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Over the past decade, about one-fifth of FDA-approved drugs each year involve
novel mechanism-of-action human targets. Although riskier than modulating
well-known targets, these therapies address unmet needs and strengthen
sector innovation. The Open Targets Platform is a valuable open resource for
identifying novel targets, integrating diverse datasets with regular updates and
a user-friendly interface. To expand its capabilities, we implement compre-
hensive timestamping across millions of biomedical data points and introduce
a target novelty metric for disease contexts, enabling discovery of novel tar-
gets within the ecosystem. We also present a retrospective analysis of novel
drug target approvals over two decades, revealing a shift around 2015: sup-
portive biomedical evidence (e.g., human genetics, literature-derived insights,
differential expression, and pathway data) increasingly appears before rather

than after the approval year. These findings underscore the importance of
time-based evidence assessments for earlier identification of novel clinical
opportunities and offer guidance for future target selection trends.

Drug approvals involving novel mechanism-of-action (MoA) human
targets (the first time a therapeutic has been approved against that
target ever)'” currently account for approximately one-fifth of the new
drugs approved annually by the FDA over the past decade' ™. Despite
the additional risks their development may entail compared to other
therapeutics that modulate well-known targets”®, the fact that most
of these novel MoA drugs are developed to treat diseases where there
is an unmet medical need (particularly in oncology and rare
diseases'”'"'®) highlights their potential to significantly impact
patients’ lives and help biopharma companies consolidate a strong
innovative position in the sector. Timely identification of these novel
drug target opportunities, as evidence of their therapeutic value
emerges, is critical for this.

Comprehensive tracking of new biomedical evidence relating a
gene or protein to a disease or phenotype is a significant challenge,
due to the vast and rapidly expanding volume of potentially relevant
data from multiple sources that is being generated and made publicly
available since the advent of human genome sequencing”. In recent

years, research?®*, commercial platforms®?*, and publicly available
resources®?® have been developed to try and capture biological
innovation and attention trends in the pharmaceutical sector by har-
nessing data from various sources, including scientific publications,
pharmaceutical patent claims, clinical trials, and/or research grant
applications. In the arena of freely available resources with potential
for the identification of novel therapeutic targets, the Open Targets
Platform (https://platform.opentargets.org/) occupies a strategic
position due to the breadth of data sources that it integrates (e.g.
scholarly literature, patent claims, genetic data, animal model experi-
ments and clinical trials), its regular quarterly updates, its systematic,
score-based assessment of evidence relevance between targets and
diseases, its intuitive web user interface, and its open-source infra-
structure that allows use with custom data®.

With the aim of harnessing and expanding the capabilities of the
Open Targets Platform in this realm, we have developed a method that:
(i) systematically timestamps available evidence on the Platform,
linking potential causal biological targets to diseases; (ii) tracks how
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the degree of confidence in a target—disease association evolves over
time based on the available collective evidence; and (iii) enables the
timely identification of novel targets with emerging therapeutic
potential in a disease-specific context. Using the results of this
approach, we have conducted a retrospective analysis of novel MoA
drug approvals over the past two decades, evaluating the breadth, type
and timing of the biomedical evidence supporting the underlying
target-indication hypotheses. Our analysis reveals a notable shift in
trends around 2015, after which time supportive biomedical evidence
(e.g., human genetic, literature-derived, differential expression and
pathway-related data) appears before rather than after the drug
approval year. We believe these findings underscore the value of time-
based assessments of biomedical evidence, such as the approach
introduced here, in facilitating the earlier identification of innovative
drug target opportunities.

Results

Timestamping evidence supporting target—disease associations
Our first step was to comprehensively timestamp the 28 million pieces
of evidence that comprise the Open Targets Platform ecosystem.
These pieces of evidence represent information that supports an
association between a human target and a disease indication (Fig. 1a).
To determine the date on which the evidence was originally reported
or deposited, we have investigated the more than 20 sources of evi-
dence included in the Open Targets Platform. Overall, two categories
of timestamps were identified: (1) primary source date; the date of
publication in the primary source from which the evidence is mined
(e.g. original scientific publication, patent claim, Genome-Wide Asso-
ciation Study (GWAS) or clinical study), and (2) curation date; the date
of deposition of the evidence into a repository by an expert curator
(e.g. Gene2Phenotype®, Orphanet® or Genomics England (GEL)

PanelApp™). In total, 99% (27,819,439) of the association evidence

integrated by Open Targets has been dated, including 21 million
association evidences from literature sources (i.e., Europe PMC)*, 4.2
million evidences of association from repositories of genetic associa-
tion experiments (e.g., GWAS associations), 0.5 million association
evidences from sources of approved drugs and clinical candidates (i.e.,
ChEMBL)*, and 2 million association evidences from other sources
(see the Supplementary Information for a full list). The range of
timestamps correspond to the nature of the evidence; for example,
those derived from animal model experiments® and clinical trials span
several decades while those resulting from specific research projects
(e.g., Project Score® and CRISPR Screen®) match the generation and
lifetime of the project (Fig. 1b). Overall, most evidence has accumu-
lated after the year 2000, which aligns to the Platform’s focus on
genetic data sources.

Temporal profiles for target—disease associations

With the evidence timestamped, we can retrospectively reconstruct
the temporal profile of the 3.6 million target—disease associations with
supporting evidence in the Open Targets Platform. The assessment
presents a quantitative and qualitative analysis of the evolution of
supporting biomedical data based on the Open Targets Platform
association scoring framework®®. The scoring framework assigns each
target—disease pair a set of harmonised and normalised scores
between 0 and 1 that summarise the strength and repetition of evi-
dence supporting the target—disease connection and the level of
confidence in its translational value (see the “Methods” section for
further details). While the association scores provided in the Platform
are calculated based on all evidence currently available for the target
—disease pair based upon the latest data release, our temporal
assessment involves a recalculation of these scores for each associa-
tion and each year, considering only evidence accumulated up to that
point in time. In Fig. 2, ‘Evidence’ and ‘Association’ graphs, we
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Fig. 1| Timestamps of evidence supporting target-disease associations. a An
example of timestamped evidence from three sources supporting a target—-disease
association in the Open Targets Platform. CML, chronic myelogenous leukaemia.
ABLI, ABL proto-oncogene 1, non-receptor tyrosine kinase. b Distribution of
27,819,439 Platform evidence annotated with timestamps (y-axis), source of origin
(x-axis), source category (colour) and timestamp nature (top brackets). IMPC,

International Mouse Phenotyping Consortium. GEL PanelApp, Genomics England
PanelApp. GWAS, Genome-Wide Association Studies. See Supplementary Infor-
mation for a breakdown of the evidence count by data source. Box plots show the
median (centre line), the 25th-75th percentiles (box), whiskers extending to the
most extreme points within 1.5 x IQR.
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Fig. 2 | Temporal profiles for the association between thymic stromal lym-
phopoietin (TSLP) and asthma. a The ‘Evidence’ graph shows pieces of evidence
supporting the association, mapped to their Open Targets Platform evidence score
(y-axis), timestamp (x-axis) and source (colour). The ‘Association” and ‘Novelty’
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graphs show how the Platform’s source and overall association and novelty scores
have evolved over time. b Examples of evidence that have triggered shifts in the
Platform’s association scores and novelty peaks. The identifiers of the reference
clinical trials (NCT) and PubMed Central (PMC) publications are shown.

exemplify this for the association between thymic stromal lympho-
poietin (TSLP) and asthma, which is supported by literature data
ingested from Europe PMC (green), genetic data derived from GWAS
(blue) and clinical data provided by ChEMBL (red). For further clarity,
Fig. 2b provides examples of evidence. In 2011, Hirota et al.* report a
GWAS linking TSLP with asthma in adults. This GWAS association is
assigned an initial evidence score of 0.70 in the Platform, then fol-
lowing harmonisation and normalisation, a GWAS association source
score of 0.53. Also in 2011, a phase I clinical trial (NCT01405963) was
initiated in adults with mild atopic asthma to investigate tezepelumab,
a human monoclonal antibody with TSLP blocking properties. This is
captured as ChEMBL evidence with a score of 0.10 in the Platform.
Between 2012 and 2014, three Europe PMC publications suggest the
involvement of TSLP in asthma®’™** and are assigned respective evi-
dence scores of 0.07, 0.06 and 0.02 in the Platform. This is followed by
the initiation of Phase Il (NCT02698501) and Phase Il (NCT03706079)
clinical trials in 2016 and 2019, respectively, to further evaluate the
efficacy and safety of tezepelumab in treating asthma in adult patients.
These trials are recorded in the Platform as ChEMBL evidence, with
respective scores of 0.20 and 0.70. Combined with previous clinical
evidence, this results in a harmonised and normalised ChEMBL source
score of 0.61 in 2019. Aggregating, harmonising and normalising the
three source association scores produces an overall association score
curve showing two main shifts: one in 2011 corresponding to robust
genetic support for the association emerging, and a second in 2017
corresponding to the initiation of advanced clinical trials providing
further support for the association.

Novelty assessment of target—disease associations

The shifts in association scores described in the previous section
reflect instances when new supporting evidence of the target being a
potential causal factor of the disease is generated. To quantify this
change, we introduce a new ‘novelty’ metric (see the ‘Novelty’ graph in
Fig. 2a). In essence, the mathematical formula captures shifts in the
association score value as peaks of novelty, which subsequently decay
until reaching zero as time passes (see the “Methods” section for fur-
ther details). By relying on the evolution of the association score rather

than the appearance of the earliest piece of evidence as the criterion
for claiming novel association, this approach helps prioritise stronger
signals of novelty from the background of evidence. Pieces of evidence
with low confidence (low score) are assessed more cautiously, whereas
more confident signals (high-scoring evidence) are emphasised, even if
they appear later. This is exemplified by the low-scoring Europe PMC’s
pieces of evidence for the TSLP and asthma association between 2012
and 2014, and the corresponding novelty peaks. There may be higher
peaks in the future if more relevant publications appear. The reverse
scenario is also adequately addressed by this metric, where the initial
evidence has a high score and triggers robust peaks, followed by
subsequent evidence with a lower, comparable, or higher score.
Examples include the GWAS association peaks in 2011 (0.52) and in
2017 (0.17). Furthermore, the ChEMBL timeline exemplifies a combi-
nation of the previous two scenarios, depicting multiple peaks corre-
sponding to different clinical phases. We find it convenient to report
the different peaks as moments of novelty, as each captures a distinct
type of knowledge novelty which is ultimately weighted and con-
textualised by the novelty score value (see the “Methods” section for
more details). In summary, Fig. 2 shows the differences between the
accumulation of evidence for a target—disease association and the
evolution of the Open Targets Platform association and novelty scores,
with novelty peaks providing a clear view of the onset, quality, and
quantity of evidence over time.

Biomedical associations with novelty signals in 2025

Through our analysis, we have found that 68,012 (2%) out of the
2,914,983 target-disease associations that constitute the Open Targets
Platform have novelty peaks in 2025. These associations involve 13,289
(44%) out of the 30,087 unique targets in the Platform, including
12,680 protein-coding genes. The majority of these targets have not
yet been explored clinically (11,890; 89%), and 2130 (16%) have a
reported binding ligand in ChEMBL. In addition, only 6% (856) of these
targets have adverse events annotated in the Platform. Regarding the
top therapeutic areas in which these target-disease associations with
peaks of novelty in 2025 are found, 41% of them involve oncological
diseases (27,577), 9% involve neuronal diseases (6264), and 7% involve
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genetic, familial, or congenital diseases (4766). The resources con-
tributing the most associations with novelty peaks are Europe PMC
with 43,284 (64%) associations, IMPC with 8997 (13%) associations and
GWAS with 6482 (10%) associations.

Contributions from high-throughput and clinical resources to
biomedical novelty

Figure 3 provides a comprehensive analysis of how each Platform
resource has contributed to target-disease associations and the
identification of novel targets over the past two decades. There has
been a striking surge in the number of novel target-disease genetic
associations in recent years, reflecting the exponential growth of large-
scale genetic studies, and the integration of diverse biobank
resources***, However, this dramatic increase in associations has not
been matched by a corresponding rise in unique novel targets. Instead,
the majority of recent associations map to DNA regions that were
already implicated in previous studies. A similar trend is seen in data
extracted from the scientific literature: advances in text mining have
led to a rapid increase in the number of reported associations between
genes and diseases®, but the number of unique target genes has
remained largely unchanged. This is partly because the research lit-
erature tends to focus on already well-known genes, rather than
identifying new ones*. It is also due to the limitations of current
computational frameworks employed to extract biomedical informa-
tion from text, which often cannot reliably tell the difference between
a simple mention of a gene and disease in the same article, and a true,
experimentally validated association, such as one supported by evi-
dence of genetic variation or changes in gene expression®’. Signals of
novelty derived from RNA expression resources increased around
2015, corresponding with the increased incorporation of microarray
expression studies into the Expression Atlas*®. The affected pathway
resource category shows two peaks of novel association explosion:
one in 2018, corresponding to the ingestion of data from the SLA-
Penrich analysis*’, which identified significantly mutated pathways in
large cancer patient cohorts; and a second one in 2021, corresponding
to the ingestion of data from CRISPRbrain: the first genome-wide
CRISPR interference and activation screens performed in human
neurons”. Clinical data shows a related pattern: the number of novel
target-disease associations per year has stabilised, while the number
of unique new targets entering clinical trials has declined. This sug-
gests that ongoing innovation in clinical research is increasingly

focused on repurposing, new indications, and novel modalities for
existing targets rather than introducing first-in-class drugs'®.

Contributions from expert-curated resources to biomedical
novelty

Conversely, expert-curated resources for genetic association evidence
(e.g., Gene2Phenotype, Orphanet, GEL PanelApp and ClinGen*) offer a
closer alignment between the number of novel associations and novel
targets discovered over the years. This is despite their modest overall
contribution compared to automated methods. Furthermore, multiple
curated databases show that they contain similar or identical genetic
evidence (see the Supplementary Information). Somatic mutation
data, primarily sourced from the Cancer Gene Census (CGC)*', shows a
significant reduction in associations and unique targets over the past
decade. This is due to the CGC’s recent adoption of a more con-
servative approach to adding new genes, ensuring the accuracy and
reliability of association data. Fig. 3 also reflects a gap between the
number of novel associations and novel targets from animal model
data, sourced from the International Mouse Phenotyping Consortium
(IMPC), similar to that of automated sources. In earlier years, there was
a steady influx of new associations and targets as mouse gene knock-
out phenotyping progressed. However, in recent years, there has been
a progressive decline, suggesting that the resource may be
approaching saturation for protein-coding genes™.

Retrospective analysis of novel drug targets

To conclude our analysis, we used the retrospectively generated
temporal profiles to gain insight into past and current strategies
employed to discover novel drug targets. A list of 433 novel drug
targets was extracted from ChEMBL by looking up the MoA of drugs
approved since 2000. The identified targets were mapped to their
earliest approval, the corresponding disease indication, and the year of
the highest novelty peak identified in the target-indication association
for each resource category. We then retrospectively evaluated the
breadth, type and timing of these novelty peaks, in relation to the year
of approval. Figure 4 illustrates whether supporting peaks for each
resource category typically emerge before (above O on the y-axis) or
after (below O on the y-axis) the first year of drug approval over the
years (x-axis). As expected, given the regulatory pathway, novelty
peaks from clinical trials, deconvoluted into phases I/Il and III, cluster
tightly around the time of drug approval. However, for the other
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Fig. 4 | Retrospective analysis of novelty peaks for novel drug targets

since 2000. Each of the 433 novel drug targets (represented by the data points in
the box plots) has been mapped to the year of its first drug approval (x-axis), its
corresponding disease indication, the year of the highest novelty peak identified in
the corresponding target-indication association for each source category, and the
number of years elapsed from drug approval to the corresponding top novelty peak

(y-axis) for each source category. Clinical peaks have been deconvoluted into Phase
I/11 and Phase III. These novel drug targets include 302 supported by literature;
72 supported by genetic association; 40 supported by somatic mutation; 26 sup-
ported by RNA expression; 16 supported by affected pathway; and 14 supported by
animal model evidence. Box plots show the median (centre line), the 25th-75th
percentiles (box), whiskers extending to the most extreme points within 1.5 x IQR.

categories we have analysed, we observe that the timing of novelty
peaks shifted from occurring after approval to occurring before
approval. In all categories except animal models, this shift (the
inflection point) took place around 2015. For animal models, the
inflection point occurred around 2005. Despite showing greater
variability and fewer data points, the affected pathway category also
aligns with the general trend. This trend likely arises from a combi-
nation of evolving data availability and intentional changes in how this
datais utilised. We explore both potential influences in the Discussion
section. Furthermore, the percentage of these novel drug targets with
biomedical support (whether before or after approval) has remained
stable: 70% (302) exhibit peaks in literature novelty; 17% (72) in genetic
association novelty; 9% (40) in somatic mutation novelty; 6% (26) in
RNA expression novelty; 4% (16) in affected pathway novelty; and 3%
(14) in animal model novelty. The only difference is in the timing of
these peaks (see the Supplementary Information for more details).

Discussion

In the post-genome era, advances in high-throughput sequencing and
information technologies are dramatically expanding the volume of
biomedical data available to help understand disease biology and
design better therapies. Despite their huge coverage, there remain
challenges in identifying relevant data and interpreting them correctly
in order to find evidence that confidently connects diseases with their
potential causal gene targets. When considering data mined from text
in scholarly literature, patents, and other written sources, large lan-
guage models especially trained for identifying semantically sound
biomedical associations can help bridge this gap by identifying the
most relevant articles to prioritise for curation and nominating a pre-
liminary list of associations for expert curation’’. For GWAS data,
translating genetic association signals into individual actionable tar-
gets remains challenging in part due to the limited access to summary
statistics**, and this challenge is even greater for less explored genes.
Databases providing public access to GWAS data, such as the GWAS
Catalogue®, and open-source frameworks offering post-GWAS

analytics to help predict effector genes, such as Open Targets
Gentropy®, are essential to help pinpoint new causal genes. The
importance of human genetic data for successful drug progressability
has been explored in numerous publications in recent years®™®,
showing that drug mechanisms with genetic support are 2.6 times
more likely to succeed than those without such support”. Additionally,
up to 47 first-in-class, non-cancer approved drugs have been reported
to be directly driven by human genetic observations®. In our sys-
tematic analysis of 433 novel drug targets with biomedical support for
the underlying target-indication association, we found that 23% (101)
of them are supported by human genetic data (72 with genetic asso-
ciation evidence and/or 40 with somatic mutation evidence), 70% by
literature-derived data, and 13% by other non-clinical biomedical data,
with all of these types of evidence increasingly appearing prior to the
approval year. We propose two complementary interpretations for this
trend. First, most novelty peaks are concentrated within a relatively
narrow period, particularly after the emergence of the post-genome
era’, when GWAS, sequencing technologies, and text mining tools
became widespread. Second, this trend likely reflects not only the
surge in available genomic, transcriptomic, and literature-derived
data, but also a growing reliance on such data for the early validation of
novel drug targets within the pharmaceutical industry, as discussed by
Trajanoska et al. (2023)*°. As more data are released through public
initiatives, some of it retroactively supports previous drug develop-
ment programmes while also generating new evidence to guide future
efforts. This may explain the observed pattern of supporting evidence
increasingly emerging before drug approval, suggesting that the
industry is shifting towards a greater dependence on publicly available
information. Additionally, unlike related studies that propagate sup-
porting evidence through protein interaction networks and disease
ontologies™***°, our analysis considers only direct evidence of asso-
ciation between targets and diseases. As a result, our estimates provide
a more conservative assessment of supporting evidence. For example,
23% of the novel drug targets have direct human genetic evidence
compared to 44% with indirect; 70% with direct literature support
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compared to 78% with indirect; and 13% with direct support from other
non-clinical sources compared to 52% with indirect. See Supplemen-
tary Information for more details. By sharing this temporal analysis, we
ultimately hope to facilitate further research in this area and help the
scientific community to better understand the evolving role of
genetics and other types of biological data in the discovery of novel
therapies.

Target selection is a critical decision point in drug discovery. The
growing amount of data available that is now relevant to therapeutic
target selection and clinical validation makes it increasingly possible to
build evidence-based therapeutic hypothesis, but also makes it
increasingly challenging for drug discovery scientists to navigate the
volume of information for decision-making. Tools such as the Open
Targets Platform greatly facilitate this by integrating data from mul-
tiple sources and providing public frameworks for analysis. However,
as with other open-access resources in this field, it is currently difficult
to identify significant changes in the availability of the most relevant
data for target—disease associations and assess their novelty. There-
fore, in this project, we undertook a comprehensive annotation effort
of the 28 million pieces of evidence supporting the 3.6 million target
—disease associations in the Open Targets Platform to extract time-
stamps from each data source, and formulated a new metric to sum-
marise the degree of novelty of a target in the context of a disease
according to current available knowledge. The temporal profiles ret-
rospectively constructed for novel drug targets approved over the past
two decades suggest an increasing reliance on human genetic, litera-
ture-derived, differential expression and pathway-related evidence for
target validation throughout the preclinical and clinical pipelines.
While these results may be influenced by the tremendous growth in
certain areas and types of data over the past decade—genetics being
the most obvious example—we anticipate that, in the future, the data
and tools we have developed will be invaluable in helping users to
navigate the ever-expanding and increasingly complex landscape of
life sciences and biomedical data, and to make timely, data-driven
decisions about key problems in drug discovery, including which tar-
gets to pursue in order to address unmet medical needs.

Methods
The research work presented in this paper did not require any approval
by an ethical committee or institution.

Biomedical corpus of the Open Targets Platform

The Open Targets Platform biomedical corpus version 25.03 was used
in this study and is available at http://ftp.ebi.ac.uk/pub/databases/
opentargets/platform/25.03/. It comprises 3.6 million associations
between diseases and targets, with supporting evidence derived from
over 20 sources (https:/platform-docs.opentargets.org/evidence).
The pieces of evidence are aggregated by data type into five cate-
gories: literature, genetic associations, RNA expression, animal mod-
els, somatic mutation, affected pathways and clinical (a.k.a. ‘known
drugs’ which includes approved drugs and clinical candidates). The
literature evidence is text-mined from Europe PMC scientific publica-
tions and patents. Genetic evidence includes results of GWAS, func-
tional genomic, clinical reports and phenotypic studies curated and
deposited into resources such as GEL (Genomics England) PanelApp,
Orphanet, ClinvVar, Gene2phenotype, Clingen and UniProt; and/or
analysed by gene burden studies and Open Targets Genetics. Pieces of
evidence from RNA expression experiments are sourced from the
Expression Atlas. Genotype-phenotype associations from the Interna-
tional Mouse Phenotypes Consortium (IMPC) are included as animal
model evidence. Evidence for cancer mutations and biomarkers is
from the Cancer Gene Census, Cancer Genome Interpreter, and a
subset of ClinVar that refers to somatic mutation. The ChREMBL team
extracts clinical evidence from drug labels, clinical trials and drug
approvals that are integrated into the Open Targets ecosystem.

Metabolic pathways involved in pathogenicity identified by systems
biology studies and CRISPR screenings are also captured as evidence
from projects like Reactome, SLAPenrich, Project Score and CRISPR-
brain, and from gene signature publications. A disease or phenotype in
the Platform is understood as any disease, phenotype, biological
process or measurement that might have any type of causality rela-
tionship with a human target. The EMBL-EBI Experimental Factor
Ontology (EFO, https://www.ebi.ac.uk/efo/) is used as a scaffold for the
disease entity. For a full list of resource references, see Supplementary
Information.

Timestamps of evidence for target-disease associations

A comprehensive timestamping effort was carried out on the 28 mil-
lion evidence from the Open Targets Platform biomedical corpus
(25.03). In order to ascertain the publication and/or submission dates
of the evidence, the original sources were consulted. Evidence
extracted from Europe PMC documents was annotated with the date
of its publication. In the case of resources containing genetic evidence
that had been manually curated by experts, the submission date of the
curation was annotated. The rationale for this approach is to reduce
redundancy in the coverage of evidence from literature sources and
curated genetic repositories and to capture the precise moment a
given resource becomes aware of a particular piece of evidence when
possible. The median time difference between the primary and the
curated dates is 11. In the absence of submission dates, the date of
publication in the primary source (i.e., a scientific publication) was
employed instead. The start year of clinical trials was also recorded.
Evidence from pathway-related individual projects were annotated
with the project release date or the associated publication. The original
resources and links from which the dates were extracted are refer-
enced in the Supplementary Information.

The Open Targets Platform scoring framework

Every target-disease pair in Open Targets is assigned a harmonised
and normalised score that quantifies the strength of the association.
This is explained in detail in the Open Targets documentation page
(https://platform-docs.opentargets.org/associations).  Briefly, the
association score is based on the relative importance of the pieces of
evidence supporting it and their repetition. While some data sources
will capture the meaningful association in a single piece of evidence, in
other data sources, the repetition of the evidence increases the con-
fidence with which the association can be regarded as meaningful. To
balance all these differences and provide a consensus regarding the
strength of the underlying evidence, a harmonisation and normal-
isation of the scores is performed. Firstly, the evidence is grouped
according to the source of origin. Subsequently, data source associa-
tion scores are calculated by the harmonic sum of the full vector of
evidence scores. To ensure the result is between 0 and 1, the harmonic
sum is normalised by dividing the result by the maximum theoretical
harmonic sum, which is the one calculated using an infinite vector of
ones. The Platform derives this calculation (which approximates to
1.644) by using a vector of 1000 ones. Finally, the overall association
score is calculated by a second harmonic sum using the vector of data
source association scores weighted by the data source weights and
normalised in the same way as the source scores.

The novelty metric formulation

With the evidence annotated with their timestamps, we were able to
retrospectively reconstruct the evolution of data source scores for
each target-disease pair since 1995. This was achieved by recalculating
the scores for each association and each year, considering only evi-
dence accumulated until that time. This resulted in temporal profiles
where scores increased as new supporting evidence appeared. Based
on these profiles, a metric was defined to quantify the degree of
novelty of a target-disease association at a given time. This metric
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captures shifts in the score values as peaks of novelty, which subse-
quently decay as time passes since the shift. In practice, the novelty
formula Eq. (1) is defined as a logistic decay function applied to the
difference between the score at a given year and the score at previous
years, as follows:

S

= 1+ ek(W-m) (1)

N represents the novelty value at a given year, S is the latest score
shift registered, k is the logistic growth rate or steepness of the decay
curve, W is the window difference between the current year and the
year when the last score shift was registered, and m is the sigmoid
decay curve midpoint. A value of 2 was set for the steepness para-
meter, and a value of 3 was set for the midpoint parameter ad hoc. This
allowed for an initial slow decay period in the first and second years
after the peak, followed by a faster decay period in the third and fourth
years until reaching a zero novelty value again. In the event that several
score shifts are registered in consecutive years, all possible novelty
values are computed, and the maximum one is selected. In a manner
analogous to the overall association score, the overall association
novelty is calculated as the harmonic sum of the weighted data source
novelty values. A detailed inspection of the number of novelty peaks
reported for each target-disease pair has revealed a median value of
1.0 for each data category and maximum values of 3.0 for somatic
mutation sources, 5.0 for RNA expression data sources, 6.0 for genetic
association and animal model data sources, 8.0 for affected pathway
and clinical sources, and 15.0 for literature sources.

Novelty signals across resources in the Open Targets Platform
The number of target-disease associations and unique targets with
novelty signal over the years across resource categories was obtained
using a novelty score cutoff of 0.1 to capture more relevant signals.
Associations were classified by therapeutic area based on their disease
and then assigned to the year in which the highest novelty peak was
reported in each category. Targets were assigned to the first year in
which an association involving them is reported as novel in each
source. No significant changes in the figures were observed when fil-
tering for protein-coding targets only. The following therapeutic areas
were excluded: biological process, phenotype, measurement, animal
disease and medical procedure.

Temporal profiles for novel drug targets since 2000
Targets annotated as the mechanism of action of an approved drug
according to ChEMBL 34 data were mapped to their first approval and
corresponding disease indication. Temporal profiles for the
target-disease pairs were recovered, and novelty peaks were sub-
jected to analysis. Highest novelty peaks were selected for each asso-
ciation and source and grouped according to source category. Clinical
novelty was evaluated independently of novelty peaks by annotating
each target-disease-drug triplet to the earliest clinical trial in the I/II
and Il phases. A comparative analysis of the temporal patterns of
novelty peaks for novel drug targets was conducted, with the data
divided into two groups: (a) novel drug targets with their first drug
approved between 2000 and 2005, and (b) novel drug targets with
their first drug approved between 2020 and 2025. These were selected
as the most representative of shifts in the discovery trends of novel
drug targets in the last decade.

A large language model-based tool was utilised to assist in refining
the clarity and style of selected sections of the manuscript.

Statistics & reproducibility
No data were excluded from the analyses, and no statistical method
was used to predetermine sample size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The entire data generated in this study has been deposited on GitHub
(https://github.com/opentargets/timeseries) and Zenodo (https://
zenodo.org/records/15922783). The source files of biomedical evi-
dence, target and disease data used in this study are available in the
Open Targets Platform FTP site: http://ftp.ebi.ac.uk/pub/databases/
opentargets/platform/25.03/output/.

Code availability

The Python code for the current study is publicly available on GitHub:
https://github.com/opentargets/timeseries under the following
https://doi.org/10.5281/zenodo.17396741.
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