PTH, LDL-C, triglycerides, total
cholesterol, and phosphate) and other plausible factors (HDL-C, sys-
tolic blood pressure(SBP), months since starting dialysis, vascular

Fig. 1 | Proteins associated with mortality in CRIC. Volcano plot illustrates pro-
teins associated with mortality in 436 CRIC participants with kidney failure on
hemodialysis ≥1 year, using 14-year follow-up, log2 normalization, no adjustment
for covariates. There are 27 proteins significant at p < 7 × 10-6 and 184 at FDR<0.05.
GDF growth differentiation factor, SVEP1:Sushi von Willebrand factor type A EGF
and pentraxin domain-containing protein 1, IGFALS insulin-like growth factor-
bindingprotein complex acid labile subunit, C7complement componentC7, TGFB1
transforming growth factor-β1. Associations tested with Cox HR and two-sided
p-values.
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dialysis access) and allowed elastic net to choose predictive variables
in the incident or prevalent periods. In order to finalize the Cohort
Clinical, Protein, andHybrid Clinical-Proteinmodels, we ran elastic net
in 50 random 80% splits within the original 80% training set and
selected factors that recurred in ≥30 of 50 splits and then evaluated
AUCs in the original 20% testing set.

For the prevalent time period, the final protein model was com-
prised of only three proteins: SVEP1, R-spondin 4, and Tetranectin
(AUC(95%CI) 0.826 (0.74, 0.90). The Cohort Clinical model included
age, log(serum albumin), hemoglobin, log(time since dialysis initia-
tion), triglycerides, BMI, log(PTH), phosphate (AUC(95%CI) 0.629
(0.53, 0.72)). The AUC for the 3-protein model was higher than AUCs
for all three clinical models (p < 0.001 for all). The AUC(95%CI) for
Cohort Clinical model combined with the 3 proteins was 0.778 (0.70,
0.85), significantly better than Cohort Clinical model alone (p < 0.001)
(Fig. 3). We allowed elastic net to choose among all proteins, and all
clinical factors in the three models, and the resulting best risk model
included the 3 proteins in prior model and tissue inhibitor of metal-
loproteinase 1, but no clinical factors (AUC(95%CI) 0.825 (0.74, 0.90)).
Calibration for the 3-protein model is shown in Fig. 4, (p = 0.67).
Variables and coefficients for pooled cohortmodels are enumerated in
Supplementary Data 15 and 17.

Sensitivity analyses and alternate time horizons for the three-
protein model
Using coefficients fit to 5-year mortality, prevalent period, we eval-
uated 5-year mortality AUCs for the 3-protein model in various sub-
groups of the pooled cohort (all AUCs calculated in 20% test sets).
AUC(95%CI) for incident period was 0.795 (0.73, 0.86), and while
performance was similar in subgroups of age, race, prevalent CVD,
diabetes, andComorbidity Index, the AUC(95%CI) was lower inwomen
(0.631 (0.48, 0.78) (p = 0.04)) (Table 4). AUCs(95%CI) for the final
3-protein model of 5-year mortality evaluated separately in CRIC and
PACE testing sets, prevalent period, were 0.839 (0.74,0.92) for CRIC,
and 0.855 (0.73,0.96) for PACE. For incident period, testing sets,
AUC(95%CI)were0.808 (0.71,0.89) for CRIC, and0.777 (0.68, 0.87) for
PACE. For 2-year mortality, pooled cohort, prevalent period, AUC(95%
CI) was 0.823 (0.71, 0.92). For 10-year mortality (CRIC, prevalent per-
iod), the AUC(95%CI) was 0.827 (0.74, 0.90).

Risk models for mortality developed for incident time period
When risk models were trained during the incident period, we
observed that clinical factors had higher or equivalent prognostic
utility compared to proteins. For example, in CRIC, AUC(95%) for age
alone was 0.730(0.60, 0.84). AUC(95%CI) for the Comorbidity model
was 0.730(0.61, 0.84), and the Clinical model was 0.725 (0.61, 0.83).
Replication in PACE for the Comorbidity model yielded an AUC of
0.512(0.46, 0.58) and Clinical model 0.673 (0.62, 0.73). In the pooled
cohort we implemented training of models over 50 splits, yielding a
Cohort Clinical model that included BMI, log(serum albumin), phos-
phate, hemoglobin, PTH, log(calcium) (AUC(95%CI) 0.611(0.54, 0.68)),
and a 5-protein model (R-spondin 4, Villin 1, Interleukin 8, Nicotina-
mide N-methyltransferase, T-complex protein 1 subunit epsilon)
(AUC(95%CI) 0.658 (0.58, 0.74)). Variables and coefficients of the
models developed or fit in the incident period are shown in Supple-
mentary Data 15–17.

Discussion
We present what is, to our knowledge, the largest proteomic study
performed to date in patients with kidney failure undergoing hemo-
dialysis, incorporating 9.8 million protein measures performed during
incident and prevalent time periods relative to hemodialysis initiation,
in 893 study participants in two separate cohort studies sponsored by
the National Institutes of Health(NIH). Proteomics assayed in CRIC
during the prevalent period, when patients had been on hemodialysisTa
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≥1 year, yielded 184 proteins significant at FDR <0.05, of which 68
replicated in PACE. SVEP1, R-spondin 4 and tetranectin were among 27
proteins that reached Bonferroni significance of p < 7 × 10-6 in CRIC
over 14-year follow-up, and a risk model for 5-year mortality of these
three proteins yielded higher discrimination than models comprised
of clinical factors.

Many proteins showed inverse associations with death. Circulat-
ing IGF-1 concentrations were inversely associated with mortality
whereas IGFBPs were directly associated with mortality in both
cohorts, for both incident and prevalent time periods (Tables 1 and 2
and Supplementary Data 5). IGF-1 may play roles in multiple biological
networks represented among proteins associated with mortality

(Fig. 2). IGF-1, also known as somatomedin C, mediates the effects of
growth hormone. It has widespread effects, including promoting
skeletal muscle growth25 and an anti-inflammatory effect on the
endothelium, potentially protecting against atherosclerosis26. In
patients with chronic kidney disease (CKD), lower circulating IGF-1
concentrations may be due to decreased clearance of IGF-1 binding
proteins, which lowers the levels of bioavailable IGF-1; this functional
deficiency contributes to several complications of CKD, including
growth failure in children27.

SVEP1, R-spondin 4 and tetranectin have not previously been
considered protein biomarkers in studies of patients undergoing
hemodialysis. SVEP1 was directly associated with mortality in both

Table 3 | Multivariable adjusted associations for proteins in CRIC and PACE participants

CRIC (N =436) PACE (N = 230)
Protein name HR(95%CI) per log2 p HR(95%CI) per log2 p

Phospholipid transfer protein 2.25 (1.49, 3.39) 1.4 × 10−4 3.46 (1.49, 8.05) 0.0053

R-spondin 4 2.01 (1.40, 2.90) 1.8 × 10−4 1.76 (0.90, 3.44) 0.10

Sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein
1:Sushi 15-18

1.64 (1.27, 2.13) 2.2 × 10−4 1.84 (1.20, 2.82) 0.0067

Bone sialoprotein 2 1.56 (1.21, 2.0) 7.4 × 10−4 2.45 (1.37, 4.37) 0.0035

Insulin-like growth factor I 0.69 (0.52, 0.92) 0.011 0.73 (0.48, 1.12) 0.15

Proactivator polypeptide-like 1 0.64 (0.49, 0.82) 5.5 × 10−5 0.55 (0.37, 0.81) 0.0041

Growth/differentiation factor 11/8 0.59 (0.42, 0.85) 0.0046 0.49 (0.23, 1.02) 0.062

Carbonyl reductase [NADPH] 3 0.55 (0.43, 0.71) 7.0 × 10−6 0.63 (0.41, 0.96) 0.036

Tetranectin 0.42 (0.26, 0.67) 3.7 × 10−4 0.47 (0.17, 1.33) 0.16

Complement C1q tumor necrosis factor-related protein 3 0.38 (0.24, 0.59) 3.6 × 10−5 0.38 (0.16, 0.89) 0.028

Multivariable analyses for 10 proteins that remained significant at FDR <0.05 in CRIC, in participants undergoing hemodialysis ≥1 year. Proteins were selected from among ‘top hit’ proteins shown in
Table 1, all ofwhichmeet FDR <0.05 inbothcohortsbeforemultivariable adjustment. Fully adjustedmodel includes age, sex, race,diabetes, cardiovascular disease, history of hypertension, tobacco,
dialysis vintage, systolic bloodpressure, diastolic bloodpressure, bodymass index, calcium, hemoglobin, parathyroid hormone, albumin, low-density lipoprotein, triglycerides, total cholesterol and
C-reactive protein. Associations tested with Cox HR and two-sided p-values.
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other than the 144 list of ‘top hits,’ there is no corresponding HR value and it is

shaded in grey. Node size reflects the degree, or number of connections between
each protein and other proteins. Proteins related to insulin-like growth factor(IGF)
have a yellow border, and inflammation-related proteins a black border. Protein
names are listed in Supplementary 14.
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cohorts during incident and prevalent periods (p < 7 × 10-6 for both
cohorts in the prevalent period.) In PACE analyses, between two pro-
teomic time points, an increase in SVEP1 was associated withmortality
at p = 4.6 × 10-8. SVEP1 is an extracellular matrix protein found in vas-
cular smoothmuscle that has been shown inMendelian randomization
and animal studies to be atherogenic28. Its role in atherogenesis is not
entirely understood, but may involve platelet activation29. SVEP1 may
mediate mortality in patients with kidney failure by promoting ather-
osclerotic CVD. R-spondin 4 was directly associated with mortality in
both cohorts, prevalent period (CRIC unadjusted HR per log2 2.5,
p = 2.5 × 10-10, adjusted HR 2.0, p = 1.8 × 10-4; PACE unadjusted HR 2.5
per log2, p = 5 × 10-4.) R-spondins 1-4 are secreted activators of theWnt/
β-catenin pathway that induces atherosclerosis30. Tetranectin was
inversely associated with mortality in both cohorts, both time periods
(CRIC prevalent unadjusted HR per log2 0.29, p = 2.5 × 10-10, adjusted
HR 0.42 p = 3.7 × 10-4; PACE unadjusted HR 0.29 per log2, p = 0.004).
Tetranectin is a plasminogen binding protein involved in fibrinolysis. It
is detected inmyocardium, andmayplay a role inmyocardialfibrosis31.
Circulating concentrations were inversely associated with risk of car-
diovascular outcomes in the Framingham Heart Study32.

Other than CVD, sepsis is the most common cause of death in
patients with kidney failure on hemodialysis8. Patients are at high risk
of infection, not only due to use of tunneled catheters for dialysis
access, but also relative immune deficiency33. Notably, in our func-
tional enrichment analysis, twohighly significant GeneOntology terms
were Regulation of immune system process (FDR q = 1.8 × 10-10) and
Regulation of T cell activation (FDR q = 3.1 × 10-9) (Supplementary
Data 14). Such pathways may have roles in both CVD and infection,
since inflammatory mediators produced as a protective reaction to
infection could conceivably have adverse effects such as reducing

levels of potentially protective factors such as IGF-125 or hastening
atherosclerosis34.

For 5-year mortality in the pooled cohort, prevalent period, the
sparse 3-protein model had significantly better discrimination
(AUC(95%CI) 0.826 (0.742, 0.896) than the cohort clinicalmodel (AUC
(95%CI) 0.629 (0.528, 0.722) (p < 0.001)). Adding the 3 proteins to the
cohort clinical model improved the AUC(95%CI) to 0.778 (0.70, 0.85).
The difference in AUC of 0.15 exceeds smaller improvements to AUCs
observed in studies where, for example, an increase of 0.05 was con-
sidered clinically relevant35. The model’s performance was similar for
incident period: AUC(95%CI) of 0.795 (0.725, 0.857). The advantage of
creating sparse protein models by performing iterative stability ana-
lyses on proteomic datasets has been shown in recent studies36,37.
While these results should be interpreted with caution, given this
3-proteinmodel was developed in the pooled cohort and has not been
externally validated, we are encouraged by the excellent performance
of proteomic modeling. First, preliminary multi-protein risk models
had even higher AUCs in PACE validation than in CRIC derivation,
despite differences in age and comorbidities between the two cohorts.
Furthermore, the 3-protein model developed in the pooled cohort
performed equally well in CRIC and PACE. Nonetheless, the model’s
generalizability should be tested in external cohorts in future studies.
Second, the higher AUC of protein models in the prevalent cohorts
suggests theymight best serve patients who have survived at least one
year on hemodialysis. One might hypothesize that protein con-
centrations have higher variability shortly after hemodialysis initiation
due to fluid removal, downstream changes in response to infection-
related complications, procedures to establish vascular access, and
treatment of anemia and disorders of bone and mineral metabolism.
Reducedor absent residual urine volume is a risk factor formortality in

Fig. 3 | Clinical andprotein riskmodels for time todeathwithin5 years.Data are
presented as AUC +/- standard error for risk models predicting time to death
occurring within 5-years in participants who have undergone hemodialysis ≥ 1
year(prevalent time period). Top panel: Variable selection and model fitting were
performed in CRIC 80% training set, and models were validated in PACE(whole
cohort). CRIC AUCs are shown for the 20% testing set (N = 87). CRIC calibration
N = 349, PACE N= 230. Bottom panel: Variable selection and model fitting were
performed in pooled cohort 80% training set. AUCs are shown for the pooled
cohort 20% testing set (N= 133). Calibration was performed in the training sets:
N = 530 for clinical models, N = 533 for protein models. The Comorbidity model is
based on the index developed by Liu et al.17 and includes diabetes, myocardial
infarction, stroke, peripheral arterial disease, chronic obstructive pulmonary

disease, arrhythmia, malignancy, gastrointestinal bleeding and heart failure. The
Clinicalmodel is basedon themodel developed byWagner et al.18 and includes age,
sex, self-reported race, diabetes, etiology of kidney failure, CVD, diabetes x CVD,
smoking, and serum creatinine, hemoglobin, albumin, and calcium. The Cohort
Clinical was developed by screening comorbidity and other clinical variables in the
pooled cohort, and includes age, log(serum albumin), hemoglobin, log(time since
dialysis initiation), triglycerides, BMI, log(PTH), phosphate. The 3-protein model
includes SVEP1, R-spondin 4 and tetranectin. Model coefficients are listed in Sup-
plementary Data 15–17. One-sided p-values were obtained with paired boot-
strapping t-tests. P-values < 0.001 indicate that, in the 1000 bootstrap replicates,
the model AUC exceeded the comparator. Source data are provided as a Source
Data file.
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this population19 and also a physiological determinant for low mole-
cular weight proteins. Since residual urine volume is minimal in most
patients after one year on hemodialysis, this could have reduced
physiological heterogeneity during the prevalent period. While the
AUC for the 3-protein model was highest in the prevalent period, it is
notable that in the pooled cohorts, incident time period, the 3-protein

model yielded an AUC(95%CI) of 0.795 (0.725, 0.857). If models are
developed in larger cohorts, there is potential to optimize protein or
hybrid models for incident as well as the prevalent time periods. The
subgroup analyses of the 3-protein model suggest diminished dis-
crimination in women. Although our subgroup analysis had few
women, stratification by self-reported sex should be considered if the
model is tested in larger cohorts.

We propose that protein models could be developed and vali-
dated in external cohorts as potentially modifiable risk stratification
tools, which are currently not available in this population. As com-
pared to static factors such as age, sex, or most comorbid conditions,
proteins are more likely to vary in response to patient’s diet38,
medications39, or adherence to dialysis. The participants in the highest
deciles shown in Fig. 4, with >80% risk of dying over 5 years, could be
selected for closer monitoring, alternate dialysis regimens or trials of
new therapies. The nephrologist couldmonitor the patient’s risk score
longitudinally and show whether better adherence has lowered the
patient’s risk of death; such information could be used as tool to
motivate patients to adhere to recommended strategies. If evidence of
pathogenicity for certain proteins is shown in future studies, clearance
of such proteins during hemodialysis could be desirable, but would
depend on the proteins’ molecular weight and protein binding. While
conventional hemodialysis permits clearance of small molecular
weight proteins with low protein binding, hemodiafiltration removes
middle weight molecules, and thus could remove smaller proteins
<50 kDa listed in Tables 1 and 2. Future studies could establishwhether
hemodiafiltration removes specific injurious proteins more efficiently
than hemodialysis, or if maneuvers such as ultrapure dialysate or high-
volume hemofiltration influence a protein risk score. It is possible that
a protein-based risk model could then be used to ascertain which
patients would likely benefit from hemodiafiltration rather than con-
ventional hemodialysis.

This observational study does not support causal inferences
about the proteins’ effects on disease processes. While a significant
hazard ratio in this type of analysis could reveal a causal factor, it could
also reflect a compensatory or confounding process. Nevertheless, it is
notable that several proteins highlighted here have been studied in
other populations, and some have established or experimental drug
ligands. A query in the Therapeutic Target Database returned 3
approved, 16 clinical trial and 2 preclinical drugs for IGF-140. IGFBPs
bind circulating IGF-1, and their roles in CVD are under
investigation41–43. Neuroligin 1 (aka neuregulin) emerged in the long-
itudinal analyses in PACE, in that higher Neuroligin 1 was associated
with death at p = 3.0 × 10-6. This protein has homologous regions with
epidermal growth factor, and the NRG1β variant is thought to be
protective against atherosclerosis, cardiac remodeling, and possibly
arrhythmia, the latter effect via ErbB receptors influencing potassium
channels44. Neucardin, a recombinant Neuroligin fragment has been
fast-tracked by the FDA as a heart failure therapy (https://clinicaltrials.
gov/study/ NCT05949801), and a small molecule ligand is in
development45. Overall, 13 proteins among our topprotein biomarkers
have established or experimental drug ligands (Supplementary
Data 18).

Our study has many strengths. CRIC and PACE are prospective
observational studies funded by theNIHwith excellent phenotyping of
the participants initiated on hemodialysis. The studies are dis-
tinguished by the care with which blood samples were collected and
meticulous collection of clinical data and outcomes, which undoubt-
edly contribute to the high statistical significance and fidelity of pro-
tein associations between CRIC and PACE. The heterogeneity between
CRIC and PACE is also a strength, representing the diversity of patients
undergoing maintenance hemodialysis and augmenting general-
izability of results. Our previously published quality control studies of
assay and within-subject variability46, coupled with the excellent vali-
dation in the current analyses, support validity of our findings. A

Fig. 4 | Three-protein risk model for 5-year mortality in the pooled cohort.
Deciles of predicted risk are plotted alongside observed risk in the full pooled
cohort (CRIC + PACE, N = 655), for the 3-protein model predicting time to death
occurring within 5-years, among participants who had already survived ≥1 year on
dialysis (prevalent timeperiod). Calibrationp =0.673. Sourcedata are providedasa
Source Data file.

Table 4 | Subgroup analyses for 3-protein risk model in the
pooled cohort

20% testing set, 5-year mortality

Time period N Events AUC(95%CI)

Incident 179 68 0.795
(0.725, 0.857)

Prevalent 133 68 0.826
(0.742, 0.896)

Prevalent period
subgroups

p

Age ≤61 years 67 24 0.795 (0.68,0.90) 0.093

Age > 61 years 66 44 0.678 (0.54,0.80)

Male 80 42 0.795 (0.69,0.88) 0.039

Female 53 26 0.631 (0.48,0.78)

Black race 80 38 0.704 (0.58,0.80) 0.17

Non-Black race 53 30 0.787 (0.65,0.90)

CVD 72 41 0.741 (0.61,0.85) 0.48

No CVD 61 27 0.736 (0.59,0.86)

Diabetes 97 52 0.711 (0.60,0.81) 0.22

No Diabetes 36 16 0.784 (0.61,0.92)

Comorbidity index < 6 82 36 0.703 (0.58,0.81) 0.21

Comorbidity index ≥6 51 32 0.773 (0.65,0.89)

The optimal risk model for time to death occurring within 5 years included 3 proteins (SVEP1,
R-spondin 4 and Tetranectin). Retaining coefficients fit to Visit 2 (prevalent period) 80% training
set, we tested the model using protein measures from Visit 1 (incident period), and in Visit 2
subgroups such asmedian age. AUC(95%CI) are calculated from the 20% testing sets. P-value is
one-sided.

Article https://doi.org/10.1038/s41467-025-66763-z

Nature Communications |        (2025) 16:11689 8

https://clinicaltrials.gov/study/
https://clinicaltrials.gov/study/
www.nature.com/naturecommunications


unique perspective is gained by fitting each clinical and proteinmodel
to the derivation cohort and performing external validation, facilitat-
ing a head-to-head comparison of clinical and protein models.

Limitations and future directions
We also acknowledge limitations. The final 3-protein risk model for
5-year mortality was developed in the pooled cohort, and we currently
lack a source for external validation. This model would need to be
externally validated to show whether its superiority to clinical models
is consistent in other populations. Since both CRIC and PACE study
visits were conducted on non-dialysis days, dialysis-related data are
sparse (i.e., Kt/Vurea, hours of dialysis prescribed, residual urine
volume, erythropoietin stimulating agent dose). Volume status ascer-
tained using bioimpedance, ultrafiltration volume, and/or interdialytic
weight gain were not available and thus we could not evaluate the role
of volume status on the proteome or clinical risk models. We realize
that incorporating time-varying anthropometrics and clinical labs may
improve prognostic utility of clinical data47; however, we focused on
single time point risk factors because they are more practical for
clinicians. High mortality rates contributed statistical power to the
analyses, but the relatively small sample sizes limited sub-group ana-
lyses. We did not analyze cause of death, which limits speculation
regarding the pathobiology of proteins for specific disease processes;
moreover, causal effects cannot be inferred from this observational
study. The effect of a hemodialysis procedure on the circulating pro-
teome, and a parallel investigation of patients on peritoneal dialysis,
were beyond the scope of thismanuscript and should be the subject of
future studies.

In conclusion, these analyses demonstrate the capacity for large-
scale proteomics to identify numerous new biomarkers and potential
mediators of mortality in patients undergoing maintenance hemo-
dialysis. Particularly in the prevalent time period, multi-protein risk
models of 5-year mortality demonstrate better performance than
clinicalmodels. Future studies are needed for external validationof the
final protein model and should additionally elucidate the extent to
which predictive proteins may cause disease and whether they can be
modified by medications or dialysis procedure.

Methods
Ethics statement
The CRIC and PACE studies were approved by the Institutional Review
Boards of the participating centers and the research was conducted in
accordance with the principles of the Declaration of Helsinki. All study
participants provided written informed consent. For these analyses,
Principal Investigator Dubin obtained additional IRB approval at UT
Southwestern Medical Center. All study participants provided written
informed consent that included use of their data for analyses
reported here.

Participants
The Chronic Renal Insufficiency Cohort (CRIC) study was designed to
investigate risk factors for progression of chronic kidney disease
(CKD), incident CVD, and overall mortality in persons with CKD48.
Between 2003 and 2008, the CRIC study enrolled a total of 3,939
ethnically diverse men and women at 13 sites affiliated with 7 clinical
centers, ages 21–74 years, with eGFR 20–70ml/min/1.73m2 by the
simplified (4-variable)Modification of Diet inRenal Disease equation48.
Eligibility criteria and baseline characteristics of the CRIC cohort have
been published48,49. The CRIC study was approved by the Institutional
Review Boards of the participating centers and the research was con-
ducted in accordancewith theprinciples of theDeclaration ofHelsinki.
Participantswere compensated, and compensationwasdeterminedby
study sites. Between 2004 and 2020, 1123 CRIC participants reached
kidney failure and started dialysis. Among these participants, 251
(22.4%) had no further study visits and another 232 (20.7%) provided

no blood samples after starting dialysis. Due to the potential inter-
ference of lupus antibodies with aptamers (communication from
SomaLogic), we excluded 10 (0.9%) CRIC participants with systemic
lupus erythematosus. For the present analysis, we included 630 CRIC
participants with kidney failure receiving maintenance dialysis, enrol-
led fromall 13 sites at 16 different study visits (SupplementaryData 19).
We ran SomaScan V4.1 on plasma EDTA samples drawn at the first
study visit following initiation of dialysis; we assayed samples on 421
(66.8%) participants who remained on hemodialysis amean of 1.1 ± 0.8
years following the first proteomics sample. In order to harmonize
CRIC and PACE on dialysis vintage (time since initiation of dialysis), we
categorizedCRIC blood samples in either the incident timeperiod (i.e.,
<1 year, n = 483) or prevalent time period ( ≥ 1 year, n = 436). Ninety-
seven percent of CRIC participants had hemodialysis thrice weekly;
based on post-hoc interviewswith CRIC study sites, approximately 80%
blood samples were drawn on a non-dialysis day, (with the remainder
drawn on the dialysis day prior to initiation of the hemodialysis pro-
cedure). Seventy-five percent of CRIC participants were fasting at the
time of blood draw. Blood was promptly centrifuged and sent on dry
ice to the Central Lab at University of Pennsylvania where it was ali-
quoted and stored at -80oC.

Predictors of Arrhythmic and Cardiovascular Risk in End-Stage
Renal Disease (PACE) was designed to study risk factors for sudden
cardiac death in patients with kidney failure who had recently been
started on hemodialysis. PACE enrolled participants from 27 dialysis
units in the Baltimore area; therewere four annual study visits over the
course of 2008–2012. Participants were ≥18 years old, English-speak-
ing, and had initiated thrice weekly in-center hemodialysis fewer than
six months earlier. Exclusion criteria included cancer, presence of
pacemaker or automatic implantable cardioverter defibrillator, and
other criteria previously described50. Information on glomerulone-
phritis, but not specifically lupus, was collected in PACE. We assayed
SomaScan 4.1 on plasma EDTA samples from 418 participants at Visit 1
and 229 participants from Visit 2 (separated by mean (SD) 1.1 (0.2)
years). Ninety-nine percent of PACE participants had hemodialysis
thrice weekly; PACE blood samples were collected on a non-dialysis
day, specifically 73% were collected one day after, 18% two days after,
6% three days after, and 3% four days after the last hemodialysis ses-
sion. Participants fasted for blood draws. Plasma tubes were cen-
trifuged immediately and stored in a -20oC freezer; within 2–4 hours,
samples were aliquoted and transferred to a -80oC freezer.

SomaScan assay and quality control
SomaScan is an assay based on modified aptamers, which are che-
mically modified single strands of deoxyribonucleic acid ~40
nucleotides long, as binding reagents for target proteins51–56. Mod-
ified aptamers bind to proteinswith high affinity similar to antibodies
(lower limit of detection 10-15 moles per liter.)51,53,54 “Pull-down” stu-
dies, in which the aptamer-protein complexes were isolated and the
identities of the bound proteins were verified by targeted mass
spectrometry and gel electrophoresis, have been performed for 920
proteins among 1305 proteins in a previous version of the assay55.
These studies showed that >95% of aptamers correctly targeted the
intended proteins (for those proteins in concentrations sufficient to
be detected by mass spectrometry). Samples on the SomaScan assay
are run at three different dilutions to assay each analyte within its
linear range of concentrations. Assay results are quantified on a
hybridization microarray and reported in relative fluorescent units
(RFU). SomaLogic has procedures for data calibration, standardiza-
tion and internal controls, typical of microarray technologies.
SomaLogic normalizes the entire protein dataset using Adaptive
Normalization by Maximum Likelihood (ANML) to remove unwanted
biases in the assay. ANML is an iterative procedure that adjusts values
for analytes that fall outside expected measurements from a refer-
ence distribution46.
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The SomaScan V4.1 menu includes 7596 aptamers. We excluded
308 aptamers paired to non-human proteins, and 117 incompletely
characterized investigational aptamers. Circulating concentrations of
numerous analytes are 2- to 10-fold higher in patients with kidney
failure compared to those without kidney disease. We excluded about
0.4% of aptamers (32 for CRIC, 31 for PACE) that saturated the
SomaScan assay due to high concentrations. We included split dupli-
cates of CRIC samples in CRIC batches to allow for quality control.
Therewere four proteins with intra-assay CV > 50% in these duplicates,
and these were excluded from CRIC and PACE analyses. Given that
some proteins are measured by two or more aptamers, we analyzed
7135 aptamers (6287 unique proteins) in CRIC, and 7140 aptamers
(6291 unique proteins) in PACE. Proteins included in the SomaScan
V4.1 menu, and the reasons we excluded any protein, are listed in
Supplementary Data 20. SomaScan intra-assay CVs from plasma of
healthy individuals are reported as ≤5%57,58. We previously published a
quality control study of proteins in the SomaScan 4.0 platform46 (4607
unique proteins) in plasma samples of 40 participants of the Cardiac,
Endothelial Function and Arterial Stiffness in End-Stage Renal Disease
(CERES) study. Median [IQR] intra-assay CV was 2.4% [1.8%, 3.4%].
Median[IQR] inter-assay CV was evaluated by inserting CERES blinded,
duplicate samples in batches of CRIC and PACE samples run approxi-
mately onemonth apart, and was 7.4% [4.6%, 13.1%]. In CERES samples,
short-termwithin-subject CV over oneweekwas 5.8% [3.4%, 9.7%]. Also
using CERES data, we explored the ANML data format versus raw
formatted protein data for 1) assay variability and 2) protein fold
change in thosewhodied versus survived over 2.5 years. Technical and
short-termbiological variability in paired samples were lower when we
used ANML-formatted data, but fold-change in survivors was mini-
mally affected by ANML format46. We chose to use ANML formatted
data for the current analyses inCRIC andPACE to facilitate comparison
to other studies. In the present study we also analyzed intra- and inter-
assay CVs for the 2298 proteins in the Somascan 4.1 that were not in
version 4.0: median intra-assay CV was 3.3% and inter-assay CV 7.9%.

Study outcomes and censoring
In CRIC, outcome events were reported at 6-month intervals, and the
specific event dates were confirmed by adjudication of medical
records. Deaths were ascertained from next of kin, death certificates,
obituaries, hospital records, the Social Security Death Master File, and
the National Death Index. Mortality outcomes for this analysis were
adjudicated through May 202059. In CRIC, survival time was censored
for kidney transplantation (N = 94 participants for time starting from
first visit). Participants were queried about dialysis modality at each
study visit, and those who had changed to peritoneal dialysis were not
included in the samples from the first or second time point. However,
dialysis modality was not specifically documented on the dates of
clinical outcomes.

In PACE, all-cause mortality was ascertained using reports from
dialysis units confirmed with Centers for Medicare and Medicaid
Services Form 2746. Outcomes for the current study were adjudi-
cated through May 2014. In PACE, survival time was censored at
kidney transplantation (N = 66 for time starting from first visit) or
change to peritoneal dialysis (N = 19 during time starting from
first visit).

Covariate definitions
In CRIC, sociodemographic data were obtained at baseline using self-
reported questionnaires, including self-reported sex, self-reported
race/ethnicity, and smoking status. Comorbidity data by self-report
were updated at each study visit. Diabetes mellitus was defined by a
fasting glucose of ≥126mg/dL or the use of insulin or oral hypogly-
cemic medications. Hypertension was defined by a systolic blood
pressure ≥140mm Hg, diastolic blood pressure ≥90mm Hg, or the
use of antihypertensivemedications. Prevalent or new onset CVDwas

assessed at each study visit (including study visits for patients who
had initiated dialysis for the current analysis) by a self-reported his-
tory of prior myocardial infarction, coronary revascularization, heart
failure, stroke, or peripheral artery disease. Body mass index was
calculated using measured height and weight and expressed in
kilograms per meter squared. Serum lipids and phosphate were
measured at study baseline (concurrent with proteomic assays dur-
ing the incident time period), at CRIC Central Lab specifically for the
current study.

Statistical analysis
Baseline characteristics and protein normalization. Continuous
values of participants’ baseline characteristics were summarized as
median[IQR]. We utilized SomaScan protein values measured in rela-
tive fluorescent units that had been normalized using ANML, with
subsequent median absolute deviation (MAD)-based standardization
and Winsorizing (outlier clipping) at the median ± 5 MAD, as we have
previously published22. For a data set, x1, x2, x3, . . . , xn, the MAD is
defined as the median of the absolute deviation from the data’s med-
ian: MAD =median( | xi - xmedian | ), where i = 1, 2, 3, . . . ,n, and xmedian is
the median of the data set. For each protein, we first capped the
extreme values +/-5 xMAD and then standardized it by subtracting the
median and dividing by the MAD.

Imputation for missing clinical or laboratory variables. We per-
formed multiple imputation in most instances of missing variables,
which are listed herein as (%missing at incident time point, %missing
at prevalent time point). We applied multiple imputation using
chained equations as implemented in the R package mice. Five
imputed datasets were created with synthesized estimates and
attendant standard errors obtained via Rubin’s pooling method. For
CRIC, multiply imputed variables were SBP (4%, 6%), diastolic blood
pressure (DBP) (5%, 7%), phosphorus (0%, 52%), hemoglobin (6%, 2%),
calcium (4%, 1%), albumin (4%, 1%), while for PACE multiply imputed
variables were SBP (8%, 11%), DBP (8%, 11%), body mass index (1%,
11%), as well as laboratory markers that were missing in 12% of
patients at the prevalent time point in PACE (PTH, phosphorus,
hemoglobin, calcium, serum albumin.) Imputation for missing
C-reactive protein (CRP) in CRIC (99%, 97%) and PACE (8%, 98%) was
performed using a regression model developed in PACE participants
possessing both aptamer and traditional assays. (PACE rho for
CRP = 0.89) In CRIC, PTH (78%, 84%) was based on a regression
model developed in CRIC participants with both aptamer and tradi-
tional PTH assay. (CRIC rho for PTH= 0.80). Lipids (low-density
lipoprotein (LDL-C), high-density lipoprotein (HDL-C), triglycerides,
total cholesterol) were missing in a majority of participants at 2nd

time points for both cohorts: CRIC (1%, 66%) and PACE (8%, 98%). We
performed an elastic net regression on all SomaScan proteins sepa-
rately in CRIC and PACE for samples with aptamers and measured
lipids, and then utilized the elastic net model to calculate imputed
lipid values for missing values in the respective cohorts. Scatterplots
for aptamer-based values and traditional assay values of PTH, CRP
and lipids are shown in the Supplementary Data 21. For missing
chronic obstructive pulmonary disease (COPD) or malignancy status
in the modified CI, we used the modal value from corresponding
visit. For missing COPD or malignancy status in the modified CI, we
used the modal value from corresponding visit. These were imple-
mented in CRIC,missing COPD (1%, 3%), andmalignancy (1%, 2%); and
in PACE missing COPD (2%, 2%), and malignancy (0.48%, 2%). Hybrid
clinical-proteinmodels were developed using elastic net, which is not
amenable to multiply imputed variables. These hybrid models were
developed on datasets utilizing the median value at corresponding
visit for hemoglobin, albumin and calcium, which were missing in
<5% of participants, except the PACE second visit at which these were
missing in 12% of participants.
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Reliable imputation was not feasible for the following variables,
and we did not utilize them in the analyses. For CRIC, these included:
Kt/Vurea (55%, 65%); arteriovenous fistula or graft versus tunneled
catheter for hemodialysis access (14%, 11%), use of erythropoiesis sti-
mulating agents (49%, 59%), heart rate (32%, 30%). For PACE, these
included: serum creatinine concentration (20%, 100%), arteriovenous
fistula or graft versus tunneled catheter for hemodialysis access (1%,
100%); hemodialysis session frequency(1%, 100%); Kt/Vurea (7%, 13%);
erythropoiesis stimulating agents use (3%, 11%).

Single protein associations with mortality. The Cox proportional
hazards regression model was used to assess the association between
individual proteins and survival time.We chose to select ‘tophits’ from
among the protein associations (Hazard Ratio (HR) per MAD) with a
false discovery rate obtained via the Benjamini-Hochberg method)
threshold of FDR <0.0560,61. Top hits are presented as HR per log2, a
more widely used standardization that facilitates interpretation of
effect size. Proteins which also achieve Bonferroni-corrected sig-
nificance (p < 7.0 × 10-6 after adjusting for ~7000 tests) are indicated.
For 184 proteins measured during the prevalent time period in CRIC
meeting FDR <0.05, we performed multivariable adjustment with a
model comprised of age, sex, race, diabetes, CVD, history of hyper-
tension, tobacco use, dialysis vintage, SBP, DBP, BMI, calcium, hemo-
globin, PTH, albumin, LDL-C, triglycerides, total cholesterol and CRP.
We included covariates that were associated with mortality in CRIC at
p < 0.05, with the following exceptions: we included SBP, and dialysis
vintage because of biological plausibility; and we included diabetes,
hemoglobin and calciumdue to associations observed in PACE but not
CRIC. We analyzed change in protein between first and second time
points in association with deaths occurring after proteomics time
point 2, as HR per annual change in RFU, and HR per annual percent
change, each presented with and without adjustment for level of
protein as first time point.

Functional enrichment and network analysis. To better understand
biological pathways represented by our ‘top hit’ proteins, we per-
formed functional enrichment for 144 proteins measured during the
prevalent time period that replicated at FDR <0.1 in both cohorts.
First, we applied over-representation analysis (ORA) using the data-
bases of Gene Ontology (GO), Reactome and KEGG. ORA is used to
determine the proportion of proteins within a particular GO term (a
biological pathway typically comprised of >5 gene names) that are
found among the group of 144 ‘top hit’ proteins, and compare this
proportion to the proportion that would be found using the back-
ground of all proteinsmeasured by SomaScan. For a given protein that
was measured by two or more aptamers, we employed the aptamer
measurement with the largest effect size. For a given aptamer that was
annotated by multiple UniProt identifiers, we used the first
identifier62–64. GO biological process terms were ranked using Hyper-
geometric distribution with statistical correction as implemented in
the R package, clusterProfiler65.

Next, we investigated biological interactions between proteins
included in the set of 144 proteins. Starting with 144 proteins, we
utilized the Search Tool for the Retrieval of Interacting Genes/Pro-
teins(STRING) interaction database using stringApp66 or Cytoscape67

and used an interaction score cutoff of 0.8, allowing 10 indirectly
connected neighboring proteins to reconstruct a STRING network68.
Applying these criteria, we found 154 proteins in the STRING data-
base, with the largest network consisting of 55 proteins. We then
used the largest network to perform enrichment analysis, to inves-
tigate functional consistency between networked subsets of
proteins.

ClinicalModels ofMortalityWe formulated threeClinicalModels: a
refit Comorbidity, refit Clinical, and refit Cohort-specific Clinical
model. We based the Comorbidity model on the modified

Comorbidity Index published by Liu et al.17. In the published index,
comorbidities are scored on a point system as diabetes (1), myocardial
infarction (1), cerebrovascular attack (2), peripheral arterial disease (2),
chronic obstructive pulmonary disease (2), arrhythmia (2), malignancy
(2), gastrointestinal bleeding (2) and heart failure(3). We did not
include gastrointestinal bleeding in our model because it was not
adjudicated in CRIC or PACE. We used atrial fibrillation instead of
generalized arrhythmia. The Clinical model was based on the model
published by Wagner et al.18, comprised of age, sex, designated race,
diabetes, etiology of kidney failure, CVD, diabetes xCVD, smoking, and
serumcreatinine, hemoglobin, albumin, and calcium. Serumcreatinine
was missing in 98% of PACE participants at the second time point. We
explored its contribution to risk prediction when integrated into a
model comprised of variables listed above, refit to CRIC. The β for
serum creatinine was non-significant (p > 0.7) for both incident and
prevalent time periods. The Area Under the Curve (AUC) (95%CI) in a
model with or without creatinine were: 0.724 (0.610, 0.829) vs 0.725
(0.613, 0.830), incident time period; 0.590 (0.470, 0.707) vs 0.590
(0.470, 0.706), prevalent time period. Due to its negligible contribu-
tion to the risk model in CRIC and high missingness in PACE, we
excluded serum creatinine from the Clinical model. In the pooled
cohort, we devised a Cohort Clinical Model as a benchmark compar-
ison for protein models. We made a list of variables included in
Comorbidity or Clinical Model, as well as variables associated with
mortality at p < 0.05 in either cohort (smoking, DBP, BMI, PTH, LDL-C,
triglycerides, total cholesterol, and phosphate) and other plausible
factors (HDL-C, SBP, months since starting dialysis, vascular dialysis
access) and allowed elastic net to choose predictive variables in the
incident or prevalent periods. In order to make fair comparisons with
the protein models that were developed in these cohorts, our
Comorbidity and Clinical models were fit models to the derivation
cohort (80% testing set in CRIC, or 80% testing set in pooled cohort),
and tested AUCs in the 20% testing sets. The variables and coefficients
are listed in Supplementary Data 15.

Multi-protein risk models. We developed multi-protein and hybrid
clinical factor-protein risk models for the primary outcome, 5-year
mortality, and compared their predictive performance to Comor-
bidity, Clinical and Cohort Clinical models. We built hybrid models
by allowing all clinical factors in the threemodels to compete with all
measured proteins. Risk models were trained in a random partition
of 80% of the CRIC participants and tested in the remaining 20%. We
then validated the model in the full PACE cohort for the corre-
sponding incident or prevalent time period. In a companion analysis,
we pooled CRIC and PACE and split the pooled cohort into 80%/20%
for training and testingmodels. For the pooled analyses, we added an
indicator variable to identify the origin cohort forcing it into the
model in one instance and allowing it to compete with clinical vari-
ables and proteins in another. Our frontline technique for developing
protein risk prediction models was elastic-net Cox regression which
combines ridge (L2) and Least Absolute Shrinkage and Selection
Operator (L1) penalties. The relative contributions of the two
penalties are controlled by a mixing parameter α which we set to 0.5
for balance. The shrinkage (regularization) parameter λ which con-
trols model complexity (the number of included proteins) was
determined by 10-fold cross validation and the “1 standard error
rule”. After the final selection of proteins, to reduce bias in estimated
regression coefficients69, we refit the selected features for the elastic-
net model in another Cox regression, as previously published70. We
performed model fitting using the R package glmnet, and fit protein
models in the 80% training sets and tested the models in the 20%
testing sets. AUCs for risk models were compared using paired
bootstrapped t-tests with one-sided p-values71, and p < 0.05 was
deemed statistically significant. Due to the small sample available in
the testing sets, we assessed calibration in the training set using a

Article https://doi.org/10.1038/s41467-025-66763-z

Nature Communications |        (2025) 16:11689 11

www.nature.com/naturecommunications


model-based test that can accommodate survival endpoints in
addition to continuous and binary outcomes72. We conducted sta-
bility analyses of our elastic net models to ensure that results were
not overly dependent on the specific training / test set partition
deployed. This process involved repeating the entire elastic-net
procedure on five alternate random partitions into training and
testing sets. Additionally, in the pooled cohort, to exclude factors
with minimal contribution to the model, we performed stability
analyses for the Cohort Clinical Model, the Protein model, and the
Hybrid model, by applying Cox model elastic net to 50 different
random splits of the original 80% training set, reserving the original
20% set to test model discrimination. The final version of each of
these three models in the pooled cohort includes clinical or protein
risk factors that were selected in ≥30 of 50 splits. Variables and
coefficients for protein models are listed in Supplementary
Data 16 and 17.

External validation.We validated in PACE those proteins that, inCRIC,
were associated with mortality in full follow-up time at FDR <0.05 in
unadjusted analyses. We designated significant validation in PACE as
FDR <0.05 in the context of the number of proteins tested. Individual
protein associations and multi-protein risk models were validated in
the corresponding incident or prevalent time period in PACE, full
cohort. We conducted statistical analyses using R, version 4.2.2
(RStudio, Inc., Boston, MA. URL http://www.rstudio.com/), with the
packages of glmnet (version4.1-8), survival (version 3.5-0), survivalROC
(version 1.0.3.1), survcomp (version 1.48.0), tidyverse (version 1.3.2),
magrittr (version 2.0.3), tableone (version 0.13.2), mice (ver-
sion 3.15.0).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The CRIC data included in these analyses will be available to approved
requestors in the future in theNIDDKCentral Repository and atdbGaP.
Prior to the availability of data in the repositories, requests can be
made to the CRIC Study group by contacting the CRIC Scientific and
Data Coordinating Center at cri-projmgmt@lists.upenn.edu. Appro-
priate regulatory and scientific approvals are required. The data are
not publicly available due to individual-level informed consent
restrictions. The CRIC Study group will typically respond to requests
within 1 week, but the timeframe for providing data will vary
depending on the timeline for completion of a Data Use Agreement
between Penn and the receiving institution. If at the time of the data
request, the data are available through a federal repository, the
requestor will be referred to the appropriate repository to submit a
data request. The PACEdata included in these analyses are not publicly
available due to individual-level informed consent restrictions.
Requests for PACE data may be sent to Principal Investigator Rulan
Parekh, MD, Rulan.Parekh@wchospital.ca or administrative assistant,
Andrea.Verdugo@wchospital.ca. Requests for PACEdata accesswill be
addressed with 1–2 weeks and data access will require a data use
agreement. Raw proteomics data generated for these analyses of CRIC
and PACE participants are not deposited in a public repository due to
individual-level informed consent restrictions in place for these
cohorts. The results generated in this study are provided in the Sup-
plementary Information and Source Data files. A portion of the data
reported here has been supplied by the United States Renal Data
System (USRDS). The interpretationand reportingof thesedata are the
responsibility of the author(s) and in no way should be seen as an
official policyor interpretationof theU.S. government. Sourcedata are
provided with this paper.
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