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% Check for updates In-sensor computing holds great promise for ultrafast and energy-efficient

machine vision. However, the development of a versatile in-sensor computing
system that can integrate image memorization, low-level processing, and high-
level computing functions remains a challenge, primarily due to the scarcity of
photosensors that can offer both dynamic photoresponse and programmable
photoresponsivity. Here, we successfully integrate these multi-functions into a
ferroelectric photosensor-based array. The key enabler is the ferroelectric
photosensor operating via the bulk photovoltaic effect, which exhibits above-
bandgap, dynamically responding, and electrically switchable photovoltages.
By using the dynamic photovoltage response, the array is capable of memor-
izing and pre-processing images, with the ability to adjust the memory and pre-
processing effects by ferroelectric polarization. On the other hand, the elec-
trically switchable photovoltages, featuring multi-level switchability and
retrievability, enable the array to perform in-sensor high-level computing,
achieving 100% accuracy in a 4-class image recognition task (noise level < 10%).
Notably, the high precision and reliability of photovoltage-based image
memorization and processing greatly benefit from the high photovoltage
produced by the ferroelectric photosensor — a distinct advantage for this
application. This study lays the foundation for developing versatile in-sensor
computing systems that could be utilized across a wide range of machine
vision scenarios.

In the era of artificial intelligence, machine vision is playing a vital role
in various applications such as facial recognition, autonomous driving,

as in-sensor computing has emerged and attracted tremendous
attention™*. In this technique, visual information is directly processed

and automated manufacturing*. Conventional machine vision sys-
tems capture and process visual images by using physically separated
sensing, memory, and processing units. Massive data shuffling
between these units, however, often causes significant latency and
energy consumption®. To tackle this issue, a promising solution known

within photosensors, relieving the burden of data shuffling and hence
resulting in boosted speed and energy efficiency.

So far a variety of in-sensor computing systems have been
developed, which can mainly be classified into two types according to
their functions. The first type are in-sensor pre-processing systems
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capable of implementing image memorization and low-level proces-
sing, e.g., noise reduction, contrast enhancement, and visual
adaptation®?°. These systems can enhance the quality of sensory data
and help improve the efficiency of further processing. On the other
hand, the second type are in-sensor high-level computing systems
which can directly perform high-level image processing, e.g., recog-
nition and autoencoding®* . These systems enable simultaneous
sensing and interpretation of visual information with exceptionally low
latency and energy consumption. To handle diverse machine vision
tasks and capitalize on the advantages of both types of systems, it is
essential to develop a versatile in-sensor computing system that can
integrate image memorization, low-level processing, and high-level
computing functions (Fig. 1a and Supplementary Fig. 1). However, to
our knowledge, such a system has not yet been realized. It is worth
noting that despite recent advances in neuromorphic vision systems
with multifunctional capabilities”*°?, these systems consistently
utilized a near-sensor computing architecture (Supplementary Fig. 2),
where a front-end module performs image sensing/pre-processing
while a back-end module implements high-level computing. This
architectural distinction clearly differentiates them from the proposed
versatile in-sensor computing system.

To construct a versatile in-sensor computing system, multi-
functional photosensors with dynamic photoresponse and program-
mable photoresponsivity are demanded. The dynamic photoresponse
allows for image memorization and low-level processing (top panel of
Fig. 1a), while the programmable photoresponsivity can serve as
synaptic weight for high-level computing, which involves multiplying
the photoresonsivity by an input light intensity to produce an electrical
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output (bottom panel of Fig. 1a). However, integrating these multi-
functionalities into a single device is challenging. This is because the
dynamic photoresponse typically results in an illumination history
dependence, whereas the programmable photoresponsivity for high-
level computing should either be independent of the illumination
history or retrievable upon clearing the illumination history.

Photovoltage-based photosensors emerge as a well-suited candi-
date for achieving the desired multi-functionalities. Such a device
operates by using its photo-generated charges to charge up itself and
an external capacitor (Fig. 1b). The dynamic charging/discharging
process naturally results in gradual photovoltage rise/decay with an RC
time constant determined by the photosensor and the capacitor.
This characteristic enables the implementation of image memoriza-
tion and low-level processing. In addition, the internal field in
the photosensor, serving as the photovoltaic driving force, can be
tuned to achieve programmable photoresponsivity. Importantly, the
photo-generated charges are stored in the electrodes of the photo-
sensor and the capacitor, which can be easily removed through short-
circuiting. This allows for a quick retrieval of the programmed
photoresponsivity without the need for re-programming, significantly
reducing the operational complexity in high-level computing. There-
fore, the photovoltage-based photosensors hold great promise to
enable the integration of image memorization, low-level processing,
and high-level computing functions. Also noteworthy is that these
devices require no current-voltage conversion, which can help reduce
hardware overhead and energy consumption at the system level.

To realize such a photovoltage-based multifunctional photo-
sensor, ferroelectric photosensor (FE-PS) is resorted to for its
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Fig. 1| Concepts of versatile in-sensor computing systems and photovoltage-
based multifunctional photosensors. a Schematics of photosensors exhibiting
only dynamic photoresponse (DP) or programmable photoresponsivity (PP), and
multifunctional photosensors exhibiting both the DP and PP. The multifunctional
photosensors are used to construct a versatile in-sensor computing system that can
integrate image memorization, low-level processing, and high-level computing
functions. b Schematics illustrating the operation mechanism of a photovoltage-

based multifunctional photosensor. This device operates by using its photo-
generated charges to charge up itself and an external capacitor. The internal field
(Einy) within the device provides the photovoltaic driving force. Tuning the £,
results in the PP. Additionally, the photo-generated charges induce an electric field
Epn that can in turn modify the photovoltaic driving force, leading to the DP. &
refers to illumination time.
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distinctive features as follows. First, unlike conventional photosensors
whose photovoltages are restricted by materials’ bandgaps, the FE-PS
based on the bulk photovoltaic (BPV) effect can exhibit an above-
bandgap photovoltage**, even reaching several kilovolts®*. The
high photovoltage is advantageous for ensuring the precision and
reliability of photovoltage-based image memorization and processing.
In addition, the FE-PS typically exhibits a low leakage current*, which
can suppress the current backflow during the charging process and
hence enable the output photovoltage to reach high. The low leakage
current also contributes to the dynamic behavior of the photovoltage
response as it increases the RC time constant, facilitating the imple-
mentation of image memorization and low-level processing. Besides,
the photovoltage and associated photoresponsivity of the FE-PS can be
tuned by ferroelectric polarization®”*. This enables the implementa-
tion of high-level image processing. Despite these merits, the FE-PS has
yet to be effectively harnessed for constructing versatile in-sensor
computing systems.

Here, we develop a BPV effect-based FE-PS exhibiting above-
bandgap, dynamically responding, and electrically switchable photo-
voltages, and demonstrate a proof-of-concept for the integration
of image memorization, low-level processing, and high-level
computing functions into a FE-PS-based array. By using the dynamic
charging/discharging process, the FE-PS shows gradual photovoltage
rise/decay, mimicking optoelectronic synaptic behavior. Based on
these characteristics, the FE-PS-based array demonstrates image
memorization and pre-processing (e.g., visual adaptation) functions,
with the ability to adjust the memory and pre-processing effects
by ferroelectric polarization. On the other hand, the FE-PS exhibits a
giant switchable photovoltage (-30V) for high-level computing,
along with multi-level switchability and retrievability. Using the
photovoltage-defined photoresponsivity to map the synaptic weight,
the FE-PS-based array acts as an in-sensor artificial neural network
(ANN), which can be trained to realize high-accuracy image recogni-
tion. The FE-PS-based array thus represents a versatile in-sensor
computing system which is promising for use in various machine
vision scenarios.

Results

Basic photovoltaic properties of FE-PS

Figure 2a shows a schematic of the device structure of the proposed
FE-PS, COnSiSting of a piece of (Pb0_97|_a().03)(ZrO.szTi0.48)O3 (PLZT)
ceramic and Au interdigital electrodes. The PLZT ceramic (thickness:
0.3 mm) exhibits pure perovskite phase (Supplementary Fig. 3), dense
microstructure (Supplementary Fig. 4), and robust ferroelectricity
with a remanent polarization as high as -45 uC/cm? (Supplementary
Fig. 5), confirming the high quality of the PLZT ceramic. The photo-
graphy and geometric parameters of the interdigital electrodes are
presented in Supplementary Fig. 6.

The PLZT ceramic-based FE-PS is first poled by 200 V DC voltage
for 5 min (note: hereafter unless otherwise specified, the poling time is
always 5 min). Then, it is exposed to 365 nm ultraviolet (UV) illumina-
tion to generate charges to charge up itself and a capacitor Ce, (Fig. 2a).
The voltage across the FE-PS (or the capacitor) represents the output
photovoltage, i.e., Vph. Figure 2b shows the temporal photovoltage
responses of the FE-PS to the same light pulse (intensity: 98 mW/cm?;
width: 2.5 s) when different Ce,s are used. Note that C., = O refers to the
case where the FE-PS is directly connected to the source meter. In this
case, only the capacitance of the FE-PS works. As shown in Fig. 2b, the
output Vpy, increases gradually during illumination, and then it decays
gradually after illumination. This gradual variation in V,, is a natural
consequence of the dynamic charging/discharging process. In brief,
when illuminating the FE-PS (Fig. 2c), its photovoltaic effect generates
charges to charge up itself and the Ce, thereby increasing the Vy. The
Vpn is in turn applied to the FE-PS, reducing the photovoltaic driving
force. The overall charging current therefore gradually decreases as

the Vyy, increases, slowing down the charging process and causing a
gradual V,y, increase. When the illumination is withdrawn (Fig. 2d), the
FE-PS and Cx discharge via leakage currents, reducing the V. The
reduction in Vpy in turn reduces the leakage currents. Consequently,
the discharging process slows down over time, leading to a gradual V,,
decay. Besides, Fig. 2b further shows that the rate of the V,j, rise/decay
decreases with increasing Ce. This confirms that the dynamic variation
in Vpp results from the charging/discharging process with an RC time
constant influenced by the C,. Such dynamic photovoltage response
endows the FE-PS with optoelectronic synaptic behavior, and also
allows it to implement image memorization and low-level processing
(to be demonstrated later).

Another striking observation from Fig. 2b is that the output Vyp
can reach a remarkably high level. For example, when C,, =0, the Vpy,
right after the light pulse is 5.4V, already exceeding the bandgap of
PLZT (i.e., 3.35eV)*. Moreover, as the illumination time is elongated,
the Vpn can further increase and eventually saturates at an open-circuit
voltage (Voc) of ~15V (see Supplementary Fig. 7). Such high photo-
voltages can be observed across different devices (Supplementary
Fig. 8), evidencing the ubiquity of above-bandgap photovoltages in
our FE-PSs. The high photovoltage can benefit the precision and
reliability of photovoltage-based image memorization and processing,
providing a distinct application-specific advantage.

The origin for the above-bandgap photovoltage is primarily
attributed to a well-established photovoltaic mechanism known as
the BPV effect'**. The BPV effect occurs in non-centrosymmetric
materials like ferroelectrics, where crystal asymmetry induces
separation of photo-generated charge carriers. This is unlike the
charge separation caused by an interfacial built-in field in conventional
photovoltaic devices. As a result, the BPV effect allows for an
exceptionally high photovoltage which is not limited by the
material’s bandgap. More evidence for the BPV effect in our FE-PS is
presented in Supplementary Figs. 9-11 and Note 1. Another factor
contributing to the high photovoltage of our FE-PS is its low leakage
current. As shown in Fig. 2e, the leakage current of the FE-PS is only
~30 pA @ 15V. Such a low leakage current indicates that the current
backflow through the FE-PS is very small during the charging process,
which is beneficial for preserving a high photovoltage. Additionally,
the low leakage current of the FE-PS also suppresses the discharge,
contributing to the gradual photovoltage decay after removing
illumination.

In addition to high photovoltage and dynamic photovoltage
response, our FE-PS also exhibits switchable photovoltages arising
from polarization modulation of photovoltaic behavior. This feature is
demonstrated by measuring the photovoltaic current-voltage (/-V)
characteristics of the FE-PS after poling with different polarities, where
Cex =0 is used. As shown in Fig. 2e, the FE-PS in the 200 V-poled state
exhibits a Voc 0f 15.2 V and a short-circuit current (/sc) of —1.1 nA. After
the —200V poling, the Voc and Isc are switched to —15.2V and 1.1nA,
respectively, which are just opposite to those in the 200 V-poled state.
Such switchable photovoltaic behavior is well associated with the
poling-induced polarization switching (Supplementary Fig. 12). The
polarization-controlled switchable photovoltaic behavior can be used
for high-level image processing. However, most previous studies uti-
lized the switchable photocurrent for computing??¢, where the
computed results still required conversion into voltage signals
before being sent to next neuronal layers or CMOS-based peripheral
circuits for further processing. To streamline this process, we
directly use the switchable photovoltage for high-level image pro-
cessing (to be demonstrated later). Note that the switchable photo-
voltage of our FE-PS is as high as -30 V (from 15.2V to -15.2V or vice
versa), far surpassing those of previously reported photovoltaic
devices used for in-sensor high-level computing (solid symbols in
Fig. 2f). Because the switchable photovoltage determines the range
and precision of programmed weights, our FE-PS thus offers a clear
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Fig. 2 | Phovoltage-based FE-PS and its basic photovoltaic properties.

a Schematics illustrating the device structure of the FE-PS with interdigital elec-
trodes, and the experimental setup for the photovoltage measurement.

b Temporal photovoltage responses of the FE-PS to the same light pulse (intensity:
98 mW/cm?; width: 2.5s) when Cex =0, 100 pF, 680 pF, 1.5 nF, and 10 nF are used.
Schematics illustrating (c) the gradual photovoltage rise during illumination and
d the gradual photovoltage decay after illumination. e Photovoltaic current-
voltage (I-V) characteristics of the FE-PS in the 200 V- and -200 V-poled states
(light intensity: 78 mW/cm?), along with its dark /-V characteristics. In (e), Cex =0 is
used. Insets show the schematics of the photovoltaic effects in the FE-PS in
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different polarization states. f Comparison of switchable photovoltages and open-
circuit voltages between our FE-PS, typical photovoltaic devices used for in-sensor
high-level computing (solid symbols), and typical BPV-based devices (hollow
symbols). “FE-based devices (BPV)” refers to previously reported ferroelectric-
based devices operating via the BPV effect, while “FE-based devices (non-BPV)”
denotes those functioning through other photovoltaic mechanisms. “FETs” refer to
the field-effect transistors. “lonic devices” refer to the devices whose switchable
photovoltaic behavior is induced by the ion migration. The data in (f) are extracted
from refs. 3,22,24-28,33,45-52,54-58,60-63.

advantage for photovoltage-based computing. The high switchable
photovoltage of our FE-PS is attributed to the BPV effect, which not
only generates a high photovoltage but also allows it to be switch-
able. In contrast, earlier photovoltaic devices*****, including
ferroelectric-based ones?*****, mainly relied on interfacial photo-
voltaic effects, resulting in a limited Vyc, let alone the switchable
photovoltage. On the other hand, although prior BPV-based devices
exhibited high switchable photovoltages (hollow symbols in
Fig. 2f)*%9% they have not been applied to in-sensor high-level
computing. Our FE-PS effectively bridges this gap by harnessing the
high switchable photovoltage generated by the BPV effect for in-
sensor high-level computing.

The above results have demonstrated that our FE-PS exhibits high
and electrically switchable photovoltage as well as dynamic photo-
voltage response. Then, we will demonstrate that the dynamic pho-
tovoltage response allows for image memorization and low-level
processing, while the switchable photovoltage enables high-level
computing. The combination of these features qualifies our FE-PS as
an all-in-one multifunctional photosensor.

Image memorization and low-level processing based on
dynamic photovoltage response of FE-PS

Conventional photosensors can only sense images, requiring additional
memory and processing units to store and process images. This limited
function is mainly due to that the conventional photosensors respond
instantly to light signals. In contrast, our FE-PS exhibits dynamic photo-
voltage response. This characteristic enables the FE-PS to integrate image
memorization and in situ pre-processing functions. Prior to demon-
strating these functions, we first investigate the optoelectronic synaptic
behavior of the FE-PS, which is a prerequisite for these functions. Fig-
ure 3a shows the photovoltage evolution of the FE-PS in response to a
single light pulse with 98 mW/cm? intensity and 2.5s width, where
Cex =100 pF is used. The output V, rises to a peak during the light pulse,
followed by a decay after the light pulse, which well mimics the excita-
tory postsynaptic current (EPSC) of a biological synapse®.

Besides the EPSC, another important short-term synaptic function
called paired-pulse facilitation (PPF) can also be emulated by the FE-PS.
The PPF manifests itself as a phenomenon that when two successive
pulses are applied to a presynaptic neuron, the second EPSC is higher
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Fig. 3 | Optoelectronic synaptic behavior of FE-PS. a EPSC behavior of the FE-PS
in response to a light pulse. b PPF behavior of the FE-PS stimulated by a pair of light
pulses. ¢ PPF index as a function of the interval between light pulses (At). Each PPF
index is averaged from 5 independent tests, with the error bar indicating the
standard deviation. Inset shows a schematic of the PPF effect for illustrating how
the PPF index is defined. Temporal photovoltage responses of the FE-PS under

repeated light pulses with different d amplitudes (/jgo), € widths (¢,,), and
fnumbers (Npuise). & high-dependent temporal photovoltage responses of the FE-PS
in different polarization states. Insets show the 3 different states: States I, I, and IlI,
which are obtained by applying 200V, -25V, and -50 V sequentially. In (a-g),
Cex =100 pF is used.

than the first one. As shown in Fig. 3b, the photovoltage spike induced
by the second light pulse is apparently higher than that induced by the
first light pulse, well resembling the PPF behavior. The ratio between
the height of the second photovoltage spike (4,) and that of the first
one (A;) is defined as the PPF index. As displayed in Fig. 3c, the PPF
index gradually increases as the interval between the two light pulses
(A?) decreases. Note that a shorter At results in less time for discharge.
This means that more charges are retained in the FE-PS and C,, after
the interval, thereby allowing them to be charged to higher voltages
during the second light pulse. Figure 3c further reveals that the
dependence of the PPF index on At can be fitted with a double-
exponential function®:

PPFindex=1+C; x exp(—At/1;)+C, x exp(—At/1,), (1)
where C; and 7; are the initial facilitation magnitude and characteristic
relaxation time, respectively, and i =1 (2) corresponds the rapid (slow)
relaxation process. The fitting gives 7; =5 s and 7, = 55 s. It is noted that
7, is one order of magnitude larger than 7;, agreeing well with the rule
observed in biological synapses®’.

Applying repetitive pulse stimulation to a biological synapse can
cause its short-term plasticity (STP) to transform into a long-term
plasticity (LTP). This capability is essential for memory and learning
functions. To imitate the STP-to-LTP transition, repeated light pulses
with different amplitudes, widths, and numbers are applied to the FE-
PS, and its temporal photovoltage responses are recorded. As shown in
Fig. 3d-f, the photovoltage spike increases in height as the pulse
amplitude, width, or number increases, which is well attributed to the
increased production of photo-generated charges in the FE-PS. Addi-
tionally, the photovoltage retained after the pulse stimulation also
rises to a higher level with increasing pulse amplitude, width, or
number. These results demonstrate the realization of the STP-to-LTP
transition in the FE-PS.

Moreover, the optoelectronic synaptic behavior of the FE-PS can
be modulated by the polarization. As shown in the inset of Fig. 3g, the
FE-PS is first set in a high-polarization state (State I) by a 200 V poling.
Then, the polarization is reduced in magnitude (without changing its
direction) by sequentially applying —25 V and -50 V poling, resulting in
intermediate- and low-polarization states (States Il and IlI, respectively)
(see the insets of Fig. 3g). In each of these states, the photovoltage
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responses of the FE-PS to repeated light pulses are measured. As
shown in Fig. 3g, the photovoltage spike decreases in magnitude with
reducing polarization, despite the application of the same light pulses.
This originates from the fact that the photovoltaic behavior of the FE-
PS is controlled by the polarization. The polarization-modulated
synaptic plasticity is a key advantage of our FE-PS over other optoe-
lectronic synaptic devices>'*¢57°,

As demonstrated above, our FE-PS with dynamic photovoltage
response vividly emulates optoelectronic synaptic behavior. More-
over, the synaptic plasticity can be tuned by the polarization. These
device characteristics enable the polarization-tunable image memor-
ization and low-level processing. To demonstrate this, we experi-
mentally construct a 3x3 FE-PS-based array (as schematically
illustrated in Fig. 4a), and use it to sense and memorize a letter “T”
(3 x 3 pixels; pixel value: 0 or 1). Each FE-PS in the array is connected to
a Cex of 100 pF in parallel, and all these FE-PSs are pre-poled into the
same state, i.e., State , II, or Ill. The constructed array exhibits a minor
pixel-to-pixel variation of ~5% (Supplementary Fig. 13). Then, the letter
“T” is projected onto the array, where each FE-PS is exposed to a light
pulse train (light intensity: 98 mW/cm?; pulse width: 2.5 s; pulse num-
ber: 10) if the pixel value is 1 or left in dark if the pixel value is 0. The
output photovoltages of all the FE-PSs are recorded, constituting an
output image.

As shown in the left top of Fig. 4b, when all the FE-PSs are in State |
(i.e., the high-polarization state), an output image displaying a clear “T”
is produced immediately after the light stimuli. As time progresses, the
“T” becomes faded (Supplementary Fig. 14). Nevertheless, even after a
prolonged period (e.g., 30 s, as depicted in the left bottom of Fig. 4b),
the “T” still remains distinguishable, demonstrating an image memory
effect for the FE-PSs in State I. Moreover, this image memory effect can
be tuned by the polarization, as evidenced by the image intensity
variation from the left to right columns in Fig. 4b. This capability allows
better mimicry of human visual memory, which is highly tunable by
factors like personal interest, mood, and attention’’2,

Besides image memorization, low-level image processing can also
be demonstrated with the FE-PS-based array. One such demonstration
involves visual adaptation, which refers to the adaptive imaging of
objects under different levels of illumination®*”**737* In a human
visual system, the visual adaptation relies on the adaptive modulation
of the sensitivity of photoreceptors in the retina. For our FE-PS, the
visual adaptation is enabled by its light intensity-dependent photo-
voltage rising behavior, as shown in Fig. 3d. Supplementary Fig. 15
further shows that the ratio between the photovoltages at the high and
low light intensities (148 and 16 mW/cm?, respectively) is smaller than
the input light intensity ratio, indicating that the FE-PS is relatively
more (less) responsive to weaker (stronger) light stimuli. Moreover,
the photovoltage ratio decreases with the number of light pulses,
meaning that the difference in photovoltage responses under weak-
and strong-light conditions can be narrowed as more light stimuli are
applied. These results demonstrate the visual adaptation capability of
the FE-PS, which can be attributed to the dynamic modulation of the
charging process by photo-generated charges. Specifically, when
applying a stronger illumination to the FE-PS, more photo-generated
charges are produced for charging, resulting in a higher output V.
However, the gain in V;y, is under-proportional to the light intensity
because the Vp, canin turn hinder the charging process. This effect is
also the reason for the gradual rise of photovoltage under illumination,
as explained previously.

The FE-PSs with visual adaptation capability can be used to build
an in-sensor image pre-processing system capable of improving the
accuracy of subsequent recognition. To demonstrate this, a FE-PS-
based array for image pre-processing, integrated with an ANN for
subsequent recognition, is simulated, as schematically shown in
Fig. 4c. The original images before pre-processing are modified
handwritten digit images (28 x 28 pixels) from the Modified National

Institute of Standards and Technology (MNIST) dataset (see Methods).
The foreground pixels of these images are assigned random values to
represent the non-uniform illumination which is ubiquitous in real-
world scenarios, while the background pixels are set at 0. These images
are sensed and pre-processed by a 28 x 28 FE-PS-based array. Each FE-
PS in the array is connected to a Ce, of 100 pF in parallel, and all these
FE-PSs are pre-poled into the same state, i.e., State I, II, or Ill. During
image presentation, each FE-PS is stimulated by a light pulse train
(pulse number Ny is a variable) with light intensity defined by the
image pixel value (see Methods). The photovoltage responses of all the
FE-PSs are assumed to obey the behavior shown in Fig. 3g. The output
photovoltage is further converted to a binary value of 1if it exceeds 3 V
or 0 otherwise. This binarization operation can be executed using a
voltage comparator, which inevitably introduces additional hardware
overhead. The binarized outputs of all the FE-PSs constitute an output
image. Figure 4d (Ist to 4th columns) shows the original image and
output images after different Njuses when all the FE-PSs in the array are
in State I. It is seen that the feature of the digit “2” becomes more
distinct with increasing Npuise. This phenomenon is well attributed to
the visual adaptation effect of the FE-PS. Specifically, the photovoltage
response under weak light increases and becomes relatively closer to
that under strong light as Npuise increases. Consequently, more fore-
ground pixels of the output image become 1 as Npse increases, gra-
dually highlighting the feature of the digit. The pre-processed
images are then sent to a purely software-based 784 x10 ANN for
recognition. As shown in Fig. 4e, the recognition accuracy increases as
the Npuise used for adaptation increases, consistent with the enhance-
ment in the clarity of the pre-processed images (Fig. 4d). Notably, the
recognition accuracy after the 6-pulse adaptation reaches -90%,
which is ~5% higher than that without pre-processing. These results
demonstrate that the in-sensor pre-processing system based on FE-PSs
with visual adaptation capability can improve the image recognition
accuracy.

Besides, it is shown in Fig. 3g that the visual adaptation behavior of
the FE-PS strongly depends on its polarization state. Consequently, the
clarity of the pre-processed images and the recognition accuracy can
be significantly influenced by the polarization state, as demonstrated
in Fig. 4d (4th to 7th columns) and Fig. 4f. Such tunable visual adap-
tation behavior is conducive for visual perception in complex
environments’®,

High-level image processing based on switchable photovoltage
of FE-PS

Besides image memorization and low-level processing, our FE-PS also
enables high-level image processing based on its switchable photo-
voltage. As already shown in Fig. 2e, the FE-PS exhibits switchable bi-
state photovoltages. In fact, more photovoltage states can be achieved
by applying appropriate poling voltages. To demonstrate this, the FE-
PS is pre-poled with 200V (200V) and then poled with positive
(negative) voltages with amplitudes varying from 25V to 200V (-25V
to —200V). After each poling procedure, the photovoltaic /-V char-
acteristics of the FE-PS with C., =0 are measured.

It is seen from Fig. 5a that with the increase of positive poling
voltage, the /-V curve shifts gradually from the second quadrant to the
fourth quadrant. Conversely, the direction of the /-V curve shift is
reversed by applying negative poling with increasing voltages (Fig. 5b).
Based on these /-V curves, multi-level photovoltages are extracted and
plotted against poling voltages in Fig. 5c. A clear hysteresis loop is
observed, suggesting that the switchable multi-level photovoltages are
associated with the polarization states set by the poling voltages.
Notably, the multi-level photovoltage switching enables program-
mable photoresponsivity when the photoresponsivity is defined as a
linear function of an output photovoltage divided by an input light
intensity. This programmable photoresponsivity can map synaptic
weight in an ANN, thus achieving in-sensor high-level computing.
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Fig. 4 | Image memorization and pre-processing using FE-PS-based array.

a Schematic diagram of a 3 x 3 FE-PS-based array for memorizing a 3 x 3 image of a
letter “T”. b Output images constituted by the output photovoltages of the 9 FE-PSs
in States I (left column), Il (middle column), and Il (right column). The upper and
lower rows show the output images obtained immediately and 30 s after the image
presentation, respectively. ¢ Schematic diagram of a FE-PS-based array for pre-
processing images, which is connected to an ANN for subsequent recognition.

d Typical original image before pre-processing (4th column), output images after
different pulse numbers (Npyse) used for pre-processing when all the FE-PSs in the
array are in the same State I (Ist to 3rd columns), and output images at Npyise = 6
when all the FE-PSs are in State I, I, and IlI (5th to 7th columns). e Comparison of
recognition accuracies between the original images and the pre-processed images
after different Npus.. f Comparison of recognition accuracies between the original
images and the pre-processed images by using the FE-PSs in different states.

However, as already shown in Fig. 3, the photovoltage is depen-
dent on illumination history. This means that even when the FE-PS is
programmed into a specific polarization state, its photovoltage and
associated photoresponsivity can be altered each time the illumination
is applied. This variability is unfavorable for the high-level computing,

because the high-level computing requires the photoresponsivity,
once programmed, to remain unchanged across different computing
events. This issue can be easily addressed by short-circuiting the FE-PS
prior to each computing event. As shown in Fig. 5d, the temporal
photovoltage responses in different polarization states can be well
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Fig. 5 | Programmable photoresponsivity of FE-PS. Photovoltaic /-V character-
istics of the FE-PS after applying amplitude-increasing a positive and b negative
poling voltages (light intensity: 78 mW/cm?). In (a, b), the device is pre-poled with
-200V and 200V, respectively. ¢ Hysteretic evolution of Vo with poling voltage,
which is extracted from (a, b). d Multi-cycle photovoltage measurements for the FE-
PS in different states (light intensity: 78 mW/cm?). Before each measurement cycle,

the FE-PS is short-circuited. e Relationships between output photovoltage and
input light intensity at different illumination times (¢;)). f Temporal photovoltage
responses of the FE-PS in 16 different states (light intensity: 54 mW/cm?), along with
the well-separated photoresponsivities (Rpy) corresponding to these states (shown
in the inset). In (a-d), Cex = 0 is used, while in (e, f), Cex =2200 pF is used.

reproduced once the device is short-circuited before each cycle. This
indicates that the programmed photoresponsivity of the FE-PS can be
successfully retrieved through the short-circuiting. The reason for this
success is that the short-circuiting only removes the accumulated
charges without changing the polarization state and its associated
photoresponsivity. Note that for previous photocurrent-based pho-
todetectors exhibiting an illumination history dependence, re-
programming methods like electrical reset were often employed to
retrieve the photoresponsivity” "7, Compared with these re-
programming methods, the short-circuiting in our FE-PS is much
simpler and more energy-efficient.

Besides the illumination history dependence of photovoltage,
another challenge for high-level computing is the sublinear variation of
photovoltage with light intensity (Supplementary Fig. 10e, f). In the
high-level computing, multiplication manifests itself as multiplying a

programmed photoresponsivity by an input light intensity to generate
a photovoltage. For accurate multiplication, the photoresponsivity
should not change with the light intensity, requiring a linear
photovoltage-light intensity (Vpn-higno relationship. Fortunately, a
quasi-linearity can be achieved by selecting an appropriate time period
for reading the photovoltage. For example, quasi-linear Vyp-figh: rela-
tionships (R*>0.99) are observed across illumination times (¢;;) from
12.3 s to 24.6 s for the FE-PS connected to a C,, of 2200 pF (Fig. 5e and
Supplementary Figs. 16, 17). We hereafter use the Vj,-/igh: relationship
at ty; - 20 s (R* = 0.9974) to define the photoresponsivity, which follows
the equation below.

Voh = Rouliighe * Vottsee 20 mMW/cm? < [y <70mW/cm?),  (2)

where Ry, is the photoresponsivity and Ve is an offset voltage.
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Notably, the quasi-linear Vpn-lign, relationship remains consistent
with minor variations in Ry, and Vo for at least 11 days without the
need for re-poling (Supplementary Fig. 18), which can be extended to
296 days when re-poling is allowed (Supplementary Fig. 19). In addi-
tion, the quasi-linear Vpp-ligne relationship can be preserved after
repeated illumination (up to 1000 cycles; Supplementary Fig. 20) and
at elevated temperature (up to 85 °C; Supplementary Fig. 21). Besides,
consistent quasi-linear Vpp-fiigh, relationships are observed across 15 FE-
PSs with small device-to-device (D2D) variation (<5%; Supplementary
Fig. 22). Therefore, our FE-PSs show good robustness in maintaining
Vpn-higne linearity over time, temperature, and illumination cycle, and
across multiple devices.

Such a robust quasi-linear Vpp-fiigh. relationship ensures Ry, to be
independent of /g, consequently guaranteeing high accuracy and
reliability of multiplication. In addition, thanks to the switchable
photovoltaic behavior, the Ry, of the FE-PS can be programmed into
multi-values, e.g., 4 bits, as shown in Fig. 5f and Supplementary Fig. 23.
Besides, a programmed Ry, can be easily retrieved by using the short-
circuiting method, as demonstrated earlier (Fig. 5d). The multi-bit
programmability, retrievability, and /ign-independence ensure that
the Ry, defined by the photovoltage of the FE-PS can serve as a synaptic
weight, which lays the foundation for high-level computing.

To implement in-sensor high-level computing, a FE-PS-based array
that itself constitutes an in-sensor ANN is constructed. We first
demonstrate multiply-accumulate (MAC) operation, i.e., a funda-
mental operation in ANN, by using a 1x2 FE-PS-based array. In this
array, each FE-PS is connected to a C., of 2200 pF in parallel, and
the two FE-PSs are connected in series (Fig. 6a). The two FE-PSs are
first set in the same state with Rpy1=Rpy2=0.048 V-cm>mW" and
Vottser1 = Vorser-2 = 0.7 V. Various combinations of light intensities, /jigne1
and lighe2, are applied to the two FE-PSs, respectively. Under each
combination of Jjign1 and Jighe-2, the total voltage across the two FE-PSs
(Vphas2) is measured and its value at £~ 20 s is regarded as the result.
Prior to the application of ligh1 and lighe2, both FE-PSs are short-
circuited. Figure 6b shows the measured Vph.go results for different
combinations of fjigne1 and fighe.2. It is revealed that the Vphas2 is just the
sum of the photovoltages produced by the two FE-PSs, which follows
the equation below:

Vph—l&z = (va—lllight—l +Votser—1) + (va—zllight—Z

+Voftser—2)(20 MW/cm* </, <70 mW/cm”).

Additionally, Eq. (3) also applies when the two FE-PSs are set
in the opposite states (-Rpy.1=Rpy-2=0.048 V-cm>mW* and
—Vottser-1 = Vofrser-2 = 0.7 V), as illustrated in Fig. 6¢. These results
demonstrate that the FE-PS-based array can implement the MAC
operation by using photovoltages. This capability is well attrib-
uted to (1) the quasi-linear Vph-/igh relationship of the FE-PS that
ensures accurate multiplication and (2) the series connection
between FE-PSs that enables the summation of photovoltages.

With the MAC capability, the FE-PS-based array can readily
implement high-level image processing functions such as image
recognition. An image recognition task is demonstrated experimen-
tally with 4 letters “S”, “C”, “N”, and “U” as input images, as illustrated in
Fig. 6d. Each letter image consists of 3 x 3 pixels, with foreground and
background pixels valued at 1 and O, respectively. To classify these
letters, a 4 x 9 FE-PS-based array is employed. Here, 9 is the number of
pixels. In each pixel, there are 4 subpixels with each corresponding to
one FE-PS. The experimental implementation of this array is illustrated
in Supplementary Fig. 24. When an input letter is projected to the
array, the 4 FE-PSs in one pixel are illuminated with an /gy, of 70 mW/
cm? (for the pixel value 1) or left in dark (for the pixel value 0). The FE-
PSs with the same subpixel index among different pixels are connected
in series, and hence their photovoltages are summed, yielding a total

voltage given by:

l/phfm = Z(va—mnllight—n + Vottset—mn)r 4)
n

where V., is the total photovoltage at the m-th output neuron, Rpy.mn
is the photoresponsivity of the photosensor with the sub-pixel index m
and the pixel index n, lghe. is the input light intensity at the n-th pixel.
The Vph.m (m=1, 2, 3, and 4) values are then sent to a softmax function
to generate the categorical probabilities. The output neuron with the
highest probability determines the predicted class of the input letter.

Ex situ training of the FE-PS-based array is performed using the 4
letter images shown in Fig. 6d as inputs (Supplementary Fig. 25).
Subsequently, the trained weights are binarized (Supplementary
Fig. 26), and then programmed into the array using a write-and-verify
scheme. During programming, the binarized weight 1 (-1) is intended
to map an Ry of 0.03 (=0.03) V-cm>mW" along with a Vsee Of 0.3
(-0.3) V. Based on these Rpy and Ve Values, the output Vi, (@
ti - 20 s) of the FE-PS corresponding to the weight 1 (-1) under the fign,
of 70 mW/cm? is expected to be 2.4 (-2.4) V. Figure 6e, f show that the
actual Vp, values of all the FE-PSs after programming are closed to the
expected Vpp, values, confirming the success in programming.

Next, the programmed FE-PS-based array is deployed for test,
where the letter images same as those used in training are first tested.
Figure 6g shows the temporal output Vs at different neurons when
the letter “C” is presented to the array. It is seen that the 2nd neuron
with the label “C” outputs the highest V,,n, demonstrating the correct
recognition of the letter “C”. Figure 6h summarizes the output Vpps (@
ti - 20 s) at different neurons for different input letters. It is always the
neuron whose label matches the input letter that outputs the highest
Vpn, indicating that all the input letters are correctly recognized.
Moreover, the actual output V,y, values agree well with the expected
values, verifying the high accuracy of the MAC operation in the FE-PS-
based array. Further tests with noisy images (Supplementary Fig. 27)
demonstrate that the array can maintain 100% recognition accuracy as
the noise level increases to 10% (Supplementary Fig. 28). Beyond this
noise level, the accuracy begins to decline. Nevertheless, the accuracy
at each noise level remains closely aligned with its corresponding
theoretical upper limit.

To further evaluate the FE-PS-based array’s capability in handling
large images, a simulation of an in situ trained 784 x10 array for
recognizing fashion product images (28 x 28 pixels) is conducted. The
simulation methodology is detailed in Methods. As shown in Supple-
mentary Fig. 29, the FE-PS-based array achieves a recognition accuracy
of 80.2% on the test set, approaching the software-based benchmark of
80.8%. These results suggest the great potential of the large-scale FE-
PS array for large image recognition.

Discussion

The above results validate the FE-PS-based array as a proof-of-concept
for a versatile in-sensor computing system integrating image memor-
ization, low-level processing, and high-level computing functions. The
array’s functional modes can be rapidly reconfigured by adjusting its
circuit interconnections, as schematically illustrated in Supplementary
Fig. 1 and experimentally demonstrated in Supplementary Fig. 30.
Therefore, the FE-PS-based array boasts minimal hardware complexity
compared to other emerging multifunctional neuromorphic vision
systems'>720327678 (Sypplementary Table 1). Although the present FE-
PS-based array is experimentally implemented on a small scale, it has
great potential for scaling up (Supplementary Note 2). Also note-
worthy is that the FE-PS-based array achieves theoretically zero energy
consumption in sensing and processing phases, as each FE-PS operates
in a self-powered photovoltaic mode (Supplementary Note 3). Addi-
tionally, its latency for these phases can be reduced to 100 ms or even
lower through device optimization (Supplementary Note 4). These
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Fig. 6 | High-level computing using FE-PS-based array. a Schematic circuit dia-
grams of a 1x 2 FE-PS-based array for demonstrating in-sensor MAC operation.

b, ¢ Measured output photovoltages of the 1 x 2 array (i.e., Vphag2) at £ - 20 s when
different combinations of /jighc1 and /> are applied to the two FE-PSs in the array.
In (b), the two FE-PSs are set in the same state with Ry =Rpy.2=0.048 V-em?>mW?
and Virser1 = Vofrser2 = 0.7 V, while in (c), they are set in the opposite states with
~Rpv1 = Rpv-2=0.048 V-em®>mW™! and ~Vofrser1 = Vofrser-2 = 0.7 V. The theoretical
values of Vph.g2 are indicated by the star symbols. d Schematic diagram of a 4 x 9
FE-PS-based array for the recognition of letters “S”, “C”, “N”, and “U”. e Expected and

f measured Vp, values (@ & - 20 s) of the FE-PSs after programming, which are
arranged into 4 groups with each connected to a specific output neuron. The
expected V, values are obtained from the trained weights. The weights are first
trained ex situ, then binarized to 1 and -1, and eventually programmed into the
array. After programming, the weight 1 (-1) corresponds to an expected V;, value
(@t -~ 20 5) of 2.4 (-2.4) V under the fgp, of 70 mW/cm? g Temporal output Vpps at
different neurons when the letter “C” is presented to the array. h Summary of the
measured output Vs (@ &y - 20 s) at different neurons for different input letters.
The corresponding expected V,, values are shown in the brackets.

properties highlight the FE-PS-based array’s superiority over conven-
tional von Neumann machine vision systems (Supplementary Note 5).

As the fundamental building block, the FE-PS exhibits both
dynamic photovoltage response (for image memorization/pre-pro-
cessing) and programmable photoresponsivity (for high-level com-
puting). Besides these two essential properties, the FE-PS offers several
advantageous features that can enhance system-level performance.
First, the above-bandgap photovoltage of the FE-PS greatly benefits
the precision and reliability of photovoltage-based image memoriza-
tion and processing (Supplementary Note 6). In addition, the

self-powered photovoltage-based working mode eliminates the needs
for current-voltage conversion and external bias application, leading
to reduced hardware complexity and energy consumption. Besides,
the FE-PS distinguishes itself from emerging optoelectronic synaptic
devices for its wide tuning range of retention times (Supplementary
Table 2), suggesting its potential in dynamic visual information pre-
processing. Specifically, the maximum retention time is extended to
~1100s (Supplementary Fig. 31), enabling long-term image
memorization””*°. Moreover, the robust quasi-linear Vyp-figne rela-
tionship (Supplementary Figs. 18-22), multi-level programmability
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(Fig. 5f), and retrievability (Fig. 5d), ensures reliable and accurate high-
level computing.

However, the present ceramic-based FE-PS exhibits large device
area, high voltage/energy consumption for programming, and rela-
tively low photoresponse speed. These limitations can be effectively
addressed by leveraging a thin film-based vertically-structured FE-PS.
First, the thin film-based FE-PS has been downscaled to ~7.85 x 10°> pm?,
with substantial potential for further downscaling (Supplementary
Note 2). This holds promise for large-scale array integration. In addi-
tion, the thin film-based FE-PS can be programmed by using pulse
voltages within 2.5V (Supplementary Fig. 32), showcasing good com-
patibility with the CMOS circuitry. Besides, its programming energy
consumption is significantly reduced to only ~1.6 n) (Supplementary
Note 3), on par with emerging programmable photosensors®®**”,
Moreover, the thin film-based FE-PS can complete the integrated
sensing-computing process within 100 ms (Supplementary Note 4),
demonstrating comparable speed to its counterparts (Supplementary
Table 1).

To sum up, we have demonstrated a versatile in-sensor computing
system based on FE-PSs with integrated image memorization, low-level
processing, and high-level computing functions. The key to achieving
these multi-functions lies in the FE-PS which exhibits above-bandgap,
dynamically responding, and electrically switchable photovoltages. By
leveraging the charging/discharging process, the FE-PS displays gra-
dual photovoltage rise/decay. Such dynamic photovoltage response
enables the FE-PS to mimic optoelectronic synaptic behavior, and
moreover, renders the FE-PS-based array capable of memorizing ima-
ges and performing image pre-processing via visual adaptation.
Notably, the memory and pre-processing effects can be tuned by fer-
roelectric polarization, leading to better mimicry of human visual
systems. On the other hand, the FE-PS exhibits a giant switchable
photovoltage (-30 V) originating from the BPV effect, facilitating high-
level computing implementation. Harnessing this switchable photo-
voltage characteristic, photoresponsivity can be programmed into
multi-values (4 bits). In addition, the programmed photoresponsivity
can be easily retrieved via short-circuiting. Using the photo-
responsivity to map the synaptic weight, the FE-PS-based array acts as
an in-sensor ANN, demonstrating MAC capability and achieving 100%
accuracy in a 4-class image recognition task (noise level <10%). Our
study offers a solution for integrating image memorization, low-level
processing, and high-level computing functions by using FE-PSs,
facilitating the development of versatile in-sensor computing systems
for multi-scenario machine vision.

Methods

Device preparation

The PLZT ceramics were purchased from the Dongguan Demi Metal
material Co., Ltd company. The company claimed that the PLZT
ceramics were prepared by the conventional solid-phase sintering
method. The raw materials included PbO (99.9%), ZrO, (99.9%), TiO,
(99.9%), and La,03 (99.9%) powders, which were weighed according to
the stoichiometry of the desired ceramic composition, i.e.,
(Pbo.97Lag 03)(Zro 55 Tip.48)03. These powders were ball milled in the
ethanol medium. The mixed powders were dried and then calcined at
980 °C for 6 h. The calcined powders were cold pressed into pellets.
The pellets were debinded at 550 °C for 6 h, followed by a sintering at
1260 °C for 3 h to obtain the PLZT ceramic samples.

The Au interdigital electrodes were sputtered onto the PLZT
ceramics through shadow masks under vacuum, resulting in the Au/
PLZT/Au FE-PS devices. The geometric parameters of the Au inter-
digital electrodes can be found in Supplementary Fig. 6.

Characterizations
The crystalline structure of the PLZT ceramic was examined by X-ray
diffraction (XRD) (PANalytical ‘X’ Pert PRO). The cross-section of the

PLZT ceramic was characterized using scanning electron microscopy
(SEM) (TESCAN MIRA LMS).

Electrical measurements

The polarization-voltage (P-V) hysteresis loops were measured with a
ferroelectric workstation (Radiant Precision Multiferroic). The current-
voltage (/-V) characteristics were measured with a source meter
(Keithley 6430). In the photovoltaic measurements, 365 nm UV light-
emitting diodes (LEDs) with tunable light intensities were used as the
light sources while the source meter recorded the photovoltage. In the
array-level measurements, multiple FE-PSs were used to construct the
arrays with customized interconnections for image memorization, pre-
processing or high-level computing.

Simulation of 28 x 28 FE-PS-based array for image pre-
processing

To demonstrate that the FE-PS-based array can pre-process images and
in turn improve the accuracy of subsequent recognition, a 28 x 28 FE-
PS-based array integrated with a 784 x10 ANN (for subsequent
recognition) was simulated.

The original images were modified from the handwritten images
(28 x 28 pixels) from the MNIST dataset. The pixel values of the MNIST
images were first normalized to 0-1. The normalized images from the
training set were used to train the ANN, while those from the test set
were further modified as follows. First, the normalized images from the
test set were binarized, where the pixels with values higher (lower)
than 0.5 were regarded as foreground (background) pixels. Then, the
background pixels were all set to a value of 0, while the foreground
pixels were randomly assigned one of four values: 1, 0.67, 0.23, and
0.11. These images after binarization and randomization were the ori-
ginal images to be pre-processed by the FE-PS-based array.

The original images were projected onto a 28 x 28 FE-PS-based
array for pre-processing, where each FE-PS was connected to a Cex of
100 pF in parallel and all the FE-PSs were pre-poled into the same state
(State I, 11, or Ill). Each FE-PS in the array was stimulated by a light pulse
train (pulse width: 2.5s; interval: 3 s; pulse number Npyse Was a vari-
able) with light intensity defined by the image pixel value. The pixel
values of 1, 0.67, 0.23, 0.11, and O corresponded to light intensities of
148, 98, 34, 16, and 0 mW/cm?, respectively. The photovoltage
responses of all the FE-PSs were assumed to obey the behavior shown
in Fig. 3g. The output photovoltage was further converted to a binary
value of “1” if it exceeded 3 V or “0” otherwise. The binarized outputs of
all the FE-PSs constituted an output image.

The pre-processed images were sent to a software-based 784 x 10
ANN for label prediction. The output layer of the ANN ultilized a
softmax activation function to normalize prediction probabilities.
Training of the ANN leveraged the back-propagation (BP) algorithm
with a cross-entropy loss metric, optimized via a stochastic gradient
descent (SGD) optimizer. For efficient training, a mini-batch approach
with a batch size of 20 was adopted. The learning rate was set to 0.15 to
ensure stable gradient updates without compromising
convergence speed.

Simulation of 784 x 10 FE-PS-based array for high-level image
processing

To show the potential of the FE-PS-based array in large image recog-
nition, a 784 x 10 array was constructed by simulation for recognizing
28 x 28-pixel fashion product images from the Fashion-MNIST
dataset®. This dataset comprises 70,000 images across 10 distinct
clothing categories, with a standard split of 60,000 images for training
and 10,000 images for test. Each image after binarization was pro-
jected onto the 784 x10 FE-PS-based array (Supplementary Fig. 29).
The array executed MAC operations based on input light intensities
and device photoresponsivities, generating 10 different summed
photovoltages. These photovoltage values were sent to a softmax
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function to generate categorical probabilities, with the highest prob-
ability determining the predicted category.

In situ training of this large-scale array was simulated using the
aforementioned BP algorithm, incorporating a cross-entropy loss
function and a SGD optimizer. The batch size and learning rate were
set as 16 and 0.002, respectively. During weight update, it was
assumed that all the devices in the array followed identical program-
mable photoresponsivity behavior as shown in Fig. 5f.

Data availability

The data that support the findings of this study are available in the
article and the Supplementary Information. Additional data related to
this study can be requested from the corresponding authors. Source
data are provided with this paper.

Code availability

The codes for simulating a 4 x9 array for ex situ training, a 28 x 28
array for image pre-processing, and a 784 x 10 array for image recog-
nition are available in Supplementary Software 1.
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