
Article https://doi.org/10.1038/s41467-025-66987-z

ENSO amplifies global vegetation resilience
variability in a changing climate

Wei Zhou1, Changjia Li 2,3, Haicheng Zhang 4, Lindsay C. Stringer 5,6,
Jingyu Wang1, Zhongci Deng 1 & Zhen Wang 1,7

A thorough understanding of vegetation resilience to climate variability is
critical for sustaining ecosystem functions and terrestrial carbon sinks.
Although the El Niño-Southern Oscillation (ENSO) is a key driver of global
extreme weather events and vegetation dynamics, its impacts on vegetation
resilience remain unclear. Here we estimate global present-day (1981–2018)
and future (2015–2100) vegetation resilience using a lag-1 autocorrelation
analysis of global leaf area index (LAI) time series and investigate its tele-
connection to ENSO. Our findings reveal that ENSO significantly affects vege-
tation resilience across 53% of the global vegetated area. Within these regions,
15% are linked primarily to large-scale atmospheric synchrony with ENSO, 51%
are mainly shaped by ENSO-driven local climate anomalies, and the remaining
34% are influenced by both processes. Future projections suggest that the area
impacted via ENSO-driven climate anomalies may expand by 7-10%, with
Eastern Siberia and northern North America newly affected. Our study pro-
vides a coherent global assessment of vegetation resilience sensitivity to
ENSO, identifies teleconnected hotspots and potential influential pathways,
and informs targeted restoration and climate-adaptive ecosystem governance
under climate change.

Vegetation resilience refers to the capacity of vegetation tomaintain or
recover its structure and function following disturbances1. However,
the intensificationof global climate changeposes a significant threat to
this resilience. Previous studies have predominantly focused on the
relationship between resilience and temperature and precipitation
patterns2–4, often neglecting the remote impacts of global climate
oscillations such as the El Niño-Southern Oscillation (ENSO). As the
largest natural perturbation to the global climate on an interannual
timescale5, ENSO significantly affects rainfall and temperature
dynamics, thereby reshaping the distribution of meteorological
hazards such as droughts and floods6,7, as well as secondary hazards
such as wildfires8. These disruptions affect core ecological functions,

including species composition, nutrient cycling, and energy flow,
ultimately undermining vegetation resilience9. Moreover, with global
warming, ENSO variability is expected to increase10, potentially
amplifying its influence on plant growth and ecosystem stability
worldwide11,12. Understanding the impact of ENSO on vegetation resi-
lience is crucial for guiding nature-based solutions—such as refor-
estation, biodiversity protection, and climate-smart landmanagement
—that contribute to the UN Sustainable Development Goals13.

ENSO is a coupled ocean–atmosphere phenomenon involving
periodic fluctuations in sea temperature and atmospheric pressure in
the tropical Pacific14. It typically develops during the boreal summer
and decays in the following spring15,16, with peak intensity usually
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occurring between December and February17. Through large-scale
atmospheric circulation anomalies, ENSO alters regional patterns of
temperature, precipitation, and solar radiation18,19, thereby disrupting
vegetation biophysical processes20. Specifically, the alternating warm
(El Niño) and cold (La Niña) phases of ENSO exert complex and spa-
tially heterogeneous vegetation responses12. El Niño typically raises
temperature and solar radiation in tropical and subtropical regions, yet
its impact on precipitation varies, causing wetter conditions in some
areas and drought in others, potentially exacerbating or alleviating
vegetation water stress21–23. For instance, El Niño-driven shifts in the
Intertropical Convergence Zone modify regional precipitation pat-
terns, decreasing precipitation in West and northern Central Africa,
while increasing it in East and southern Central Africa24, thus creating a
contrasting north-south gradient in vegetation dynamics. Conversely,
La Niña generally exhibits the opposite climatic signals, particularly
over tropical land areas where temperature and precipitation patterns
respond in antiphase, thereby partially offsetting the effects of El
Niño25,26. However, this compensatory mechanism is modulated by
variation in the location of equatorial warming and by nonlinear
ocean–atmosphere interactions, leading to spatial asymmetries in the
timing and intensity of vegetation response to ENSO phases27. Con-
sequently, some regions, such as the Amazon rainforest, are highly
sensitive to El Niño28,29, while others, like Australian shrublands,
experience alternating impacts from both phases30.

More critically, high-intensity ENSO events can lead to irreversible
declines in vegetation resilience. A notable example is the 2015–2016
extreme El Niño event, during which humid forests in Africa and the
Americas experienced sustained reductions in aboveground carbon
storage. Even after climate conditions normalized in 2017, recovery
remained slower than in dryland ecosystems31,32. This contrast high-
lights that the effects of ENSO on vegetation are not solely determined
by event intensity but are also influenced by ecosystem type, regional
climatic conditions, and water availability33. Nevertheless, the magni-
tude and spatial distribution of ENSO’s effects on vegetation resilience
remain poorly understood. This knowledge gap is particularly con-
cerning given projections that ENSO events will undergo significant
shifts in frequency, intensity, and impact patterns under a warming
climate34,35, potentially exhibiting unprecedented disturbance char-
acteristics that further complicate global vegetation resilience
dynamics. Thus, a systematic assessment of the multi-scale impacts of
diverse ENSO phases is urgently needed, with a particular focus on
temporal and spatial variability across ecosystemsand climate regions,
as well as sustainability and evolution in future scenarios.

The critical slowing down theory (CSD) provides a framework for
detecting ecosystem instability by suggesting that declining recovery
rates precede state transitions, which can be identified by statistical
signals like increased variance and higher first-order
autocorrelation36–38. In this article, we applied this framework to
quantify global-scale changes in vegetation resilience using remotely
sensed Leaf Area Index (LAI) data since 1981. We hypothesized that
ENSO influences on global vegetation resilience operate via two
complementary perspectives: the atmospheric synchronization tele-
connection, which captures the large-scale statistical association
between ENSO events and resilience anomalies, independently of local
climate variables; while the climate-mediated teleconnection, which
reflects indirect influence transmitted through ENSO-driven anomalies
in temperature, precipitation, and radiation (see Methods and Sup-
plementary Fig. 1). Together, thesepathways reflect ENSO’s dual role as
a synchronizer of global variability and a modulator of local climate
conditions. Additionally, we used simulations from the CMIP6 model
to analyze how ENSO’s impacts on vegetation resilience may evolve in
the future. We present a coherent global-scale evaluation of how
vegetation resilience responds to ENSO, pinpointing teleconnected
hotspots and revealing key pathways of influence. These findings
improve our understanding of the teleconnection between vegetation

growth and extreme climate, supporting nature-based solutions and
informing sustainable development efforts.

Results
Historical characteristics of vegetation resilience dynamics
We quantified vegetation resilience at the pixel level using lag-1 auto-
correlation (AC) derived from 5-year moving windows of GLASS LAI
data (1981–2018), and assessed its long-term trend (seeMethods). This
global assessment indicates that 41.56% of vegetated areas have
experienced a statistically significant decline in resilience over the past
40 years, with considerable spatial heterogeneity (Fig. 1a). The most
significant declines in resilience are observed in northern North
America, the Amazon, northern Europe, eastern Australia, and north-
ern and Southeast Asia, which exhibit the greatest increase in AC
(Fig. 1a). Compared with the trend in variance, another CSD indicator,
78.4% of areas exhibit consistent resilience trends in both AC and
variance estimates (see Methods, Fig. 1 b, c).

Spatial patterns of historical changes in global vegetation resi-
lience contrast with the dynamics of global vegetation greening.
Regions such as the Amazon, south-central Africa, Southeast Asia, and
western Oceania have experienced a widespread increase in greenness
—measured by rising LAI—over the last four decades (see Methods,
Fig. 1d), yet these areas have concurrently witnessed significant
declines in resilience (Fig. 1a). In addition, over 40% of greening
vegetation in global open shrublands, grasslands, evergreen broadleaf
forests, and deciduous broadleaf forests exhibited a decline in resi-
lience (Fig. 1e and Supplementary Fig. 2). These findings highlight the
simultaneous occurrence of accelerated vegetation greening and
declining resilience worldwide.

Controlling factors of historical changes in global vegetation
resilience
Weused a random forest (RF) regression framework at the global scale
to attribute temporal changes in vegetation resilience (AC) to ENSO
variability and other environmental factors. This model focused on in-
situ climate variability and ENSO as the key explanatory variables,
incorporating other static in-situ factors such as topography and cli-
mate seasonality as constraints to reduce background interference
(see Methods). The analysis reveals that climate seasonality exerts the
strongest influence on shaping interannual variation, followed by cli-
matic variability and topography (Fig. 2a; model R2 = 0.79). Among the
controlling variables, temperature and radiation seasonality exert the
strongest climatic control on resilience, and ecosystems experiencing
low intra-annual variability are especially prone to resilience loss. Ele-
vation emerges as the key terrain factor, with partial dependence
analyses showing that high, steep, and well-drained landscapes are
particular hotspots of vulnerability (Fig. 2e and f).

Focusing on baseline in-situ climatic factors (excluding ENSO
effects), temperature had the strongest influence on resilience, fol-
lowed by radiation, while precipitation had a relatively minor effect
(Fig. 2a). These factors exhibited non-monotonic impacts, with resi-
lience peaking under optimal climatic conditions (approximating cli-
matological means, temperature = 275–280K; precipitation =
50–100mm/a; solar radiation = 100–150W/m2), and declining when
conditions deviated from this range (Fig. 2b, and Supplementary
Fig. 3). Notably, at a global scale, low precipitation, high temperature,
and elevated solar radiation had a stronger impact on vegetation
resilience compared to high precipitation, low temperature, and low
radiation (Fig. 2b).

Although in-situ factors collectively explain a larger proportion of
the resilience variation, ENSO teleconnections remain a critical global-
scale forcing, driving resilience anomalies. ENSO primarily influences
vegetation resilience through the climate-mediated teleconnection,
driven by ENSO-induced climate anomalies, which exert a stronger
impact than ENSO’s atmospheric synchronization teleconnection
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(Fig. 2a). Specifically, reduced vegetation resilience is closely asso-
ciated with anomalously high temperatures, low precipitation, and
enhanced solar radiation during El Niño events, as well as with low-
temperature and low-precipitation anomalies under La Niña condi-
tions (Fig. 2d). While these climate-mediated effects dominate overall,

the atmospheric synchronization teleconnections of ENSO stillmatter:
vegetation responds more rapidly and strongly to El Niño events than
to La Niña during the event year (Fig. 2b). However, the lagged
response of vegetation to ENSO is often a result of regional disparities,
including distance from the tropical oceans and local topography like
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Fig. 1 | Global patterns of historical vegetation resilience changes. a lag-1
autocorrelation (AC) trend and b variance trend derived from Global Land Surface
Satellite Leaf Area Index (GLASS LAI) data from 1981 to 2018. Trends are quantified
using the Kendall’s tau statistic. Red regions indicate significant increases in AC or
variance, which are indicative of declining vegetation resilience. cTrend agreement
between AC and variance. d LAI time series trend (1981–2018). e Proportion of

autocorrelation increase (ΔAC>0)ordecrease (ΔAC<0) in greening (ΔLAI > 0) and
browning (ΔLAI < 0) among different vegetation types. Vegetation types: ENF
Evergreen Needleleaf Forests, EBF Evergreen Broadleaf Forests, DNF Deciduous
Needleleaf Forests, DBFDeciduous Broadleaf Forests,MFMixed Forests, CSClosed
Shrublands, OS Open Shrublands, WS Woody Savannas. Basemap data© Esri;
Garmin; GEODIS; GMI; CIA World Factbook.
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elevation and terrain complexity. With increasing lag time, the global
impact of extreme La Niña events becomes more pronounced and, by
the third year (the lag = 2), surpasses that of El Niño in shaping vege-
tation resilience dynamics (Fig. 2c). This temporal difference likely
stems from the contrasting durations of the two phenomena: La Niña
often persists into the second year and re-strengthens in the winter,
whereas El Niño tends to terminate shortly after reaching its peak
stage39.

An independent analysis targeting intact forest regions (see
Methods) indicates that after excluding areas affected by human
activities, vegetation responses to ENSO remain broadly consistent
with the global-scale patterns (Supplementary Fig. 4). This suggests
that while anthropogenic disturbances can influence vegetation
responses at local scales, the large-scale climate–vegetation coupling
associated with ENSO persists.

ENSO synchronization teleconnection affecting vegetation
resilience
We applied a Pearson Chi-square test to evaluate whether vegetation
resilience is temporally synchronized with ENSO over a long historical
period, after removing the effects of in-situ climate variables (see

Methods). The resulting spatial pattern indicates that 26%of vegetated
regions exhibited significant relationships between vegetation resi-
lience anomalies and the ENSO events (P < 0.05), with resilience
demonstrating higher sensitivity to El Niño than La Niña events
(Fig. 3a). Specifically, 6% of vegetated areas showed increased resi-
lience during LaNiña events, while 3.3% exhibiteddecreased resilience.
During El Niño events, 9.4% of areas experienced increased resilience
and 7.4% experienced decreased resilience (Fig. 3a). The detrimental
impacts of El Niño were predominantly concentrated in northern Asia,
Europe and America, and the southern Amazon, whereas the negative
effects of La Niña were primarily distributed in southern Amazon and
Central Asia and Africa (Fig. 3a). Evergreen broadleaf forests, grass-
lands and open shrublands were identified as the vegetation types
most affected by these climatic phenomena (Supplementary Fig. 5). In
contrast, the positive impacts of El Niño and La Niña aremore spatially
dispersed, with affected vegetation resilience distributed across most
continents (Fig. 3a). These spatial distributions remained consistent
across varying lag times. However, it is noteworthy that the spatial
extent of El Niño’s synchronous negative impact decreased with
increasing lag time, while the area experiencing negative impacts from
La Niña remained relatively stable. Beyond a twelve-month lag, La

Fig. 2 | Influence of explanatory variables on global vegetation resilience from
1981 to 2018. a Variables’ importance scores from the Random Forest (RF) model.
Partial dependence plots (PDPs) show the influence of key predictors from each
variable group on lag-1 autocorrelation (AC): b climatic variables, including El
Niño–SouthernOscillation (ENSO), precipitation, temperature, and radiation; c Lag
effects of ENSO at 1-, 2-, and 3-year intervals; d Climate-mediated teleconnection
effects, calculated as the productof ENSOand in-situ climate variables. Positive and

negative extremes represent high anomaly values associated with El Niño and La
Niña events, respectively, while values near zero indicate low anomalies; e climatic
seasonality, represented by intra-annual coefficient of variation (CV) of precipita-
tion, temperature, and radiation (e.g., temperature_seas indicates temperature
seasonality); and f topographic factors, including elevation, slope, and Height
Above Nearest Drainage (HAND); lower HAND values denote poorer drainage
potential. Basemap data ©Esri; Garmin; GEODIS; GMI; CIA World Factbook.
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Niña’s negative impact area exceeds that of El Niño (Supplementary
Fig. 6), whereas the global-scale Random Forest analysis indicates that
La Niña’s cumulative impact becomes dominant only after three years
(Fig. 2c). This apparent difference reflects the distinct metrics cap-
tured by the two approaches—spatial extent versus aggregated
strength—yet both consistently point to La Niña’s growing dominance
with increasing lag time.

ENSO climate-mediated teleconnection affecting vegetation
resilience
RF inference (Fig. 2d) suggests that ENSO-induced climate anomalies
trigger resilience changes. By overlapping resilience-climate (Supple-
mentary Fig. 7) and ENSO-climate (Supplementary Fig. 8) linkages, we
reveal spatially heterogeneous coupling patterns, where ENSO-driven
climate anomalies negatively affected 23% of vegetation resilience,
predominantly in theAmazon rainforest andBrazilianPlateau region in
central South America, the Congo Basin in south-central Africa, and
northeastern Australia (Fig. 3h). Conversely, positive effects were
observed in 22% of regions, primarily in northern Australia, Sub-

Saharan Africa, and the Southeast Plains of South America (Fig. 3h).
Among all anomalous events, 59% of the positive impacts were
attributed to El Niño and 41% were linked to La Niña, while 63% of the
negative impacts were associated with El Niño and 37% with La Niña
(Fig. 3f, g). Particularly, the resilience of evergreen broadleaf forests in
the Amazon and savannas in the Brazilian Plateau were negatively
affected by El Niño-induced anomalies, including decreased pre-
cipitation, increased temperature, and increased solar radiation
(Fig. 3c–e and Supplementary Figs. 8 and9). In contrast, LaNiña-driven
anomalies had considerable positive effects on the resilience of
grasslands and open shrublands in northern Australia, although parts
of the mountainous regions in northeastern Australia experienced
negative resilience impacts from La Niña, driven by reductions in
radiation, temperature, and precipitation (Fig. 3c-e and Supplemen-
tary Figs. 8 and 9). On a global scale, evergreen broadleaf forests, open
shrublands, woody savannas, and savannas experienced the most
pronounced negative impacts, whereas grasslands showed resilience
linked to ENSO-driven solar radiation and precipitation variability
(Fig. 3h and Supplementary Figs. 8 and 9).

Fig. 3 | ENSO impact onglobal vegetation resilience. a Synchronization impact of
El Niño–Southern Oscillation (ENSO) on resilience. b Regional differences in lag-1
autocorrelation (AC) trends between affected and unaffected regions during
1981–2018. The dashed line represents the regional average. The inset box in the
top right corner magnifies the difference in regional averages. Asterisks indicate
statistical significance between groups based on both the Whitney U-test and
Student’s t-test: p <0.05(*); p <0.01(**); p <0.001(***). Climate-mediated tele-
connection effects on vegetation resilience: c–e Impacts of ENSO-induced

anomalies in temperature, solar radiation, and precipitation on vegetation resi-
lience, respectively. f, g Combined impact of these climate anomalies during El
Niño and La Niña on vegetation resilience, respectively; h Overall impact of ENSO-
induced climate anomalies on vegetation resilience. Plus (+) and minus (−) signs
indicate positive and negative impacts, respectively, with numbers indicating
impact intensity, calculated as the sum of individual ENSO-climate anomaly
impacts. Basemap data © Esri; Garmin; GEODIS; GMI; CIA World Factbook.
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Impact of ENSO on the long-term vegetation resilience trend
To analyze the impact of ENSO events on the long-term resilience
trend, we compared the historical AC trend between ENSO-affected
and non-ENSO-affected regions. ENSO-affected regions, defined as
areas experiencing synchronization or climate-mediated impacts,
cover 53% of global vegetation. Within these regions, 15% are influ-
enced directly by ENSO’s synchronization, 51% are affected solely
through ENSO-induced climate anomalies (for example, abnormal
temperature, precipitation, and radiation), and the remaining 34% are
subject to both effects. In terms of ENSO phases, 61% of affected
regions are linked to El Niño, while 39% are associated with La Niña.

Regardless of considering ENSO as a whole or its individual pha-
ses, the historical decline in vegetation resilience was significantly
more pronounced in negatively affected regions compared to posi-
tively affected and non-ENSO-affected regions (p <0.05) (Fig. 3b and
Supplementary Table 1–3). In contrast, the positive impact of ENSOdid
not lead to a corresponding increase in resilience. Specifically, no
significant difference was observed between positively affected or
non-ENSO-affected regions under the overall impact of ENSO or La
Niña (Fig. 3b and Supplementary Tables 1 and 3). Moreover, the resi-
lience decline inpositively affected regions under the impactof El Niño
was higher than that in non-ENSO-affected regions (Fig. 3b and Sup-
plementary Table. 2). This suggests that even in regions where ENSO

initially enhances vegetation resilience, long-term instability caused by
alternating climate stress events, asymmetry in impact intensity, and
lagging effectsmaycontribute to the “pseudo-gain” trapof thepositive
ENSO effect.

Future global vegetation resilience and its response to future
changes in ENSO
Leveraging simulated LAI and climate projections from CMIP6, we
evaluated future trajectories of vegetation resilience and examined
their links to climate change across three emission scenarios (SSP126,
SSP245, andSSP370) (seeMethods).Our results indicate that 33-39%of
vegetated regions are anticipated to undergo a further decline in
resilience across three future climate scenarios, with an average
decline trend of 0.12 in these affected areas. Notably, Western Siberia
and Northern Europe were identified as emerging areas of declining
vegetation resilience in all three scenarios (Fig. 4a). Regarding ENSO
teleconnections, projected warming is expected to weaken the syn-
chronization impact of ENSOonvegetation resilience, decreasing from
21.4% under SSP126 to 21.1% under SSP245 and 13.5% under SSP370
(P < 0.05) (Fig. 4b). In parallel, ENSO-driven climate anomalies are
projected to strengthen, affecting approximately 51–55% of global
vegetation areas and marking a 6-10% increase compared to historical
levels (Fig. 4c). These changes in ENSO-resilience patterns highlight
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Fig. 4 | Projected vegetation resilience trend and the synchronization and
climate-mediated teleconnection impact of El Niño–Southern Oscillation
(ENSO) on vegetation resilience under future scenarios (2015–2100).
a Resilience trend under SSP 126, SSP 245, and SSP 370, respectively. ENSO impacts
on vegetation resilience under the three scenarios, including b atmospheric

synchronization effects and c climate-mediated effects transmitted through ENSO-
driven anomalies. Plus (+) and minus (−) signs indicate positive and negative
impacts, respectively, with numbers indicating impact intensity, calculated as the
sum of individual grid-level impacts. Basemap data © Esri; Garmin; GEODIS; GMI;
CIA World Factbook.

Article https://doi.org/10.1038/s41467-025-66987-z

Nature Communications |          (2026) 17:267 6

www.nature.com/naturecommunications


newly vulnerable regions. For instance, under three scenarios, exten-
sive regions across Siberia, as well as northern North America under
SSP126 and SSP370, are projected to experience adverse impacts from
La Niña-associated radiation and temperature anomalies (Fig. 4c and
Supplementary Fig. 10). These findings underscore the increasing
complexity of ENSO-vegetation interactions in the context of climate
change and emphasize the urgent need for targeted research and
conservation strategies in these newly identified vulnerable regions.

Discussion
This researchprovides a comprehensive analysis of the climaticdrivers
of vegetation resilience, uniquely incorporating the remote impacts of
global climate oscillations such as ENSO. Using an RF model, we dis-
entangled the effects of in-situ climate variables (temperature, pre-
cipitation, and solar radiation) from those of ENSO and their
interactions, revealing how ENSO shapes resilience patterns across
global, regional, and biome-specific scales. Projections further indicate
evolving impacts of ENSO under future climate scenarios. One key
finding is that 53% of global vegetation over the past four decades has
been influenced by ENSO, either through synchronization or climate-
mediated effects. These impacts are both asymmetric and delayed,
with El Niño and La Niña events exerting opposing yet destabilizing
effects on vegetation resilience, contributing to long-term declines in
resilience, most notably in the Amazon, Southeast Asia, Central Africa,
southern North America, and Australia (Fig. 3).

ENSO events exert asymmetric teleconnection effects on vegeta-
tion resilience, with El Niño–associated regions exhibiting more pro-
nounced declines (Fig. 2). Specifically, over one-third of vegetated
areas experience significant resilience changes during El Niño events,
compared to only about 20% during La Niña (Fig. 3). Mechanistically,
these effects are primarily mediated by regional climate: ENSO-driven
anomalies in temperature, precipitation, and radiation trigger
extremes—such as heatwaves, droughts, floods—that can impair pho-
tosynthesis, water regulation, and root function40,41, ultimately slow
canopy recovery. Our Random Forest analysis confirms that such
anomalies, particularly those linked to El Niño (high temperature and
radiation, water stress) and La Niña (cold and dry conditions), are
significantly associated with resilience decline globally (Fig. 2). Even
intact, high-biomass forests are vulnerable: our targeted analysis
shows that resilience loss occurs in these systems under ENSO-related
stresses (Supplementary Fig. 4), consistent with previous findings that
tall canopies and deep-root systems depend heavily on stable water
supply and become vulnerable under persistent ENSO pressure42. In
addition to climate-mediated effects, ENSOmay influence ecosystems
through other pathways. For example, ENSO-driven circulation
anomalies can intensify savanna burning8 and facilitate long-range
smoke transport to adjacent forests43,44, reducing incoming solar
radiation and limiting canopy productivity45. ENSO-modulated shifts in
commodity prices (for example, palm oil)46,47, may also accelerate
tropical deforestation and fragmentation48, further weakening forest
resilience. These hypothesized pathways remain speculative and war-
rant further investigation.

Although ENSO affects vegetation resilience through these syn-
chronization or climate-mediated mechanisms, ecosystem responses
vary due to interactions between ENSO’s asymmetric teleconnections,
ecosystem traits, and human activities. In particular, tropical forests,
tropical savannas, and grasslands experience a higher frequency and
intensity of ENSO-induced extreme events, leading to the most pro-
nounced disruptions in ecosystem function and resilience. In addition,
our model highlights topographic features—particularly high eleva-
tion, steep slopes, and well-drained regions—as key predictors of low
resilience and strong ENSO responses (Fig. 2f). These landscapes often
support vegetation with shallow roots, limited soil depth, and poor
water and nutrient retention, resulting in reduced buffering capacity49.

In parallel, climatic seasonality drives divergent vegetation adaptive
strategies, which in turn influence regional sensitivity to ENSO. While
low-latitude regions with weak seasonality exhibit strong resilience
shifts globally (Fig. 2e), ecosystems in areas with high intra-annual
precipitation variability—such as northern Asian shrublands, Siberian
tundra, easternAmazon rainforest, and Sahelian grasslands—also show
heightened sensitivity compared to adjacent regions with similar
rainfall and vegetation types (Fig. 3a). This supports prior findings3,40,50

that stable water availability enhances post-disturbance recovery.
Equally important, anthropogenic disturbances exacerbate these

patterns51. Highly fragmented tropical and temperate forests, such as
those in the Amazon, Central Africa, and parts of North America and
Southeast Asia, exhibit heightened sensitivity to ENSO (Fig. 3a), likely
due to intensified edge effects that increase temperatures and reduce
humidity, amplifying climate stressors52–54. Intensive agriculture drives
land degradation, biodiversity loss, and hydrological disruption, fur-
ther destabilizing adjacent ecosystems55,56. For instance, we found that
mixed forests along the Eurasian agro-ecological transition zone show
more negative responses to La Niña when located near croplands
(Fig. 3a), suggesting that surrounding land use and landscape config-
uration—such as proximity to agricultural fields—can alter vegetation
sensitivity to ENSO.

Our global synthesis extends prior regional evidence by inte-
grating isolated observations into the coherent global assessment of
vegetation resilience sensitivity to ENSO. The identified ENSO sensi-
tivity hotspots—such as the southeastern Amazon, Sahelian margins,
Southeast Asia, Australia, Central Africa, and Central America—broadly
align with earlier studies linking reduced resilience to recurrent
droughts, floods, and water limitations2,57–62, thereby validating our
approach. More importantly, the synthesis reveals that ENSO acts as a
synchronizing agent, imposing a common rhythm of resilience loss
across climatically unstable ecosystems worldwide. As climate change
intensifies, this global perspective becomes critical3. Our findings
provide actionable insights for identifying vulnerability hotspots and
demonstrate the importance of integrating ENSO forecasts into eco-
system restoration and climate-informed conservation planning, with
tropical and subtropical forests prioritized for their biodiversity, car-
bon storage, and climatic sensitivity. In contrast, some boreal forests,
such as mixed forests in Northern Europe, show higher resilience and
minimal ENSO sensitivity (Figs. 1a and 3a), indicating that ENSO need
not be a central concern in these regions. These insights point toward
the need for regionally differentiated strategies.

Despite these insights, uncertainties remain. Data limitations stem
from the inconsistencies across climate models, remote sensing pro-
ducts, and SST measurements in characterizing ENSO and LAI. Even
using amulti-model ensemble, ENSO projections inmost Earth system
models (ESMs) are still biased from observations due to uncertain
atmospheric feedbacks17,63, and LAI deviations are largely driven by
models’ underestimation of seasonal phenology64. Integrating field
observations with remote sensing and models is needed to better
constrain projections and improve vegetation–ENSO coupling in
future studies. Methodologically, critical slowing down (CSD) indica-
tors—such as increasing variance or autocorrelation—provide a theo-
retical framework for detecting system stability changes without
abrupt disturbances37. However, they capture only theoretical resi-
lience shifts rather than actual recovery rates or critical transitions65.
Moreover, the application of CSD indicators requires long time series,
yet large-scale observational records often combine data from multi-
ple sensors with different processing steps, introducing biases in
trends and significance estimates66,67. Noise and non-stationarity can
further inflate signals, causing false positives. More conservative sig-
nificance testing (for example, surrogate time-series methods)68, and
cross-validation across multiple datasets and indicators would
strengthen the robustness of resilience estimates.
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Methods
Historical vegetated and regional climate data
The historical vegetation dynamic was indicated by the long-term leaf
area index (LAI) product of the Global Land Surface Satellite (GLASS)
V5 dataset, which was generated from Advanced Very High Resolution
Radiometer (AVHRR) and Moderate Resolution Imaging Spectro-
radiometer (MODIS) satellite data69. The dataset spans 1981–2018, with
a temporal resolution of eight days and a spatial resolutionof0.05°70,71.
After outlier (LAI > 10 or LAI < 0) removal, the LAI data were aggre-
gated intomonthlymeans. As a critical structural variable, LAI captures
key vegetation processes such as photosynthesis, respiration, and
transpiration72. Moreover, LAI is more resistant to saturation than
Normalized Difference Vegetation Index (NDVI)72,73 and provides a
longer and more consistent temporal record than Vegetation Optical
Depth (VOD)74, making it a robust indicator for evaluating vegetation
resilience over time. Regional climate data were obtained from the
ERA5-land reanalysis dataset, which provides monthly near-surface (2
meters) air temperature (°C), monthly precipitation (m), and monthly
surface solar radiation (j/m2). These variables were processed and
downloaded via the Google Earth Engine platform, with surface solar
radiation converted to W/m². All data were bilinearly aggregated to a
0.5° resolution, as is typically recommended75. ENSO variability was
represented by monthly sea surface temperature anomalies (SSTA) in
the Niño 3.4 region (5°S – 5°N and 170°W – 120°W), obtained from the
NOAA ERSSTV5 dataset76. All variables were analyzed over the period
1981–2018. Historical trajectories of these variables are shown in
Supplementary Fig. 11.

CMIP6 data
To project future changes, we use the simulated climate and vegeta-
tion time series from the sixth phase of the Coupled Model Inter-
comparison Project (CMIP6)77, including monthly SST, LAI, near-
surface air temperature, precipitation, and surface solar radiation.
These projections were generated under the Scenario Model Inter-
comparison Project (SSP 126, SSP 245, SSP 370), covering the period
2015 to 2100. The climate factors (precipitation, temperature, radia-
tion, and SST) and LAI were derived as multi-model averages to miti-
gate potential model-specific biases and provide a more robust,
ensemble-based estimate of future climate projections (themodels are
listed in Supplementary Tables 4–6). All variables were bilinearly
aggregated to a horizontal grid of 1° × 1°.

ENSO variability was represented by the Monthly SSTA averaged
over the Niño 3.4 region. Monthly SSTAs in future projected scenarios
were constructed by removing the monthly climatology (historical
monthly mean), and applying a quadratic detrending to remove the
long-term warming trend78,79, then standardizing by dividing by his-
torical monthly SSTA standard deviation63. The projected SSTA tra-
jectories under different scenarios are shown in Supplementary Fig. 11.

Landcover and terrain data
We used landcover data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) land cover type product (MCD12C1)80.
The maps employed the International Geosphere-Biosphere Pro-
gramme (IGBP) classification scheme, provided at yearly intervals with
0.05° resolution. For this study, we assumed that land cover remains
unchanged, thus utilizing the map of 2000 (the median time) to
represent the global distribution of vegetated land. We used the GLAD
Intact Forest Landscapes dataset for the year 200081, which provides a
global map of forests without significant disturbance.

Global elevation data in the year 2000 was derived from the
Shuttle Radar Topography Mission (SRTM) Version 3 product, which
offers a resolution of 30 m82. The slope was calculated based on this
elevation data. The Height Above Nearest Drainage (HAND) data,
obtained from Google Earth Engine83, were derived from SRTM ele-
vation data and provide a more accurate representation of

groundwater accessibility and hydrological buffering capacity84.
Finally, all data were aggregated to a spatial resolution of 0.5° and 1°,
respectively.

Climate zones data
The Köppen-Geiger World map is used to define the climate zones in
our analysis. We aggregate the 31 climate zones into five major zones
(tropical, arid, humid temperate, temperate, continental, and polar)
(Supplementary Fig. 3).

Vegetation resilience calculation
Assessing vegetation resilience generally requires estimating the time
needed to return to equilibrium85, but large-scale direct measurement
is challenging. Natural systems experience continuous random
disturbances86, and external shocks vary in intensity and frequency
across regions87, making experimental assessments of recovery rates
difficult. However, theoretical studies suggest that a system’s response
to disturbances can be predicted through its internal variability37,88.
The dynamics of an ecosystem can be modeled using the Ornstein-
Uhlenbeck process89, using the following equation:

dXt =θðμ� XtÞdt + σdWt ð1Þ

Where Xt is the system state variable, μ is the steady-state mean of the
system, θ is the recovery rate, σ is the noise intensity, and dWt is the
standard Wiener process. Discretizing this process over the time step
Δt, the equation is:

Xt +Δt =Xte
�θΔt +μð1� e�θΔtÞ+ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e�2θΔt

2θ

r

× εt ð2Þ

If the time stepΔt is small, the terms involving μ and the scaling of
noise can be approximated, leading to the model yielding the first-
order autoregressive process67:

Xt + 1 =αXt + ση ð3Þ

The lag-1 autocorrelation coefficient (α) can be shown:

α = e�θΔt ð4Þ

The variance (VAR) of the discretized time series can be shown:

VARðX Þ= σ2

1� e�2θΔt
=
σ2

2θ
ð5Þ

These equations indicate that as a system approaches a critical
threshold, recovery θ slows, leading to an increase in variance and AC.
Thus, these metrics are considered to be early warning signals of
ecosystem state shifts36.

In this study, lag-1 AC was used as a resilience indicator, and var-
iance was also calculated to verify the robustness of AC. The lag-1 AC
was estimated using a first-order autoregressive model fitted via least
squares:

Xt =αXt + 1 + ε ð6Þ

Where Xt is a subset of the LAI time series, Xt + 1 is the lag-1 time series,
and α is the AC coefficient. ε is the residual error.

The variance was estimated as the average of the squared devia-
tions from the mean:

VARðX Þ= 1
n� 1

X

n

i= 1

ðXi � μÞ2 ð7Þ
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Where Xi is the ith element in the LAI subset, μ is the mean of the
subset, and n is the number of elements in the subset.

In this study, the GLASS LAI dataset and CMIP6-derived LAI data
under three scenarios were used to calculate historical and future
vegetation resilience. However, prior to measuring the resilience
metrics, it is necessary to remove the impact of long-term trends of LAI
time series. STL (Seasonal-Trend decomposition using LOESS) is a
widely used time series decomposition method. It gradually extracts
trend and seasonal components through an iterative smoothing pro-
cess and finally obtains the residual90. We employed STL decomposi-
tion through the stl() function in the ‘stats’ package in R for each grid.
This method robustly separates the LAI timeseries into three compo-
nents: a long-term trend, a fixed seasonal cycle trend (by using ‘peri-
odic’ option in s.window parameter), and a residual component91,92.
Then, the residual components of the LAI timeseries were utilized to
calculate the lag-1 AC and variance. The ar.ols() and var() function in
‘stats’ package in R were employed to calculate the lag-1 autocorrela-
tion and variance on the sliding windows of 5 years. To investigate the
effect of window size on the resilience trends, we also calculated AC
with a sliding window of 10 years (Supplementary Fig. 12). Note that
only the regions where AC >0 were involved in this study. For the LAI
data preprocessing, we did not fill the data gap because the relation-
ship between the AC of the gap-free and gapped time series has been
proven to be very close to being one-to-one67. We also excluded the
grids of croplands (where human management may strongly disturb
the response of crops to ENSO) and non-vegetation types, so that our
analysis focuses on the vegetation of non-crop ecosystems.

Vegetation resilience and greenness trend
To assess the historical vegetation resilience trends, we calculated the
Kendall tau value for the AC and the variance time series using a 5-year
sliding window at each grid from 1981 to 2018. This rank-based cor-
relation coefficient is independent of data distribution, allowing for
consistent trend comparisons across regions. Using the cor.test()
function with the Kendall method from the R package ‘stats’, we esti-
mated resilience trends with a 95% confidence level. The trend direc-
tions of variance and AC were largely consistent across most regions
(Fig. 1c). Additionally, we calculated the AC trend using a 10-year
window, which indicated a spatial pattern qualitatively similar to that
of the 5-year window (Fig. 1a and Supplementary Fig. 12). AC trends
under future scenarios were also calculated (Fig. 4).

Long-term LAI trend was quantified using Kendall’s tau at p <0.05
to represent vegetation greenness change (Fig. 1d). We then overlaid
the AC and LAI trend maps to assess the spatial coupling between
greenness and resilience.

Random forest model
We utilized random forest regression to identify the nonlinear rela-
tionship between long-term vegetation resilience dynamics and
environmental factors. Random forest regression is a robust machine-
learning model that can decouple the interactions and identify key
drivers of change93. By integrating spatial features to capture regional
differences and time series data to address temporal changes, it
effectively analyzes global patterns of vegetation resilience under cli-
mate change94. In this research, the response variable was the annual
time series of AC, which characterizes vegetation resilience. Predictor
variables included a combination of climatic and terrain factors. Cli-
matic predictors consisted of the annual mean near-surface (2m) air
temperature, annual mean of monthly total precipitation, and annual
mean of monthly accumulated surface shortwave radiation, as well as
the annual ENSO index. The annual ENSO indexwas representedby the
mean sea surface temperature anomaly (SSTA) over the Niño 3.4
region, calculated as the average over December–February (DJF) using
the NOAA ERSST v5 dataset to capture the peak phase of ENSO
events17. All climatic variables were computed at the pixel level. The

regressionmodel incorporated an interaction termbetween ENSO and
climate factors, as well as a lag term. Climate factors from the pre-
ceding three years represented the lagged effect, while the interaction
terms (temperature × ENSO, precipitation × ENSO, and radiation ×
ENSO) characterized how resilience sensitivity to climate changes
varies with ENSO intensity95,96. DEM, slope, andHANDwere included in
the model as the terrain predictors to control potential interference
with terrain background heterogeneity. In addition, intra-annual var-
iations in temperature and precipitation may influence vegetation
resilience by favoring species with distinct adaptive traits. To account
for potential differences in resilience due to climatic seasonality, we
included multi-year mean seasonality indices (monthly coefficient of
variation) of precipitation, radiation, and temperature as covariates in
the model. We employed the ‘ranger’ package in R to train the model
with 40% of the global vegetated pixels and validated it using another
10% of pixels, both randomly selected after stratified allocation based
on vegetation type proportions. The number of decision trees was set
as 500, as the model’s performance had reached stability at this level,
and the number of splits was determined as the square root of the
number of selected predictors. We then plotted partial dependence
plots to illustrate the relationships between AC and the predictors and
their marginal contribution to the AC trend. To examine whether
human activities influence the observed climate–resilience coupling,
we used intact forest ecosystems—largely free from direct land-use
impacts—as a control group and trained an additional RF model using
data exclusively from these areas (Supplementary Fig. 4).

ENSO’s impact on resilience
To map the spatial distribution of ENSO’s synchronization impact on
vegetation resilience, we first removed the effects of in-situ climate by
fitting, at each grid cell, a multiple linear regression of resilience on
precipitation, temperature, and radiation. We then used a Chi-square
test, a nonparametric test method suitable for categorical variables97,
to examine whether El Niño or La Niña events triggered anomalies in
adjusted vegetation resilience. Positive and negative anomalies in
vegetation resilience were defined as standardized AC anomalies (Z-
scores) exceeding +2 or falling below –2, respectively, corresponding
approximately to the upper and lower 5% tails of the distribution.
Similarly, the definition of El Niño or La Niña events was defined based
on the commonly accepted criterion: amonthly SSTA greater than 1 °C
or less than −1 °C98,99. El Niño and LaNiñawere tested separately.When
both were significant for a cell (FDR-adjusted P < 0.05), we labeled the
dominant phase as the one showing the stronger association. To
analyze the lagged effect, Chi-square coefficients were calculated
between the ENSO event time series and AC anomaly time series in a
lag of 3, 6, 9, 12, and 24 months (Supplementary Fig. 6). We also per-
formed a similar analysis for the three scenarios in the future period
(2015–2100) (Fig. 4b). This approach helps reveal the spatial imprint of
ecosystem responses that are temporally aligned with ENSO rhythms,
including delayed effects, beyond what can be explained by in-situ
climate variability.

We then assessed the climate-mediated impact of ENSO, repre-
senting the portion of ENSO’s influence on resilience that is mediated
through in-situ climatic variables (precipitation, temperature, and
solar radiation). This was quantified by evaluating how ENSO-driven
climate anomalies affected vegetation resilience. Linear regressionwas
used to measure the co-variation between climatic variability and AC
dynamics (Supplementary Fig. 7), and Chi-square tests were applied to
assess the association between ENSO events and climatic anomalies
(P < 0.05, Supplementary Fig. 8). By spatially overlaying these rela-
tionships, the impact on resiliencewas coded as either positive (“1”) or
negative (“−1”). For example, if resilience and precipitation were
positively correlated, and ENSOevents predominantly causednegative
precipitation anomalies in the region, the ENSO-precipitation impact
on resilience was recorded as “−1”. We summed the climate-mediated

Article https://doi.org/10.1038/s41467-025-66987-z

Nature Communications |          (2026) 17:267 9

www.nature.com/naturecommunications


effects of key ENSO–climate variables to quantify their overall impact
(Fig. 3c–h). This analysis was also conducted for future scenarios
(Supplementary Fig. 10).

Statistical significance test of regional AC trend
Similar to the climate-mediated impacts, we also quantified the positive
and negative atmospheric synchronization impacts as “+1” and “−1”,
respectively, and then summed both synchronization (Fig. 3a) and
climate-mediated (Fig. 3h) impacts to derive the total impact. Based on
these total impacts, we classified the global vegetated areas into three
categories for each ENSO type (El Niño, La Niña, and overall ENSO): (i)
ENSO-positively affected regions, where the sumof synchronization and
climate-mediated effects is greater than zero; (ii) ENSO-negatively
affected regions, where the sum is less than zero; and (iii) no ENSO
impact regions, where the sum equals zero. Pairwise comparisons were
then conducted between these categories using Student’s t-test and the
Mann-Whitney U test11 (Fig. 3b). In each test, 5000 samples were ran-
domly selected from each category, and both tests were repeated 10
times to obtain multiple P-values. If the majority of P-values for a given
comparison were significant (P<0.05), the Benjamini-Hochberg cor-
rection was applied to control for Type I errors (false positives) due to
multiple comparisons100,101. Results were considered statistically sig-
nificant when both the raw and adjusted P-values were below 0.05. The
statistical test results are presented in Supplementary Tables 1, 2, and 3.

Data availability
The long-term LAI product used in this study was derived from the
GLASS V5 dataset (1981–2018), which was generated from AVHRR and
MODIS satellite data (https://www.glass.hku.hk). ENSO variability was
represented by monthly SSTA in the Niño 3.4 region, which can be
obtained from the NOAA ERSSTV5 dataset (https://psl.noaa.gov/data/
timeseries/month/). Simulated climate and LAI time series data for the
period of 2000–2020 in this study are available from CMIP6 outputs
(https://aims2.llnl.gov/search). Landcover datawere acquired from the
MODIS product (MCD12C1) (https://doi.org/10.5067/MODIS/
MCD12C1.061). The Intact Forest Landscapes (IFL) dataset for the
year 2000 can be acquired from the GLAD Intact Forest Landscapes
dataset (https://intactforests.org/data.ifl.html). Elevation data can be
derived from the SRTM Version 3 product, with a resolution of 30
meters (https://lpdaac.usgs.gov/products/srtmgl1v003/). The Height
Above Nearest Drainage (HAND) data are available through Google
Earth Engine (https://gee-community-catalog.org/projects/hand/). The
Köppen-Geiger climate zones map is accessible at (http://koeppen-
geiger.vu-wien.ac.at/present.htm). The basemap of world continents
used in this study was Esri “World Continents” Feature Layer (ArcGIS
Online; Item ID: 57c1ade4fa7c4e2384e6a23f2b3bd254)102. The raster
data of the global vegetation resilience calculated in this study and
source data for Figs. 1–4 have been deposited in Figshare: https://doi.
org/10.6084/m9.figshare.28874465.

Code availability
The code used for both themodeling and analyses can be found in the
following Figshare repository: https://doi.org/10.6084/m9.figshare.
28874465.
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