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Macroevolutionary brain scaling is a
microevolutionary metaphenomenon

Joanna Baker 1,2 , Robert A. Barton 3 & Chris Venditti 2

From bees to blue whales, it has long been assumed that brain size scales with
body size according to a simple log-linear relationship –with differences in the
slope and intercept observed amongst different groups of animals. However,
recent analyses inmammals contradict this view, revealing size dependency in
the form of curvature in the brain and body mass relationship. Here, we use
data from 4679 species across seven animal classes and spanning nearly 12
orders of magnitude to uncover near universal curvilinearity. We demonstrate
that this body size dependence is a metaphenomenon emerging from a pat-
tern of diminishing allometry within species with increasing body mass. This
has fundamental implications for how we interpret macroevolutionary pat-
terns – which can arise as a consequence of within-lineage dynamics. Our
integration of inter- and intra-specific allometries reshapes perspectives on
morphological evolution by providing a broader framework for understanding
how microevolutionary within-species dynamics shape macroevolutionary
phenomena.

From bees to blue whales, how and why variation in brain size among
animal species arose has received a lot of attention over the years e.g.1–6.
It is widely recognized that the strong correlation with body size is a key
consideration in understanding macroevolutionary patterns in brain
size. For nearly a century, the relationship between brain and body size
has been almost universally described as a simple log-linear relationship
with variability in slope and intercept amongst major clades, taxonomic
or otherwise3,4,7. The entrenched assumption of log-linearity underpins
all contemporary empirical research and theoretical models seeking to
understand brain size evolution as well as that of many other traits.
However, there are indications that some biological traits scale with
body size on a log-curvilinear scale such as metabolic rate8–11, ingestion
rate12, and offspring size and number13. Recent evidence has found that
log-curvilinearity also characterizes the relationship between brain and
body size amongst mammals and birds5, with profound implications for
studying relative brain size. A macro-evolutionary size-dependency in
the brain and body size relationship is a significant finding that resolves
several long-standing puzzles surrounding brain size evolution in
mammals, including the taxon-level effect, apparent brain to body size
lag effects, and apparent differences in scaling parameters7,14–16. These
artefacts of fitting linear models are size-dependent phenomena:

complex statistical models and elaborate biological explanations are
obviated by fitting a simple quadratic relationship. Two outstanding
questions arise, however: how widespread is this pattern across taxo-
nomic groups and what is its underlying cause?

Here, we demonstrate an unprecedented and striking size-
dependency that holds across the animal tree of life. Using phylo-
genetic comparative approaches and a comprehensive brain size
dataset spanning 4679 species across nine major animal classes, we
find a single curvilinear relationship between brain and body size.
Through hierarchical modelling incorporating individual-level varia-
tion, we then demonstrate that this curvature emerges as a meta-
phenomenon driven by diminishing allometry within individual
species as body size increases. This previously overlooked size
dependency reveals a mechanistic bridge between within-species
dynamics and large-scale macroevolutionary patterns.

Results and discussion
A near universal size-dependency in the brain-body mass
relationship
Using a dataset spanning nine major groups of animals (mammals,
birds, testudines, squamates, crocodilians, amphibians, bony fish,
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cartilaginous fish, and insects) and nearly 12 orders of magnitude in
brain and body size (Fig. 1a), we seek to determine whether curvili-
nearity in the brain and bodymass (BBM) relationship is ubiquitous or
even universal across the tree of life. To do this, we use a phylogenetic
comparative approach, the variable rates regression model17,18, to
study the BBM relationship across a comprehensive time-scaled
phylogenetic tree encompassing all species in the sample (n = 4679).
This model allows us to simultaneously estimate the slope (and/or
curvature) of the BBM relationship alongside rate heterogeneity –

using a Bayesian reversible jump MCMC procedure to automatically
identify lineages of the phylogenetic tree in which relative brain size
has evolved more rapidly or more slowly relative to body size.

We first estimated a global curve model across all species. Across
all of the major animal groups listed above (henceforth referred to as
classes for simplicity), there is an overall curvature in the BBM com-
parable to that found in mammals5, with a significantly negative
quadratic parameter (median = −0.014, px =0.000) and a positive
slope (median = 0.614, px =0.000). The global curve model is sig-
nificantly supported (in terms of Bayes Factors19, BF, see methods)
over both a global slope model estimating only a single slope and
intercept across all taxa (BF = 70.52) as well as a class slope model

estimating a separate intercept and slope for each class, considering
non-avian reptiles as a single group (BF = 69.28). The global curve
relationship is depicted in Fig. 1b. We then further test the possibility
that mammals drive the observed relationship and ascertain whether
any class displays fundamental differences in the BBMrelationship – as
recently suggested for bony fish owing to their indeterminate
growth20,21. To do this, we ran an additional model estimating a sepa-
rate quadratic curve for each class (class curve model, N = 4679, see
methods). In this model, we find that no class shows any significant
departure from the grand mean, i.e. a global curvature estimated
across all species (using deviation contrast coding, all px >0.05). In
terms of Bayes Factors, there is no improvement to be gained from
estimating separate curves for each class (BF =0.112). Repeating this
analysis on a dataset removing crocodilians (N = 3) and treating squa-
mates and testudines as separate classes reaches identical conclusions
– with no individual class demonstrating curvature that differs from
the global curvature (N = 4676; see Fig. 1c). From these results, we can
infer a surprisingly invariant general scaling rule across diverse animal
classes.

To further investigate the scale of this phenomenon, we ran an
additional subclade curve model in which we estimated a separate
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Fig. 1 | Brain and body size across 4679 animal species. a The eight major animal
classes (those listed above, excluding crocodilians owing to their small sample size)
are shown in the central phylogeny with clades collapsed to triangles sized pro-
portionally to the number of species. Each clade is expanded to show finer phylo-
genetic structure, with bars at the tips proportional to body size (pale) and brain size
(dark). b The predicted relationships estimated in our global curve model across all
4679 species with the median prediction superimposed upon a random sample
(n= 100) of the posterior. The median prediction from our global slope model is

shown for comparison with a dashed line. c The posterior distribution of estimated
curvature (quadratic parameters) for each of the eight non-crocodilian classes (n =
4676) compared to the global (grand mean) curvature outlined with a black dashed
line. All groups substantially overlap the grand mean and are thus not significantly
different from a global curve estimated across all species. Silhouettes are not pro-
portional to size and are shown for illustrative purposes only. Themajor animal clades
are indicated by the coloured silhouettes; the colour scheme is used throughout the
manuscript to facilitate quick comparisons between results.
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quadratic effect for each of fifty-one monophyletic taxonomically
derived subclades with N > = 20 (mostly represented by orders and
families, seeMaterials &Methods). Thesemodels are restricted to taxa
to which we could reliably assign to subclades (N = 4457); there is still
significant global curvature in this subset of data. As with our class
curve model, there is extraordinarily little departure from global cur-
vature in any subclade.Wefind significant deviation inonly 5 subclades
which each only represent a small portion of the range of brain and
body size data being studied (Fig. 2A-B). Despite a potentially steeper
curve (i.e., a more negative quadratic parameter), three of these
groups – Urodela (salamanders), Falconiformes (falcons), and Labri-
formes (parrotfish/wrasses) – show qualitatively the same pattern of
negative curvature as the global BBM relationship, even after con-
sidering potential outliers and differences amongst monophyletic
groupings within each subclade (Figs. S1–S6).

The other two groups, Atlantogenata (African mammals, sloths,
and armadillos) and Charadriiformes (shorebirds) show positive cur-
vature. However, within Atlantogenata,when elephants and sirenians –
members of relatively disparate orders separated by millions of years
of evolution22,23 – are removed from the analysis, there is no longer any
deviation from the grand mean (see Supplementary Note 1,

Figs. S4 and S6). Amongst Charadriiformes, the positive curvature
seems to largely be driven by the sub-clade Charadrii (N = 35, Supple-
mentary Note 1, Figs S5 and S6), a group mostly represented by plo-
vers. This clade has been noted to have unusually high sexual
dimorphism24 and sexual selection has been suggested to influence
brain size amongst Charadriiformes as a whole25. Whether this is the
cause of why plovers seem to deviate from the expectations derived
from all other animal species is an intriguing question that warrants
further investigation – along with why elephants and sirenians appear
to be outliers, and why some groups seem to have steeper curves.

However, even considering these few deviations (Figs. S1–S6), our
results reveal a remarkable ubiquity of curvature in the BBM rela-
tionship across all animal life. The same curvature is identified to fit
overmost animals included in our study – and is therefore not simply a
product of fitting a quadratic term over a dataset spanning nearly
twelve orders of magnitude. Whilst the parameter of curvature itself
may seem only small (median quadratic coefficient = −0.014), not only
is it significant (Supplementary Note 2), but it can also result in
important implications for our interpretation of brain size scaling. For
example, if we were to ignore the observed curvature in the BBM, a
sperm whale (Physeter catodon) is predicted to have a brain size of

Fig. 2 | Curvature in the brain and body size relationship across animals. a The
posterior distribution of the estimated global quadratic parameter – dashed black
line –observed across n = 51 subclades. The posterior distribution of quadratic
parameters for each subclade are shown in the colour of the class they belong to
and are outlined where they diverge from the grand mean (and indicated by cor-
responding silhouettes). Atlantogenata (consisting of both Afrotheria and Xenar-
thra together) substantially differs from the grand mean (purple outline, no fill) –
but neither of the subgroups differ after removing sirenians and elephants (grey-
outlined purple distributions). b The expected change in relative brain size
Δlog10brain
Δlog10body

� �
, calculated over the full range of observed body sizes for each subclade

(separating Atlantogenata into Xenartha and Afrotheria excluding elephants and
sirenians) for a random 100 samples of the posterior distribution, with a median
estimate overlaid. Lines are solid for the four subgroups which show significant
deviations after considering potential outliers and sub-groupings. c A negative
relationship between linear slope parameters (from a subclade slope model) and
body size for animal subclades, obtained using PGLS regression, is significant (two-
tailed test). Percentiles of the posterior distribution of slope parameters and body
mass ranges are shown as transparent lines for each group. The animal classes are
indicated by the coloured silhouettes; the colour scheme is used throughout the
manuscript to facilitate quick comparisons between results.
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~12 kg – much too large compared to observed values (~7.8 kg). How-
ever, curvilinearity substantially improves this prediction – reducing it
more than 43% to a value of ~7 kg and far closer to reality. These results
thus have crucial implications for understanding the brain size relative
to body size of individual species. In order to visualize how this cur-
vature can be interpreted across different taxa, we calculated the
expected change in brain and body size (Δlog10brain

Δlog10body
) over the full sample

of estimated parameters for each of the subgroups in our analysis
(Fig. 2B). If there was no curvature, the expected change in brain and
body size would be equivalent for animals of all sizes – yet we see that
on a log-scale that large-bodied animals of most subgroups have
proportionally less change in brain mass per unit body mass.

In all analyses reported here, we find substantial support for
variable rates (see methods, Fig. S7 and Supplementary Note 3).
However, the curvilinearity that we identify is supported in the
absence of rate heterogeneity. Overall, our results remain qualitatively
unchanged when we use a model that assumes a constant rate of
evolution. Confirming this, we find further support for a consistent
curvature in the BBM relationship in the form of a significant negative
association between the slope of the BBM relationship from the sub-
clade slope model and the average body size across all fifty-one sub-
clades (Fig. 2C; α = 0.590, β = −0.031, all p-values < 0.001). This
relationship still persists to the exclusion of the small-bodied insects
(α =0.591, β = −0.034, all p-values < 0.001) as well as sharks and tes-
tudines (the two other groups with relatively small sample size,
Fig S8; α = 0.590, β = −0.034, all p-values < 0.001); see Supplementary
Note 4 for more details. It is also upheld in the absence of rate het-
erogeneity (Supplementary Note 5). Together, this universal body size
dependency underpins the fascinating prospect that heterogeneity in
slopes previously attributed to diverse selection pressures or scaling
rules can be explained simply as a size-dependent effect5. This obviates
the need for special explanations for distinct patterns in diverse taxa
and has major implications for understanding brain evolution. For
example, this moves us beyond the concept of testing for lineage-
specific scaling patterns and suggests that some previously identified
correlates of relative brain size might be size-dependent artefacts.
Across all animals – from bees to blue whales - there is a size-
dependency in the BBM (Fig. 2B) that requires an explanation.

Curvature as a macroevolutionary metaphenomenon
Comparative phylogenetic approaches to studying evolutionary
relationships – including those we carry out here – seek to identify a
so-called “evolutionary regression coefficient”26 that describes the
covariation of two or more traits along the branches of a phyloge-
netic tree (i.e., an evolutionary slope parameter). The interpretation
of such parameters is implicitly linked to underlying within-species
variation26,27 – whether this arises through measurement error or
observational variability including population differences26–28. That
is, the patterns we are observing at the macro-evolutionary scale are
essentially averages of those acting across individual lineages26 and
thus on the variability upon which natural selection acts. This view is
reflected in earlier studies of metabolic rates which linked macro-
evolutionarymetabolic scaling to variation in the intercepts amongst
species29. However, in the context of the BBM relationship, a curvi-
linear model implies that the evolutionary regression coefficient
(slope) along individual branches is itself linked to body size in a
biased fashion. In such a scenario, variation in species-level brain
allometries would be linked to body size. That is, we would predict
not just simple variability in intercepts, but an explicit bias wherein
within-species slopes will be lower at larger body mass (Fig. 3 and
Supplementary Note 6).

Here, we investigated the possibility that heterogeneity in the
microevolutionary allometry observed within individual species4

shows a directional association with body size in such a way that it
gives rise to a macroevolutionary metaphenomenon of curvature

(Fig. 3). Todo this, weusedbrain andbody sizedata fromTsuboi et al.4,
spanning a total of 376 vertebrate species with at least 10 individual
measurements– note that this dataset does not include any insects or
cartilaginous fish. Consistent with our hypothesis, using phylogenetic
generalized least squares models30, we identify a strongly significant
negative relationship between the within-species slopes of the BBM
relationship and the average body size of each species (Fig. 4a, α = 0.37
[p <0.001]; β = −0.04 [p =0.008]; λ = 0.13). This is not owing to a
reduction in the strength of association in larger species: there is no
association of body size with the significance, mean-squared error, or
R2 value (Supplementary Note 7) – that is, there is truly a body size
dependency in these within-species allometries.

Fig. 3 | How microevolutionary allometry can give rise to macroevolutionary
metaphenomena. A curved relationship between brain and body size across spe-
cies can arise from differential allometries observed within individual taxa. If
species-level allometries vary with size (inset), this results in a general tendency for
the slope in the BBM relationship to become shallower with increasing size (orange
lines).Whenwe study the data across species, this gives rise to amacroevolutionary
metaphenomenon of curvature (purple dashed line).

Fig. 4 | Size bias in microevolutionary brain allometry and figure size bias in
microevolutionarybrain allometry and across-species curvature is observed in
real biological data. The patterns depicted in Fig. 3 are reflected in real data from
376 vertebrates. a There is a significant negative relationship between slope para-
meter and average species-level body size. b There is significant curvature in the
relationship across species – shown as the predictions from a global curve model
(N = 376) accounting for within-species variability in both brain and body size as a
random effect in a PGLMM. The median prediction is overlaid on top of a random
sample of 100 lines from the posterior. The major animal clades are indicated by
the coloured silhouettes; the colour scheme is used throughout the manuscript to
facilitate quick comparisons between results.
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Whilst it is recognized that within-species allometries tend to be
shallower than those observed across higher taxa4, we note that many
of the slopes within individual species are close to zero –with some of
these even being negative. It is difficult – though not impossible31 – to
envisage a scenario in which an increase in body size would lead to a
reduction in brain size and so the relationships within these species
may warrant further investigation. However, our results stand even
when we study only those species with positive slopes (N = 313,
α = 0.43 [p < 0.001]; β = −0.05 [p <0.001]; λ =0.12, R2 = 0.04).

In order to distinguish the nature of individual-level variability
from macroevolutionary patterns and thus formalise the notion
presented in Fig. 3, we can use a statistical technique known as within-
group centring32. This approach accounts not only for variation in trait
values, but also the heterogeneity observed amongst individual
species-level allometries. However, before being able to implement
these approaches, we first ensured that the curvature was still
apparent in the subset of data for which we have individual-level var-
iation (N = 376). Using phylogenetic generalized linearmixedmodels33

(PGLMMs) to account for individual-level variation in both brain and
body size, we recover a significant negative quadratic parameter
across species (median = −0.039, px =0.000) as well as a significant
positive slope (median = 0.55, px =0.000) (Fig. 4b). That is, we can
explicitly demonstrate the expectations laid out in Fig. 3 using
empirical data.

We therefore proceeded to run a PGLMM model using within-
group centring32 – referred to as our hierarchical model. Our hier-
archical model estimates two main components: (i) a BBM relation-
ship across species including curvature (using species-level means);
and (ii) an average effect of within-species allometric variability
(using species-level slopes as a random effect). In this hierarchical
model, we no longer find any curvature across species (mean
β = 0.004, px = 0.475), indicating that intraspecific patterns of brain
size variation are the driving force behind the macroevolutionary
curvature (Figs. 3–4). The relationship acting within individual spe-
cies is generally much shallower (mean β = 0.41, px = 0.000) than that
observed across species (mean β = 0.59, px = 0.000) as depicted in
Fig. 5 a,b. Whilst this is in line with early observations of intraspecific
vs. interspecific brain allometry amongst mammals34, it is important
to note that this within-species slope is derived from the true

variability in slope observed within individual species (Fig. 5a, inset).
An alternative way of parameterizing this model – with identical
interpretation – would be to estimate curvature in the within-species
component of the model rather than allowing intra-specific varia-
bility (i.e. not including species-level slopes as a random effect). This
model, shown in Fig. 6, still removes the across-species curvature
while the significant within-species negative quadratic effect (mean
β = -0.02, px = 0.000) again emphasizes the general tendency for a
reduction in slope values for individual species with increasing size –

as shown in Fig. 3. Previous suggestions that there may be a low
correlation between brain and body size within individual species
e.g.35–37 may be associated with the fact that the most well-studied
taxa tend to be larger. In any case, the factors driving such body size
dependency as well as additional variability in the within-species
BBM relationship remains to be fully elucidated.

Widespread curvilinearity in metabolic scaling e.g.8, has pre-
viously been linked to differences amongst scaling-exponents at
lower taxonomic levels10,38,39. Along with previous evidence from
mammals and birds5, our results demonstrate similarly widespread
curvilinear scaling for brain size – but go one step further by expli-
citly examining the effects of both within-species and across-species
relationships with body size. In doing so, we reveal that it is only by
understanding the relationship within individual species that we can
actually begin to explain the observed curvature across species. The
factors driving variation within species, including genetic factors,
fundamentally differ from processes shaping evolutionary diversity
which often involve associations with other traits or environmental
factors40–42. In line with this, several factors commonly reported to be
important brain size correlates at the species level have no apparent
effect on the size-dependency caused by variability amongst indivi-
duals. Variation in neither metabolic rates43,44 nor neuron number45,46

affect the curvature across mammals5, and neither environmental
temperature47 nor diet48 have any effect on size-dependency
amongst endothermic vertebrates (see Supplementary Note 8).
Instead, our results imply a mechanistic explanation in which the
global curvature in the animal BBM relationship is a manifestation of
the change in brain and body size within individual species along a
body size gradient. Simply put, within-species variation explains the
size dependency in the BBM relationship.

Fig. 5 | Within-species variation in brain allometry explains the macroevolu-
tionary metaphenomenon of curvature in the BBM relationship. a The pre-
dicted relationship between brain and body size from the hierarchical model
separated into within-species effects (orange) and across-species effects (purple).
The average within-species slope is derived from the species-level variability in

slopedepicted in (b, inset). In (b, c), weplot theposterior distributionsof estimated
parameter estimates from our hierarchical model. We also include the posterior
distribution of parameter estimates from the across species global curve model
(from Fig. 4b) for comparison (grey).
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Concluding remarks
Our results provide unprecedented insight into what exactly it is we
are studying when we use phylogenetic regression. By studying traits
such as relative brain size at multiple scales – from individuals to
species – we can reveal profoundly different patterns and provide
crucial insights into how we measure relative brain size – and how
macroevolutionary patterns can arise from within-species variation.
For example, Puschel et al.35 recently revealed that hominin encepha-
lization resulted from increases in brain size within individual species
and an accelerating pattern of increase through time. Whilst an
increase in the rate of brain expansion during hominin evolution has
been repeatedly demonstrated49–51, it is only by the separation of
within- and between- species evolutionary dynamics that we can truly
begin to understand how these patterns have arisen. It may not always
be enough to simply study species-level averageswhilst accounting for
variation in trait values, i.e. Figure 6a, refs. 52–54. Instead, we need to
understand how differences in the BBM arise through evolutionary
processes acting at different hierarchical levels4,32. That is, there is a
necessity to understand howmicroevolutionary variation can give rise
to macroevolutionary patterns.

The universal curvilinearity in the brain and body size relationship
observed across species is a metaphenomenon driven by micro-
evolutionary within-species processes. This raises questions about
studying brain size evolution in relation to behavioural-ecological
factors – wherein incorporating body size dependency or within-
species dynamicsmayaffect our conclusions about the drivers of brain
evolution. Furthermore, this size dependent phenomenon is unlikely
to be unique to brain size.

It is already well-established that non-linearity and curvature
exists in the relationship between metabolic rate and body size across
a wide range of organisms8–12 and authors have noted a potential size-
dependent effect11 similar to that observed here for animal slopes.
Curvature in fundamental biological traits has profound implications
for the interpretation of many biological phenomena such as biologi-
cal scaling55–57. For instance – and given the importance of metabolism
in almost all biological variation and processes58,59 – it follows that we
should perceive curvature in other biological traits12. Indeed, along
with brain size, non-linearity has been demonstrated in a suite of other

traits including, ingestion rate12, locomotion costs12, maternal energy
intake60, and offspring size and number13. Our results for brain size
indicate that we need to look to variation within individual species in
order to be able to explain these patterns. This is in line with obser-
vations made for metabolic rates in which curvilinearity can be
attributed – at least to some degree – to ontogenetic variation within
individual species as well as to interspecific relationships55,56.

To the extent that such patterns are true, our approach reveals a
way tomore clearly understand the underlying causes of enduring and
controversialmacroevolutionary phenomena such asCope’s rule61 and
Bergmann’s rule62 - using a simple separationofmicroevolutionary and
macroevolutionary processes. A deeper understanding of what exactly
we are studying when we use phylogenetic regression provides a
broader framework for understanding howmicroevolutionary within-
species dynamics can shape macroevolutionary phenomena.

Methods
Species-Level Data
The brain and body sizes of animal species were collated from the
literature. The full dataset and all references are provided as Supple-
mentary Data 1. We chose to use only whole-brain mass and excluded
species where brain masses were reported excluding the olfactory
bulb e.g.63,64. Wheremeasurements were explicitly noted to come from
juvenile specimens e.g.4, we did not include these measurements. We
preferred sources which provided paired brain and body size esti-
mates, and those which reported brain size as masses rather than
volumes. Where only endocranial volumes were available, we con-
verted these to masses in line with a 1 g = 1 cm3 conversion, ensuring
consistency with conversions used in several major sources3,65,66.
However, the pattern is upheld even in groups where data is primarily
derived directly from masses (e.g. Chiroptera, Amphibians, cartilagi-
nous fish). Where duplicate entries occurred for species given these
criteria, we preferred the earliest source after removing extreme
outliers by eye. In all cases, we record the source from which we
obtained the data used in our analysis in Supplementary Data 1.

In some cases, we modified values or used values from an alter-
native source. We excluded the brain mass for the blue whale Balae-
noptera musculus in several sources owing to a misrepresentation

Fig. 6 | Curvature in the average brain allometry observed within species
explains the macroevolutionary metaphenomenon of curvature in the BBM
relationship. a The predicted relationship between brain and body size from an
alternative hierarchical model separated into within-species effects (orange) and
across-species effects (purple). In this model, we do not incorporate a random
effect for species-level slopes (as we did for our main hierarchical model depicted
in Fig. 5). The overall curvature in the average within-species slopes is owing to the

pattern of diminishing slope value with increasing body size. In (b, c), we plot the
posterior distributions of estimated parameter estimates from our alternative
hierarchical model. We also include the posterior distribution of parameter esti-
mates from the across species global curve model (from Fig. 4b) for comparison
(grey). In this alternative hierarchicalmodel, there is no significant curvature across
species.
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derived from a dehydrated sample67. Rodentia and Lagomorpha brain
sizes from several sources2,4,68 were adjusted asoutlined by66,69 in order
to correct a systematic bias in the original source fromwhich theywere
obtained70. For fish and sharks obtained from the BRAINS table in
Fishbase71, we used the average reported brain and body size per
species (although analyses using the maximum made no difference).

Our final dataset contained brain and body size data for a total of
4679 species thatwere also found in the animal-wide phylogenetic tree
(see below). The full dataset is provided as Supplementary Data 1. All
data were logged (log10) before analysis.

Phylogenetic Tree
For all our phylogenetic analyses, we use the time tree of life72–74.
We downloaded a phylogenetic tree for Chordata from the time
tree of life website in February 202475. Species names were mat-
ched to the time tree; only species found in the tree were retained
for analysis. We ensured the tree was ultrametric (all tips termi-
nated at the present) and collapsed all polytomies to multi-
furcations (also referred to as hard polytomies). Finally, owing to
numerical issues associated with estimating evolutionary para-
meters along trees with very short terminal branches, we
removed randomly all but one member of any species group
descending from a single node with a branch length of less than
0.25 (250 Ky). To do this, we used a custom R function, which we
provide as Supplementary Code 1.

Class-level and subclade assignments
We separated species into major phylogenetic and taxonomic
clades: amphibians, mammals, bony fish, cartilaginous fish, rep-
tiles, and birds. As reptiles comprise several major taxonomic
groups: birds (N = 1327), squamates (N = 251), testudines (N = 25),
and crocodilians (N = 3), we divided these taxa into two major
monophyletic clades: birds and non-avian reptiles. Our analyses
are conducted both considering non-avian reptiles and birds
separately (in which the phylogenetic structure amongst the dif-
ferent reptilian groups are incorporated) and additionally study-
ing testudines and squamates as separate groups. In the latter,
crocodilians are removed owing to their small independent
sample size. All major animal clades are referred to as classes for
simplicity and consistency.

We then assigned species to a lower-level taxonomic designation
(henceforth subclade) based on major taxonomic resources76–81 and
original references (see Supplementary Data 1). For the most part,
these subclades are represented by taxonomic orders. In some cases,
subclades were paraphyletic or too small for further study and so to
maximize species inclusion, we combined subclades to form larger
monophyletic groups. For example, ten different groups of fish (a
mix of order and family level) as defined by the NCBI taxonomy
database77 form a singlemonophyletic clade (Ovalentaria) in the time
tree of life and so were here included as a single group. We studied
marsupials as a single group as it included several small orders which
would be otherwise excluded and similarly studied Afrotheria and
Xenarthra within mammals as a single magnorder, Atlantogenata
(though see results and Supplementary Note 1 for more information
about the division of this group). The major bird clade Aequorli-
tornithes as described by Prum et al.81 comprises two large mono-
phyletic groups which we here study as two separate subclades: the
shorebird order Charadriiformes (N = 140), and another clade con-
taining various other waterbird orders such as loons, penguins,
herons, and seabirds (N = 66). We retained only subclades large
enough for further study (N ≥ 20) – with one exception. We include
bees (N = 14) in order to enable comparison between insect subclades
(bees and ants). N = 220 species belonging to all other smaller groups
were removed from our subclade-level analyses for a total of
N = 4457 species across 51 subclades.

Within-Species Data
Thebrain andbody sizes for individual vertebrateswere obtained from
Tsuboi et al.4,82. Using code associated with and described in the ori-
ginal paper4,82, we centred data according to sex (male, female, or
unreported) and measurement method (volume or mass). We then
linked the names in this dataset to the names in the time tree of life and
removed species where N < 10, resulting in a dataset of 376 species.
Results using uncentred data produced the same major conclusions
(Supplementary Note 9).

Analysis
Thebrain andbody size relationship across species.Weperformeda
series of phylogenetic generalized least squares (PGLS) analyses to
model the relationship between brain and body size across animal
species. Here, we estimate curvature using a quadratic parameter –

which is likely to be a good approximation of the curvilinearity
observed over the range of observed bodymasses5. Note also that this
would essentially be identical in interpretation to a linear threshold
model that estimates different slopes for different size classes – with
infinite thresholds. Our global curve model estimated a single inter-
cept, slope, and quadratic parameter across all N = 4679 species. Our
class curve models estimated a separate intercept, slope, and quad-
ratic parameter for each of the major animal classes and were con-
ducted both across all N = 4679 species (considering all non-avian
reptiles as a single group) and across N = 4676 species (considering
each reptile clade separately, to the exclusion of crocodilians). Our
subclade curve models estimated a separate intercept, slope, and
quadratic parameter for each of 51 subclades and is performed on only
a subset of N = 4457 species (see above). Repeating the class curve
model and global curve model on the limited dataset resulted in only
negligible differences and so we report the full results here.

All analyses were performed using a Bayesian reversible jump
MCMCprocedure implemented in BayesTraits83. Chains were run for a
total of 10 billion iterations, removing the first 100 million as burn-in
and retaining every 500 thousand samples. We used a wide and
uninformative normal prior centred on zero with a standard deviation
of 2.5 for all regression parameters. Convergence was assessed
visually, and multiple replicates were run to ensure repeatability of
results and thatour posterior distributions differed fromtheprior. Our
results did not differ across replicates. We assessed parameter sig-
nificance using the proportion of the posterior distribution over-
lapping zero (px). Where the posterior distribution of a parameter
value had px < 0.05, it means that less than 5% of the distribution
crosses zero and could therefore be considered substantially different
from zero. We compared differences amongst classes and subclades
using sum contrast (or deviation) coding – a coding system for cate-
gorical variables in regression analyses that allows for the comparison
of a group-level parameter (e.g. class-level curvature) to an overall
mean across all species (grand mean curvature). This method returns
parameter estimates interpretable as the difference between each
group and thegrandmean. Therefore,where theposteriordistribution
of differenceparameters significantly overlaps zero (px >0.05), there is
no substantial difference between that group and the grand mean.

We implement our PGLS models using the variable rates regres-
sionmodel, which simultaneously estimates the regressionparameters
alongside heterogeneity in the rate of evolutionary change17,18. This
method automatically identifies lineages (branches) of the phyloge-
netic tree in which relative brain size has evolved at a faster or slower
rate relative to body size17,18. It does this by estimating a set of rate
scalars r defining the rate of evolution on each branch of the phylo-
genetic tree: where r > 1, a branch is evolving faster than the back-
ground rate of change, and where 0 ≤ r < 1, it is evolving slower.

We assessedwhether rate heterogeneity was supported in each of
our models by calculating Bayes Factors with the equation BF =
-2loge(m1/m0), where m0 is the marginal likelihood of a model with
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only a single underlying rate of evolutionary change and m1 is the
marginal likelihood of a variable rates model that estimates rate het-
erogeneity. Where BF > 2, it is considered to be positive support for
rate heterogeneity19. All marginal likelihoods were estimated using
stepping-stone sampling84, sampling 100,000 iterations for each of
1000 stones after convergence was reached. All PGLS analyses repor-
ted in the main text show substantial support for variable rates – all
having Bayes Factors > 500. A summary of the estimated rate for each
branch of the phylogenetic tree is provided in Supplementary Data 2.
However, it is not possible to estimate rate heterogeneity in all
downstream analyses (e.g. mixed models, see below). Therefore, we
also replicated all our PGLS analyses using models that assumed a
constant rate of evolution (i.e. no rate heterogeneity). Our conclusions
remain qualitatively unchanged (see Supplementary Note 5 and
Figs. S9-S14) and we therefore only present the results from the vari-
able rates models in the main text.

Size-dependency in the brain-body relationship across species
To determine the size dependency effect on brain and body size
slopes, we ran two additional PGLS models in the same way described
above. Thesemodels estimated a separate intercept and slope for each
class (class slope model) or each subclade (subclade slope model)
respectively. We then estimated a relationship between the median
slope value and median body size for each group (class or subclade)
using maximum likelihood PGLS models implemented in caper30,
estimating phylogenetic signal using Lambda85.

Analyses incorporating within-species variation
To investigate the possibility that heterogeneity in the brain and body
size relationship observed amongst individual species could give rise
to the observed curvature across species, we conducted a series of
analyses using phylogenetic generalized linear mixed models
(PGLMMs) implemented in MCMCglmm33. In these models, we incor-
porate phylogenetic information as a random effect using the phylo-
genetic variance-covariance matrix. Species-level variation is
incorporated by the inclusion of all values for species with at least 10
individual measurements and an additional random effect allocating
each point to a given species.

Prior to our PGLMMs, we first ran a reduced global curve model,
replicating our global curvemodel using only the sample of species for
which we had within-species data, and the brain and body size mea-
surements as reported in Supplementary Data 1, ensuring that we still
recovered significant curvature in this reduced dataset. This reduced
sample of taxa still displays significant negative curvature (mean β =
-0.04, px = 0.02). We then ran a global curve with species-level varia-
tion PGLMM on the same reduced sample of species but this time
including all individualmeasurements. Thismodel included both body
size and a second order quadratic term as fixed effects along with the
phylogeny and species association as random effects. Phylogenetic
signal was assessed using heritability. For all continuous fixed effects,
we used a normally distributed diffuse prior as in the default options33.
For random effects we used non-informative parameter-expanded
priors (V = 1, nu = 1, alpha.mu = 0, alpha.V = 1000).

We then used within-group centering32 to separate body size into
two components: across-species body size (a species-level average of
body size) and within-species body size (calculated as the difference
between each species and the species-level mean). In doing so, it
becomes possible to estimate both the brain and body size relation-
ship (including curvature) across all species alongside an average
effect ofwithin-species allometric variability–within a single statistical
model. We refer to this as our hierarchical model, which includes three
fixed effects (across-species body size and its second order quadratic
term as well aswithin-species body size) and three random effects (the
phylogenetic variance-covariance matrix, a species identifier, and
within-species slopes). Including species-level slopes as a random

effect allows us to incorporate the variability in slope observed across
individual species4.

It is not currently possible to estimate rate heterogeneity in a
PGLMM (see above); all PGLMM analyses were therefore per-
formed on the time tree of life limited to the species included
within the analysis, where branch lengths were proportional to
time. However, our conclusions remained qualitatively identical
when we use a tree where branch lengths have been scaled to
reflect the median rate of evolution given the global curve model
(i.e. branch lengths = r x t).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data analysed in this study are available in the main text or the
supplementary materials, along with the original sources from which
they were obtained (Supplementary Data 1). Source data are provided
with this paper.

Code availability
Weprovide codedeveloped as apart of thiswork in the supplementary
material (Supplementary Code 1), but all other analyses were per-
formed using publicly available, published and peer-reviewed pro-
grams which are cited appropriately in the text.
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