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Quiescence (reversible cell-cycle arrest) and senescence (irreversible arrest)
are challenging to distinguish due to a lack of specific biomarkers, yet both
arise simultaneously after chemotherapy. While senescence suppresses
tumors by limiting proliferation and recruiting the immune system, quiescent
cancer cells evade future therapies and may resume proliferation. Here, we
pair time-lapse imaging of cell-cycle dynamics with single-cell RNA sequencing
after etoposide treatment to differentiate these states, linking heterogeneous
cell-cycle phenotypes to the transcriptomic landscape. We identify diverse
senescent types (senotypes) and link them to two arrest pathways — a gradual
path arising after a standard mitosis-to-GO transition, and an alternative direct
path driven by a mitotic slip. Using pseudotime trajectory analysis, we find that

senescent phenotypes begin to manifest early and gradually along the first
trajectory, even in shallow quiescent cells. These data support a model
wherein, following chemotherapy, quiescence and senescence exist on a
continuum of cell-cycle withdrawal at a transcriptome-wide level.

The cellular decision to proliferate or withdraw from the cell cycle is
essential for maintaining tissue health and homeostasis. When this
decision goes awry, it results in diseases of hypo-proliferation, such as
aging, or hyper-proliferation, such as cancer. Despite its importance,
the molecular details of cell-cycle withdrawal are not fully understood.
Quiescence is a state of transient and reversible cell-cycle withdrawal
that occurs in response to low levels of DNA damage or lack of mito-
gens or nutrients'. Senescence is a state of irreversible cell-cycle
withdrawal wherein cells remain metabolically active and viable but
never divide again®’. Senescence has a normal, physiological role in
development, but also occurs in response to sublethal DNA damage or
stress’. This arrest is initially triggered and maintained by the p53/p21
and Rb/pl6 signaling axes>** and is accompanied by many cellular
changes, including increases in cell size, upregulation of autophagy,
changes in chromatin, and the secretion of pro-inflammatory and pro-
proliferation proteins called the senescence-associated secretory
phenotype (SASP)*¢5,

Therapy-induced senescence (TIS) is a permanent cell-cycle
withdrawal induced by exposure to radiation or chemotherapeutic
drugs like etoposide and doxorubicin®'°. In the context of cancer, TIS
has been identified as an alternative therapeutic strategy to cell death
since these cells are irreversibly arrested, preventing the proliferation
of damaged premalignant cells and initiating immune clearance
through the SASP*". There is still debate about TIS as an end goal for
therapies because some work suggests that cells may be able to evade
TIS, remaining dormant for a time before returning to the cell cycle ™.
Therefore, understanding the molecular relationship between cells
that are transiently quiescent and cells that are senescent is critically
important.

Studying the relationship between these arrested states is chal-
lenging due to the lack of distinct, consistent, and specific
biomarkers®”, and because measuring irreversible arrest in hetero-
geneous populations requires single-cell, time-lapse data to define the
ground-truth senescent cells. To overcome this, we recently used
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single-cell time-lapse microscopy and a live-cell CDK2-activity reporter
to track each cell's cumulative cell-cycle withdrawal duration across
thousands of single cells recovering from etoposide, oxidative stress,
or ionizing radiation’. This approach distinguished irreversibly arres-
ted senescent cells from slow-cycling cells that spend long periods of
time in quiescence between cell cycles and showed that both fates
arise from the same treatment. By correlating each cell’'s withdrawal
duration with the intensity of eight canonical senescence markers, we
found that both quiescent and senescent cells express these eight
markers with a graded intensity that reflects each cell’s duration of cell-
cycle withdrawal. These findings suggested that chemotherapy-
induced cell-cycle withdrawal may be a graded continuum rather
than a binary decision between quiescence and senescence. However,
an open question following this work is whether binary markers of
quiescence vs. senescence might nevertheless exist, and whether these
eight graded markers are representative of changes across the entire
transcriptome. Put another way, at the transcriptome level, it is unclear
whether quiescent and senescent states exist as distinct islands within
a population of heterogeneous cells, or whether they exist on a con-
tinuum connected by a bridge.

Here, we address these questions by measuring the changing
transcriptome in senescent cells by performing live-cell time-lapse
microscopy in parallel with single-cell RNA sequencing in MCF10A
mammary epithelial cells following chemotherapy. This approach
avoids reliance on imperfect senescence markers because it uses long-
term cell-cycle withdrawal to define senescent cells and enables
transcriptome-wide analysis of gene expression changes. We uncov-
ered a gradient of cellular states corresponding to varying probabilities
of cell-cycle re-entry, supporting the quiescence-senescence con-
tinuum model across the transcriptome. Notably, quiescent cells lacked
a unique signature and instead exhibited attenuated senescence-
associated gene expression changes. Additionally, within a single
population, we identified distinct senescence types, or senotypes”,
with distinct gene expression profiles that resulted from different paths
to senescence. This work contributes to a growing body of research
that aims to fully understand the molecular characteristics associated
with reversible and irreversible cell-cycle withdrawal.

Results

Establishment of populations with increasing fractions of
senescent cells

To study senescent cells at the transcriptomic level, it is essential to
identify experimental conditions that yield a homogeneous senescent
population as measured by a ground-truth assessment of senescence:
the total lack of proliferation over time. To test whether we could alter
the proportion of quiescent and senescent cells, we treated MCF10A
cells with increasing doses of the chemotherapy, etoposide, a widely
used inducer of senescence that causes DNA damage and cell-cycle
arrest’®. After treating cells for 24 h, we washed off the etoposide and
allowed cells to recover in drug-free media for 6 days (Fig. 1A). On day
6, cells were fixed and stained for phospho-Rb, a marker of cell-cycle
commitment” (Fig. 1B). Higher etoposide doses resulted in fewer
cycling (pRb"e" cells. In parallel, we used time-lapse microscopy to
track MCF10A cells expressing a DNA helicase B (DHB)-based CDK2-
activity reporter® (Fig. S1A) and an H2B-mTurquoise nuclear marker
from day 6 to day 10 post-etoposide. CDK2 activity turns on at cell-
cycle commitment, rises throughout the cell cycle, and turns off when
cells withdraw from the cell cycle into quiescence or senescence.
Higher etoposide doses produced a greater proportion of CDK2'*"
non-cycling cells over the 4-day imaging period (Fig. 1C, D). We plotted
the distribution of cell-cycle withdrawal durations, measured as time
spent CDK2'*" (CDK2 activity <0.8) for each etoposide dose and
categorized cells as fast-cycling, slow-cycling, or predicted-senescent
based on CDK2"" durations (Figs. 1E, S1B, C). At 2.5 uM and 10 uM, we
observed a mix of all three categories, while 25uM predominantly

resulted in senescent cells. We confirmed the expected expression of
canonical senescent markers using immunofluorescent (IF) imaging
immediately following the live-cell movies (Fig. SID). Notably, while
the average expression of canonical senescence biomarkers increased
with duration of cell-cycle arrest, all cell fates showed heterogeneous
expression of these markers across the population, including
predicted-senescent cells. These results agreed with our previous
findings that none of these biomarkers were uniquely expressed in
senescent cells after etoposide or H,0,'°. We further confirmed these
findings in MCF7 and RPE-hTERT cells, showing that senescent cells
had an increased but heterogeneous expression of canonical senes-
cence biomarkers following etoposide (Fig. S2A-C). These results
showed that etoposide dose modulated the proportion of predicted-
senescent cells as well as their expression of canonical senescent
markers.

Transcriptomic profiling of etoposide-treated cells reveals two
paths to senescence and diverse senescent types

To understand the transcriptional changes that occurred as cells
move between the different cell-cycle fates, we performed live-cell
imaging and also sequenced MCF10A cells 6 d after release froma24 h
treatment with 2.5 uM, 10 uM, or 25 uM etoposide (Figs. 2A, S3A). Cells
with low read counts and genes detected were filtered out (Fig. S3B,
see methods), resulting in 6454, 5913, 5361, and 4878 cells profiled for
UT, 2.5uM, 10 uM, and 25 uM etoposide, respectively.

We used Uniform Manifold Approximation and Projection
(UMAP)* to project all cells together in the same 2-dimensional space
(Fig. 2B). Untreated cells formed the lower island of the UMAP, while
the three different doses of etoposide-treated cells formed the upper
island. Cells treated with 25 uM etoposide occupied a region on the far-
left side of the upper island, whereas 2.5 uM and 10 uM cells were dis-
persed along the upper island (Figs. 2B left, S3C).

We used Seurat®” to categorize cells as either Gl, S, or G2/M
based on the expression of cell-cycle phase-specific genes (Figs. 2B
middle, S3D; see methods). Seurat does not distinguish between Gl-
phase cells that are committed to the cell cycle and GO-phase quies-
cent cells. Since Seurat labels all cells that are not expressing S or G2/M
markers as Gl, this group contains both quiescent and senescent cells.
As expected based on our live-cell imaging, 25 uM etoposide cells that
we knew were predominantly senescent were labeled as G1, whereas
2.5uM and 10 pM cells were labeled as a mix of G1, S, and G2/M (Fig. 2B
middle).

Notably, untreated S and G2/M cells were transcriptionally dis-
tinct from S and G2/M etoposide-treated cells and occupied different
regions of the UMAP (Fig. 2B middle), despite having similar CDK2
activities when measured by live-cell imaging (Fig. 1C). This suggested
that while some cells could evade the proliferative arrest from lower
etoposide doses and continue to cycle, they retained an altered tran-
scriptional state even 6d after the drug was washed off. Cells that
cycled after etoposide treatment showed increased expression of
protein chaperones (Fig. S3E) when compared to untreated cycling
cells. This could be a possible adaptive mechanism allowing them to
cycle with residual etoposide-induced stress, and a potential weakness
that could be exploited to target cycling drug-tolerant persister cells.

We clustered cells by similarity and measured the number of cells
in each cluster from each etoposide dose (Fig. 2B right, C). Optimal
clustering resolution was selected based on cluster stability across
various parameters (principal components and clustering resolutions)
and agreement with known marker gene expression (detailed in
methods and S3F-H). Most clusters in the treated island of the UMAP
were composed of cells from more than one dose of etoposide,
reflecting the heterogeneity in cell-cycle fate we saw in our live-cell
imaging for 2.5 uM and 10 uM etoposide. 25 uM cells fell into 5 different
clusters on the left side of the UMAP, suggesting transcriptional het-
erogeneity within the predicted-senescent cells themselves.
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Fig. 1| Increasing the dose of etoposide increases the proportion of predicted-
senescent cells. A Experimental timeline. BMCF10A cells were treated with 2.5 uM,
10 pM, or 25 uM etoposide for 24 h, followed by a 6 d drug-free recovery, at which
point cells were stained for phospho-Rb (5807/811) to measure the fraction of
cycling (pRb"") and non-cycling (pRb") cells, visualized as a histogram. Log refers
to natural log, and UT refers to untreated throughout this work. C MCF10A cells
expressing the CDK2-activity sensor were treated as in A. Cells were filmed by
fluorescent time-lapse microscopy for 96 h, from 6 d-10 d post-etoposide. Each row
in the heatmap represents a single-cell trace, colored according to the colormap
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where yellow indicates high CDK2 activity and progression through the cell cycle,
and dark blue indicates cell-cycle withdrawal into quiescence or senescence.

D Percent of cells that have entered the cell cycle (CDK2 activity > 0.8) at each
frame of the movie. UT refers to untreated cells (C). E Distributions of CDK2'°" times
(CDK?2 activity < 0.8) for the movie in C. Shading represents the CDK2"" times
corresponding to fast-cycling, slow-cycling, and non-cycling categories. Through-
out the paper, the number of cells plotted and the number of biological replicates
can be found in Supplementary Data 2.

We identified clusters 9, 12, 4, and 10 as predicted-senescent
clusters because they 1) consisted primarily of 25 uM cells that we knew
from time-lapse imaging to be senescent, and 2) showed increasing
cluster occupancy as a function of etoposide dose (S3C). The nearby
cluster 7 contained a mix of 2.5uM, 10 uM, and 25 uM etoposide cells,
suggesting that it represented a quiescent-senescent transition cluster.
Cluster 3 was also comprised of cells with a GO/G1 label but had almost
no 25 uM cells and connected to the cycling cells, likely representing a
cluster of quiescent cells.

Importantly, we found two different bridges between the
etoposide-treated S/G2/M cycling cells and the senescent region of the
UMAP (Fig. 2B). Clusters 3 and 7 made up the dominant bridge and
included primarily 2.5 uM and 10 uM etoposide cells; cluster 10 formed
a less populated alternative bridge and primarily consisted of 25uM
cells (arrows in Fig. 2B right). We hypothesized that these two paths
represented, respectively, a standard GO/G1 arrest after completion of

mitosis and a mitotic slip following G2 arrest. A mitotic slip causes a
cell to enter a GO/Gl-like state without mitosis and yields a population
of cells with 4 N DNA content®* and elevated levels of the CDK inhi-
bitor, p21%. To validate that the cluster 10 bridge indeed represented
cells that had undergone a mitotic slip, we co-stained cells for pRb and
DNA content at each dose*”. We detected both 2N DNA content/
pRb" cells (standard completion of mitosis) and an increasing pro-
portion of 4N DNA content/pRb™ (mitotic slippage) cells with
increasing etoposide dose (Fig. 2D). Identification of cells that have
experienced a mitotic slip via scRNA-seq was notable because this
represented a direct path from cycling (clusters 1 and 5) to senescence
(cluster 10), without transiting through quiescence. We also confirmed
the existence of 4N and >4 N arrested cells in both RPE-hTERT and
MCF7 released from etoposide (Figs. S2, S4A).

We next visualized the expression of ten canonical senescence
biomarkers across all cells (Fig. 2E). While specific marker expression
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patterns varied, the mRNA levels of canonical markers of senescence
failed to specifically identify senescent cells, with the exception of
CDKNIA (p21), which showed a marked but graded increase in all
senescent clusters. To determine if this was unique to etoposide
treatment in MCF10A cells, we tested this same panel of markers in two
published single-cell RNA sequencing data sets of cells induced to
senescence. The first data set from Wechter et al. included WI38

fibroblasts aged to replicative senescence (RS), treated with 50 pM
etoposide, or exposed to ionizing radiation (IR)*. The second data set
from Chan et al. included WI38 cells at multiple population doublings,
including RS”. Both data sets revealed heterogeneous expression
patterns for the panel of markers, mirroring our dataset (Fig. S4B-E).
For some markers, such as GLBI mRNA, a lack of correlation between
senescence and GLBI mRNA levels is expected since this gene encodes
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Fig. 2 | Transcriptomic profiling of etoposide-treated cells. A Experimental
timeline. B UMAP projection of scRNA-seq results with cells colored by etoposide
dose (left), cell-cycle phase according to Seurat (middle), and clustered by gene
expression similarity, where arrows depict two paths or bridges to senescence
(right). C Proportion of each cluster in B by etoposide dose, and key with inter-
pretation of the cell-cycle state of each cluster. D MCF10A cells were treated with
2.5uM, 10 uM, or 25 pM etoposide for 24 h, followed by a 6 d drug-free recovery.
Cells were stained for phospho-Rb (S807/811) and Hoechst for DNA content and

plotted as a density scatter where yellow indicates a large number of cells in that
region. The same number of cells is plotted for each dose. Red box indicates the
4 N/pRb"" cells, a hallmark of cells that have experienced a mitotic slip. Number of
cells and replicates in Supplementary Data 2. E UMAP projection colored by log-
normalized expression for 10 canonically used senescent markers. F UMAP pro-
jection colored by log-normalized and scaled expression for two top single-gene
markers (ranked by log,FC * (-log(p.adjusted))) from cluster 7 (quiescence-senes-
cence transition cluster) and clusters 4, 9, 12, and 10 (senescent clusters).

senescence-associated [3-galactosidase, a marker typically assessed by
an enzymatic activity assay. Interestingly, other markers, such as /L6,
performed better in the RS WI38 cells than in MCF10A, suggesting that
some markers may be more effective in specific contexts.

While multiple studies of senescence heterogeneity in different
cell types or senescence induction methods exist, the extent to which
individual senescent cells within the same population are tran-
scriptionally different is less well studied. To determine the specific
differences in expression profiles of our senescent clusters, we per-
formed differential gene expression (DGE) analysis on each senescent
cluster compared to all other cells. DGE analysis revealed specifically
upregulated markers for cluster 7, cluster 4, cluster 9, and cluster 12
that could be used to identify these clusters (Figs. 2F, S5A right).
Cluster 9 was particularly well marked by upregulation of PURPL, a p53-
induced IncRNA with emerging roles in senescence and cancer®?, and
by GRID2, an ionotropic receptor involved in glutamate transfer.
Cluster 12 was particularly well marked by increased expression of
many IncRNAs. However, cluster 10 genes showed less cluster-specific
upregulation. This analysis thus revealed several genes whose dis-
tinctive expression can be used to flag the senescent clusters we
identified. By contrast, the top downregulated genes were much less
specific to each cluster and instead were downregulated in GO/Gl1 cells
generally (Fig. S5A left, B).

Pathway analysis reveals biological processes altered in
senescent cells

We next performed gene set enrichment analysis (GSEA)* using the
Gene Ontology (GO) Biological Processes gene set annotations™ (see
methods) to determine if the most differentially expressed (DE) genes
for each senescent cluster belonged to a shared pathway. We found
multiple significantly (p.adjusted <0.05) upregulated and down-
regulated pathways for clusters 7, 4, 9, and 10 (Figs. 3A, S6). Cluster 12
had no significant up- or downregulated pathways, since many of the
cluster 12 DE genes were IncRNAs (S5A) and not annotated in specific
pathways.

We plotted the gene ratio and normalized enrichment score (NES)
for the top 10 (ranked by p.adjusted) up- and down-regulated path-
ways for each cluster, ignoring cell-cycle related pathways that we
expected to change (Fig. 3B, S6). Many pathways had similar GO terms
and overlapping leading-edge genes, so we grouped them based on
general cellular process (see methods, Supplementary Data 1, Fig. 3C,
S6B). As expected, we found that pathways related to cell-cycle pro-
gression were the largest group of down-regulated pathways for all
senescent clusters (Figs. 3C, S6B). Interestingly, the second and third
largest groups of down-regulated pathways were related to the pro-
cessing/transport of RNA and translation. Importantly, we detected
changes in these pathways in all senescent clusters.

Despite having DNA damage from the etoposide treatment,
clusters 9, 4, and 7 had decreased expression of genes associated with
DNA repair pathways. This is likely because many DNA repair genes are
E2F-target genes that are only expressed upon cell-cycle commitment.
All three clusters also showed down-regulation of DNA/chromatin
organization-related pathways, indicating a shared feature of senes-
cent cells. Cluster 9, the farthest away from cycling cells and the cluster
with the highest p21 expression, had the most varied down-regulated

pathway types, including translation, RNA processing, telomere
maintenance, and energy/metabolism pathways, with translation
related-pathways showing the strongest change.

We expected to see an increase in pro-inflammatory pathways
characteristic of the SASP”® in all senescent clusters, but we only saw
this in clusters 4 and 7. Interestingly, cluster 4 upregulated cytokine-
and interferon-responsive immune pathways such as antimicrobial
humoral response and defense response to bacterium, consistent with
the inflammatory arm of the SASP. In contrast, cluster 7 upregulated
wound-healing and epidermal-differentiation pathways enriched for
pro-growth and matrix-reorganizing SASP factors. Notably, cluster 9
lacked SASP-related pathways and was instead defined by an upregu-
lation of many synapse-related pathways, including regulation of trans-
synaptic signaling and regulation of membrane potential, with leading-
edge genes that included many ion channels and metabolite-sensing
transmembrane receptors (Supplementary Data 1).

Altogether, these data reveal that senescent cells exhibit gene
expression changes associated with diverse biological processes.
While some processes are shared, the extent to which they each
manifest varies across clusters, leading to four senescent types, or
senotypes, within irreversibly arrested populations.

GO/Gl1 quiescent cells following etoposide represent a transi-
tional transcription state between cycling and senescent cells
If the continuum model of cell-cycle withdrawal is correct, then 1)
quiescent cells would not have a unique gene expression program
when compared to senescent cells, and 2) quiescent cells would begin
to show gene expression changes associated with late senescent
phenotypes, even in GO cells that are in close proximity to cycling cells.

To test if quiescent cells have a unique expression signature, we
performed two DGE analyses. First, we compared quiescent cluster 3 to
all other cells. The top up- and down-regulated DE genes for cluster 3
were not uniquely expressed in cluster 3 and instead showed altered
expression in neighboring clusters as well (Fig. S7A). Specifically,
upregulated genes in cluster 3 also showed elevated expression in
clusters 2 and 7, while downregulated genes in cluster 3 showed
decreased expression in clusters 7, 4, 9, and 12. Pathway analysis of
these DE genes revealed only two significantly upregulated pathways
in cluster 3, establishment of organelle localization and enamel
mineralization (Supplemental Data 1), and the significantly down-
regulated pathways were cell-cycle related (Fig. S7B), suggesting that
the primary feature of quiescent cells when compared to all other cells
was their lack of cycling markers.

In a second analysis, we specifically compared quiescent and
senescent cells by performing DGE analysis on quiescent cluster 3 vs.
senescent clusters 4, 9, and 12, as well as on quiescence-senescence
transition cluster 7 vs. senescent clusters 4, 9, and 12. The most dif-
ferentially expressed genes (Fig. 4A) and pathways (Fig. 4B) in cluster 3
vs. senescent cells were shared with cycling cells (cluster 2) and were
some of the top pathways that defined our senescent cells, such as
SASP, translation, and RNA-processing related pathways. These find-
ings suggested that quiescent cells in the etoposide-released context
are defined by a lack of cycling genes when compared to all cells and an
attenuated senescent program when compared to senescent cells,
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Fig. 3 | Pathway analysis reveals diverse types of senescent cells. A Number of
pathways significantly up- or down-regulated in each cluster according to Gene Set
Enrichment Analysis (GSEA) (p.adjusted < 0.05). B Significant pathways from A

were grouped by general biological process (see methods, Supplementary Data 1).
C GSEA for cluster 7 (quiescence-senescence transition cluster) and clusters 4 and 9

(senescent clusters). Top 10 pathways (by p.adjusted) for each cluster are dis-
played. Gene ratio for each pathway (proportion of genes in each pathway that are
significantly DE compared to the total number of genes in that pathway) plotted on
the x-axis. Dots colored by the normalized enrichment score for each pathway. Dot
size reflects adjusted p-value.

thus representing a transitional transcriptional state between cycling
and senescence.

Within the quiescence-senescence transition cluster 7, some cells
may more readily re-enter the cell cycle when compared to other
senescent clusters based on the etoposide dose distribution in this
cluster. Interestingly, pathways upregulated in cluster 7 relative to
senescent clusters included epithelium migration, tissue migration,
and cell-adhesion related pathways (Figs. 4B, S7C), pathways that have
been shown to promote metastasis and epithelial-mesenchymal tran-
sition (EMT) in dormant cancer cells** . If such cells were to re-enter
the cell cycle, they could promote metastasis in a cancer context.

scRNA-seq reveals a transcriptomic gradient along the
quiescence-senescence continuum

Clustering analysis defines clusters and pseudobulks the cells, some-
times masking heterogeneity within clusters. We scored cells based on
their expression of leading-edge genes (see methods) for pathways
differentially expressed in quiescent vs. senescent cells and found
significant overlap in the distribution of scores for top pathways

between adjacent clusters (Fig. 4C). We reasoned that this overlap
between clusters might have been due to continuous, graded changes
in gene expression between cells on one side of the cluster compared
to the other.

To test this idea, we performed pseudotime trajectory analysis
using Monocle3**® (see methods), a computational method used to
infer the progression of single cells through a biological process. Our
goal was to identify transcriptional changes that occurred as a function
of progress through Gl-labeled clusters. We therefore subsetted the G1
etoposide-treated cells and selected the cells closest to proliferating
clusters as our root. Cells were then ordered and colored based on
their progression along the learned trajectory (Figs. 4D, S7D). Some
cells with a Gl label were in the Gl phase of the cell cycle instead of
being arrested, and thus, by including all G1-labeled cells, the resulting
pseudotime trajectory spanned all depths of quiescence into our most
senescent cells. The trajectory branched partway, resulting in two
different regions of late pseudotime, which were split into two tra-
jectories for clarity during analysis (Fig. 4D). We measured the dis-
tribution of each etoposide dose along pseudotime (Fig. 4E). Progress
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Fig. 4 | There is a continuous gradient of transcriptomic states along the G0/G1
path to senescence. A Top 5 up- and down-regulated genes for cluster 3 (shallow
quiescence) vs. senescent cells (clusters 4, 9, 12) and cluster 7 (quiescence-senes-
cence transition) vs. senescent cells. Color corresponds to the average scaled
expression. B GSEA pathway analysis for results from the DGE analysis in A. Top 8
pathways (ranked by p.adjusted) are shown. Cluster 7 had no significantly down-
regulated pathways. For full pathway names, see Supplementary Data 1. C Dis-
tribution of module scores by cluster for leading-edge genes in two selected up-
and down-regulated pathways for quiescent cluster 3 vs. senescent cells. D UMAP
with cells colored by progress along pseudotime trajectory. Trajectory branches

Trajectory 1 Pseudotime

Trajectory 2 Pseudotime

are visualized separately as Trajectory 1 and Trajectory 2. E Etoposide dose dis-
tribution of cells over pseudotime. F Log-normalized expression of select top
senescent markers over pseudotime. Cells colored by cluster. Loess fit visualized in
blue. G Left: Module scores for grouped biological processes over pseudotime (see
methods). Scores for one select up- and down-regulated pathway group over
pseudotime are shown as single-cell data. Cells colored by cluster. Loess fit in blue.
Right: Heatmap of all pathway groups over pseudotime. Color represents the Loess
fit value for each module score vs. pseudotime scatter plot for the pathways listed
along the y-axis. Module scores were rescaled for visualization on the same scale.

along pseudotime correlated with a decreasing proportion of 2.5 uM
and an increasing proportion of 25uM cells. Given the declining like-
lihood of cell cycling along this trajectory, progress along pseudotime
measured progression toward senescence.

We examined whether the top DE genes from our previous ana-
lyses were graded along pseudotime (Figs. 4F, S7E). Indeed, CDKNIA
and PSCA showed a graded increase over pseudotime, dipping slightly
in cells that had progressed the farthest (Fig. 4F). To extend this

analysis beyond individual genes, we identified senescence-associated
pathways in our data by selecting the significantly up- and down-
regulated pathways for cluster 4 and cluster 9. We then used the
leading-edge genes (most DE, see methods) from each of these path-
ways to calculate an expression score in every cell. Once the score was
calculated, we plotted the score vs. pseudotime and performed a Loess
fit to find the average score for each pathway across pseudotime. The
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Loess fit values for all pathways were then rescaled between O and 1 for
visualization on the same color scale (Fig. S7F bottom).

Since many pathways were changed in the senescent cells, we
combined pathways from the same general cellular functions as in
Fig. 3, such that the score was based on the leading-edge genes from all
pathways grouped in that general cellular function (Figs. 4G left, S7F
top). To visualize all grouped pathways together over pseudotime, we
generated a heatmap where the color corresponded to the fit and
rescaled score (Fig. 4G right). All downregulated pathways gradually
declined over pseudotime, with NTP biosynthesis, metabolism, and
translation-related pathways going back up in late pseudotime along
Trajectory 2 but not Trajectory 1. The upregulated pathways showed
the reverse behavior, with gradual increases across pseudotime. The
varied behavior in later pseudotime reflected the heterogeneity of the
expression of these phenotypes within the different senescent
clusters.

We then sought to test if the leading-edge genes from these
grouped biological processes following etoposide were changed in
WI38 cells at various PDLs from Chan et al. and WI38 cells aged to RS,
exposed to IR, or treated with etoposide from Wechter et al. We
plotted the distributions of expression scores based on our leading-
edge genes of each biological category for cells in the published data
sets from Fig. S4. Importantly, only cells labeled G1 by Seurat were
included in this analysis since many of the conditions contained a mix
of G1/S/G2M cells (Fig. S4A, B). Excluding S and G2M cells prevented
large differences in expression of these genes driven by a cycling
subpopulation and allowed us to test if these biological processes were
different between quiescent and senescent cells, as our etoposide
sequencing suggested. We found the leading-edge genes of all of the
biological process groups except for epithelial cell differentiation-
related pathways were changed in the same way (all up or all down) in
the WI38 senescent cells as in our dataset (Fig. S8). The average
expression of all of these processes in WI38 cells at various PDLs up to
RS was strikingly graded. Expression of the leading-edge genes for
these processes even at low PDLs changed gradually, with strong
changes in these genes upon RS (PDL_50) (Fig. S8C). Together, these
results showed that senescent phenotypes began to manifest early in
pseudotime, even in cells with the potential to re-enter the cell cycle.
Further, quiescence represented a transition state where cells exhib-
ited expression signatures between those of proliferating and
senescent cells.

Protein biosynthesis rate is a key difference between quiescent
and senescent cells

An outstanding question is how senescent cells permanently lose the
ability to re-enter the cell cycle when compared to quiescent cells
faced with the same stressor. We found that pathways associated with
RNA-processing and translation comprised the two largest pathway
groups downregulated in senescent clusters, after cell-cycle related
pathways (Figs. 3B, S9A). These pathways were also the most down-
regulated in senescent cells when compared to quiescent cells directly
(Fig. 4B, C). RNA-processing and translation are essential for efficient
protein biosynthesis, which is in turn essential for the cell cycle, par-
ticularly in cancer cells***°, Therefore, a decrease in RNA-processing
and translation can impinge directly on the cell cycle.

We hypothesized that a decrease in protein biosynthesis might be
predictive of an inability to re-enter the cell cycle. To test this, we
treated MCF10A cells with 2.5 uM, 10 uM, or 25 uM etoposide for 24 h,
followed by a 6-day drug-free recovery. At the end of the 6d, we
treated cells for 30 min with O-propargyl-puromycin (OPP), which
incorporates into actively translating proteins and measures global
translation rate at the single-cell level. We detected a dose-dependent
decrease in both the average and the integrated OPP intensity (Figs. 5A,
S9B, respectively) in senescent cells, indicating reduced protein
biosynthesis.

To determine if translation rate could predict if cells were quies-
cent or senescent, we used a dihydrofolate reductase (DHFR)-tri-
methoprim (TMP) protein stabilization system fused to mCherry,
where the rate of mCherry accumulation upon TMP treatment reflects
protein biosynthesis rate (Fig. S9C)**2. We treated cells with 10 uM or
25uM etoposide for 24 h and then tracked them from 6-10d post-
recovery (Fig. 5B top) to measure CDK2 activity and mCherry accu-
mulation rate (Figs. 5B, S9D-F). We found that senescent cells had a
lower protein biosynthesis rate than slow-cycling cells that spend long
periods in quiescence, in a dose-dependent manner (Figs. 5B-C,
S9D-F), identifying reduced translation as a distinguishing factor
between quiescent and senescent cells. Importantly, we verified this
difference in MCF7 cells by inducing senescence with 10 uM or 25uM
etoposide for 24 h, followed by drug washout and live-cell imaging
from 6-10 d. We measured translation rate for quiescent and senescent
cells using post-hoc OPP staining linked to each cell’s cycling history.
Indeed, fast-cycling cells had a higher translation rate than slow-cycling
cells, which had a higher translation rate than predicted-senescent
cells, even within the same etoposide dose group (Fig. S9G-J). We then
tested the expression levels of the GO BP Ribosome Biogenesis and
RNA Processing pathways in WI38 cells labeled by Seurat as Gl after RS,
IR, and etoposide (Fig. SI0A-F) and also saw decreased expression in
these pathways upon senescence induction, indicating that these
findings are likely applicable in other senescence contexts.

Protein biosynthesis is impaired in senescence, particularly in
cluster 9

Protein biosynthesis relies on many important biological processes
upstream. To understand which steps of this process could have been
driving a decrease in protein biosynthesis following senescence
induction, we examined the DE pathways in our senescent clusters
identified in Fig. 3. We further broke down the translation and RNA-
processing related pathways for clusters 4, 9, 10, and 7 by similarity
(Fig. 5D, Supplementary Data 1). We noted downregulation of biolo-
gical processes that could affect protein biosynthesis at multiple steps,
including rRNA-related pathways, tRNA-related pathways, and ribo-
some biogenesis and assembly (Fig. 5E). Examples of the strongly
down-regulated genes included NPM1, EIF4A1, and exosome complex
components. The largest number of pathways was related to general
RNA-processing and localization. We confirmed that these same genes
were strongly downregulated in other senescence contexts by plotting
their expression levels in WI38 cells induced to senescence that were
labeled by Seurat as Gl (Fig. S10G). In the WI38s approaching RS, we
found that many of these genes were most strongly downregulated in
PDL_50, the RS cells, suggesting these genes may play an important
role in maintaining cell-cycle arrest by decreasing upstream protein
biosynthetic processes like RNA processing and ribosome biogenesis.
Thus, declining translation likely occurs both in cellular aging and
chemotherapy-induced senescence contexts.

These data suggested that protein biosynthesis was decreased in
senescent cells due to a multi-step failure, where no one step is solely
responsible. In addition to the direct changes in RNA-processing,
ribosome biogenesis, and translation initiation, we also measured a
decrease in NTP biosynthesis and metabolism-related pathways
(Fig. 4G, S11A) in cells further along pseudotime. Knockout of key
regulators of NTP biosynthesis can cause cell-cycle arrest*’, and NTP
biosynthesis is coupled with protein biosynthesis in some cancers*.
Thus, changes in these processes could also indirectly affect protein
biosynthesis and cell-cycle progression.

Senescent cells that express SASP factors have higher protein
biosynthesis than cells that do not

The decrease in protein biosynthesis was interesting because transla-
tion has been shown to be especially important for maintaining the
SASP*™*, We knew from our clustering and pseudotime analysis that
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pseudotime Trajectory 2 ended in cells that showed greater expression
of SASP pathways than Trajectory 1. To test whether Trajectory 2
retained expression of pathways associated with translation and RNA
processing, we used the same analysis strategy as in Fig. 4, plotting the
expression score of leading-edge genes over pseudotime, rescaled
between O and 1. However, here we plotted this score for every indi-
vidual GO biological process associated with translation or RNA pro-
cessing (Figs. 5F, S11B). We found that a majority of pathways
associated with ribosome biogenesis, ribosome assembly, and
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translation initiation initially declined but then increased in late
pseudotime along Trajectory 2, whereas these pathways only declined
along Trajectory 1, as hypothesized.

To experimentally test this phenotype in cells, we multiplexed
RNA FISH for three SASP factors, IL6, CXCL8, or CXCLIO, with the OPP
translation assay in single cells released from 2.5uM, 10 uM, or 25 M
etoposide 6 d prior (Fig. 5G). We found a dose-dependent increase in
expression of all three SASP factors. In agreement with our scRNA-seq
results, only a subset of the cells in each sample showed increased
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Fig. 5 | Protein biosynthesis declines along the quiescence-senescence con-
tinuum. A MCF10A cells were treated with 2.5 uM, 10 pM, or 25 uM etoposide for
24 h, followed by a 6 d drug-free recovery. Cells were treated with OPP for 30 min
prior to fixation. Each cell’'s OPP intensity was normalized to the cell area and
plotted as histograms for each etoposide dose. Number of cells and replicates in
Supplementary Data 2. B Experimental timeline (top). MCF10A cells expressing the
CDK2-activity reporter and a DHFR-mCherry translation reporter were imaged by
live-cell microscopy for 96 h from 6d-10d after etoposide washout. TMP was added
at the start of the gray shading to induce the DHFR-mCherry reporter, and the
mCherry signal (each cell normalized to its average signal before TMP) was plotted
for fast-cycling, slow-cycling, or predicted-senescent cells for each dose of etopo-
side. Dark line is the mean for each group, shading is the 95% confidence interval.
Gray shading indicates the frames used to calculate the mCherry signal slope
plotted in (C). Number of cells and replicates in Supplementary Data 2. C A line was
fit to the initial slope of mCherry accumulation after TMP addition. The average

slope for each cell-cycle behavior group for each dose is shown. Error bars repre-
sent 95% CI. PS is predicted-senescent. Number of cells and replicates in Supple-
mentary Data 2. D All significantly downregulated pathways from the RNA-
processing and translation pathway groups in Fig. 3C for senescent clusters 4 and 9
were broken down into more specific pathway groups. E Average scaled expression
for select leading-edge genes by cluster from groups of pathways in (D). F Heatmap
of all GO biological processes from the RNA-processing and translation pathway
groups over pseudotime. Colormap represents the Loess fit value for each module
score over pseudotime. Module scores were rescaled for visualization on the same
scale. For full pathway names, see Supplementary Data 1. G Cells were treated with
2.5pM, 10 pM, or 25 uM etoposide for 24 h followed by a 6 d drug-free recovery.
OPP was multiplexed with RNA FISH for three SASP genes and imaged. RNA FISH
puncta number and total OPP per cell were quantified and plotted as a single-cell
density scatter. Red line is drawn at the 95 percentile of untreated cells. Number of
cells and replicates in Supplementary Data 2.

expression of the SASP factors, even at 25uM where nearly all cells
were senescent, supporting our finding of distinct senotypes. This
SASP expression was highest in the cells with the greatest translation
rate as measured by OPP. We also confirmed this relationship in MCF7
and RPE-hTERT cells induced to senescence with etoposide (Fig. S11C).
Expression of the SASP can be detrimental if cells are not properly
cleared***’. Therefore, future work investigating the pathways that
were expressed differentially between Trajectory 1 and Trajectory 2
could offer new insights into suppressing the SASP without suppres-
sing cell-cycle arrest.

Finally, mammalian Target of Rapamycin (mTOR) is a master
regulator of protein biosynthesis. We therefore also tested whether
mTOR was inactive in cells with low protein biosynthesis (Trajectory 1
or 2N/pRb™ cells) or if mTOR was active yet insufficient to drive
robust translation. We treated cells with 10 uM or 25 uM etoposide for
24 h and allowed them to recover for 6 d. We then stained for phos-
phorylation of 4EBP1, an mTOR substrate, in 2 N/pRb'* cells and found
that mTOR activity showed a slight decrease with increasing etoposide
dose and was slightly lower in 2N/pRb"" cells than 4 N/pRb"™" cells
(Fig. S11D). We co-stained these cells with OPP and found that this small
decrease in phospho-4EBP1 was correlated with a decrease in OPP
(Fig. SIIE). We also plotted each cluster's module score for the hall-
mark MTORCI signaling pathway (Fig. S11F) and found that MTORCI-
signaling was upregulated in etoposide-treated cycling cells relative to
untreated cells, but was less induced in senescent cells. This increased
MTORCI signaling in the cycling etoposide persister cells likely
enhances their ability to cycle’®. Further, we plotted the mRNA
expression of negative regulators of mTOR in each cluster (Fig. S11F)
and found that cluster 9, which had low protein biosynthesis and lower
SASP expression, showed higher expression of mTOR negative reg-
ulators (e.g., TSC1/2), suggesting that mTOR might have been inhibited
to some extent in cells arresting along the 2 N trajectory.

Expression of the SASP is higher in cells that have undergone a
mitotic slip

Because the SASP can alter the surrounding tissue microenvironment
and is thought to be a driver of age-related pathologies***’, there is
significant interest in characterizing the SASP at the single-cell level. It
was surprising that SASP expression varied by senescent cluster, with
cluster 4 containing the most upregulated pathways associated with
the SASP (Fig. 3B). We plotted the score for leading-edge SASP-related
genes from our data set over pseudotime (Fig. 6A) and saw that Tra-
jectory 2, which was connected to the cluster of cells undergoing
mitotic slippage, showed a graded and steady increase in expression.
By contrast, Trajectory 1 showed an initial increase followed by a
decrease in SASP-related genes, in agreement with our cluster analysis.
We also used an existing SASP gene list from the Molecular Signatures
Database (MSigDB)***' and scored cells based on their expression of
these SASP factors (Fig. 6B). When visualizing the existing SASP gene

list on our UMAP, we saw that cells near cluster 4 and cluster 10, the
mitotic slip cluster, scored the highest for SASP expression.

To test experimentally whether cells that arrested via a mitotic slip
were the senescent cells with the highest SASP expression, we per-
formed RNA FISH for IL6, CXCLS8, and CXCL10 in MCF10A (Fig. 6C) and
MCEF?7 cells (Fig. S12A). We found that cells with 4 N DNA content, most
of which had undergone a mitotic slip at 10 uM and 25uM etopo-
side (Fig. 2D), had the highest expression of SASP RNAs (Figs. 6C,
S12A). While cells arrested by the GO/GI trajectory showed upregula-
tion of some SASP-related pathways (Fig. 3, cluster 7), these pathways
were related more to wound-healing, cell migration, and extracellular
matrix organization rather than the cytokine/chemokine secretion and
defense response-related pathways that we saw for cells that had
undergone a mitotic slip (Fig. S12B, C). Notably, the pro-growth pro-
teins secreted as part of these pathways have been linked to the sur-
vival, invasiveness, and epithelial-mesenchymal transition (EMT) of
surrounding cells** ¢ rather than immune clearance. Indeed, when we
plotted the hallmark epithelial mesenchymal transition and GO cell
migration gene sets (Fig. S12D), we saw increased levels in senescent
clusters, especially cluster 7, the quiescent-senescent transition clus-
ter. These data suggest that not only are there different senotypes in
our population, but the type of senescence arising in each cell is tied, at
least in part, to its initial mode of arrest.

A subset of SASP genes is expressed in all types of senescence
Because different clusters showed differing expression of SASP genes,
we tested whether a subset of SASP genes was expressed in all senes-
cent clusters. We found 21 SASP genes that were universally upregu-
lated (see methods) in every senescent cluster at every dose of
etoposide (Fig. 6D). Quiescent cluster 3 was used for contrast. We
plotted the expression levels of these SASP factors in single cells and
confirmed that all senescent clusters showed expression of these fac-
tors (Fig. 6E). Interestingly, many of these specific genes were double-
stranded (ds) RNA-sensing proteins (OASL, OAS2) or interferon-
inducible (IFI) antiviral genes (IFIT1, IFIT2, IFl6) downstream of these
RNA-sensing proteins. We confirmed that this shared SASP was not
dose-dependent in MCF10As (Fig. S13A) and found increased expres-
sion of this shared SASP list in WI38 cells induced to senescence by RS,
IR, and etoposide (Fig. S13B). Notably, the shared SASP was correlated
with CDKNI1A at the single-cell level in the WI38 cells (Fig. S13B), sug-
gesting that greater stress across multiple senescence-inducing treat-
ments correlated with expression of these 21 SASP genes. While the
upstream stresses driving the SASP can be varied, these data suggest
that dsRNA accumulation might be a common stress driving SASP
factor expression across senescent types.

A gene set to identify TIS cells
The lack of clear biomarkers to distinguish between quiescent and
senescent cells is a persistent problem in the field. While we identified
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21 SASP genes that were upregulated in all senescent clusters, these
genes were occasionally also expressed in other clusters. We therefore
generated a gene set based on genes represented in all treated
senescent clusters that did not overlap with treated quiescent cells
(see methodes, Fig. S14A) and scored cells based on their expression of
this gene set (Figs. 7A, S14A). Some of the top markers for senescent
cells showed elevated expression in untreated spontaneously quies-
cent CDK2"*" cells*®, and we therefore removed them to generate a
senescence-specific list of genes, dubbed Etoposide Induced Senes-
cence (EIS) Boulder. EIS Boulder includes both broadly expressed
genes shared across senescent clusters and cluster-specific top mar-
kers. This composition allows the gene set to robustly capture multiple
senotypes, while buffering against variability or low expression of
individual top genes. Some of the best general, single-marker genes
include IFl6, IF127, ISG15, DDX60, and RGS2. Importantly, the expres-
sion of genes in this list was not dose-dependent or driven by a
changing proportion of 25uM cells, since it was able to identify

senescent cells across all doses (Fig. S14B, C). The genes in our gene set
were generally highly expressed in senescent clusters, showed low or
no expression in other clusters, and included several new senescent
biomarkers (Fig. 7B). We tested EIS Boulder in WI38 cells induced to
senescence under various conditions and found that cells induced to
senescence scored higher in expression of this gene set (Fig. 7C, D). We
only included cells labeled G1 by Seurat in this analysis; therefore, the
increasing score in WI38 cells at various PDLs suggested that our gene
set helped distinguish quiescent from senescent cells in non-etoposide
contexts. Finally, because there was no ground truth senescent
population identified in the WI38 data sets, we plotted our senescent
score vs. CDKNIA (our best single marker of senescence) in single cells
and found a strong correlation for both WI38 data sets (Fig. 7E).

Discussion
The relationship between quiescence and senescence remains
incompletely understood (Fig. 8A), in large part due to the lack of
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specific and consistent biomarkers. Here, we paired scRNA-seq with
single-cell time-lapse microscopy to identify ground-truth senescent
cells based on a functional definition of senescence: the long-term lack
of proliferation. A limitation of our study is the reliance on in vitro cell
culture models of senescence that may not completely capture the
complexity of senescence in vivo. This is an ongoing limitation in the
field of senescence that arises from the lack of reliable biomarkers to

M G1(G1/Go/Q/S)
ms

0 4
CDKN1A Expression

[ ETO7d

0 4
CDKN1A Expression

identify senescent cells in vivo, and the need for ground-truth identi-
fication of senescent cells (e.g., by time-lapse imaging). Our approach
of combining longitudinal single-cell tracking paired with scRNA-seq
allows us to distinguish senescent cells from cells in a transient
quiescence, providing uniquely detailed insights into the dynamic and
heterogeneous nature of senescence that should be validated with
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Fig. 7 | A senescent gene set, EIS Boulder, to identify diverse senescent cell
types following etoposide. A Left: Distribution of module scores for cells from
each cluster based on our senescent gene set, dubbed Etoposide Induced Senes-
cence (EIS) Boulder (Supplementary Data 3). Right: UMAP with cells colored by
module score for EIS Boulder. B Average scaled expression of all genes in EIS
Boulder by cluster. C Left: UMAP of scRNA-sequencing data of WI38 fibroblasts
cultured until replicative senescence (population doubling level (PDL) > 50, RS),
exposed to 10 Gray (Gy) ionizing radiation and grown for an additional 10 d (IR), or
treated with 50 uM etoposide for 7 d (ETO7d) from Wechter et al. UMAPs colored
by condition or Seurat cell-cycle phase annotation. Right: UMAP colored by log-

normalized expression of CDKNIA (p21) or module score for EIS Boulder. D Left:
UMAP of scRNA-sequencing data of WI38 fibroblasts cultured to various PDLs from
Chan et al. UMAPs colored by condition or Seurat cell-cycle phase annotation.
Right: UMAP colored by log-normalized expression of CDKNIA (p21) or module
score for EIS Boulder. E Distributions of expression scores of the EIS Boulder gene
set for the data sets in C and D with only Seurat-labeled G1 cells plotted. F Single-cell
expression scatter plots of the EIS Boulder gene set vs log-normalized CDKNIA
expression for the data sets in C and D. Dots colored by condition and Loess fit in
blue. Gray shading represents a 95% confidence interval. Only Seurat-labeled

Gl cells plotted.

Canonical model:
Q and S as distinct states
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Fig. 8 | Model of therapy-induced senescence. A Left: Canonical model of a
switch-like transition between quiescence and senescence. We did not include an
arrow from quiescence to senescence because it has not been clear in the field
whether senescent cells can arise from existing quiescent cells or only from pro-
liferating cells. Middle: Simple continuum model of cell-cycle withdrawal where
quiescence and senescence represent different levels on the same continuum of
withdrawal. Right: Model of cell-cycle arrest supported by this work. In the GO/G1

path, cells complete mitosis and first enter a shallow quiescence (GO). In this path,
quiescent cells represent a reversible intermediate between proliferation and
senescence and show a graded expression of senescence genes. In an alternative
path, cells skip mitosis and arrest with 4 N DNA content. These cells transit directly
to a senescent state, bypassing the quiescence deepening observed along the GO/
Gl path.

in vivo studies where possible. Our data revealed several findings that
we discuss below.

Related to the cell cycle itself, we found that cycling cells after
etoposide treatment retain a transcriptionally encoded memory from
the initial etoposide stress, even after 6 d. Further work characterizing
the gene expression signatures in cells that resume cycling after che-
motherapy treatment relative to untreated cycling cells could expose
vulnerabilities to eliminate this population. We also found two distinct
arrest paths, or bridges, from the cell cycle to senescence: a mitosis-to-
GO path and a mitotic-slip path. While cells taking the first path pro-
gress from GO/quiescence to senescence in a graded manner, cells
arresting by the mitotic slip path appear to move directly from cycling
to senescence based on the fact that they move straight from the G2/M
cluster to a senescent cluster (Fig. 2B). This mitotic slip path was pri-
marily occupied by 10 and 25 uM cells, suggesting that higher levels of
damage may drive cells towards this path over the mitosis-to-GO arrest
path. Cells that are in S phase when they are first treated with etopo-
side may also be more susceptible to this arrest path®>.

Related to senescence, we identified multiple transcriptomic
clusters of senescent cells, or senotypes. Thus, senescence hetero-
geneity arises not only from different treatments or cell types, as
previously reported™™¢, but also within the same population of cells
undergoing the same treatment. Although these senotypes were
clustered discretely for analysis and showed cluster-to-cluster differ-
ences, there was a continuous distribution of cells across the senescent
region of our UMAP, and our clusters did not show strong separation
by Silhouette Score (Fig. S3G). This suggests that the gene expression
distinctions between these senotypes are graded, with single
senescent-cell transcriptomes varying across the entire senescent
transcriptomic space. Prior work, including ours, noted variability in

senescence markers under identical conditions'”’. Our findings sug-
gest that this variability reflects both incomplete senescence induction
as well as the presence of senescent cells lacking expression of certain
canonical markers.

Interestingly, these different senotypes arose following the two
distinct arrest paths. Mitotic slipping cells passing from cluster 10 to
cluster 4 expressed higher levels of SASP, inflammation, and protein
biosynthesis pathways compared to cells taking the mitosis-to-GO
path, which showed higher expression of pro-growth and EMT-related
pathways, such as wound healing. In the context of cancer, the pro-
inflammatory SASP can recruit the immune system to initiate clear-
ance, whereas the pro-growth arm of the SASP can drive surrounding
cells to proliferate’®. Further work is needed to understand how these
different senotypes expressing unique pro-inflammatory signatures
may affect surrounding cells. Additionally, further work is needed to
understand how broadly applicable these senotypes are in other
contexts, as these findings were primarily based on MCF10A cells. The
SASP requires a basic level of cellular function for coordinated
expression, synthesis, and secretion of the program. Cluster 9 cells
experiencing a high level of stress and impaired protein biosynthesis—
marked by high p21, low RNA processing/translation, metabolic stress,
and distance from cycling cells—likely lack this capacity. Indeed, clus-
ter 9 cells showed reduced SASP-associated pathways, whereas SASP-
expressing cells in cluster 4 had higher expression of genes linked to
translation, RNA processing, NTP biosynthesis, and metabolism. This
aligns with a recent study using multiplexed immunofluorescence
imaging, which identified distinct senescent cell trajectories, including
asubset characterized by increased protein biosynthesis and sustained
high SASP levels in response to senescence-inducing stress™. In con-
trast, larger senescent cells displayed lower SASP expression. These
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results underscore the importance of distinguishing between senes-
cent subpopulations of cells to develop targeted strategies for redu-
cing the SASP, or to push cells along a low-SASP senescence trajectory.

We identified reduced protein synthesis as a key difference
between senescence and quiescence. It has been shown that changes
in RNA processing and translation are a part of the DNA damage
response™ *' and that reduced mTOR and translation signaling are also
associated with senescence®®*. Here, we reveal that these gene chan-
ges span a range of processes involved in the processing of mRNA,
tRNA, rRNA, and IncRNAs, ribosome biogenesis and assembly, and
direct translational control. Importantly, the differential expression of
these pathways between quiescent and senescent cells places renewed
importance on protein biosynthesis as a uniquely useful predictor of
future cell-cycle re-entry, with a lack of protein biosynthesis as a causal
determinant of irreversible cell-cycle withdrawal.

We defined a core gene set, EIS Boulder, shared across all senes-
cent clusters that distinguishes them from non-senescent clusters,
along with a few shared upregulated SASP genes (Fig. 6D, E) that are
expressed in all of our senescent cells. These gene sets may enable
transcriptional-level identification of senescent cells, and thus should
be validated in further cell types and in other modes of senescence
induction. Future studies will be needed to elucidate the mechanistic
role, if any, of these markers in senescent cell biology.

Lastly, we found that our senescent population was connected to
the treated, cycling cells by a continuous UMAP bridge. Using pseu-
dotime trajectory analysis of the mitosis-to-GO path, we found that
rather than a switch-like change, multiple senescent phenotypes begin
to manifest early and gradually, even in shallow quiescent cells. Thus,
in the context studied here, quiescence represents a path through
which cells move from proliferation to senescence, and cells posi-
tioned along this continuum express gradually varying levels of
senescence markers.

This model represents an emerging view of the relationship
between quiescence and senescence, where quiescence and senes-
cence are not viewed as binary, distinct states, but instead exist on a
continuum with declining probabilities of cell-cycle re-entry (Fig. 8).
This model is consistent with previous work from our lab examining
eight protein-based senescence biomarkers'®. However, it was never-
theless surprising to see that the graded model of cell-cycle arrest
extends across every senescence pathway we identified here, provid-
ing transcriptome-wide support for this model. A handful of other
studies also support the continuum model. One study that used bulk
RNA-seq found that prolonged serum starvation of fibroblasts, a
reversible quiescence-inducing treatment, led to some transcriptional
changes that are typical of senescence, such as lysosome biogenesis
and autophagy®. While we also observed changes in some of these
genes, they were less pronounced. Not all senescent phenotypes may
change in every arrested condition, warranting further study to
understand their overlap and trajectories. Stallaert et al. used multi-
plexed immunofluorescence to examine arrest induced by serum
starvation, etoposide, and oxidative stress”’, concluding that senes-
cence represents a Gl-like arrested state that eventually converges on a
single senescent state following different arrest trajectories. Impor-
tantly, their study also found two paths to senescence via either a G1-
like arrest or a G2/M path, mirroring our two-paths-to-arrest finding.
This work was limited to cell cycle-related proteins and a few canonical
senescent markers, potentially explaining why their data appeared to
converge on a single senescent phenotype. In our study here, with
measurements across the entire transcriptome, we found multiple
senotypes. Additionally, the study by Chan et al. in WI38 cells
approaching replicative senescence” found that senescent-like chan-
ges manifest early, before replicative senescence was reached, sug-
gesting that our model likely extends to replicative aging as well.
Future work delineating the specific genes and processes that are
universally changed in irreversibly arrested cells is warranted.

At what point along this continuum of withdrawal do cells become
irreversibly arrested, and why? We found that irreversibly arrested
cells showed perturbations in multiple genes and pathways that likely
impair cell-cycle entry and progression in various ways. This suggests
that no single, switch-like expression change drives the irreversibility
of cell-cycle withdrawal. Instead, as cells progress along the con-
tinuum, multiple different senescent traits that deepen arrest intensify,
creating an increasingly higher barrier to cell-cycle re-entry, which
eventually becomes insurmountable.

Methods

Cell lines and culture media

MCFI0A (ATCC CRL-10317) cells were obtained from ATCC and
grown in DMEM/F12 supplemented with 5% horse serum, 20 ng/ml
EGF, 10 pg/ml insulin, 0.5 pg/ml hydrocortisone, 100 ng/ml cholera
toxin, and 100 pg/mL of penicillin and streptomycin. RPE-hTERT
(ATCC CRL-4000) were obtained from ATCC and grown in DMEM/
F12 supplemented with 10% FBS, 1x Glutamax, and 100 pg/mL of
penicillin and streptomycin. MCF7 (ATCC HTB-22) were obtained from
ATCC and grown in RPMI supplemented with 10% FBS, 1x Glutamax,
and 100 pg/mL of penicillin and streptomycin. Cells were imaged in
phenol red-free full growth media during live-cell movies. Cells were
cultured and imaged in a humidified incubator at 5% CO, and 37 °C.
Cells were maintained in the CU Boulder Biochemistry Cell Culture
Facility (BCCF; RRID:SCR_018988).

Drug treatments

MCF10A cells were split 1:10 (from a confluent plate) into a plastic
10 cm culture plate before being treated with 2.5, 10, or 25 uM eto-
poside the following day for 24 h. Cells were then washed twice with
PBS before being returned to full-growth media. Full-growth media
was refreshed every 3 d during the drug recovery period. 24 h prior to
imaging, the etoposide-released cells were trypsinized and replated
onto a collagen-coated (1:50 dilution in water) (Advanced BioMatrix,
No. 5005) 96-well glass-bottom plate (Cellvis Cat. No. P96 —1.5H-N).
Cells were plated at 1000, 2000, 3000, and 4000 cells per well for
untreated, 2.5, 10, or 25 UM etoposide, respectively. Cells were plated
at 3000 cells per well for immunofluorescent imaging.

Immunofluorescence imaging

Cells were seeded onto a collagen-coated (1:50 dilution in water)
(Advanced BioMatrix, No. 5005) 96-well glass-bottom plate (Cellvis
Cat. No. P96-1.5H-N) 24 h prior to fixation. Cells were fixed for 15 min
with 4% PFA in PBS, then permeabilized at room temperature with 0.1%
TritonX for 15 min. Cells were then washed with PBS and blocked with
3% Bovine Serum Albumin (BSA) for 1 h at room temperature. Primary
antibodies were incubated overnight in 3% BSA at 4 °C, and secondary
antibodies were incubated for 1-2 h in 3% BSA at room temperature.
Nuclei were labeled with Hoechst at 1:10,000 in PBS for 10 min. The
whole cell was stained with succinimidyl ester 488 at 1:10,000 in PBS
for 30 min. Cells were washed with 100 pL per well of PBS between
every step. All images were obtained using a 10X, 0.4 numerical
aperture objective on a Nikon TiE microscope. To visualize IL8, we
blocked secretion for 6 h with 5pg/mL Brefeldin A before fixing and
staining. For the OPP translation assay, cells were treated according to
the manufacturer’s protocol (Click-iT Plus OPP Alexa Fluor 488 Protein
Synthesis Assay Kit, ThermoFisher C10456), with cells incubated with
OPP reaction component A for 30 min prior to fixation.

RNA FISH imaging

Cells were seeded onto a collagen-coated (1:50 dilution in water)
(Advanced BioMatrix, No. 5005) 96-well glass-bottom plate (Cellvis
Cat. No. P96-1.5H-N) 24 h prior to fixation. Cells were fixed for 15 min
with 4% PFA in PBS. IL6 (VA6 —12712-VC), CXCL8 (VA6-13192-VC), and
CXCL10 (VA6-13729-VC) mRNA were visualized according to the

Nature Communications | (2026)17:169

14


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-66836-z

manufacturer’s protocol (ViewRNA ISH Cell Assay Kit, ThermoFisher
QVCO0001), with cells permeabilized for 30 min and mRNA probes
hybridized for 4 h at 40 °C. RNA FISH imaging was performed on a
Revvity Opera Phenix using a 20X objective at the BioFrontiers Insti-
tute’s Advanced Light Microscopy Core (RRID: SCR_018302; supported
by NIH grant 1S100D025072).

Time-lapse microscopy

Cells were plated 24 h prior to imaging, and full-growth media was
replaced with phenol red-free full-growth media. Images were taken
for each fluorescent channel every 12 min at two sites per well that
were spaced 2 mm apart. Total exposure across all fluorescent chan-
nels was kept below 800 ms. Cells were imaged in a humidified, 37 °C
chamber at 5% CO,. All images were obtained using a 10X, 0.4
numerical aperture objective on a Nikon TiE microscope. The tracking
code is available for download here: https://github.com/scappell/Cell_
tracking.

Image processing and quantification

Image processing and cell tracking were performed using MATLAB
Mathworks 2017b as previously described®. Quantification of 53BP1
puncta was measured as previously described®. Nuclear signals
(phospho-Rb, 53BP1, p21, and Lamin B1) were quantified from a nuclear
mask (median nuclear intensity). Cytoplasmic signals (LAMP1 and IL8)
were quantified from a cytoplasmic mask (median cytoplasmic inten-
sity) derived from succinimidyl ester total protein stain. RNA FISH
puncta detection was performed using Revvity’s Harmony High-
Content Imaging and Analysis Software. All puncta inside the cyto-
plasmic mask belonging to each nucleus were counted.

Antibodies and reagents

Antibodies against pRb (S807/811) D20B12 XP (8516), LAMP1 D2D11 XP
(9091), p21 Wafl/Cipl (12D1) (2947), pA4EBP1 (S65) (174A9) (9456), and
Lamin B1 (D9V6H) (13435) were purchased from CST and used at 1:500,
1:1000, 1:250, 1:500, and 1:1000 dilutions, respectively. Antibodies
against 53BP1 (612523), and IL-8 (550419) were purchased from BD and
were all used at dilutions of 1:1000. All secondary antibodies, Goat anti-
Mouse IgG (H + L) Cross-Adsorbed Secondary Antibody, Cyanine3
(A10521), Goat anti-Rabbit IgG (H + L) Cross-Adsorbed Secondary
Antibody, Cyanine3 (A10520), Goat anti-Mouse IgG (H + L) Highly
Cross-Adsorbed Secondary Antibody, Alexa Fluor 647 (A-21236), Goat
anti-Rabbit IgG (H + L) Highly Cross-Adsorbed Secondary Antibody,
Alexa Fluor 647 (A-21245) were purchased from Thermo Scientific and
used at 1:1000 dilutions. IL6 FISH mRNA probe set (VA6 -12712-VC),
CXCL8 FISH mRNA probe set (VA6-13192-VC), and CXCL1I0 mRNA
probe set (VA6-13729-VC) were purchased from Thermo Scientific. The
ViewRNA ISH Cell Assay Kit was purchased from Thermo Scientific
(QVCO0001). CF 488 A succinimidyl ester (SCJ4600018) was purchased
from Sigma and used at a 1:10,000 dilution. Hoechst 33342 was pur-
chased from Thermo Scientific (H3570) and used at a 1:10,000 dilu-
tion. Etoposide (E1383) and Brefeldin A (B7651) were purchased from
Sigma. Click-iT Plus OPP Alexa Fluor 488 Protein Synthesis Assay Kit
(C10456) was purchased from Thermo Scientific.

Single-cell RNA sequencing

Single-cell RNA sequencing (scRNA-seq) libraries were generated using
the 10x Genomics Chromium platform with the 3’ mRNA capture kit.
Single-cell suspensions were prepared following the 10x Genomics
“Cell Preparation for Single Cell Protocols” guide with a viability of
>95%. Single-cell encapsulation, barcoding, cDNA amplification, library
preparation, and sequencing were performed by the University of
Colorado Anschutz Genomics Shared Resource facility (RRID:
SCR_021984). Cells were encapsulated into droplets using the Chro-
mium Controller, where reverse transcription occurred within indivi-
dual gel beads-in-emulsion (GEMs). Following barcoding and cDNA

amplification, sequencing libraries were constructed according to the
manufacturer’s protocol. Libraries were sequenced on an lllumina
NovaSegX to a depth of 81,810 reads per cell for untreated, 74,214
reads per cell for 2.5uM, 81,254 reads per cell for 10 uM, and 76,973
reads per cell for 25 uM.

scRNA-seq data processing
Publicly available single-cell RNA-seq data sets for Chan et al. and
Wechter et al. were downloaded from GEO (GSE175533 and GSE226225,
respectively). Data from Wechter et al. were downloaded as processed
count matrices and were analyzed using the same analysis pipeline
described below. Cells with fewer than 3000 genes and more than 15%
mitochondrial gene expression were excluded to remove low-quality
cells. Data from Chan et al. were downloaded as processed count
matrices with low-quality cells already removed and were analyzed
using the same analysis pipeline described below.

scRNA-seq data were processed and analyzed using the Seurat®**
(v5.1.0) package in R (v4.4.1). Raw sequencing reads were pre-
processed using CellRanger (v7.1.0) and aligned to the Human
(GRCh38) 2020-A reference genome. Gene-cell count matrices were
generated, and low-quality cells were filtered out based on the number
of detected genes, unique molecular identifiers (UMIs), and mito-
chondrial gene percentage. Cells with fewer than 3,500 genes were
excluded to remove low-quality cells. Cells with greater than 15%
mitochondrial gene expression were also removed. Data were log-
normalized using Seurat’s NormalizeData() function with a scale factor
of 10,000.

Feature selection and dimensionality reduction

Highly variable genes (HVGs) were identified using FindVaria-
bleFeatures(), and data were scaled using ScaleData(). Principal com-
ponent analysis (PCA) was performed using RunPCA(). The optimal
number of PCs (30) was determined using an elbow plot and JackStraw
analysis*** and used in downstream dimension reduction.

Clustering and visualization

Cells were clustered using the shared nearest neighbor (SNN) graph-
based clustering algorithm implemented in Seurat’s FindNeighbors()
and FindClusters() functions, with a final resolution of 0.8. Clustering
was performed using the top 30 principal components (PCs) derived
from the 2000 most variable genes. We selected 2000 variable genes
as this number was sufficient to capture the major biological variation
in our dataset. Specifically: (1) Elbow plots generated using the top
2000, 6000, and all genes exhibited similar shapes, with the plots for
larger gene sets being left-shifted. This indicated that the main var-
iance structure could be captured efficiently with fewer features. (2)
The cluster structures resulting from using 2000 versus more genes
were highly similar, suggesting that additional features did not con-
tribute substantially to cluster resolution.

The final clustering resolution of 0.8 was selected based on
iterative testing across a range of dimensions (PCs) and clustering
resolutions (Fig. S3G). Cluster stability was evaluated in two ways: (1)
using the clustree R package to visualize cluster stability across reso-
lutions, and (2) by visually inspecting cluster structure at each reso-
lution (Fig. S3H). We assessed cluster quality by performing a
parameter sweep across different combinations of dimensions and
resolutions and computing the average Silhouette Score for each. As
expected for a continuous dataset, Silhouette Scores were consistently
low and showed little variation across parameters, reflecting the gra-
dual transitions between cell states.

To further refine our resolution, we iteratively clustered the data
across a range of resolutions (0.4 to 1.4; Fig. S3H) and assessed whe-
ther known marker genes for distinct cell states (e.g., cyclins, E2F tar-
gets, mitotic genes, and tumor suppressors such as CDKN1A/p21 and
CDKN1B/p27) were appropriately resolved at each resolution.
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Clustering resolutions > 0.4 to 0.6 appropriately resolved known cell
states. Importantly, clustering resolutions from 0.8 to 1.4 consistently
preserved the cluster structure within the senescent population, which
was the focus of our downstream analyses.

Finally, we performed differential gene expression (DGE) analysis
to ensure that cluster-defining genes for each cluster were not con-
fined to a small subset of cells within each cluster and that neighboring
clusters did not share the same set of top markers. Importantly, our
clustering analysis was followed by pseudotime trajectory inference to
better capture the continuous nature of the data and to address the
limitations of discrete clustering.

Uniform Manifold Approximation and Projection (UMAP)* was
used for dimensionality reduction and visualization with RunUMAP().
Cell-cycle scoring was performed using Seurat’s CellCycleScoring()
function, which assigns cell-cycle phase predictions based on pre-
defined gene sets for G2/M and S phases. Any cells that are not cate-
gorized as G2/M or S are labeled G1.

Differential expression analysis. Differentially expressed genes
(DEGs) between clusters were identified using FindMarkers() with the
Wilcoxon rank-sum test. Multiple testing correction was performed
using the Bonferroni method to adjust p-values. The expression of
canonical markers was visualized using FeaturePlot(), VInPlot(), and
DotPlot(). Expression values shown in all single-gene UMAPs and
heatmaps represent z-scored gene counts, which were normalized
using NormalizeData() and subsequently scaled and centered with
ScaleData().

Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) was performed using the
clusterProfiler package® in R to identify enriched biological pro-
cesses. Enrichment significance was assessed using a permutation-
based, weighted Kolmogorov-Smirnov-like test implemented in
clusterProfiler, with Benjamini-Hochberg correction for multiple
testing. The ranking metric was calculated as: Ranking
Score = avg_log,FC x -log;o (adj_pvalue), where avg log,FC repre-
sents the average log, fold change in gene expression, and adj_pvalue
is the Benjamini-Hochberg adjusted p-value. This ranking method
prioritizes genes that are both highly differentially expressed and
statistically significant. Enrichment analysis was conducted using the
gseGO() function, specifying the org.Hs.eg.db annotation package
for human genes and the Biological Process (BP) ontology. The
results were visualized using the gseaplot() function to display the
leading enriched pathway and the dotplot() function to summarize
the top enriched pathways. All analyses were performed in R using
the following packages: clusterProfiler, org.Hs.eg.db, and ggplot2 for
visualization.

Identifying shared SASP genes

We first took the 118 leading-edge genes for SASP-related pathways in
our senescent clusters (clusters 4, 9, 10, 12) and then for each
senescent cluster, we selected the top 50 of the 118 original genes.
We then found the overlap between these lists, resulting in 21 SASP
genes that were universally upregulated in every senescent cluster at
every dose of etoposide (Fig. 6D). The complete list is in Supple-
mentary Data 3.

Identifying the etoposide-induced senescent gene set

To make a gene set to identify etoposide-induced senescent cells, we
combined our senescent clusters (clusters 4, 9, 10, 12) and performed
DE expression analysis on our combined senescent cells vs. all other
cells sequenced. We selected the top 100 genes (based on Ranking
Score = avg_log,FC x -log;o (adj_pvalue)) and combined these with the
top 50 genes from DE analysis of cluster 4 alone vs. all other cells, since
this cluster was less robustly identified. We then found the unique

genes from this combined list. Finally, any genes from this list that
were also elevated in untreated GO/GI cells were removed. The com-
plete list is in Supplementary Data 3. A list of the top 200 DE genes for
senescent cells vs. all other sequenced cells, ranked by 1) adj_pvalue
alone and 2) avg log,FC x -log;o (adj_pvalue) without any additional
filtering, is also provided in Supplementary Data 3.

Expression score calculation

Gene module scores were computed using AddModuleScore() for
predefined gene sets, and results were visualized with FeaturePlot()
and DoHeatmap().

Pseudotime analysis

Pseudotime trajectory inference was performed using Monocle3*%,
with preprocessed Seurat data converted via as.cell_data_set(). Tra-
jectories were learned with learn_graph() and cells were ordered along
pseudotime using order _cells().

Statistics & reproducibility

Statistical analyses for single-cell RNA sequencing are detailed in the
Single-cell RNA sequencing section of the Methods. Statistical tests for
imaging data are described in the corresponding figure captions. No
statistical method was used to predetermine sample size. For single-
cell RNA sequencing, sample size was determined by the number of
captured cells passing quality control, with a target of approximately
5000 cells per condition, as described in the Methods. For live-cell
imaging, the sample size was limited by the number of cells that could
be plated in 96-well plates, and all observable single cells were imaged.
All fixed-cell imaging experiments included at least three replicate
wells, with nine independent fields of 10X magnification imaged per
well. No data were excluded from the analyses. The experiments were
not randomized. The Investigators were not blinded to allocation
during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All raw sequencing data and processed count matrices have been
deposited in GEO under accession code GSE297393. The raw and
tracked live-cell imaging data are available upon request to the cor-
responding author. Publicly available single-cell RNA-seq data sets for
Chan et al. and Wechter et al. were downloaded from GEO, GSE175533
and GSE226225, respectively. Source data are provided with this paper.

References

1. Marescal, O. & Cheeseman, I. M. Cellular mechanisms and regula-
tion of quiescence. Dev. Cell 55, 259-271 (2020).

2. He,S.&Sharpless, N. E. Senescence in health and disease. Cell 169,
1000-1011 (2017).

3. Gorgoulis, V. et al. Cellular senescence: defining a path forward.
Cell 179, 813-827 (2019).

4. Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L. & Lerman, L. O.
Cellular senescence: the good, the bad and the unknown. Nat. Rev.
Nephrol. 18, 611-627 (2022).

5. Mijit, M., Caracciolo, V., Melillo, A., Amicarelli, F. & Giordano, A. Role
of p53 in the regulation of cellular senescence. Biomolecules 10,
420 (2020).

6. DiMicco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F.
Cellular senescence in ageing: from mechanisms to therapeutic
opportunities. Nat. Rev. Mol. Cell Biol. 22, 75-95 (2021).

7. Wang, B., Han, J., Elisseeff, J. H. & Demaria, M. The senescence-
associated secretory phenotype and its physiological and patho-
logical implications. Nat. Rev. Mol. Cell Biol. 25, 958-978 (2024).

Nature Communications | (2026)17:169

16


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE297393
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE175533
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE226225
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-66836-z

10.

.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The
senescence-associated secretory phenotype: the dark side of
tumor suppression. Annu Rev. Pathol. 5, 99-118 (2010).

Gewirtz, D. A., Holt, S. E. & Elmore, L. W. Accelerated senescence:
an emerging role in tumor cell response to chemotherapy and
radiation. Biochem. Pharmacol. 76, 947-957 (2008).

Ewald, J. A., Desotelle, J. A., Wilding, G. & Jarrard, D. F. Therapy-
induced senescence in cancer. J. Natl Cancer Inst. 102, 1536-1546
(2010).

Wang, L., Lankhorst, L. & Bernards, R. Exploiting senescence for the
treatment of cancer. Nat. Rev. Cancer 22, 340-355 (2022).
Romanov, S. R. et al. Normal human mammary epithelial cells
spontaneously escape senescence and acquire genomic changes.
Nature 409, 633-637 (2001).

Prasanna, P. G. et al. Therapy-Induced Senescence: Opportunities
to Improve Anticancer Therapy. J. Natl Cancer Inst. 113, 1285-1298
(2021).

Schmitt, C. A. et al. A senescence program controlled by p53 and
p16INK4a contributes to the outcome of cancer therapy. Cell 109,
335-346 (2002).

Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senes-
cence. Nat. Rev. Cancer 15, 397-408 (2015).

Ashraf, H. M., Fernandez, B. & Spencer, S. L. The intensities of
canonical senescence biomarkers integrate the duration of cell-
cycle withdrawal. Nat. Commun. 14, 4527 (2023).

Walker, K. A., Basisty, N., Wilson, D. M. & Ferrucci, L. Connecting
aging biology and inflammation in the omics era. J. Clin. Invest. 132,
e158448 (2022).

Baldwin, E. L. & Osheroff, N. Etoposide, topoisomerase Il and can-
cer. Curr. Med. Chem. Anticancer Agents 5, 363-372 (2005).
Hatakeyama, M. & Weinberg, R. A. The role of RB in cell cycle
control. In Progress in Cell Cycle Research. 1, (eds. Meijer, L., Guidet,
S. & Tung, H. Y. L.) https://doi.org/10.1007/978-1-4615-1809-9 2
(Springer US, Boston, MA, 1995).

Spencer, S. L. et al. The proliferation-quiescence decision is con-
trolled by a bifurcation in CDK2 activity at mitotic exit. Cell 155,
369-383 (2013).

Mclnnes, L., Healy, J., Saul, N. & GroBberger, L. UMAP: uniform
manifold approximation and projection. J. Open Source Softw. 3,
861(2018).

Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell
184, 3573-3587.e29 (2021).

Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Inte-
grating single-cell transcriptomic data across different conditions,
technologies, and species. Nat. Biotechnol. 36, 411-420 (2018).
Cornwell, J. A. et al. Loss of CDK4/6 activity in the S/G2 phase leads
to cell cycle reversal. Nature 619, 363-370 (2023).

Johmura, Y. et al. Necessary and Sufficient Role for a Mitosis Skip in
Senescence Induction. Mol. Cell 55, 73-84 (2014).

Wechter, N. et al. Single-cell transcriptomic analysis uncovers
diverse and dynamic senescent cell populations. Aging 15,
2824-2851 (2023).

Chan, M. et al. Novel insights from a multiomics dissection of the
Hayflick limit. eLife 11, €70283 (2022).

Rossi, C. et al. PURPL and NEAT1 Long Non-Coding RNAs Are
Modulated in Vascular Smooth Muscle Cell Replicative Senes-
cence. Biomedicines 11, 3228 (2023).

Han, S. et al. PURPL represses autophagic cell death to promote
cutaneous melanoma by modulating ULK1 phosphorylation. Cell
Death Dis. 12, 1-13 (2021).

Li, X. L. et al. Long noncoding RNA PURPL suppresses basal p53
levels and promotes tumorigenicity in colorectal cancer. Cell Rep.
20, 2408-2423 (2017).

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

Hartford, C. C. R. et al. Context-dependent function of long non-
coding RNA PURPL in transcriptome regulation during p53 activa-
tion. Mol. Cell Biol. 42, e0028922 (2022).

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles.
Proc. Natl Acad. Sci. 102, 15545-15550 (2005).

The Gene Ontology resource: enriching a GOld mine. Nucleic Acids
Res. 49, D325-D334 (2020).

Aouad, P., Quinn, H. M., Berger, A. & Brisken, C. Tumor dormancy:
EMT beyond invasion and metastasis. Genesis 62, 23552 (2024).
Smith, B. N. & Bhowmick, N. A. Role of EMT in metastasis and
therapy resistance. J. Clin. Med. 5, 17 (2016).

Brabletz, S., Schuhwerk, H., Brabletz, T. & Stemmler, M. P. Dynamic
EMT: a multi-tool for tumor progression. EMBO J. 40, 108647
(2021).

Trapnell, C. et al. The dynamics and regulators of cell fate decisions
are revealed by pseudotemporal ordering of single cells. Nat. Bio-
technol. 32, 381-386 (2014).

Cao, J. et al. The single-cell transcriptional landscape of mamma-
lian organogenesis. Nature 566, 496-502 (2019).

Kovalski, J. R., Kuzuoglu-Ozturk, D. & Ruggero, D. Protein synthesis
control in cancer: selectivity and therapeutic targeting. EMBO J. 41,
e109823 (2022).

White-Gilbertson, S., Kurtz, D. T. & Voelkel-Johnson, C. The role of
protein synthesis in cell cycling and cancer. Mol. Oncol. 3,
402-408 (2009).

Rong, Y., Darnell, A. M., Sapp, K. M., Vander Heiden, M. G. &
Spencer, S. L. Cells use multiple mechanisms for cell-cycle arrest
upon withdrawal of individual amino acids. Cell Rep. 42, 113539
(2023).

Han, K. et al. Parallel measurement of dynamic changes in trans-
lation rates in single cells. Nat. Methods 11, 86-93 (2014).
Delfarah, A. et al. Inhibition of nucleotide synthesis promotes
replicative senescence of human mammary epithelial cells. J. Biol.
Chem. 294, 10564-10578 (2019).

Cunningham, J. T., Moreno, M. V., Lodi, A., Ronen, S. M. & Ruggero,
D. Protein and nucleotide biosynthesis are coupled by a single rate-
limiting enzyme, PRPS2, to drive cancer. Cell 157, 1088-1103 (2014).
Herranz, N., Gallage, S. & Gil, J. TORn about SASP regulation. Cell
Cycle 14, 3771-3772 (2015).

Herranz, N. et al. mTOR regulates MAPKAPK2 translation to control
the senescence-associated secretory phenotype. Nat. Cell Biol. 17,
1205-1217 (2015).

Laberge, R.-M. et al. MTOR regulates the pro-tumorigenic senes-
cence-associated secretory phenotype by promoting IL1A transla-
tion. Nat. Cell Biol. 17, 1049-1061 (2015).

Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and
senolytics: the path to the clinic. Nat. Med 28, 1556-1568 (2022).
Tchkonia, T., Palmer, A. K. & Kirkland, J. L. New horizons: novel
approaches to enhance healthspan through targeting cellular
senescence and related aging mechanisms. J. Clin. Endocrinol.
Metab. 106, E1481-E1487 (2021).

Nangia, V. et al. MAPK and mTORCT1 signaling converge to drive
cyclin D1 protein production to enable cell cycle reentry in mela-
noma persister cells. Sci. Signal. 18, eadw3231 (2025).

Gillespie, M. et al. The Reactome Pathway Knowledgebase 2022.
Nucleic Acids Res. 50, D687-D692 (2022).

Hsu, C.-H., Altschuler, S. J. & Wu, L. F. Patterns of early p21 dynamics
determine proliferation-senescence cell fate after chemotherapy.
Cell 178, 361-373.€12 (2019).

Cohn, R. L., Gasek, N. S., Kuchel, G. A. & Xu, M. The heterogeneity of
cellular senescence: insights at the single-cell level. Trends Cell
Biol. 33, 9-17 (2023).

Nature Communications | (2026)17:169

17


https://doi.org/10.1007/978-1-4615-1809-9_2
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-66836-z

54. Cohn,R. L., Gasek, N.S., Kuchel, G. A. & Xu, M. The heterogeneity of
cellular senescence: insights at the single-cell level. Trends Cell
Biol. 33, 9-17 (2022).

55. Hernandez-Segura, A. et al. Unmasking transcriptional hetero-
geneity in senescent cells. Curr. Biol. 27, 2652-2660.e4 (2017).

56. Kirschner, K., Rattanavirotkul, N., Quince, M. F. & Chandra, T.
Functional heterogeneity in senescence. Biochem Soc. Trans. 48,
765-773 (2020).

57. Stallaert, W. et al. The molecular architecture of cell cycle arrest.
Mol. Syst. Biol. 18, €11087 (2022).

58. Sessions, G. A., Loops, M. V., Diekman, B. O. & Purvis, J. E. Multi-
plexed single-cell imaging reveals diverging subpopulations with
distinct senescence phenotypes during long-term senescence
induction. GeroScience 47, 3891-3905 (2025).

59. Paronetto, M. P., Mifiana, B. & Valcarcel, J. The ewing sarcoma
protein regulates DNA damage-induced alternative splicing. Mol.
Cell 43, 353-368 (2011).

60. LU, X., de la Pena, L., Barker, C., Camphausen, K. & Tofilon, P. J.
Radiation-induced changes in gene expression involve recruitment
of existing messenger RNAs to and away from polysomes. Cancer
Res. 66, 1052-1061 (2006).

61. Halim, V. A. et al. Doxorubicin-induced DNA damage causes
extensive ubiquitination of ribosomal proteins associated with a
decrease in protein translation*. Mol. Cell Proteom. 17, 2297-2308
(2018).

62. Payea, M. J., Anerillas, C., Tharakan, R. & Gorospe, M. Translational
control during cellular senescence. Mol. Cell Biol. 41,
e00512-e00520 (2021).

63. Weichhart, T. mTOR as regulator of lifespan, aging and cellular
senescence. Gerontology 64, 127-134 (2018).

64. Fujimaki, K. et al. Graded regulation of cellular quiescence depth
between proliferation and senescence by a lysosomal dimmer
switch. Proc. Natl. Acad. Sci. USA 116, 22624-22634 (2019).

65. Gookin, S. et al. A map of protein dynamics during cell-cycle pro-
gression and cell-cycle exit. PLOS Biol. 15, 2003268 (2017).

66. Arora, M., Moser, J., Phadke, H., Basha, A. A. & Spencer, S. L.
Endogenous replication stress in mother cells leads to quiescence
of daughter cells. Cell Rep. 19, 1351-1364 (2017).

67. Yu,G.,Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS 16,
284-287 (2012).

Acknowledgments

We thank current and past members of the Spencer Laboratory for
general discussion and insight over the course of the work, and Theresa
Nahreini and the cell culture facility for cell sorting (RRID:SCR_018988).
The Aria Fusion FACS sorter is supported by NIH grant S100D021601.
The RNA FISH imaging was performed at the BioFrontiers Advanced
Light Microscopy Core directed by Joe Dragavon (RRID: SCR_018302).
The Revvity Opera Phenix is supported by NIH grant 1S100D025072.
Single-cell capture, library generation and sequencing were performed
at the University of Colorado Anschutz Medical Campus Genomics
Shared Resource (RRID: SCR_021984), which is supported by the Cancer
Center Support Grant (PS0CA046934). We thank Dr. James DeGregori
for providing facilities for sample preparation at CU Anschutz. This work
was supported by an NIH T32 GM142607 (to B.F.), an NIH F31 CA284877
(to B.F.), an NIH Director’s New Innovator Award 1DP2CA238330-01 (to

S.L.S), and an RO1 ROTAG082942 (to S.L.S). The content is solely the
responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health.

Author contributions

B.F. and S.L.S. designed the research; H.A., V.P., and B.F. conducted the
research; B.F. analyzed the data; B.F. and S.L.S. conceived the project;
B.F. and S.L.S. wrote the paper; S.L.S. supervised the project.

Competing interests

S.L.S. has a sponsored research agreement with Genesis Therapeutics,
had a past sponsored research agreement with Pfizer Inc., is on the
scientific advisory board of Meliora Therapeutics, has been a paid con-
sultant for Astex Therapeutics and Guidepoint Global, and has received
honoraria/speaking fees from Blueprint Therapeutics, Ensem Ther-
apeutics, Genentech Inc, lambic Therapeutics, Nereid Therapeutics,
QOdyssey Therapeutics, and Pfizer Inc. A joint patent has been filed by the
Regents of the University of Colorado and Pfizer Inc. related to CDK2
inhibitors (PCT/IB2021/052894). The remaining authors declare no
competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-66836-z.

Correspondence and requests for materials should be addressed to
Sabrina L. Spencer.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Nature Communications | (2026)17:169

18


https://doi.org/10.1038/s41467-025-66836-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Single-cell RNA sequencing reveals a quiescence-senescence continuum and distinct senotypes following chemotherapy
	Results
	Establishment of populations with increasing fractions of senescent cells
	Transcriptomic profiling of etoposide-treated cells reveals two paths to senescence and diverse senescent types
	Pathway analysis reveals biological processes altered in senescent cells
	G0/G1 quiescent cells following etoposide represent a transitional transcription state between cycling and senescent cells
	scRNA-seq reveals a transcriptomic gradient along the quiescence-senescence continuum
	Protein biosynthesis rate is a key difference between quiescent and senescent cells
	Protein biosynthesis is impaired in senescence, particularly in cluster 9
	Senescent cells that express SASP factors have higher protein biosynthesis than cells that do not
	Expression of the SASP is higher in cells that have undergone a mitotic slip
	A subset of SASP genes is expressed in all types of senescence
	A gene set to identify TIS cells

	Discussion
	Methods
	Cell lines and culture media
	Drug treatments
	Immunofluorescence imaging
	RNA FISH imaging
	Time-lapse microscopy
	Image processing and quantification
	Antibodies and reagents
	Single-cell RNA sequencing
	scRNA-seq data processing
	Feature selection and dimensionality reduction
	Clustering and visualization
	Differential expression analysis

	Gene set enrichment analysis
	Identifying shared SASP genes
	Identifying the etoposide-induced senescent gene set
	Expression score calculation
	Pseudotime analysis
	Statistics & reproducibility
	Reporting summary

	Data availability
	References
	Acknowledgments
	Author contributions
	Competing interests
	Additional information




