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% Check for updates Cryosection pathology is essential for intraoperative diagnosis of diffuse
midline gliomas, yet it often leads to diagnostic errors and may prompt
unnecessary re-biopsies before completion of the formal molecular assess-
ment. In this study, we propose an Al-augmented framework, CryoAID, for
rapid molecular outcome prediction during surgery for patients with diffuse
midline glioma. CryoAID integrates a generative model to correct cryosection
artefacts and a pathology foundation model to predict molecular statuses
directly from cryosection images. We validate CryoAlD across multiple cohorts
to predict tumoural molecular statuses in the internal (n = 326), external multi-
centre (n=52), and consecutive (n = 68) datasets. In particular, CryoAID
accurately predicts major molecular statuses (e.g., ATRX, H3K27M, and TP53)
using cryosection images that were previously deemed disqualified for mole-
cular examinations. Beyond tumour cells, CryoAID reveals highly differential
clinical features, including glial cell proliferation, abundant cytoplasm, and
localised endothelial proliferation. In the retrospective analyses, CryoAID
reduces re-biopsy rates by 26.4% and 26.6% in the internal and consecutive
datasets, respectively. Our findings demonstrate that the Al-augmented
pathology workflow can extract diagnostic value from specimens previously
considered non-viable by traditional histopathology. This approach represents
a shift towards real-time molecular pathology, potentially reducing re-biopsies
and improving diagnostic precision for patients with diffuse midline glioma.

Diffuse midline gliomas (DMGs) predominantly affect children and factors and therapeutic targets for improving patient survival®®. In the
adolescents and have become the leading cause of death among surgical setting, a timely assessment of these biomarkers remains
paediatric brain tumours'™. Major molecular biomarkers, including difficult in the surgical environment. The deeply infiltrative nature of
H3K27M*, TP53°, ATRX®, and BRAF’, serve as independent prognostic  DMGs, combined with their location near vital brain regions, makes the
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surgical removal highly challenging and hazardous. Therefore, clinical
practice routinely combines biopsy and intraoperative frozen section
examination with comprehensive molecular analysis for diagnostic
confirmation'",

The neurosurgical biopsy process involves a complex interaction
between the pathologist and the surgeon, constrained by limited
operative time, tissue availability, and imaging quality. In this process,
only qualified biopsy samples are selected for detailed molecular
diagnoses using immunohistochemistry (IHC) and sequencing”™.
During surgery, pathologists must make timely decisions on the biopsy
samples, typically classifying them as either Pass or No-Pass samples.
This assessment directly influences the surgeon’s decision to continue
or terminate the surgical operation. However, the accuracy of such
real-time evaluations is often compromised by the inherent challenge
in cryosection pathology. Two common scenarios frequently result in
undesired No-Pass outcomes, thereby increasing the risk of re-biopsy:
(i) artefacts or atypical cellular morphology introduced during cryo-
sectioning may obscure tumour cells, preventing their identification;
and (ii) even when tumour tissue is present, suboptimal visual cues
from cryosections can reduce diagnostic confidence and prompt sur-
geons to request additional samples.

Reducing unnecessary re-biopsies is particularly critical for DMGs
as multiple biopsies significantly heighten the risk of patient disability
or death®. Two major challenges persist in the current frozen section
practice. First, the precise molecular profiling has not been fully
extended to the intraoperative frozen section evaluation. Formalin-
fixed, paraffin-embedded (FFPE) specimens remain the primary source
for immunohistochemical (IHC) and molecular analyses'®’®, However,
the FFPE procedure is time-consuming and precludes rapid feedback
via the trial-and-error operation. Second, it remains unclear which
histological features from cryosectioning can reliably inform mole-
cular diagnostics. The current “Pass” criterion primarily relies on visual
detection of sufficient tumour cells, without accounting for the link
between histopathological appearance and molecular profiles. Emer-
ging studies indicate that genetic signals of tumour can be detected in
adjacent non-tumour tissues'’, indicating that intraoperative decision-
making for cryosectioned samples requires a more nuanced assess-
ment of tissue-level imaging features.

Clinical artificial intelligence (Al) has advanced the characteriza-
tion of cryosection images and accelerated molecular diagnosis***.
The use of generative Al promises to enhance the assessment of
cryosection pathology and mitigate cryosection-induced artifacts®.
For instance, pre-trained foundation models excel at extracting subtle
image features that are challenging to discern with the naked eye,
thereby augmenting the capacity of molecular diagnostics in clinical
examinations®?°, Despite their potential clinical impact, these
advances have primarily focused on FFPE tissue analysis”’?’. Extending
Al-based prediction directly to frozen sections would enable pathol-
ogists to receive immediate diagnostic support, facilitating sample
adequacy assessment, tissue abnormality detection, and reducing
unnecessary re-biopsies.

In this study, we explore the clinical impact of Al-driven assess-
ment for DMG patients by proposing the CryoAID as a Cryosection-
based Al for Intraoperative Diagnosis (Fig. 1A, B). Our primary objec-
tive is to enable Al-powered rapid molecular diagnostics with inter-
pretable visual cues, both on the “Pass” cryosectioned pathology
samples and on difficult samples previously deemed “No-Pass” by
clinical experts. CryoAID aims to repurpose No-Pass samples and
reduce unnecessary re-biopsies within the routine diagnostic process
of cryosectioned pathology. We evaluate a retrospective multi-centre
collection of cryosection pathology data from the DMG biopsy
operation. We illustrate that using CryoAID could potentially reduce
the re-biopsy triggered by unnecessary “No-Pass” decisions, thereby
improving the intraoperative decision-making and minimising the
surgical risks of patients with DMG.

Results

CryoAlID strongly predicts mutant statuses in Pass images

This experiment involved passing cryosection images to demonstrate
the capacity of CryoAID for predicting major mutant statuses (ATRX,
H3K27M, and TP53. Fig. 1D Part I). In Fig. 2A-C, we see that CryoAID
demonstrates strong improvements over all other methods with sta-
tistical significance. For the tasks of predicting TP53, H3K27M, and
ATRX, CryoAID obtains area under the curve (AUC)=0.866 + 0.051
(95% confidence interval, Cls = [0.828, 0.905]), AUC = 0.788 + 0.044
(ClIs = [0.754, 0.821]), and AUC =0.774 + 0.048 (ClIs = [0.737, 0.810]).
These AUCs from CryoAID are all significant for the three genes
(Fig. 2D), along with positive predictions in terms of multiple perfor-
mance metrics (Fig. 2G). On ARTX, CryoAID exhibits accuracy
(ACC)=0.709 + 0.054 (ClIs = [0.668, 0.750]), F1=0.654 + 0.052 (Cls =
[0.614, 0.693]), sensitivity (SEN) = 0.656 + 0.078 (Cls = [0.597, 0.714]),
and specificity (SPE)=0.730+0.070 (Cls = [0.678, 0.783]). For
H3K27M, CryoAID has ACC=0.742+0.040 (Cls = [0.712, 0.773]),
F1=0.789 + 0.024 (Cls = [0.771, 0.808]), SEN=0.708 + 0.040 (ClIs =
[0.678, 0.739]), and SPE=0.780 +0.052 (Cls = [0.741, 0.819]). For
TP53, the metrics are ACC=0.800=0.054 (ClIs = [0.759, 0.841]),
F1=0.798 £ 0.053 (CIs = [0.759, 0.838]), SEN=0.762+ 0.064 (Cls =
[0.713, 0.810]), and SPE = 0.826 + 0.058 (Cls = [0.783, 0.870]).

We evaluated the generalizability of CryoAID using the con-
secutive testing dataset and the multi-centre external testing dataset.
In Fig. 2E, under consecutive external testing, CryoAID accurately
detects the TP53, H3K27M, and ATRX statuses with AUC = 0.772 (Cls =
[0.656, 0.887], p < 0.001), AUC = 0.707 (Cls = [0.581, 0.834], p = 0.001),
and AUC = 0.662 (ClIs =[0.529, 0.795], p = 0.017). Correspondingly, the
other performance metrics are ACC=0.716, F1=0.689, SEN =0.700,
SPE=0.730, p<0.001 for H3K27M, and ACC=0.716, F1=0.740,
SEN =0.677, SPE =0.750, p < 0.001 for TP53 (Fig. 2H). The metrics for
ATRX are relatively restricted but significant (ACC=0.597, SEN=
0.560, SPE=0.619, p<0.05; F1=0.562, p<0.001). And in the multi-
centre testing (Fig. 2F, G), on the combined result (centre-wise results
in Fig. S2), the model’s prediction capacity remains positive in ATRX
(AUC=0.789, CIs = [0.665, 0.914], p <0.001), H3K27M (AUC = 0.793,
ClIs =[0.668, 0.919], p<0.001), and TP53 (AUC =0.840, Cls = [0.728,
0.951], p<0.001). In the challenging multi-centre evaluation (Fig. 2I),
the performance metrics remain favourable, where CryoAID yielded
ACC=0.765, F1=0.647, SEN=0.769, SPE = 0.763, p < 0.001 for ATRX,
ACC=0.725, F1=0.727, SEN=0.696, SPE=0.750, p<0.001 for
H3K27M, and ACC=0.765 F1=0.776, SEN=0.750, SPE=0.778,
p <0.001 for TP53. Overall, CryoAID, based on Pass cryosection ima-
ges, displays a high capability in the task of molecular diagnoses under
various external settings.

In Fig. 3, we visualized the predictive features for the H3K27M
mutant from CryoAID. From Fig. 3A, B, scant tissue displays diffusely
infiltrating tumour cells with prominent cytoplasmic processes and
small round nuclei, exhibiting nuclear atypia, high cellular density, and
rare mitotic figures. In the 2021 WHO Classification®’, the H3K27M-
mutant DMGs are all assigned grade 4 gliomas with astrocytic mor-
phology in histopathology. This consistent evidence supports that
CryoAID enables clinically relevant feature detection in cryosection
images of the H3K27M mutant.

CryoAlID enables the molecular diagnosis in No-Pass images
We explored the challenging setting by using CryoAID to predict
mutant status on No-Pass images in two different scenarios (Fig. 1D
Part II). First, we directly transferred models trained on Pass images to
evaluate on the No-Pass images (Fig. 4). Second, we re-trained another
set of models based solely on No-Pass images (Fig. 5). We assessed the
significance of the predictability and investigated the predictive fea-
tures in No-Pass images in Fig. 5.

In Fig. 4A-C, we observe that our model can detect mutant
statuses of ATRX, H3K27M, and TP53 in No-Pass images using
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Pass-image pre-trained models. Although AUC values are relatively
low in this challenging setting, the significance levels are statisti-
cally satisfactory (AUC =0.557, ClIs = [0.479, 0.634], p=0.071 for
ATRX; AUC=0.728, CIs = [0.665, 0.790], p<0.001 for H3K27M;
AUC=0.732, ClIs = [0.665, 0.798], p<0.001 for TP53). This obser-
vation suggests that certain predictive features are shared in Pass
and No-Pass images.

We hypothesized that these shared features could be the tumour
cells that escaped the visual examinations. To evaluate, we selected the
cryosectioned slides with the H3K27M mutant being accurately
detected and sent the corresponding predictive patches to the
pathologist for visual re-checking. The pathologist identified malig-
nant, uncertain, and benign patches, which were exemplified in Fig. 4D.
The statistics support that most of the predictive patches are
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Fig. 1| CryoAID enhances the efficiency of the clinical biopsy workflow and
reduces the surgical risk of DMG patients. A In the conventional biopsy process,
after receiving the specimen from the surgeon, the pathologist decides whether the
cryosection slide is “Pass” or “No-Pass.” Due to the limited image quality of cryo-
section slides and the lack of clear visual features to ensure molecular adequacy,
unnecessary “No-Pass” decisions are frequently made. This often leads to sig-
nificant time delays (exceeding 30 minutes) and increases biopsy-related risks for
patients with DMG. The proposed CryoAID provides both the likelihood of mole-
cular diagnosis for a given slide and corresponding visual evidence. CryoAID’s
output can trigger re-examination of slides, allowing pathologists to revise incor-
rect “No-Pass” decisions to “Pass,” thereby potentially reducing unnecessary re-
biopsies. B The algorithmic workflow of CryoAID. CryoAID employs an AI-FFPE
generative model to enhance the visual quality of cryosection slides and leverages a
pathology-specific pre-trained foundation model to extract reliable

representations. The slide-level features are integrated via a Transformer-based
classifier to generate probabilistic predictions of gene mutation status. C Multi-
centre data collection for internal cross-validation, external validation, and con-
secutive validation datasets. D The detailed validation pipeline. The three com-
ponents correspond to the major result sections (I-III). Part I follows the standard
clinical workflow, focusing on Al-based molecular diagnosis using “Pass” cryosec-
tion images. Part Il demonstrates CryoAID’s ability to repurpose “No-Pass” images
to improve molecular diagnostic performance. This part includes two experiments:
transfer learning and direct training. Part Il jointly uses both “No-Pass” and “Pass”
images to evaluate CryoAlD’s capability to reduce re-biopsies through retro-
spective re-checking analysis. CryoAlID re-examines images in the same sequence as
in the surgical workflow and provides predictive assessments with reduced biopsy
counts based on combined “Pass” and “No-Pass” inputs.

malignant (Fig. 4E, 715/1035, 69.1%). Malignant patches demonstrate
moderately dense infiltrates of oval tumour cells with marked nuclear
atypia and prominent cytoplasmic processes. Mitotic figures are
readily identifiable, with focal vascular endothelial proliferation
observed in some cases. Most of the tumour cells in these re-identified
malignant patches appear in the tissue boundary, where the tumour
cells can be hidden from previous examinations of pathologists. The
uncertain patches manifest broken tissue showing increased cell
density, formation of foamy cells in sheets accompanied by glial pro-
liferation, a few small round cells with projections scattered through-
out, and some nuclei being slightly atypical. The benign patches
involve normal cell morphology or slight swelling of some cell cyto-
plasm, with no obvious nuclear atypia. As we expected, the tumour-
related features can be detected in a large part of cryosectioned slides
(Fig. 4F, 60/69, 86.9%), potentially caused by the missed examination.
However, there also exists a certain amount of predictive patches
(Fig. 4E, uncertain: 212/1035, 20.5%; benign: 108/1035, 10.4%) and slides
(Fig. 4F, 3.1%) being not tumour-related.

In Fig. 5A-C, we display that in the No-Pass-based training and
predictions, AUCs range from 0.736 to 0.793 and P-values are all less
than 0.001. Note that the AUC for ATRX is higher than that in Fig. 5A,
supporting that without learning on Pass images, CryoAID can identify
a set of specific features associated with the mutant status. In other
words, there exist predictive features specific to No-Pass images that
are not strongly related to tumour tissues.

We explored No-Pass image-specific features using a representative
case of a 19-year-old female patient with a glioma located in the bilateral
pons and medulla oblongata and confirmed H3K27M mutant. Due to
the tumour’s diffuse infiltration within the brainstem, the pontine lesion
was targeted for biopsy (Fig. 5D). Previous intraoperative cryosection
pathology analysis indicated glial proliferation with mild nuclear atypia,
recommending further sampling (No-Pass image shown in Fig. 5D).
Following the analysis of CryoAID with No-Pass-based training, the tis-
sue imaging exhibited indications of H3K27M mutation. In Fig. 5E, we
observe a small proportion of nuclear atypia cells (i.e., suspected
tumour cells), a rich presence of glial cells, with localised evidence of
endothelial cell proliferation (Fig. 5F, G). In the meantime, we confirmed
that this H3K27M mutation was identified via IHC imaging from the
same sample (Fig. SH). While CryoAID successfully detected suspected
tumour cells in this low-density case, traditional pathology would con-
sider such sparse tumour cells insufficient for confident diagnosis.
Notably, CryoAID overcame this limitation by extracting information
largely from the tumour’s surrounding tissues—including the abundant
glial cells and endothelial proliferation—rather than relying solely on the
scarce tumour cells themselves, thereby achieving accurate mutant
status prediction despite the challenging sample.

A retrospective biopsy re-checking with assistance of CryoAID
CryoAID could generate rapid decision-making support during the
biopsy operation on both No-Pass and Pass images. In this analysis, we

retrained models based on all Pass and No-Pass samples. The models
were applied to a retrospective biopsy re-checking analysis, mimicking
intraoperative conditions (Fig. 1D Part IIl. Illustration for details in
Fig. 6A) under a simplified setting. In particular, we strictly maintained
the arriving order of the collected retrospective cryosection images
and sequentially input them to our established models. Then CryoAID
independently assessed the mutant status of each arriving sample. We
compared the actual biopsy counts by humans and Al detection counts
for any mutant correctly, as mutations in any of the three diagnostic
genes (ATRX, H3K27M, and TP53) suggest tumour presence. Please
note that this statistical process may be optimistic to a certain extent,
as in real-world practice, there is no ground-truth mutation status
available during surgery, only the pathologist’s judgment. We expect
that the actual biopsy counts achieved through Al-pathologist colla-
boration will exceed the estimation in this analysis, but remain lower
than those from human experts alone.

In Fig. 6B, we observe a range of significant predictability from
such trained models. Using the information about sampling order, we
were able to calculate the prediction performance of CryoAID within
the first two times of biopsies (Fig. 6D, E and Table S2). By properly
adjusting a decision threshold, using once sampling (n=315), the
model can obtain 0.675-0.733 ACC and 0.722-0.781 AUC for different
mutant predictions. Under twice sampling (n=173), the model yields
further increased performances, with 0.680-0.775 ACC and
0.777-0.844 AUC. We see that CryoAID underpins the intraoperative
decision support and reduces re-biopsy. In Fig. 6F, in the internal
dataset, the averaged biopsy counts for humans are 1.73, while
expected to be 1.27 for “Al”. The Al process would significantly reduce
149 times of biopsy out of 564 times in total (326 patients, the
reduction ratio is 26.4%, p = 2.89e-26, t(325) =11.52, one-sided paired
t-test).

We further re-trained a set of models based on all internal data
and applied them to all consecutive testing data. The predictive per-
formance for the three genes remains satisfactory (Fig. 6C, ATRX:
AUC=0.604, Cls = [0.508, 0.700], p=0.017; H3K27M: AUC =0.704,
Cls =[0.619, 0.789], p < 0.001; TP53: AUC = 0.753, Cls = [0.672, 0.834],
p <0.001)). In Fig. 6G, using the consecutive data, the averaged biopsy
counts for “human” are 2.10 and 1.54 for “Al”. The Al process could
significantly save 38 times of biopsy out of 143 times in the 68 patients
(reduces 26.6%, p = 6.61e-10, t(67) = 7.03). Note that the patients with
6 and 4 times of biopsy in the internal and consecutive datasets are
confirmed with no mutant, and thus Al can not reduce the re-biopsy.
Despite the model advance, this indicates the existence of extreme
cases that cannot benefit from CryoAID.

Dual validation for low-grade midline gliomas

It is noteworthy that a subset of midline gliomas, including pilocytic
astrocytomas (PAs), are low-grade, underscoring the substantial dif-
ferences in clinical management strategies. PAs require maximal
resection, whereas the presence of an H3K27M mutation could make
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tions using different foundation models (FMs). C AUC distributions without and
with AI-FFPE generation. A-C For boxplots, the centre line indicates the median, the
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kers give the maximum and minimum values. Outliers are indicated with “o”. All
boxplots in (A-C) are derived from results of the ten-fold cross-validations (n =10).
*: CryoAID shows significant improvement over the indicated methods at p <0.05
level using one-sided t-test (not adjusted). **: p < 0.01. ** p <0.001. The sig-
nificance asterisks should be read vertically. D-F The receiver operating char-
acteristic (ROC) curves based on predictions of ATRX, H3K27M, and TP53, in
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internal, consecutive, and multi-centre dataset, respectively. P-values are from one-
sided permutation tests (not adjusted). D presents the averaged AUC over folds.
For the multi-centre dataset, the predictions from Fujian Hospital and North Hos-
pital are combined. Centre-specific results are offered in Fig. S2. G-1 We report
accuracy, F1 score, sensitivity, and specificity of CryoAID for different predictions,
in the internal, consecutive, and multi-centre dataset respectively. ACC: accuracy.
F1: F1 score. SEN: sensitivity. SPE: specificity. The metrics are estimated under the
optimal threshold. Data in (G) are presented as mean +/- standard deviation STD
(n=10). Scatter in (G) depicts individual data from each fold (n =10). *: Metric is
significantly higher than chance level at p < 0.05 level using one-sided permutation
tests (not adjusted). ***: p < 0.001. Source data are provided as a Source Data file.

surgeons more conservative, which creates a contradiction. To
address this hurdle, we extend to propose a dual-validation protocol
using CryoAID, where CryoAlID offers both molecular diagnosis on key
genes and histopathological diagnosis about low-grade tumours
(Fig. 7A). We performed a five-fold cross-validation (8:2 train-test split)

with 301 subjects (33 pilocytic astrocytoma). Preliminary analysis
suggests that CryoAID obtains above 80% ACC with a near 0.90 AUC
on PA histopathological identification on Pass frozen sections (Fig. 7B,
C). The F1 scores remain limited, potentially due to the small PA sample
size for training. Given the hallmarked histopathological feature of PA,
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Fig. 3 | CryoAID offers explainable features for the H3K27M mutant status
prediction in Pass images. A, B The exemplified slide and the corresponding heat
map showing the spatial distribution of attention weights. The representative

predictive patches from high attention regions are selected and attached.
B Exemplified predictive patches from other patients.

i.e., Rosenthal fibers, the rechecking of a pathologist can confirm the
potential diagnosis of PA, even upon a false positive prediction on
H3K27M from CryoAID. This dual-validation procedure provides
valuable guidance for neurosurgeons towards improved resection for
full-spectrum midline gliomas.

Discussion

Reducing the surgical risk of midline glioma is crucial for improving
the quality of care and enhancing the efficiency of surgical workflow. In
this study, we developed and evaluated an Al system, CryoAlD,
employing a cryosection-based approach for the molecular diagnosis
of DMG. We demonstrated that CryoAID improves the prediction
accuracy and workflow efficiency for genetic mutation detection from
cryosection images across multiple centres. In particular, CryoAID
exhibits a remarkable sensitivity in evaluating No-Pass cryosections,
underscoring its potential to refine the decision-making protocols in
routine biopsy operations. Our findings support the notion that
CryoAID could potentially reduce the incidence of unnecessary No-
Pass outcomes, shorten operation durations, and mitigate surgical
hazards in DMG surgeries.

Most prior studies have focused on molecular assessment in FFPE
samples”?’ and those passed cryosection images®. While these
results are promising, they overlooked the challenges of intraoperative
diagnosis arising from the presence of No-Pass images. Furthermore,
prior studies have not demonstrated whether such models can gen-
eralize in a real-world surgical deployment to support efficient clinical
decision-making. In this study, we provide a robust, multi-centre evi-
dence of Al performance across both Passed and No-Pass cryosec-
tioned cryosection images. The emphasis on Al-assisted intraoperative
diagnosis distinguishes our study from prior works?*?. In the con-
secutive data evaluation (Fig. 6G), CryoAlD saved 38 biopsy attempts
out of 143 times in the 68 patients, demonstrating substantially greater
efficiency than conventional human-based workflows. This improved
efficiency allows clinicians to minimize repeat biopsies—an important
advancement for high-stakes DMG treatment and patient care.

CryoAID offers opportunities to repurpose specimens previously
deemed non-viable in traditional histopathology. We offered key evi-
dence to support that tumour’s genetic information could be recov-
ered from No-Pass cryosectioned images even when tumour cells are
visually obscured (Figs. 4, 5). Key molecular alterations in midline
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Fig. 4 | CryoAID trained on Pass images detects mutant status in No-Pass
images. A-C The ROC curves from Pass image pre-trained CryoAlD on predictions
of ATRX, H3K27M, and TP53 in No-Pass images, respectively. P-values are asso-
ciated with the AUC values, yielded from permutation tests. D The exemplified top
predictive patches from accurately mutant-identified No-Pass images grouped into
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malignant, uncertain, and benign patches based on visual checking of pathologists.
E Bar plots for the distributions of counts of the grouped top predictive patches.
F Slide-level counts of slides with and without tumour cells identified. Source data
are provided as a Source Data file.

gliomas, such as the H3K27M mutation, have become definitive criteria
for pathological diagnosis®. However, the lengthy clinical process of
FFPE, IHC, and genetic testing hinders rapid intraoperative molecular
interpretation. To respond, the CryoAID model directly extracts the
genetically related image features from both Pass and No-Pass cryo-
section images. Moreover, Moreover, growing evidence links tumour
genotypes to morphological transformations in peritumoural cells”",
suggesting that mutated tumour cells may induce distinct morpholo-
gical signatures in adjacent tissues'®. In our study, CryoAID revealed
explainable diagnostic features, including suspected tumour cells, glial
cell proliferation, abundant cytoplasm, and localised endothelial cell
proliferation (Fig. 5). This key finding reflects that CryoAlD is able to
discern peritumoural cues that elude human detection to infer the
challenging molecular-level information®>*>,

A key contribution of our study lies in leveraging the generative
power of Al to extend the scope of pathological foundation models,

typically pre-trained on large-scale FFPE samples. Unlike prior stu-
dies demonstrating their validity in FFPE-based tasks**, we found
that directly transferring a pathological foundation model to cryo-
section images yielded suboptimal performance (Fig. 2C). In our
study, the state-of-the-art AI-FFPE module introduces a generation-
based domain adaptation strategy’**, preserving the performance
of pre-trained models while avoiding the need for extensive fine-
tuning on cryosection datasets. The AI-FFPE generative model
effectively transforms cryosection images into FFPE analogues,
bridging the imaging gap and enabling high-fidelity feature extrac-
tion. The success of this generative approach is further reflected in
the model’s ability to generalize to other tasks. For instance, through
the integration of AI-FFPE and CHIEF models, our framework
demonstrates strong adaptability, requiring only minimal Trans-
former fine-tuning to analyse other tumour types (such as PA) that
demand intraoperative diagnostics.
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Fig. 5 | CryoAID learns on No-Pass images to assess mutant status. A-C The
averaged ROC curves from CryoAID trained on No-Pass images on predictions of
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resonance image, highlighted by red arrows. E, F The exemplified slide and the
corresponding heat map showing the spatial distribution of attention weights.

G The exemplified predictive patches. H IHC results using cryosection samples in
(E), supporting a H3K27M mutant. Source data are provided as a Source Data file.

The development of CryoAID aligns with the advances of Fas-
tGlioma model*®, which established a foundation model based on
stimulated Raman histology (SRH) to facilitate intraoperative
detection of glioma infiltration and reduce the duration of surgical
procedures. While both approaches aim to accelerate intraoperative
workflows, CryoAID uniquely focuses on reducing unnecessary
biopsies and mitigating surgical risks and patient morbidity. In
particular, CryoAID provides a dual-validation by considering both
molecular and histopathology assessments, thereby supporting
multi-dimensional intraoperative decision-making. The clinical uti-
lity of FastGlioma is limited to the availability of SRH imaging sys-
tems, whereas CryoAlID is designed to operate seamlessly within the
routine neurosurgical workflow using standard cryosection images.
This compatibility with existing diagnostic infrastructure greatly
enhances CryoAlD’s translational potential across diverse clinical
environments.

Our study has several limitations that warrant further investiga-
tion. Owing to limited sample sizes, BRAF alterations (including V6OOE
mutations and KIAA1549-BRAF fusions) were analyzed as a unified
category without subclassification. Similarly, other molecular altera-
tions, such as IDH mutations and MYCN amplifications, were excluded
due to insufficient representation. Future multi-centre collaborations
could validate CryoAID’s performance through expanded genomic
profiling efforts. Additionally, our current approach may not benefit
extremely challenging cases requiring multiple repeated biopsies.
Enhancements may involve incorporating a broader spectrum of
molecular markers and implementing dual-validation strategies from
both histological and genetic perspectives. Finally, as this study was
conducted retrospectively without pathologist involvement, a pro-
spective clinical trial integrating Al-pathologist collaboration is war-
ranted to assess CryoAlD’s real-world robustness in reducing biopsy
frequency.
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In conclusion, this study demonstrates the real-time value of
Al-augmented workflows in reducing re-biopsy efforts during DMG
surgeries. Our findings underscore the clinical utility of cryosection
pathology and its explainable contribution to informed neuro-
surgical decision-making. By leveraging the strengths of founda-
tion models, CryoAID has the potential to improve diagnostic
efficiency, enhance the quality of care for patients with DMG, and
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accelerate the broader integration of Al into intraoperative surgical
practice.

Methods

Sample acquisition and pathological diagnosis

In this retrospective study, the data inclusion and exclusion are illu-
strated in Fig. 1C and S1. The cryosection whole slide image (WSI) from

Nature Communications | (2025)16:11667


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-66853-y

Fig. 6 | CryoAID trained on both Pass and No-Pass images can assist DMG
biopsy decision making. A An illustration of the retrospective biopsy re-checking
scheme. B The averaged ROC curves for ATRX, H3K27M, and TP53 predictions
using CryoAID in all data (both Pass and No-Pass images) of internal datasets.

C Corresponding ROC curves in all data of consecutive testing dataset. In B, C, p-
values are associated with the AUC values, yielded from one-sided permutation
tests (not adjusted). D, E The accuracy (ACC), F1 score, sensitivity (SEN), specificity
(SPE) and AUC for model’s prediction, given the first two times of biopsies in the

internal dataset. Data are presented as mean +/- STD (n =10). Scatters show indi-
vidual data from each fold (n =10). **: Metric is significantly higher than chance
level at p < 0.001 level using one-sided permutation tests (not adjusted). F, G The
Sankey diagrams for the changes of biopsy counts to accurately detect any mutant
by human and Al in internal and consecutive testing datasets. The flow between
category bars indicates the corresponding changes. The format “Hn m” means
human successes with n times biopsies has m samples. “An m” offers the corre-
sponding data from CryoAID. Source data are provided as a Source Data file.
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Fig. 7 | Diagnostic performance of CryoAID on pilocytic astrocytoma.

A Workflow of dual validation. PA: pilocytic astrocytoma. B Averaged ROC curves
over folds. Shading indicates the STD. C Averaged prediction metrics. Data are
presented as mean +/- STD (n=5). Error bar indicates the standard deviation.
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Scatter offers individual data. ***: Metric is significantly higher than chance level at
p<0.001 level using one-sided permutation tests (not adjusted). Source data are
provided as a Source Data file.

Huashan main campus (n=107), west campus (n =202), and Shanghai
Gamma Hospital (n =17) were used for internal cross-validation (cases
were retrospectively collected from January 2018 to December 2022).
There were a total of 564 WSIs from 326 patients (238 No-Pass images).
After the model was established, we used the consecutive dataset
(cases enrolled after January 2023), containing 143 WSIs from 68
patients (75 No-Pass images), which was collected from the west
campus of Huashan for a consecutive validation. In addition, the Pass
images from the First Affiliated Hospital of Fujian Medical University
(n=17) and the north campus (n=35) were collected for the multi-
centre external validation. The demographics information and mutant
information for each dataset are shown in Table S1. Sex was self-
reported by participants and included in the demographics informa-
tion analysis.

All imaging sequences were imported into the neuro-navigation
system (Medtronic S7, Minneapolis, MN, USA) and co-registered with
preoperative magnetic resonance images. For biopsy surgery, targets
were carefully chosen and marked by senior neurosurgeons (10-year
experience). After craniotomy and before a complete dural opening,

cylindrical samples were obtained under conventional stereotactic
biopsy procedures. For resection surgery, after craniotomy and dural
opening, suspicious tissues were selected and sampled for further
cryosection pathologic diagnosis. The pathologic assessment of the
cryosection slides was performed by two senior pathologists inde-
pendently. The genetic mutant status was determined using IHC.

Whole slide imaging acquisition and pre-processing

We preprocessed the cryosection WSI using the protocol proposed in
Lu et al. ¥, which includes tissue segmentation and patching. The WSI
was initially downscaled by 20x and converted from read-green-blue
(RGB) to hue-saturation-value (HSV) colour space. Then a binary mask
was created for tissue areas by thresholding the saturation channel and
smoothing edges with median blurring, followed by morphological
closing to eliminate small gaps. Only the foreground objects that meet
a specific area threshold are kept for further analysis, and a segmen-
tation mask is produced for each slide. In this study, we directly
adopted the “biopsy” configuration provided by Lu et al. ¥ to set the
hyperparameters for the segmentation algorithm. Post-segmentation,
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patches with a size of 224 x 224 pixels were extracted from these
foreground areas at a 20x magnification. To refine the quality of seg-
mentation results, we further filtered out image patches that are
contaminated (e.g., black regions, manual markers, or dust) or fail to
show segmented tissues (e.g., blank regions) by applying the RGB
thresholds. The filtered results were sampled and double-checked
visually.

CryoAID

AI-FFPE. Towards strong feature extraction on cryosection images, we
applied the AI-FFPE method® to transfer cryosection patches to FFPE-
like patches. AI-FFPE is a generative adversarial network incorporating
an attention mechanism and a self-regularisation constraint, namely
Contrastive Unpaired Translation (CUT)®. In particular, it can rectify
the cryosection artefacts and change the appearance of cryosection
images similar to real FFPE images. In the whole process, the clinically
relevant visual features, such as the cell structure, are preserved for
quantitative analysis. Exemplified pairs of inputted cryosection images
and generated AI-FFPE images are shown in Figs. 1B and S3. Note that
the generation will not introduce new artefacts.

Foundation model for feature extraction. All AI-FFPE processed
patches were fed into a pre-trained pathology foundation model,
called CHIEF* (Clinical Histopathology Imaging Evaluation Founda-
tion), for the feature extraction. CHIEF is a pathology foundation
model developed to enhance cancer diagnosis and prognosis predic-
tion. Trained on 15 million unlabeled image patches and over 60,000
whole-slide images across 19 cancer types, CHIEF employed self-
supervised and weakly supervised learning to extract robust features
from histopathology images. It demonstrates strong accuracy in tasks
of cancer detection, tumour origin identification, genomic mutation
prediction, and survival prognosis. We thus leveraged CHIEF's
information-extraction ability in our tasks of multiple molecular
diagnoses.

Transformer classifier. After feature extraction, we utilised a Trans-
former architecture® to build a classifier model to predict the mutant
status of patients. A Transformer block consists of a self-attention
layer, a multi-layer perceptron (MLP) layer, and skip connections. The
self-attention layer enables the model to weigh the importance of
different patches. Differing to conventional attention, self-attention
computes the importance based on both individual patch features and
their relationships. Following the self-attention layer, the output is
passed through a layer normalisation step and then an MLP layer. The
MLP consists of two fully-connected layers with a ReLU activation in
between, allowing the model to learn complex mappings from the self-
attention outputs. We also employ skip connections (known as resi-
dual connections) around both the self-attention and MLP layers.
We use the skip connection as it helps mitigate the vanishing
gradient problem by allowing the gradient to flow directly through the
network. Layer normalisation is then applied to stabilise and
accelerate the training process. We denote the inputted patches as x,
and N, as the number of inputted patches. Formally, the process is
expressed as:

Kx)=Wgx, Q)=Wx, V(x)=W X, (1)
A=softmax ((K (x))TQ(x)) , 2

Ysa =X +MLP(AV (X)), 3)

Ymip =Ysa* MLP (vsq), “)

where A is a N, -by-N, self-attention weight matrix, y,, is the
intermediate output from self-attention layer, and y,p is the output
from the MLP layer in the Transformer block. Note that we did not
implement positional embedding and relied on the feature represen-
tation from the used foundation model.

Feature visualisation. The self-attention layer in the Transformer
enables an exploration of the importance of each patch in a slide
during the prediction. Following Qu et al. ', based on Egs. (2) and (3),
we regarded the averaged logarithmic value for each columnin A as a
rough estimation for the weight on each patch. Denote W; is the
importance weight on the ith patch,

W,= léxibg(/‘lij). (5)

We analysed patches with top weights in a slide and utilised
representative patches for visualisations. The weights were also map-
ped back to the original location to produce the “heat map” for
checking the spatial distribution of features.

Implementation. We applied the pre-trained parameters of the Al-
FFPE model (trained on brain tumour images) and the CHIEF model
without further tuning. In the classifier implementation, after the
processing of one Transformer block (one-head self-attention, atten-
tion encoding dimension = 64, MLP dimension = 1024), an average
pooling is utilised to integrate the patch-level feature into the WSI-level
feature. And one MLP (input dimension = 768, output dimension=2)
with Softmax following the Transformer block works on the WSI-level
feature to generate the prediction probability.

A ten-fold cross-validation was implemented in the internal
dataset with a train-vs-test split ratio of 9:1 for each round. We trained
the Transformer classifier with training epochs = 80, learning rate = le-
4, and batch size = 1. We used the Adam algorithm to automatically
optimise the trainable parameters with a weight decay of 5e-3. A
weighted sampler was used to tackle the issue of class imbalance.
Cross-entropy was used as the loss function. Other parameters of the
neural network models were initialised with random weights. The
training was accelerated with a single Nvidia GTX 4090 GPU.

For the external testing, we trained a new model based on the
internal cross-validation dataset and applied the new model to the
target testing dataset. The prediction models for different genes were
independently established. In the Pass-to-No-Pass analysis (Fig. 4), the
ten models trained on internal Pass images during cross-validations
were directly applied to all internal No-Pass images. A probability-level
majority voting was conducted by averaging the prediction prob-
abilities from the ten models, resulting in the final prediction results.
For feature visualization in Fig. 4, one of the ten models showing the
highest AUC in No-Pass images was selected to generate the predictive
patches.

Comparison methods
To assess the effectiveness of each component in CryoAID, we sys-
tematically compared three classes of competing methods in terms of
classifier, foundation model, and generative ability. All methods were
evaluated using a consistent training and validation pipeline with
hyperparameters tuned on the same validation splits to ensure fair
comparison. We compared all methods using the internal cross-
validation dataset, as it represents the large-scale collected data.
First, we compared different choices of classifiers, within
attention-based multiple instance learning (ABMIL)*’, CLAMY,
TransMIL*, and Transformer (CryoAID). ABMIL classifier learns to
select disease-related instances in a given bag of batches via an
attention mechanism for classification. CLAM classifier is based on
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conventional ABMIL, with the aid of a support vector machine loss to
increase the discrepancy of the embedded feature of two classes.
TransMIL combines MIL and Vision Transformer. The cross-talk among
patch features is introduced using a Vision Transformer, and the
integrative “cls_token” over all instance features is used for classifica-
tion. However, the increased TransMIL model complexity can result in
overfitting under small training samples.

Second, we compared pathology foundation models in CryoAID,
including ResNet50, UNIZ, Pathoduet®, Virchow2*, Gigapath”, and
CHIEF?* (CryoAID). ResNet50 was trained on large-scale natural images
rather than pathology images. UNI and Pathoduet were trained on
roughly 100 K WSIs and focused on visual tasks such as segmentation
and tumour detection. Gigapath and Virchow2 were respectively
trained on 170K and 3,1M WSIs and demonstrated the scalability of
the foundation model for real-world applications, including rare
tumour diagnosis.

Finally, we made an effort to skip the AI-FFPE step in CryoAID to
assess the effectiveness of using generative-based image enhancement
of CryoAlD.

Statistical analysis

Model comparison. To evaluate the model’s performance on the
internal cross-validation and external test, we used the area under the
ROC curve (AUC). The ROC curve was created by plotting the true
positive rate against the false positive rate at various decision prob-
ability thresholds. AUC informs the capability of a model in distin-
guishing between two classes. Additionally, we computed the accuracy
(ACCQ), sensitivity (SEN), and specificity (SPE), based on the optimal
decision probability threshold on the ROC curve, achieving the bal-
ance between SEN and SPE. F1 score is also reported, yielded from a
separate Fl-oriented threshold searching. Two distinct thresholds
were used because the optimal operating point for maximizing F1
often differs from that for balancing sensitivity and specificity,
reflecting different trade-offs between false positives and false nega-
tives. For models from different folds or different centres, the
thresholds were estimated separately, and the thresholded decision
values were combined. To compare CryoAID with different models, we
applied a one-sided two-sample t-test on these AUCs from folds and
assessed the significance (P-value) of the improvement. In the internal
cross-validation, we reported the mean, standard deviation (STD), and
95% confidence interval (CI) from the folds. For AUC based on one-
time testing, the Cl is estimated using DeLong’s method. In addition,
the significance of the AUC score was estimated by 1000 permutations
on the truth label to estimate the distribution of the AUC under the
chance level. For cross-validation-based results, including ACC, SEN,
SPE, and AUCs, the permutation test is performed based on the inte-
grated predictions and labels over all folds.

Retrospective biopsy re-checking. The AUCs of the model’s predic-
tion given once and twice biopsies were both calculated. To estimate
the prediction probability upon twice biopsies for AUC computation,
we averaged the probabilities of the model’s prediction on the first and
the second sampling. The corresponding ACC, SEN, and SPE were also
computed by the optimal cut-off on the ROC curve as mentioned
above. This is to demonstrate the model’s capacity to detect mutant
samples while making the least-mistaken recall in normal samples. The
biopsy counts for achieving molecular diagnosis by human (patholo-
gists) were obtained as the real counts of biopsies to obtain the Pass
cryosectioned image. The biopsy counts for Al were determined by the
order of the first image in the sequence, where CryoAID accurately
predicted any mutant. This statistic indicates the potential maximum
reduction in re-biopsies when using CryoAID, while practical imple-
mentation relies on a proper collaboration between CryoAID and the
pathologist. The statistical comparison for the biopsy counts was
performed using a one-sided paired t-test.

Ethical approval

This research was approved by the Institutional Review Board of
Huashan Hospital (KY2024-1242) and was registered in the Chinese
Clinical Registry (No. ChiCTR2400093046). Patients have signed
informed consent forms for enrolling in the CNS disease bank in
advance of operations, authorizing to use their pathological images for
this study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The multi-centre clinical dataset (extracted pathology image feature
and gene mutant label, being anonymous, together with trained model
and data splits) generated in this study has been deposited in the
Zenodo database under accession code 17373753 [DOI: 10.5281/
zenodo.17373753]. The data are available under restricted access for
the privacy protection restriction of the hospital; access can be
obtained by sending an online request via Zenodo. The request will be
reviewed online and responded to within one week. The approval will
be given based on the reasonableness of the research purposes of the
request, and commercial usage is strictly forbidden. Source data are
provided with this paper.

Code availability

We used Python 3.10 and PyTorch 2.2.2. For previously published
models and methods: The model for AI-FFPE is available at https://
github.com/DeepMIALab/AI-FFPE. The CHIEF model is available at
https://github.com/hms-dbmi/CHIEF. UNI model is available at https://
github.com/mahmoodlab/UNI. The Gigapath model is available at
https://github.com/prov-gigapath/prov-gigapath. Virchow2 model is
available at https://huggingface.co/paige-ai/Virchow2. The PathoDuet
model is available at https://github.com/openmedlab/PathoDuet. The
code for ABMIL is available at https://github.com/AMLab-Amsterdam/
AttentionDeepMIL. The code for CLAM and the ResNet model is
available at https://github.com/mahmoodlab/CLAM. The code for
TransMIL is available at https://github.com/szc19990412/TransMIL.
Our self-developed codes are documented at https://github.com/
MianxinLiu/CryoAID (https://doi.org/10.5281/zenodo.17393827)* and
released under MIT license.
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