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In-sensor image memorization, low-level
processing, and high-level computing by
using above-bandgap photovoltages

Kun Liu 1,4, Shan Tan1,4, Zhen Fan 1 , Haipeng Lin1, Jiali Ou1, Haoyue Deng1,
JinghaoChen1,Wenjie Li1,WenjieHu1, BoyuanCui1, ZhiweiChen1, RuiqiangTao 1,
Guo Tian1, Xubing Lu 1, Guofu Zhou2, Xingsen Gao 1 & Jun-Ming Liu 1,3

In-sensor computing holds great promise for ultrafast and energy-efficient
machine vision. However, the development of a versatile in-sensor computing
system that can integrate imagememorization, low-level processing, and high-
level computing functions remains a challenge, primarily due to the scarcity of
photosensors that can offer both dynamic photoresponse and programmable
photoresponsivity. Here, we successfully integrate thesemulti-functions into a
ferroelectric photosensor-based array. The key enabler is the ferroelectric
photosensor operating via the bulk photovoltaic effect, which exhibits above-
bandgap, dynamically responding, and electrically switchable photovoltages.
By using the dynamic photovoltage response, the array is capable of memor-
izing andpre-processing images,with the ability to adjust thememory andpre-
processing effects by ferroelectric polarization. On the other hand, the elec-
trically switchable photovoltages, featuring multi-level switchability and
retrievability, enable the array to perform in-sensor high-level computing,
achieving 100%accuracy in a 4-class image recognition task (noise level≤ 10%).
Notably, the high precision and reliability of photovoltage-based image
memorization and processing greatly benefit from the high photovoltage
produced by the ferroelectric photosensor — a distinct advantage for this
application. This study lays the foundation for developing versatile in-sensor
computing systems that could be utilized across a wide range of machine
vision scenarios.

In the era of artificial intelligence, machine vision is playing a vital role
in various applications such as facial recognition, autonomous driving,
and automated manufacturing1,2. Conventional machine vision sys-
tems capture and process visual images by using physically separated
sensing, memory, and processing units. Massive data shuffling
between these units, however, often causes significant latency and
energy consumption2. To tackle this issue, a promising solution known

as in-sensor computing has emerged and attracted tremendous
attention3,4. In this technique, visual information is directly processed
within photosensors, relieving the burden of data shuffling and hence
resulting in boosted speed and energy efficiency.

So far a variety of in-sensor computing systems have been
developed, which canmainly be classified into two types according to
their functions. The first type are in-sensor pre-processing systems
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capable of implementing image memorization and low-level proces-
sing, e.g., noise reduction, contrast enhancement, and visual
adaptation5–20. These systems can enhance the quality of sensory data
and help improve the efficiency of further processing. On the other
hand, the second type are in-sensor high-level computing systems
which can directly perform high-level image processing, e.g., recog-
nition and autoencoding3,21–29. These systems enable simultaneous
sensing and interpretation of visual informationwith exceptionally low
latency and energy consumption. To handle diverse machine vision
tasks and capitalize on the advantages of both types of systems, it is
essential to develop a versatile in-sensor computing system that can
integrate image memorization, low-level processing, and high-level
computing functions (Fig. 1a and Supplementary Fig. 1). However, to
our knowledge, such a system has not yet been realized. It is worth
noting that despite recent advances in neuromorphic vision systems
with multifunctional capabilities15,17,30–32, these systems consistently
utilized a near-sensor computing architecture (Supplementary Fig. 2),
where a front-end module performs image sensing/pre-processing
while a back-end module implements high-level computing. This
architectural distinction clearly differentiates them from the proposed
versatile in-sensor computing system.

To construct a versatile in-sensor computing system, multi-
functional photosensors with dynamic photoresponse and program-
mable photoresponsivity are demanded. The dynamic photoresponse
allows for image memorization and low-level processing (top panel of
Fig. 1a), while the programmable photoresponsivity can serve as
synaptic weight for high-level computing, which involves multiplying
thephotoresonsivity by an input light intensity to producean electrical

output (bottom panel of Fig. 1a). However, integrating these multi-
functionalities into a single device is challenging. This is because the
dynamic photoresponse typically results in an illumination history
dependence, whereas the programmable photoresponsivity for high-
level computing should either be independent of the illumination
history or retrievable upon clearing the illumination history.

Photovoltage-based photosensors emerge as a well-suited candi-
date for achieving the desired multi-functionalities. Such a device
operates by using its photo-generated charges to charge up itself and
an external capacitor (Fig. 1b). The dynamic charging/discharging
processnaturally results ingradualphotovoltage rise/decaywith anRC
time constant determined by the photosensor and the capacitor.
This characteristic enables the implementation of image memoriza-
tion and low-level processing. In addition, the internal field in
the photosensor, serving as the photovoltaic driving force, can be
tuned to achieve programmable photoresponsivity. Importantly, the
photo-generated charges are stored in the electrodes of the photo-
sensor and the capacitor, which can be easily removed through short-
circuiting. This allows for a quick retrieval of the programmed
photoresponsivity without the need for re-programming, significantly
reducing the operational complexity in high-level computing. There-
fore, the photovoltage-based photosensors hold great promise to
enable the integration of image memorization, low-level processing,
and high-level computing functions. Also noteworthy is that these
devices require no current-voltage conversion, which can help reduce
hardware overhead and energy consumption at the system level.

To realize such a photovoltage-based multifunctional photo-
sensor, ferroelectric photosensor (FE-PS) is resorted to for its
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Fig. 1 | Concepts of versatile in-sensor computing systems and photovoltage-
based multifunctional photosensors. a Schematics of photosensors exhibiting
only dynamic photoresponse (DP) or programmable photoresponsivity (PP), and
multifunctional photosensors exhibiting both the DP and PP. The multifunctional
photosensors areused to construct a versatile in-sensor computing system that can
integrate image memorization, low-level processing, and high-level computing
functions. b Schematics illustrating the operation mechanism of a photovoltage-

based multifunctional photosensor. This device operates by using its photo-
generated charges to charge up itself and an external capacitor. The internal field
(Eint) within the device provides the photovoltaic driving force. Tuning the Eint
results in the PP. Additionally, the photo-generated charges induce an electric field
Eph that can in turn modify the photovoltaic driving force, leading to the DP. till
refers to illumination time.
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distinctive features as follows. First, unlike conventional photosensors
whose photovoltages are restricted by materials’ bandgaps, the FE-PS
based on the bulk photovoltaic (BPV) effect can exhibit an above-
bandgap photovoltage33,34, even reaching several kilovolts35,36. The
high photovoltage is advantageous for ensuring the precision and
reliability of photovoltage-based imagememorization and processing.
In addition, the FE-PS typically exhibits a low leakage current34, which
can suppress the current backflow during the charging process and
hence enable the output photovoltage to reach high. The low leakage
current also contributes to the dynamic behavior of the photovoltage
response as it increases the RC time constant, facilitating the imple-
mentation of image memorization and low-level processing. Besides,
thephotovoltage and associatedphotoresponsivity of the FE-PS canbe
tuned by ferroelectric polarization37,38. This enables the implementa-
tion of high-level image processing. Despite thesemerits, the FE-PS has
yet to be effectively harnessed for constructing versatile in-sensor
computing systems.

Here, we develop a BPV effect-based FE-PS exhibiting above-
bandgap, dynamically responding, and electrically switchable photo-
voltages, and demonstrate a proof-of-concept for the integration
of image memorization, low-level processing, and high-level
computing functions into a FE-PS-based array. By using the dynamic
charging/discharging process, the FE-PS shows gradual photovoltage
rise/decay, mimicking optoelectronic synaptic behavior. Based on
these characteristics, the FE-PS-based array demonstrates image
memorization and pre-processing (e.g., visual adaptation) functions,
with the ability to adjust the memory and pre-processing effects
by ferroelectric polarization. On the other hand, the FE-PS exhibits a
giant switchable photovoltage (~30 V) for high-level computing,
along with multi-level switchability and retrievability. Using the
photovoltage-defined photoresponsivity to map the synaptic weight,
the FE-PS-based array acts as an in-sensor artificial neural network
(ANN), which can be trained to realize high-accuracy image recogni-
tion. The FE-PS-based array thus represents a versatile in-sensor
computing system which is promising for use in various machine
vision scenarios.

Results
Basic photovoltaic properties of FE-PS
Figure 2a shows a schematic of the device structure of the proposed
FE-PS, consisting of a piece of (Pb0.97La0.03)(Zr0.52Ti0.48)O3 (PLZT)
ceramic and Au interdigital electrodes. The PLZT ceramic (thickness:
0.3mm) exhibits pure perovskite phase (Supplementary Fig. 3), dense
microstructure (Supplementary Fig. 4), and robust ferroelectricity
with a remanent polarization as high as ~45μC/cm2 (Supplementary
Fig. 5), confirming the high quality of the PLZT ceramic. The photo-
graphy and geometric parameters of the interdigital electrodes are
presented in Supplementary Fig. 6.

The PLZT ceramic-based FE-PS is first poled by 200V DC voltage
for 5min (note: hereafter unless otherwise specified, the poling time is
always 5min). Then, it is exposed to 365 nm ultraviolet (UV) illumina-
tion togenerate charges to chargeup itself and a capacitorCex (Fig. 2a).
The voltage across the FE-PS (or the capacitor) represents the output
photovoltage, i.e., Vph. Figure 2b shows the temporal photovoltage
responses of the FE-PS to the same light pulse (intensity: 98mW/cm2;
width: 2.5 s)whendifferentCexs areused.Note thatCex = 0 refers to the
case where the FE-PS is directly connected to the sourcemeter. In this
case, only the capacitance of the FE-PS works. As shown in Fig. 2b, the
output Vph increases gradually during illumination, and then it decays
gradually after illumination. This gradual variation in Vph is a natural
consequence of the dynamic charging/discharging process. In brief,
when illuminating the FE-PS (Fig. 2c), its photovoltaic effect generates
charges to charge up itself and the Cex, thereby increasing the Vph. The
Vph is in turn applied to the FE-PS, reducing the photovoltaic driving
force. The overall charging current therefore gradually decreases as

the Vph increases, slowing down the charging process and causing a
gradual Vph increase. When the illumination is withdrawn (Fig. 2d), the
FE-PS and Cex discharge via leakage currents, reducing the Vph. The
reduction in Vph in turn reduces the leakage currents. Consequently,
the discharging process slowsdownover time, leading to a gradualVph

decay. Besides, Fig. 2b further shows that the rate of the Vph rise/decay
decreaseswith increasingCex. This confirms that the dynamic variation
in Vph results from the charging/discharging process with an RC time
constant influenced by the Cex. Such dynamic photovoltage response
endows the FE-PS with optoelectronic synaptic behavior, and also
allows it to implement image memorization and low-level processing
(to be demonstrated later).

Another striking observation from Fig. 2b is that the output Vph

can reach a remarkably high level. For example, when Cex = 0, the Vph

right after the light pulse is 5.4V, already exceeding the bandgap of
PLZT (i.e., 3.35 eV)39. Moreover, as the illumination time is elongated,
the Vph can further increase and eventually saturates at an open-circuit
voltage (VOC) of ~15 V (see Supplementary Fig. 7). Such high photo-
voltages can be observed across different devices (Supplementary
Fig. 8), evidencing the ubiquity of above-bandgap photovoltages in
our FE-PSs. The high photovoltage can benefit the precision and
reliability of photovoltage-based imagememorization and processing,
providing a distinct application-specific advantage.

The origin for the above-bandgap photovoltage is primarily
attributed to a well-established photovoltaic mechanism known as
the BPV effect40–44. The BPV effect occurs in non-centrosymmetric
materials like ferroelectrics, where crystal asymmetry induces
separation of photo-generated charge carriers. This is unlike the
charge separation caused by an interfacial built-in field in conventional
photovoltaic devices. As a result, the BPV effect allows for an
exceptionally high photovoltage which is not limited by the
material’s bandgap. More evidence for the BPV effect in our FE-PS is
presented in Supplementary Figs. 9–11 and Note 1. Another factor
contributing to the high photovoltage of our FE-PS is its low leakage
current. As shown in Fig. 2e, the leakage current of the FE-PS is only
~30 pA @ 15 V. Such a low leakage current indicates that the current
backflow through the FE-PS is very small during the charging process,
which is beneficial for preserving a high photovoltage. Additionally,
the low leakage current of the FE-PS also suppresses the discharge,
contributing to the gradual photovoltage decay after removing
illumination.

In addition to high photovoltage and dynamic photovoltage
response, our FE-PS also exhibits switchable photovoltages arising
from polarizationmodulation of photovoltaic behavior. This feature is
demonstrated by measuring the photovoltaic current-voltage (I–V)
characteristics of the FE-PS after poling with different polarities, where
Cex = 0 is used. As shown in Fig. 2e, the FE-PS in the 200 V-poled state
exhibits a VOC of 15.2 V and a short-circuit current (ISC) of −1.1 nA. After
the −200V poling, the VOC and ISC are switched to −15.2 V and 1.1 nA,
respectively, which are just opposite to those in the 200 V-poled state.
Such switchable photovoltaic behavior is well associated with the
poling-induced polarization switching (Supplementary Fig. 12). The
polarization-controlled switchable photovoltaic behavior can be used
for high-level image processing. However, most previous studies uti-
lized the switchable photocurrent for computing22–26, where the
computed results still required conversion into voltage signals
before being sent to next neuronal layers or CMOS-based peripheral
circuits for further processing. To streamline this process, we
directly use the switchable photovoltage for high-level image pro-
cessing (to be demonstrated later). Note that the switchable photo-
voltage of our FE-PS is as high as ~30 V (from 15.2 V to −15.2 V or vice
versa), far surpassing those of previously reported photovoltaic
devices used for in-sensor high-level computing (solid symbols in
Fig. 2f). Because the switchable photovoltage determines the range
and precision of programmed weights, our FE-PS thus offers a clear
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advantage for photovoltage-based computing. The high switchable
photovoltage of our FE-PS is attributed to the BPV effect, which not
only generates a high photovoltage but also allows it to be switch-
able. In contrast, earlier photovoltaic devices3,24–27,45–55, including
ferroelectric-based ones22,28,56–59, mainly relied on interfacial photo-
voltaic effects, resulting in a limited VOC, let alone the switchable
photovoltage. On the other hand, although prior BPV-based devices
exhibited high switchable photovoltages (hollow symbols in
Fig. 2f)33,60–63, they have not been applied to in-sensor high-level
computing. Our FE-PS effectively bridges this gap by harnessing the
high switchable photovoltage generated by the BPV effect for in-
sensor high-level computing.

The above results have demonstrated that our FE-PS exhibits high
and electrically switchable photovoltage as well as dynamic photo-
voltage response. Then, we will demonstrate that the dynamic pho-
tovoltage response allows for image memorization and low-level
processing, while the switchable photovoltage enables high-level
computing. The combination of these features qualifies our FE-PS as
an all-in-one multifunctional photosensor.

Image memorization and low-level processing based on
dynamic photovoltage response of FE-PS
Conventional photosensors can only sense images, requiring additional
memory and processing units to store and process images. This limited
function is mainly due to that the conventional photosensors respond
instantly to light signals. In contrast, our FE-PS exhibits dynamic photo-
voltage response. This characteristic enables the FE-PS to integrate image
memorization and in situ pre-processing functions. Prior to demon-
strating these functions, we first investigate the optoelectronic synaptic
behavior of the FE-PS, which is a prerequisite for these functions. Fig-
ure 3a shows the photovoltage evolution of the FE-PS in response to a
single light pulse with 98mW/cm2 intensity and 2.5 s width, where
Cex = 100pF is used. The outputVph rises to a peak during the light pulse,
followed by a decay after the light pulse, which well mimics the excita-
tory postsynaptic current (EPSC) of a biological synapse64,65.

Besides the EPSC, another important short-term synaptic function
called paired-pulse facilitation (PPF) can alsobe emulatedby the FE-PS.
The PPF manifests itself as a phenomenon that when two successive
pulses are applied to a presynaptic neuron, the second EPSC is higher
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than the first one. As shown in Fig. 3b, the photovoltage spike induced
by the second light pulse is apparently higher than that induced by the
first light pulse, well resembling the PPF behavior. The ratio between
the height of the second photovoltage spike (A2) and that of the first
one (A1) is defined as the PPF index. As displayed in Fig. 3c, the PPF
index gradually increases as the interval between the two light pulses
(Δt) decreases. Note that a shorter Δt results in less time for discharge.
This means that more charges are retained in the FE-PS and Cex after
the interval, thereby allowing them to be charged to higher voltages
during the second light pulse. Figure 3c further reveals that the
dependence of the PPF index on Δt can be fitted with a double-
exponential function66:

PPF index= 1 +C1 × expð�Δt=τ1Þ+C2 × expð�Δt=τ2Þ, ð1Þ

where Ci and τi are the initial facilitation magnitude and characteristic
relaxation time, respectively, and i = 1 (2) corresponds the rapid (slow)
relaxation process. The fitting gives τ1 = 5 s and τ2 = 55 s. It is noted that
τ2 is one order of magnitude larger than τ1, agreeing well with the rule
observed in biological synapses67.

Applying repetitive pulse stimulation to a biological synapse can
cause its short-term plasticity (STP) to transform into a long-term
plasticity (LTP). This capability is essential for memory and learning
functions. To imitate the STP-to-LTP transition, repeated light pulses
with different amplitudes, widths, and numbers are applied to the FE-
PS, and its temporal photovoltage responses are recorded. As shown in
Fig. 3d–f, the photovoltage spike increases in height as the pulse
amplitude, width, or number increases, which is well attributed to the
increased production of photo-generated charges in the FE-PS. Addi-
tionally, the photovoltage retained after the pulse stimulation also
rises to a higher level with increasing pulse amplitude, width, or
number. These results demonstrate the realization of the STP-to-LTP
transition in the FE-PS.

Moreover, the optoelectronic synaptic behavior of the FE-PS can
be modulated by the polarization. As shown in the inset of Fig. 3g, the
FE-PS is first set in a high-polarization state (State I) by a 200V poling.
Then, the polarization is reduced in magnitude (without changing its
direction) by sequentially applying −25 V and −50V poling, resulting in
intermediate- and low-polarization states (States II and III, respectively)
(see the insets of Fig. 3g). In each of these states, the photovoltage
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responses of the FE-PS to repeated light pulses are measured. As
shown in Fig. 3g, the photovoltage spike decreases in magnitude with
reducing polarization, despite the application of the same light pulses.
This originates from the fact that the photovoltaic behavior of the FE-
PS is controlled by the polarization. The polarization-modulated
synaptic plasticity is a key advantage of our FE-PS over other optoe-
lectronic synaptic devices5,14,68–70.

As demonstrated above, our FE-PS with dynamic photovoltage
response vividly emulates optoelectronic synaptic behavior. More-
over, the synaptic plasticity can be tuned by the polarization. These
device characteristics enable the polarization-tunable image memor-
ization and low-level processing. To demonstrate this, we experi-
mentally construct a 3 × 3 FE-PS-based array (as schematically
illustrated in Fig. 4a), and use it to sense and memorize a letter “T”
(3 × 3 pixels; pixel value: 0 or 1). Each FE-PS in the array is connected to
a Cex of 100 pF in parallel, and all these FE-PSs are pre-poled into the
same state, i.e., State I, II, or III. The constructed array exhibits a minor
pixel-to-pixel variation of ~5% (Supplementary Fig. 13). Then, the letter
“T” is projected onto the array, where each FE-PS is exposed to a light
pulse train (light intensity: 98mW/cm2; pulse width: 2.5 s; pulse num-
ber: 10) if the pixel value is 1 or left in dark if the pixel value is 0. The
output photovoltages of all the FE-PSs are recorded, constituting an
output image.

As shown in the left top of Fig. 4b, when all the FE-PSs are in State I
(i.e., the high-polarization state), an output image displaying a clear “T”
is produced immediately after the light stimuli. As time progresses, the
“T” becomes faded (Supplementary Fig. 14). Nevertheless, even after a
prolonged period (e.g., 30 s, as depicted in the left bottom of Fig. 4b),
the “T” still remains distinguishable, demonstrating an image memory
effect for the FE-PSs in State I.Moreover, this imagememory effect can
be tuned by the polarization, as evidenced by the image intensity
variation from the left to right columns in Fig. 4b. This capability allows
better mimicry of human visual memory, which is highly tunable by
factors like personal interest, mood, and attention71,72.

Besides imagememorization, low-level image processing can also
be demonstrated with the FE-PS-based array. One such demonstration
involves visual adaptation, which refers to the adaptive imaging of
objects under different levels of illumination18,47,49,73,74. In a human
visual system, the visual adaptation relies on the adaptive modulation
of the sensitivity of photoreceptors in the retina. For our FE-PS, the
visual adaptation is enabled by its light intensity-dependent photo-
voltage rising behavior, as shown in Fig. 3d. Supplementary Fig. 15
further shows that the ratio between the photovoltages at the high and
low light intensities (148 and 16mW/cm2, respectively) is smaller than
the input light intensity ratio, indicating that the FE-PS is relatively
more (less) responsive to weaker (stronger) light stimuli. Moreover,
the photovoltage ratio decreases with the number of light pulses,
meaning that the difference in photovoltage responses under weak-
and strong-light conditions can be narrowed as more light stimuli are
applied. These results demonstrate the visual adaptation capability of
the FE-PS, which can be attributed to the dynamic modulation of the
charging process by photo-generated charges. Specifically, when
applying a stronger illumination to the FE-PS, more photo-generated
charges are produced for charging, resulting in a higher output Vph.
However, the gain in Vph is under-proportional to the light intensity
because the Vph can in turn hinder the charging process. This effect is
also the reason for the gradual riseof photovoltage under illumination,
as explained previously.

The FE-PSs with visual adaptation capability can be used to build
an in-sensor image pre-processing system capable of improving the
accuracy of subsequent recognition. To demonstrate this, a FE-PS-
based array for image pre-processing, integrated with an ANN for
subsequent recognition, is simulated, as schematically shown in
Fig. 4c. The original images before pre-processing are modified
handwritten digit images (28× 28 pixels) from the Modified National

Institute of Standards and Technology (MNIST) dataset (seeMethods).
The foreground pixels of these images are assigned random values to
represent the non-uniform illumination which is ubiquitous in real-
world scenarios,while thebackgroundpixels are set at0. These images
are sensed and pre-processed by a 28 × 28 FE-PS-based array. Each FE-
PS in the array is connected to a Cex of 100pF in parallel, and all these
FE-PSs are pre-poled into the same state, i.e., State I, II, or III. During
image presentation, each FE-PS is stimulated by a light pulse train
(pulse number Npulse is a variable) with light intensity defined by the
imagepixel value (seeMethods). The photovoltage responses of all the
FE-PSs are assumed to obey the behavior shown in Fig. 3g. The output
photovoltage is further converted to a binary value of 1 if it exceeds 3 V
or 0 otherwise. This binarization operation can be executed using a
voltage comparator, which inevitably introduces additional hardware
overhead. The binarized outputs of all the FE-PSs constitute an output
image. Figure 4d (1st to 4th columns) shows the original image and
output images after differentNpulses when all the FE-PSs in the array are
in State I. It is seen that the feature of the digit “2” becomes more
distinct with increasing Npulse. This phenomenon is well attributed to
the visual adaptation effect of the FE-PS. Specifically, the photovoltage
response under weak light increases and becomes relatively closer to
that under strong light as Npulse increases. Consequently, more fore-
ground pixels of the output image become 1 as Npulse increases, gra-
dually highlighting the feature of the digit. The pre-processed
images are then sent to a purely software-based 784 × 10 ANN for
recognition. As shown in Fig. 4e, the recognition accuracy increases as
the Npulse used for adaptation increases, consistent with the enhance-
ment in the clarity of the pre-processed images (Fig. 4d). Notably, the
recognition accuracy after the 6-pulse adaptation reaches ~90%,
which is ~5% higher than that without pre-processing. These results
demonstrate that the in-sensor pre-processing systembased on FE-PSs
with visual adaptation capability can improve the image recognition
accuracy.

Besides, it is shown inFig. 3g that the visual adaptationbehavior of
the FE-PS strongly depends on its polarization state. Consequently, the
clarity of the pre-processed images and the recognition accuracy can
be significantly influenced by the polarization state, as demonstrated
in Fig. 4d (4th to 7th columns) and Fig. 4f. Such tunable visual adap-
tation behavior is conducive for visual perception in complex
environments18.

High-level image processing based on switchable photovoltage
of FE-PS
Besides image memorization and low-level processing, our FE-PS also
enables high-level image processing based on its switchable photo-
voltage. As already shown in Fig. 2e, the FE-PS exhibits switchable bi-
state photovoltages. In fact,more photovoltage states can be achieved
by applying appropriate poling voltages. To demonstrate this, the FE-
PS is pre-poled with −200V (200V) and then poled with positive
(negative) voltages with amplitudes varying from 25 V to 200V (−25 V
to −200V). After each poling procedure, the photovoltaic I–V char-
acteristics of the FE-PS with Cex = 0 are measured.

It is seen from Fig. 5a that with the increase of positive poling
voltage, the I–V curve shifts gradually from the second quadrant to the
fourth quadrant. Conversely, the direction of the I–V curve shift is
reversed by applying negative polingwith increasing voltages (Fig. 5b).
Based on these I–V curves,multi-level photovoltages are extracted and
plotted against poling voltages in Fig. 5c. A clear hysteresis loop is
observed, suggesting that the switchablemulti-level photovoltages are
associated with the polarization states set by the poling voltages.
Notably, the multi-level photovoltage switching enables program-
mable photoresponsivity when the photoresponsivity is defined as a
linear function of an output photovoltage divided by an input light
intensity. This programmable photoresponsivity can map synaptic
weight in an ANN, thus achieving in-sensor high-level computing.
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However, as already shown in Fig. 3, the photovoltage is depen-
dent on illumination history. This means that even when the FE-PS is
programmed into a specific polarization state, its photovoltage and
associatedphotoresponsivity canbe altered each time the illumination
is applied. This variability is unfavorable for the high-level computing,

because the high-level computing requires the photoresponsivity,
once programmed, to remain unchanged across different computing
events. This issue can be easily addressed by short-circuiting the FE-PS
prior to each computing event. As shown in Fig. 5d, the temporal
photovoltage responses in different polarization states can be well

Fig. 4 | Image memorization and pre-processing using FE-PS-based array.
a Schematic diagram of a 3 × 3 FE-PS-based array for memorizing a 3 × 3 image of a
letter “T”.bOutput images constitutedby the output photovoltages of the 9 FE-PSs
in States I (left column), II (middle column), and III (right column). The upper and
lower rows show the output images obtained immediately and 30 s after the image
presentation, respectively. c Schematic diagram of a FE-PS-based array for pre-
processing images, which is connected to an ANN for subsequent recognition.

d Typical original image before pre-processing (4th column), output images after
different pulse numbers (Npulse) used for pre-processing when all the FE-PSs in the
array are in the same State I (1st to 3rd columns), and output images at Npulse = 6
when all the FE-PSs are in State I, II, and III (5th to 7th columns). e Comparison of
recognition accuracies between the original images and the pre-processed images
after different Npulse. f Comparison of recognition accuracies between the original
images and the pre-processed images by using the FE-PSs in different states.
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reproduced once the device is short-circuited before each cycle. This
indicates that the programmed photoresponsivity of the FE-PS can be
successfully retrieved through the short-circuiting. The reason for this
success is that the short-circuiting only removes the accumulated
charges without changing the polarization state and its associated
photoresponsivity. Note that for previous photocurrent-based pho-
todetectors exhibiting an illumination history dependence, re-
programming methods like electrical reset were often employed to
retrieve the photoresponsivity17–19,75. Compared with these re-
programming methods, the short-circuiting in our FE-PS is much
simpler and more energy-efficient.

Besides the illumination history dependence of photovoltage,
another challenge for high-level computing is the sublinear variationof
photovoltage with light intensity (Supplementary Fig. 10e, f). In the
high-level computing, multiplication manifests itself as multiplying a

programmed photoresponsivity by an input light intensity to generate
a photovoltage. For accurate multiplication, the photoresponsivity
should not change with the light intensity, requiring a linear
photovoltage-light intensity (Vph-Ilight) relationship. Fortunately, a
quasi-linearity canbe achievedby selecting an appropriate time period
for reading the photovoltage. For example, quasi-linear Vph-Ilight rela-
tionships (R2 > 0.99) are observed across illumination times (till) from
12.3 s to 24.6 s for the FE-PS connected to a Cex of 2200pF (Fig. 5e and
Supplementary Figs. 16, 17). We hereafter use the Vph-Ilight relationship
at till ~ 20 s (R2 = 0.9974) to define the photoresponsivity, which follows
the equation below.

Vph =RpvI light +Voffsetð20mW=cm2 ≤ Ilight ≤ 70mW=cm2Þ, ð2Þ

where Rpv is the photoresponsivity and Voffset is an offset voltage.
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Fig. 5 | Programmable photoresponsivity of FE-PS. Photovoltaic I–V character-
istics of the FE-PS after applying amplitude-increasing a positive and b negative
poling voltages (light intensity: 78mW/cm2). In (a, b), the device is pre-poled with
−200V and 200 V, respectively. c Hysteretic evolution of VOC with poling voltage,
which is extracted from (a,b).dMulti-cyclephotovoltagemeasurements for the FE-
PS in different states (light intensity: 78mW/cm2). Before eachmeasurement cycle,

the FE-PS is short-circuited. e Relationships between output photovoltage and
input light intensity at different illumination times (till). f Temporal photovoltage
responses of the FE-PS in 16 different states (light intensity: 54mW/cm2), alongwith
the well-separated photoresponsivities (RPV) corresponding to these states (shown
in the inset). In (a–d), Cex = 0 is used, while in (e, f), Cex = 2200pF is used.
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Notably, the quasi-linear Vph-Ilight relationship remains consistent
with minor variations in Rpv and Voffset for at least 11 days without the
need for re-poling (Supplementary Fig. 18), which can be extended to
296 days when re-poling is allowed (Supplementary Fig. 19). In addi-
tion, the quasi-linear Vph-Ilight relationship can be preserved after
repeated illumination (up to 1000 cycles; Supplementary Fig. 20) and
at elevated temperature (up to 85 °C; Supplementary Fig. 21). Besides,
consistent quasi-linearVph-Ilight relationships areobserved across 15 FE-
PSs with small device-to-device (D2D) variation (<5%; Supplementary
Fig. 22). Therefore, our FE-PSs show good robustness in maintaining
Vph-Ilight linearity over time, temperature, and illumination cycle, and
across multiple devices.

Such a robust quasi-linear Vph-Ilight relationship ensures Rpv to be
independent of Ilight, consequently guaranteeing high accuracy and
reliability of multiplication. In addition, thanks to the switchable
photovoltaic behavior, the Rpv of the FE-PS can be programmed into
multi-values, e.g., 4 bits, as shown in Fig. 5f and Supplementary Fig. 23.
Besides, a programmed Rpv can be easily retrieved by using the short-
circuiting method, as demonstrated earlier (Fig. 5d). The multi-bit
programmability, retrievability, and Ilight-independence ensure that
theRpv definedby thephotovoltage of the FE-PS can serve as a synaptic
weight, which lays the foundation for high-level computing.

To implement in-sensor high-level computing, a FE-PS-based array
that itself constitutes an in-sensor ANN is constructed. We first
demonstrate multiply-accumulate (MAC) operation, i.e., a funda-
mental operation in ANN, by using a 1 × 2 FE-PS-based array. In this
array, each FE-PS is connected to a Cex of 2200 pF in parallel, and
the two FE-PSs are connected in series (Fig. 6a). The two FE-PSs are
first set in the same state with Rpv-1 = Rpv-2 = 0.048V·cm2·mW-1 and
Voffset-1 = Voffset-2 = 0.7 V. Various combinations of light intensities, Ilight-1
and Ilight-2, are applied to the two FE-PSs, respectively. Under each
combination of Ilight-1 and Ilight-2, the total voltage across the two FE-PSs
(Vph-1&2) is measured and its value at till ~ 20 s is regarded as the result.
Prior to the application of Ilight-1 and Ilight-2, both FE-PSs are short-
circuited. Figure 6b shows the measured Vph-1&2 results for different
combinations of Ilight-1 and Ilight-2. It is revealed that theVph-1&2 is just the
sum of the photovoltages produced by the two FE-PSs, which follows
the equation below:

Vph�1&2 = ðRpv�1I light�1 +Voffset�1Þ+ ðRpv�2I light�2

+Voffset�2Þð20mW=cm2 ≤ I light ≤ 70mW=cm2Þ:
ð3Þ

Additionally, Eq. (3) also applies when the two FE-PSs are set
in the opposite states (−Rpv-1 = Rpv-2 = 0.048 V·cm2·mW-1 and
−Voffset-1 = Voffset-2 = 0.7 V), as illustrated in Fig. 6c. These results
demonstrate that the FE-PS-based array can implement the MAC
operation by using photovoltages. This capability is well attrib-
uted to (1) the quasi-linear Vph-Ilight relationship of the FE-PS that
ensures accurate multiplication and (2) the series connection
between FE-PSs that enables the summation of photovoltages.

With the MAC capability, the FE-PS-based array can readily
implement high-level image processing functions such as image
recognition. An image recognition task is demonstrated experimen-
tally with 4 letters “S”, “C”, “N”, and “U” as input images, as illustrated in
Fig. 6d. Each letter image consists of 3 × 3 pixels, with foreground and
background pixels valued at 1 and 0, respectively. To classify these
letters, a 4 × 9 FE-PS-based array is employed. Here, 9 is the number of
pixels. In each pixel, there are 4 subpixels with each corresponding to
one FE-PS. The experimental implementation of this array is illustrated
in Supplementary Fig. 24. When an input letter is projected to the
array, the 4 FE-PSs in one pixel are illuminated with an Ilight of 70mW/
cm2 (for the pixel value 1) or left in dark (for the pixel value 0). The FE-
PSswith the samesubpixel index amongdifferent pixels are connected
in series, and hence their photovoltages are summed, yielding a total

voltage given by:

Vph�m =
X

n

ðRpv�mnI light�n +Voffset�mnÞ, ð4Þ

whereVph-m is the total photovoltage at them-th output neuron,Rpv-mn

is the photoresponsivity of the photosensorwith the sub-pixel indexm
and the pixel index n, Ilight-n is the input light intensity at the n-th pixel.
The Vph-m (m = 1, 2, 3, and 4) values are then sent to a softmax function
to generate the categorical probabilities. The output neuron with the
highest probability determines the predicted class of the input letter.

Ex situ training of the FE-PS-based array is performed using the 4
letter images shown in Fig. 6d as inputs (Supplementary Fig. 25).
Subsequently, the trained weights are binarized (Supplementary
Fig. 26), and then programmed into the array using a write-and-verify
scheme. During programming, the binarized weight 1 (−1) is intended
to map an Rpv of 0.03 (−0.03) V·cm2·mW-1 along with a Voffset of 0.3
(−0.3) V. Based on these Rpv and Voffset values, the output Vph (@
till ~ 20 s) of the FE-PS corresponding to theweight 1 (−1) under the Ilight
of 70mW/cm2 is expected to be 2.4 (−2.4) V. Figure 6e, f show that the
actual Vph values of all the FE-PSs after programming are closed to the
expected Vph values, confirming the success in programming.

Next, the programmed FE-PS-based array is deployed for test,
where the letter images same as those used in training are first tested.
Figure 6g shows the temporal output Vphs at different neurons when
the letter “C” is presented to the array. It is seen that the 2nd neuron
with the label “C” outputs the highest Vph, demonstrating the correct
recognition of the letter “C”. Figure 6h summarizes the output Vphs (@
till ~ 20 s) at different neurons for different input letters. It is always the
neuron whose label matches the input letter that outputs the highest
Vph, indicating that all the input letters are correctly recognized.
Moreover, the actual output Vph values agree well with the expected
values, verifying the high accuracy of the MAC operation in the FE-PS-
based array. Further tests with noisy images (Supplementary Fig. 27)
demonstrate that the array canmaintain 100% recognition accuracy as
the noise level increases to 10% (Supplementary Fig. 28). Beyond this
noise level, the accuracy begins to decline. Nevertheless, the accuracy
at each noise level remains closely aligned with its corresponding
theoretical upper limit.

To further evaluate the FE-PS-based array’s capability in handling
large images, a simulation of an in situ trained 784 × 10 array for
recognizing fashion product images (28 × 28 pixels) is conducted. The
simulation methodology is detailed in Methods. As shown in Supple-
mentary Fig. 29, the FE-PS-based array achieves a recognition accuracy
of 80.2%on the test set, approaching the software-basedbenchmarkof
80.8%. These results suggest the great potential of the large-scale FE-
PS array for large image recognition.

Discussion
The above results validate the FE-PS-based array as a proof-of-concept
for a versatile in-sensor computing system integrating image memor-
ization, low-level processing, and high-level computing functions. The
array’s functional modes can be rapidly reconfigured by adjusting its
circuit interconnections, as schematically illustrated in Supplementary
Fig. 1 and experimentally demonstrated in Supplementary Fig. 30.
Therefore, the FE-PS-based array boasts minimal hardware complexity
compared to other emerging multifunctional neuromorphic vision
systems15,17,30–32,76–78 (Supplementary Table 1). Although the present FE-
PS-based array is experimentally implemented on a small scale, it has
great potential for scaling up (Supplementary Note 2). Also note-
worthy is that the FE-PS-based array achieves theoretically zero energy
consumption in sensing and processing phases, as each FE-PS operates
in a self-powered photovoltaic mode (Supplementary Note 3). Addi-
tionally, its latency for these phases can be reduced to 100ms or even
lower through device optimization (Supplementary Note 4). These
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properties highlight the FE-PS-based array’s superiority over conven-
tional von Neumann machine vision systems (Supplementary Note 5).

As the fundamental building block, the FE-PS exhibits both
dynamic photovoltage response (for image memorization/pre-pro-
cessing) and programmable photoresponsivity (for high-level com-
puting). Besides these two essential properties, the FE-PS offers several
advantageous features that can enhance system-level performance.
First, the above-bandgap photovoltage of the FE-PS greatly benefits
the precision and reliability of photovoltage-based image memoriza-
tion and processing (Supplementary Note 6). In addition, the

self-powered photovoltage-based working mode eliminates the needs
for current-voltage conversion and external bias application, leading
to reduced hardware complexity and energy consumption. Besides,
the FE-PS distinguishes itself from emerging optoelectronic synaptic
devices for its wide tuning range of retention times (Supplementary
Table 2), suggesting its potential in dynamic visual information pre-
processing. Specifically, the maximum retention time is extended to
~1100 s (Supplementary Fig. 31), enabling long-term image
memorization79,80. Moreover, the robust quasi-linear Vph-Ilight rela-
tionship (Supplementary Figs. 18–22), multi-level programmability

−2.40 2.40 2.40

2.40 2.40 2.40

2.40 2.40 −2.40

2.40 2.40 2.40

2.40 −2.40−2.40

2.40 2.40 2.40

2.40 2.40 2.40

2.40 2.40 2.40

2.40 −2.40 2.40

2.40 −2.40 2.40

2.40 −2.40 2.40

2.40 2.40 2.40

−2.42 2.21 2.29

2.53 2.46 2.29

2.41 2.49 −2.33

2.46 2.25 2.24

2.52 −2.51−2.28

2.41 2.59 2.28

2.47 2.39 2.44

2.52 2.46 2.29

2.30 −2.24 2.52

2.25 −2.37 2.33

2.45 −2.34 2.24

2.33 2.60 2.47

#1 (''S'') #2 (''C'') #3 (''N'') #4 (''U'')

0

4

8

V
ph

-1
&2

 (V
)

I ligh
t-1
 & I ligh

t-2

(m
W/cm

2 )

0 &
 25

0 &
 54

25
 & 0

25
 & 25

25
 & 54

54
 & 0

54
 & 25

54
 & 54

−4

0

4

V
ph

-1
&2

 (V
)

I ligh
t-1
 & I ligh

t-2

(m
W/cm

2 )

0 &
 25

0 &
 54

25
 & 0

25
 & 25

25
 & 54

54
 & 0

54
 & 25

54
 & 54

0 5 10 15 20

0

5

10

15

20

Vo
lta

ge
 (V

)

Time (s)

 #1 ("S")
 #2 ("C")
 #3 ("N")
 #4 ("U")

S

C

N

U

Input

#1 
(''S'')

#2 
(''C'')

#3 
(''N'')

#4 
(''U'')

18.38
(16.80)

7.52
(7.20)

13.08
(12.00)

7.35
(7.20)

7.66
(7.20)

18.62
(16.80)

13.48 
(12.00)

12.96
(12.00)

7.58
(7.20)

7.37
(7.20)

18.52
(16.80)

13.38
(12.00)

7.65
(7.20)

13.31
(12.00)

13.01
(12.00)

18.26
(16.80)

Neuron

a b

c

d

e

f

g h

Ilight-1

Ilight-2

V

Vph-1&2

FE-PS

Cex

··· ···

Vph-1

S C N U

Vph-2

Vph-4

Vph-3

Fig. 6 | High-level computing using FE-PS-based array. a Schematic circuit dia-
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The corresponding expected Vph values are shown in the brackets.
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(Fig. 5f), and retrievability (Fig. 5d), ensures reliable and accurate high-
level computing.

However, the present ceramic-based FE-PS exhibits large device
area, high voltage/energy consumption for programming, and rela-
tively low photoresponse speed. These limitations can be effectively
addressed by leveraging a thin film-based vertically-structured FE-PS.
First, the thin film-based FE-PS has been downscaled to ~7.85 × 103μm2,
with substantial potential for further downscaling (Supplementary
Note 2). This holds promise for large-scale array integration. In addi-
tion, the thin film-based FE-PS can be programmed by using pulse
voltages within 2.5 V (Supplementary Fig. 32), showcasing good com-
patibility with the CMOS circuitry. Besides, its programming energy
consumption is significantly reduced to only ~1.6 nJ (Supplementary
Note 3), on par with emerging programmable photosensors56,59,75.
Moreover, the thin film-based FE-PS can complete the integrated
sensing-computing process within 100ms (Supplementary Note 4),
demonstrating comparable speed to its counterparts (Supplementary
Table 1).

To sumup,wehavedemonstrated a versatile in-sensor computing
systembasedon FE-PSswith integrated imagememorization, low-level
processing, and high-level computing functions. The key to achieving
these multi-functions lies in the FE-PS which exhibits above-bandgap,
dynamically responding, and electrically switchable photovoltages. By
leveraging the charging/discharging process, the FE-PS displays gra-
dual photovoltage rise/decay. Such dynamic photovoltage response
enables the FE-PS to mimic optoelectronic synaptic behavior, and
moreover, renders the FE-PS-based array capable of memorizing ima-
ges and performing image pre-processing via visual adaptation.
Notably, the memory and pre-processing effects can be tuned by fer-
roelectric polarization, leading to better mimicry of human visual
systems. On the other hand, the FE-PS exhibits a giant switchable
photovoltage (~30 V) originating from the BPV effect, facilitating high-
level computing implementation. Harnessing this switchable photo-
voltage characteristic, photoresponsivity can be programmed into
multi-values (4 bits). In addition, the programmed photoresponsivity
can be easily retrieved via short-circuiting. Using the photo-
responsivity to map the synaptic weight, the FE-PS-based array acts as
an in-sensor ANN, demonstrating MAC capability and achieving 100%
accuracy in a 4-class image recognition task (noise level ≤ 10%). Our
study offers a solution for integrating image memorization, low-level
processing, and high-level computing functions by using FE-PSs,
facilitating the development of versatile in-sensor computing systems
for multi-scenario machine vision.

Methods
Device preparation
The PLZT ceramics were purchased from the Dongguan Demi Metal
material Co., Ltd company. The company claimed that the PLZT
ceramics were prepared by the conventional solid-phase sintering
method. The raw materials included PbO (99.9%), ZrO2 (99.9%), TiO2

(99.9%), and La2O3 (99.9%) powders, whichwereweighed according to
the stoichiometry of the desired ceramic composition, i.e.,
(Pb0.97La0.03)(Zr0.52Ti0.48)O3. These powders were ball milled in the
ethanol medium. The mixed powders were dried and then calcined at
980 °C for 6 h. The calcined powders were cold pressed into pellets.
The pellets were debinded at 550 °C for 6 h, followed by a sintering at
1260 °C for 3 h to obtain the PLZT ceramic samples.

The Au interdigital electrodes were sputtered onto the PLZT
ceramics through shadow masks under vacuum, resulting in the Au/
PLZT/Au FE-PS devices. The geometric parameters of the Au inter-
digital electrodes can be found in Supplementary Fig. 6.

Characterizations
The crystalline structure of the PLZT ceramic was examined by X-ray
diffraction (XRD) (PANalytical ‘X’ Pert PRO). The cross-section of the

PLZT ceramic was characterized using scanning electron microscopy
(SEM) (TESCAN MIRA LMS).

Electrical measurements
The polarization-voltage (P–V) hysteresis loops were measured with a
ferroelectric workstation (Radiant PrecisionMultiferroic). The current-
voltage (I–V) characteristics were measured with a source meter
(Keithley 6430). In the photovoltaic measurements, 365 nm UV light-
emitting diodes (LEDs) with tunable light intensities were used as the
light sources while the sourcemeter recorded the photovoltage. In the
array-level measurements, multiple FE-PSs were used to construct the
arrayswith customized interconnections for imagememorization, pre-
processing or high-level computing.

Simulation of 28 × 28 FE-PS-based array for image pre-
processing
Todemonstrate that the FE-PS-based array canpre-process images and
in turn improve the accuracy of subsequent recognition, a 28× 28 FE-
PS-based array integrated with a 784 × 10 ANN (for subsequent
recognition) was simulated.

The original images were modified from the handwritten images
(28 × 28 pixels) from theMNIST dataset. The pixel values of theMNIST
images were first normalized to 0–1. The normalized images from the
training set were used to train the ANN, while those from the test set
were furthermodified as follows. First, the normalized images from the
test set were binarized, where the pixels with values higher (lower)
than 0.5 were regarded as foreground (background) pixels. Then, the
background pixels were all set to a value of 0, while the foreground
pixels were randomly assigned one of four values: 1, 0.67, 0.23, and
0.11. These images after binarization and randomization were the ori-
ginal images to be pre-processed by the FE-PS-based array.

The original images were projected onto a 28 × 28 FE-PS-based
array for pre-processing, where each FE-PS was connected to a Cex of
100pF in parallel and all the FE-PSs were pre-poled into the same state
(State I, II, or III). Each FE-PS in the array was stimulated by a light pulse
train (pulse width: 2.5 s; interval: 3 s; pulse number Npulse was a vari-
able) with light intensity defined by the image pixel value. The pixel
values of 1, 0.67, 0.23, 0.11, and 0 corresponded to light intensities of
148, 98, 34, 16, and 0mW/cm2, respectively. The photovoltage
responses of all the FE-PSs were assumed to obey the behavior shown
in Fig. 3g. The output photovoltage was further converted to a binary
value of “1” if it exceeded 3Vor “0”otherwise. The binarizedoutputs of
all the FE-PSs constituted an output image.

The pre-processed images were sent to a software-based 784× 10
ANN for label prediction. The output layer of the ANN ultilized a
softmax activation function to normalize prediction probabilities.
Training of the ANN leveraged the back-propagation (BP) algorithm
with a cross-entropy loss metric, optimized via a stochastic gradient
descent (SGD) optimizer. For efficient training, a mini-batch approach
with a batch sizeof 20was adopted. The learning ratewas set to 0.15 to
ensure stable gradient updates without compromising
convergence speed.

Simulation of 784 × 10 FE-PS-based array for high-level image
processing
To show the potential of the FE-PS-based array in large image recog-
nition, a 784 × 10 array was constructed by simulation for recognizing
28 × 28-pixel fashion product images from the Fashion-MNIST
dataset81. This dataset comprises 70,000 images across 10 distinct
clothing categories,with a standard split of 60,000 images for training
and 10,000 images for test. Each image after binarization was pro-
jected onto the 784 × 10 FE-PS-based array (Supplementary Fig. 29).
The array executed MAC operations based on input light intensities
and device photoresponsivities, generating 10 different summed
photovoltages. These photovoltage values were sent to a softmax
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function to generate categorical probabilities, with the highest prob-
ability determining the predicted category.

In situ training of this large-scale array was simulated using the
aforementioned BP algorithm, incorporating a cross-entropy loss
function and a SGD optimizer. The batch size and learning rate were
set as 16 and 0.002, respectively. During weight update, it was
assumed that all the devices in the array followed identical program-
mable photoresponsivity behavior as shown in Fig. 5f.

Data availability
The data that support the findings of this study are available in the
article and the Supplementary Information. Additional data related to
this study can be requested from the corresponding authors. Source
data are provided with this paper.

Code availability
The codes for simulating a 4 × 9 array for ex situ training, a 28 × 28
array for image pre-processing, and a 784 × 10 array for image recog-
nition are available in Supplementary Software 1.
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