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Genetic profiling of the circulating proteome
in commondiseases suggests causal proteins
and improves risk prediction

Qianying Ma1,2,9, Yimin Cai 1,9, Chunyi He1,9, Yanmin Li1,9, Caibo Ning3,
Ming Zhang3, Zequn Lu3, Can Chen3, Yue Zong3, Feitong Wu3, Meng Jin4,
Yongchang Wei5, Xiangpan Li6, Xiaojun Yang7, Chaoqun Huang7, Bin Li3,
Zhaocheng Ma8 , Ying Zhu 3 , Xiaoping Miao 1,2 & Jianbo Tian 1,2

Elucidating the genetic regulation of protein expression in specific disease
states is important for understanding how genetic variation impact disease
pathology. To this end, we conduct a large-scale genome-proteome-wide
pQTL analysis on 2901 plasma proteins among 7626 healthy individuals and
28,064 patients across 42 disease statuses. We find 25,987 independent pQTL
associations across 2224 regions, and investigate similarities anddifferences in
their regulatory effects across various diseases and health states. We find that
pQTL identified in specific diseases are more likely to be disease risk variants.
We then integrate the association findings with Mendelian randomisation to
identify 110 high-confidence causal proteins associated with 21 diseases,
including Apolipoprotein(a) for cardiovascular diseases and angiotensin-
converting enzyme for type 2 diabetes. Finally, we develop risk prediction
models by integrating pQTL-derived polygenic risk scores and causal-protein-
derived protein risk scores, which demonstrate good performance in dis-
criminating populations at high risk for 21 disease types. These results indicate
that disease state partly determines the impact of genetic variation on protein
expression, implicating disease-related and disease-discordant pQTL associa-
tions as regulators of disease progression.

Translating the plethora of risk-associated genetic variants identified
by genome-wide association studies (GWAS) into pathogenic
mechanisms and treatments remains challenging. This difficulty arises
from the ambiguity surrounding causal genes and the mapping of
genes with poorly understood biology or unclear mechanisms of

modulation. Addressing these challenges necessitates additional
downstream analyzes and the integration of various types of omic
data. Quantitative trait locus (QTL) mapping, which links genetic var-
iants to intermediate molecular traits such as expression QTLs
(eQTLs), can serve as invaluable tools for bridging the gap between
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genetic and phenotypic variation1. However, QTLs affecting mRNA
levels are, on average, attenuated or buffered at the protein level2. In
contrast, protein abundances, being more direct determinants of cel-
lular functions, could play a more immediate role in shaping cellular
activity and ultimately influencing phenotypic outcomes.

Proteomic studies provide valuable insights as proteins not only
act as the effector molecules for most biological processes, serving as
representations or indicators of physical condition, but also encom-
pass the broadest spectrum of therapeutic targets. In recent years,
emerging studies have integrated human genetics with high-
throughput proteomics to systematically elucidate the association
between genetic variants and plasmaproteins3,4. With the expansion of
population-scale and protein-coverage, an increasing number of pro-
tein quantitative trait loci (pQTL) have been identified5–8. However,
previous large-scale population-based studies, including the UK Bio-
bank (UKB) Proteomics Project8, were conducted in generally healthy
participants or mixed populations with varying health statuses.

Considering that pathophysiological mechanisms differ by dis-
ease types, changes in the protein levels might be observable only
within specific pathological states9. In support of this, a recent study
demonstrated that themobility of key proteins can be repressedwhen
subjected to pathogenic signaling, leading to the dysregulation of
diverse cellular processes10. These findings highlight the disease-
specific feature of protein regulation, indicating that disease-related
pQTLs present only under certain disease conditions. Consistently,
analogous eQTL studies using human immune cells stimulated in vitro
have identifiedeQTLs absent in resting cells but apparent upon cellular
activation11,12. Therefore, the strategy used in previous studies to con-
duct pQTL studies in the general population limited their ability to
finely uncover genetic associations that are specifically evident under
pathological conditions. Systematic genome-proteome-wide pQTL
analysis among individuals in specific health or disease states can offer
a more comprehensive and precise understanding of the genetic
architecture of proteins and underlying disease mechanisms. More-
over, investigating differences and similarities in pQTL regulatory
effects across diseases and health states can reveal distinct genetic
etiologies and shared therapeutic strategies, ultimately advancing
precision medicine more effectively.

To address these gaps, we performed systematic proteogenomic
association analyzes targeting 2901 proteins among 7626 healthy
individuals and 28,064 patients across 42 disease statuses, and further
provided insights into differences and similarities in pQTL regulatory
effects between health and disease states. Through functional anno-
tation and colocalization, we illustrate the underlying mechanism by
which pQTLs influence protein abundance and contribute to disease.
Integration of cohort study and MR reveals hundreds of high-
confidence causal proteins. On this basis, we successfully con-
structed disease risk prediction models that integrate the pQTL-
derived polygenic risk scores (pQTL-PRS) and causal-protein-derived
protein risk scores (causal-ProRS), significantly enhancing the accu-
racy of risk assessments in multiple diseases. Finally, our comprehen-
sive proteogenomic landscape and proteome-phenome associations
are presented as a resource to support broader scientific community.
Taken together, our findings shed light on the genetic etiology and are
expected to accelerate the development of biomarkers, predictive
models and therapeutics.

Results
A comprehensive atlas of pQTLs across healthy individuals and
42 diseases
In our quest to identify pQTLs, including those may exclusively man-
ifest during specific health states (Supplementary Data 1), an average
of 6.11 million genetic variants and 2901 proteins from an aggregate of
35,690participants (7626healthy subjects, 55 to 12,169 subjects across
42 diseases) were remained for subsequent analysis after quality

control (Fig. 1A, B, Supplementary Fig. 1 and Supplementary Table 1,
Supplementary Data 2). Then, we applied a linear model to test the
association between plasma protein levels and genotypes in the above
individuals, with adjustment for potential confounding factors (pro-
tein measurement variables, population structure and clinical status).
With the Bonferroni-corrected threshold of P value < 1.72 × 10−11

(5 × 10−8/2901), we identified a total of 1,021,750 pQTLs-protein asso-
ciation pairs involving 533,975 pQTLs and 1856 proteins (Supplemen-
tary Data 3). Furthermore, to discover the independent signals
associated with proteins, we performed conditional analyses with
GCTA-COJO13, yielding a total of 25,987 independent pQTL associa-
tions across 2224 independent genetic regions, spanning from 4
regions in leukemia to 2130 regions in hypertension (Fig. 1B, Supple-
mentary Data 3-4 and Supplementary Fig. 2A). The number of these
independent associations varied from 4 in leukemia cancer to 6994 in
hypertension (Fig. 1B–D and Supplementary Data 3). The diseases with
more pQTL associations tended to have larger sample sizes (Fig. 1C).
Additionally, ~59.24% of pQTLs were local acting (“cis” pQTLs) and
40.76% were distant acting (“trans”) (Fig. 1E).

Specifically, nearly half (47.20%, 876 out of 1856) of the proteins
are merely regulated by a single region (interquartile range, 1–3)
(Supplementary Fig. 2B). In addition, 81.16% (1805 out of 2224) of
these pQTL regions specifically associate with only one protein,
whereas 22 genetic regions are found to regulate more than 10
proteins (Supplementary Fig. 2C). Of the 16,562 primary associations
identified in our study, 12,109 (73.11%) were replicated in prior stu-
dies (r² ≥0.1) (Fig. 1F and Supplementary Data 5). Additionally,
among these 2224 pQTL regions, 1977 regions (88.89%) have been
corroborated by previously published research6–8, which highlights
the reliability of our findings and the significance as a complement to
existing resources.

Systematic characterization and functional annotationof pQTLs
In order to dissect the functional potential of pQTLs, we gener-
ated a set of non-pQTL variants by matching the number of var-
iants in LD, minor allele frequency (MAF) and variant type to
pQTLs for comparison (Supplementary Table 2). Consequently,
we observed significant enrichment of pQTLs within missense and
synonymous regions, compared with non-pQTLs (Fig. 2A, B).
Notably, upon mapping these pQTLs to active transcription
regions, we observed a marked increase within the binding sites
of transcription factors (TFs) and histone modification marks,
compared to non-pQTLs (Fig. 2C). Overall, these findings suggest
that pQTLs might regulate protein levels not only by influencing
translation and structure but also transcriptional regulation,
which provides a potential clue linking allelic variation to protein
levels.

Next, we aimed to evaluate the contribution of pQTLs to target
protein abundance by quantifying the proportion of variance in
plasma protein concentrations explained by pQTLs. The results
showed that pQTLs accounted for an average of 15.24% of the variance,
ranging from 7.37% in hypertension to 70.24% in lung cancer (Fig. 2D
and Supplementary Data 6). Interestingly, cis-pQTLs contributed sig-
nificantly more to the variance (13.50%) compared to trans-pQTLs
(1.81%). In addition, we noted that the phenotypic effect sizes of pQTLs
were decreased within the increasing of MAF, and cis-pQTLs exhibited
a stronger effect in comparison to trans-pQTLs (Fig. 2E). Therefore, our
findings indicate that there may be a more remarkable contribution of
cis-pQTLs to altered plasma protein levels and disease risk.

Furthermore, to elucidate the properties and classification of
pQTL associations, we employed a tiered system that classified pQTL
associations into protein-specific, pathway-specific and unspecific
categories. For each disease type, an average of 83.14% (91.80% in cis,
48.87% in trans) of pQTL associations were assigned as protein-spe-
cific, while 4.58% (4.75% in cis, 5.51% in trans) as pathway-specific and a

Article https://doi.org/10.1038/s41467-025-67238-x

Nature Communications |          (2026) 17:535 2

www.nature.com/naturecommunications


further 12.27% (4.45% in cis, 40.97% in trans) as unspecific (Fig. 2F and
SupplementaryData 7), indicating that pQTLs exert their effects on the
circulating proteome through diverse mechanisms. For example, the
pathway-specific variant rs1761450, associated with LILRB1, LILRB2,
LILRB5, LILRA3, and LILRA5 levels in hypertension, coordinately reg-
ulates immune receptor activity and cell surface receptor signaling
pathways.

Insights into the genetic architecture of protein levels and
common complexed diseases
To elucidate the underlying mechanisms through which pQTLs affect
protein abundance under disease contexts and contribute to disease,
we undertook a comprehensive evaluation of the shared genetic
architecture of protein targets with gene expression, splicing and
disease risk.
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Given the disease- and tissue-specific nature of gene regulation,
we restricted eQTL and sQTL data to disease-relevant tissues, enhan-
cing the biological relevance and interpretability of our findings.
Initially, we integrated plasma pQTL results with both expression
quantitative trait loci (eQTLs) or splicing quantitative trait loci (sQTLs)
fromTheCancerGenomeAtlas (TCGA) orGenotype-Tissue Expression
Project (GTEx) using statistical colocalization (posterior probability
> 0.7) for 1514 proteins with at least one cis-pQTL. Compelling evi-
dence revealed that 34.68% (525/1,514) of proteins share a signal with
their corresponding gene expression in at least one disease, with the
majority of co-localized pQTLs and eQTLs showing effects in con-
cordant direction (Fig. 3A and Supplementary Data 8). Significantly,
around 20% of cis-pQTLs of prostate, breast, ovarian, and head and
neck cancers were found to colocalized with cis-eQTLs in the corre-
sponding tumor tissues, exhibiting effects in the samedirection, which
suggested the influence of gene expression on altered protein abun-
dance (Supplementary Fig. 3A). As for another source of protein var-
iation, cis-sQTLs co-localized with cis-pQTLs for 12.29% (186/1,514) of
proteins, with the proportion over 30% in leukaemia (Fig. 3B, Supple-
mentary Fig. 3B and Supplementary Data 9), highlighting the impact of
altered splicing onplasmaprotein abundance. Altogether, ourfindings
affirm that pQTLs can regulate protein abundance bymodulating gene
expression or splicing at the transcriptional level and reveal the syn-
chronized alterations of genetic effects on protein levels in both
plasma and corresponding disease tissues.

We next sought to investigate whether pQTLs could offer addi-
tional insights into disease susceptibility. As a result, we observed a
robust enrichment of pQTLs amongmost (27 out of 42) disease GWAS
loci (P < 5 × 10−8), indicating the promising roles of pQTLs in elucidat-
ing disease risk (Fig. 3C and Supplementary Data 10). To further
quantify the contribution of pQTLs to disease-related variations, we
employed the LD score regression model for a partitioned heritability
analysis. Among the diseases examined, pQTLs explained an average
of ~6.8% of the heritability (Fig. 3D). Notably, type 2 diabetes (T2D),
breast cancer, prostate cancer, and glaucoma exhibited the highest
proportions, with over 20% of the heritability explained by pQTLs
(Fig. 3D), highlighting the connection between genetic risk factors,
proteins and diseases.

The enrichment of pQTLs in disease-associated loci provides
disease-specific insights into the overall impact of pQTLs. In order to
reveal the extensive protein regulation network underlying complex
diseases, we conducted colocalization analysis. This identified an
average of 5, proteins per disease type sharing genetic determinants
(posterior probability > 0.7), ranging from 1 (e.g., uterus cancer, ovary
cancer, abdominal aortic aneurysm (AAA), liver, pernicious anaemia
(PA), rheumatoid arthritis (RA)) to 20 (asthma). These findings
demonstrate substantial co-localization between cis-pQTLs and dis-
ease loci (Fig. 3E and SupplementaryData 11). Of particular interest, we
observed shared proteins among certain diseases, suggesting poten-
tial commonmechanisms contributing to their pathogenesis (Fig. 3F).
For example, apolipoprotein(a) (LPA), which promotes atherosclerotic
lesions and thrombogenesis, was genetically associated with coronary
heart disease (CHD), major adverse cardiac event (MACE) and per-
ipheral artery disease (PAD) in the colocalization analysis, verifying the

previously established mechanism connections of cardiometabolic
disease (Fig. 3F). Moreover, the colocalization of apolipoprotein E
(APOE) underscores the intricate interplay among renal disease, liver
disease, CHD, chronic obstructive pulmonary disease, gout, and
dementia, indicating a shared dysregulated lipid metabolism under-
lying these disease types across diverse systems (Supplementary
Data 11).

To further elucidate the functional roles of pQTL-regulated pro-
tein-coding genes (pGenes) in human diseases, we performed pathway
analysis on these genes. Immune system-related pathways were the
most frequently enriched across diseases (Fig. 3G). Among the sig-
nificantly enriched pathways, “Immunoregulatory interactions
between a Lymphoid and a non-Lymphoid cell” recurred across nearly
all disease types. This recurrence indicates that core immunepathways
are common targets of genetic variation. Genetic perturbations in
these networks appear to shape shared susceptibility patterns across
diseases.

Considering the possible prognostic effect of pQTLs, we further
performed survival analysis among patients across 36 different dis-
eases (observed at least one specific death event) derived from the
UKB cohort. Collectively, 969 independent survival-related pQTLs
were identified (Supplementary Table 3). Furthermore, we amalga-
mated the pGenes with pharmacological information to assess the
potential implications of our findings for drug development and
repurposing. Through investigating the drug-gene interactions in the
DrugGene Interaction database (DGIdb),we identified amedian of 580
drugs interacting with pGenes for each disease, with a maximum of
2707 interactions found inhypertension (Fig. 3H). Impressively, typical
pGenes in hypertension, such as SMAD3, VEGFA, and APOE, exhibited
interactions with a diverse range of drugs, including lipid-modifying
agents, vasoprotectives, ophthalmologicals, and even antineoplastic
agents (Fig. 3I). Overall, these results suggest that these disease-
specific pGene-drug interactions could potentially broaden the hor-
izons of clinical therapy.

Differences and similarities in pQTL regulatory effects between
health and disease states
By considering the specific disease context, it is possible to more
extensively resolve functional genetic variants that contribute to dis-
ease pathobiology. Similarly, a notable enrichment of pQTLs identified
in various disease statuses within GWAS loci was observed across the
majority (26 out of 27) of disease types, in contrast to pQTLs identified
in health cohort (Supplementary Fig. 4A), which highlight the advan-
tages of our pQTL detection method in the translation of GWAS find-
ings into biological and possibly clinical insights. Next, to further
explore howdisease status influences the genetic regulation of plasma
protein levels, we refitted each independent pQTL association using
linear mixed effects (LME) models (“Methods”). We observed that the
number of disease-related pQTLs increased with sample size, indicat-
ing that expanding the cohort would likely identify more associations.
Across 27 diseases with at least 325 cases each, we identified 1806
disease-related pQTL associations (q-value < 0.05), ranging from 10 in
Multiple Sclerosis (MS) to 360 in T2D (Fig. 4A and Supplementary
Data 12). We also detected 7924 disease-biased pQTLs (q-value ≥0.05;

Fig. 1 | Identification and genetic architecture of pQTLs across 42 diseases and
the healthy population. A Identification framework of pQTLs and main results,
created with BioRender.com. Identification of genetic variants associated with
plasma protein levels across 43 disease types, using a Bonferroni-
corrected significant threshold of P < 1.72 × 10−11. B The sample size of each disease
type (bottom) and the number of independent pQTL associations (cis, darker;
trans, lighter) identified for eachdisease (top). Thenumbersof cis- and trans-pQTLs
are highlighted in gray. C The number of pQTL associations against sample size
across 43 disease types. The R-squared and P-values of the linear regression model
are also displayed.D A three-dimensionalManhattan plot displaying chromosomal

position (x-axis) of pQTL associations (P < 1.72 × 10−11, z-axis) across 43disease types
(y-axis). Colors indicate disease types. P values were calculated by linear regression
models, adjusted for covariates. E Genomic locations of pQTL associations across
43 disease types (cis-, purple; trans-pQTL, green). The x axis indicates positions of
pQTL, and the y axis indicates the gene encoding the associated protein. F The
figure depicts independent primary pQTL associations, color-coded to distinguish
between those in linkage disequilibrium (LD; r² ≥0.1) with a previously identified
pQTL (green, top) and those not previously reported (pink, bottom). A pie chart
summarizes the relative proportions.
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not replicated in healthy cohort) and 13,844 non-disease pQTLs (q-
value ≥0.05; shared with healthy cohort). All results are available on
our public database. We noted the number of disease-related pQTLs
correlated with sample size, suggesting expanded proteomic datasets
for specific diseases will yield further discoveries (Supplementary
Fig. 4B). Notably, disease-related pQTLs exhibited larger effect sizes
than disease-biased and non-disease pQTLs (Fig. 4B). Compared to

disease-biased and non-disease pQTLs, disease-related pQTLs exhib-
ited a marked enrichment within missense regions (Fig. 4C). Several
identified disease-related pQTL pairs are noteworthy. These include
the rs77779567-CDCP1 pair (q-value = 3.92 × 10−4) linked to MACE
(Supplementary Fig. 4C), which is associated with cardiac fibrosis
development14; the rs4357365-EPHA4 pair (q-value = 8.30 × 10−3) asso-
ciated with breast cancer (Supplementary Fig. 4D), which is
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upregulated in the breast cancer stem-like cells15; and the rs4592657-
CDH15 (q-value = 1.20 × 10−5) pair related to CHD (Supplementary
Fig. 4E), which potentially contributes to coronary repeat
revascularization16. These findings highlight the potential of disease-
type-hierarchical analyses in revealing regulatory effects that might be
overlooked by less granular approaches.

Furthermore, comparative analysis of pQTL effect sizes and
directions across diseases may reveal distinct or shared underlying
biological mechanisms and potential precision therapeutic targets. In
total, we identified2832pQTL associations exhibiting significant cross-
disease discordance (twofold or more difference in effect magnitude
or opposite direction) across 27 diseases with at least 325 cases each
(Supplementary Data 13). For instance, we found 23 pQTL associations
with discordance between asthma and rhinitis. These include
rs62217915-KIT (Supplementary Fig. 4F), which regulates mast cell
proliferation and survival and correlates with asthma severity17, and
rs8105105-SIGLEC6 (Supplementary Fig. 4G), a dynamically regulated
mast cell marker18. These associations showed differential effects
between individuals with asthma and rhinitis, highlighting genetic
disparities and treatment implications between these conditions.

Additionally, we applied hierarchical clustering based on QTL
profiles to uncover shared disease mechanisms, and grouped the 27
diseases into 8 clusters (Fig. 4D and Supplementary Table 4), which
reveals both well-known connections between diseases and less
anticipated similarities. For example, cluster 4 were made up of oph-
thalmic diseases including cataracts and glaucoma. (Fig. 4D). Common
cardiometabolic diseases, including disorders of lipoprotein metabo-
lism and other lipidaemias (DOLM), T2D, hypertension and its
renal complications, also cluster together in terms of their overall
pQTL association patterns, as do MACE and CHD. Notably, we identi-
fied trans-hotspot regions that were associated with multiple proteins
yet confined to a single disease cluster, underscoring their shared
genetic basis. For example, region chr8_77 is associated with nine
proteins in trans, and crucially, these proteins are associated with
either hypertension or DOLM, both mapping to cluster 6 (Supple-
mentary Fig. 4H). By acting through multiple proteins in a specific
disease context, this hotspot amplifies the co-morbidity pathological
network, particularly in processes such as protein homeostasis, amino
acid transport, and neuroendocrine and inflammatory signaling. This
reveals an interconnected network of cardiovascular, metabolic, and
immune dysregulation (Fig. 4E), offering crucial insights for under-
standing the genetic basis of these conditions and for identifying
therapeutic targets. Intriguingly, 75% of clusters contained diseases
from more than one disease category. Taking cluster 7 as an example,
it included diseases from the respiratory system, digestive system and
neurologic system. The results of pathway enrichment indicate that
immune inflammation is the common thread connecting these four
seemingly different diseases, and also reflect their respective patho-
logical and physiological characteristics, such as tissue remodeling,
barrier damage and repair, and neuroinflammation (Fig. 4F). These
provide preliminary biological insights for re-understanding disease
classification from biological profiles.

Establishing robust causal associations between proteins and
diseases
The identification of causal proteins holds paramount significance in
disease risk prediction and therapy development. To establish high-
confidence causal relationships, we performed association analysis in
an extensive cohort study and employedMRanalysis to investigate the
associations between plasma proteins and the incidence of diseases.

Leveraging the high-quality cohort consisting of 45,188 indivi-
duals from UKB, we systematically assessed the associations between
2905 plasma proteins and 32 disease endpoints (excluding 10 diseases
with fewer than 250 incident cases in the years following blood sam-
pling) with cox proportional hazard models (Supplementary Table 5).
As a result, 2663 proteins exhibited significant associations with at
least one incident, representing 25,940associations in totalwith a false
discovery rate (FDR) of less than 0.05 (Fig. 5A, B). Diseases such as
DOLM, T2D, renal diseases, and CHD were associated with over 1500
proteins, whereas fewer associations were observed with melanoma,
breast cancer, prostate cancer, and colorectal cancer, and no sig-
nificant associations were found in rhinitis (Fig. 5A). Moreover, we
observed a total of 2416 (90.72%) proteins that demonstrated asso-
ciations with more than one disease (Fig. 5B), with the majority
(66.13%) showing consistent associations across diverse diseases. For
instance, GDF15, ELN, EDA2R, EDN1, and ACTA2 were identified to be
positively associated with over 25 different diseases (Supplementary
Figs. 5 and 6). However, some proteins displayedmore distinct disease
specificity. For example, vasorin (VASN) was primarily associated with
the risk of renal diseases (HR = 1.17, 95% CI = 1.14–1.21), and a similar
association was observed between TBC1 domain family member 17
(TBC1D17) and T2D (HR = 1.09, 95% CI = 1.04–1.14). Importantly, a
substantial proportion (93.80%) of protein-disease associations
remain robust in a sensitivity analysis excluding the first year of follow-
up, indicating independence from clinically incipient cases at baseline.
Similarly, 72.31% of protein-disease associations remained significant
when restricting the controls and further adjusting for comorbidity
status for each incident disease endpoint (“Methods”, all results are
available on our public database).

Subsequently, in order to avoid potential biases introduced by
disease-related regulatory changes, such as reverse causation or col-
lider bias, we used cis-pQTLs identified from 7626 healthy individuals
as instrumental variables for Mendelian randomization (MR) analysis.
To mitigate the potential impact of horizontal pleiotropy on causal
estimation, we further implemented the MR-Egger (P >0.05) and MR-
PRESSO (P >0.05) methods. Using the Wald ratio or inverse-variance
weighted (IVW) method, 639 significant putative causal associations
(FDR <0.05) were identified, with a mean of ~20 associations per dis-
ease (Fig. 5C and Supplementary Data 14). Genetically predicted ele-
vated levels of 149 proteins were associated with increased disease
risk, whereas 166 were protective. Additionally, 64 proteins exhibited
opposing directions of association across different diseases. Further-
more, 68.37% (201/294) of MR associations instrumented by disease-
derived pQTLs were also significant when instrumented by healthy-
derived pQTLs, thereby reinforcing and expanding the MR results

Fig. 3 | The Interpretation of the findings of disease GWAS of pQTLs and
Characterization analyses of pGenes. A, B Integration of gene expression and
splicing quantitative trait loci (eQTLs and sQTLs). A Proteins ordered by the
number of disease types for which at least one of the cis-pQTLs was also a cis-eQTL
as determined by statistical colocalization (posterior probability > 0.7). Scatter plot
illustrates effect size of genetic variants with colocalized signals in pQTLs and
eQTLs. Colors represent disease types. B Same as A but considering cis-sQTLs.
C Enrichment of pQTLswithinGWAS loci across 42diseases. Vertical bars represent
the log2-transformed odds ratios (OR), with error bars indicating the 95% con-
fidence intervals.D The contributions of pQTLs across diverse disease types to the
heritabilities of corresponding diseases. The error bars represent the s.e.m.
E, FOverviewof colocalization between protein and disease GWAS traits across the

genome. E The number of colocalized proteins (posterior probability > 0.7). Colors
indicate categories of associations. Pink indicates higher protein abundance and
increased risk, while green signifies the opposite. F Protein-disease network. The
number of proteins (squares) and diseases (circles) with at least one connection are
included. Effect directions are indicated by the line type (solid = higher protein
abundance, increased risk, dashed = higher protein abundance, reduced risk).
G Enrichment results of Reactome pathways for pGenes in each disease type, color-
coded by log10(P). H pGene-Drug interaction pairs for 42 diseases based on the
DGIdb database (https://www.dgidb.org/). I An example of the pGenes-Drug in
hypertension. Thewidth of the line between each gene and drug class indicates the
number of interactions.
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(Supplementary Data 14 and 15, and Supplementary Fig. 7). Notably,
among the protein-disease associations not replicated in the healthy
cohort, some proteins exhibited genetic effects exclusively under
pathological conditions, representing promising therapeutic targets.
For example, bridging integrator 2 (BIN2) is associated with an
increased risk of hypertension (OR = 1.29, 95% CI = 1.14–1.46), a finding
that aligns with its function in regulating platelet calcium signaling via

theSTIM1-IP3R axis andmodulating a thrombo-inflammatory response
which contributes to vascular dysfunction19. Collectively, the above
results indicate that the MR of disease samples can serve as a supple-
ment to the healthy cohort in terms of identifying plausible drug tar-
gets for risk mitigation and disease treatment.

To establish robust causal associations between proteins and
diseases, we integrated evidence from association analysis and MR.
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Consequently, 110 disease-protein associations were supported by
both analyzes and considered highly confident, ranging from 1 for
cerebral stroke (CS), colorectal cancer, Depression, heart failure (HF),
liver and rheumatoid arthritis (RA) to 23 for T2D (Fig. 5D, and Sup-
plementary Data 16). Notably, these findings underscore several well-
established associations between proteins and diseases, which are
corroborated by additional lines of evidence. For example, our dis-
covery associating elevated plasma lipoprotein(a) [Lp(a)], a key target
in current cardiovascular disease (CVD) drug research, with an
increased risk of seven CVDs (including MACE, CHD, AAA, CS, atrial
fibrillation (AF), and PAD) suggests that elevated Lp(a) is a significant
risk factor for CVD (Fig. 5D and Supplementary Data 16).Moreover, we
found that elevated plasma protein convertase subtilisin/kexin type 9
(PCSK9) levels are associated with an increased risk of DOLM, MACE,
and PAD, which aligns with the known therapeutic benefits of PCSK9
inhibitors (e.g., alirocumab, evolocumab) in hypercholesterolemia and
CVD. This highlights theusefulnessof this set of robustprotein-disease
associations in terms of disease etiology and drug discovery. Addi-
tionally, within this set of robust protein-disease associations, apart
from those proteins currently under development as therapeutic tar-
gets, there exist other proteins supported by compelling experimental
evidence that could emerge as promising drug targets. Our integrated
analysis implicates secretoglobin 1A1 (SCGB1A1) (Fig. 5C, and Supple-
mentary Data 16), a serum biomarker for obstructive lung diseases, in
asthma susceptibility (OR =0.95, 95% CI = [0.92–0.98]; HR =0.88, 95%
CI = [0.84–0.94]), and this directionality of effect between SCGB1A1
and asthma was recently supported by the experimental demonstra-
tion that lack of SCGB1A1 in the lung results in dramatically altered
pulmonary function and structural alterations consistent with
enhanced remodeling20. Separately, among proteins withMRevidence
of association with T2D (Fig. 5C, and Supplementary Data 16), elevated
plasma angiotensin-converting enzyme (ACE) levels were associated
with an increased risk of T2D (OR = 1.07, 95% CI = 1.04–1.10; HR = 1.10,
95% CI = 1.06–1.15). This finding supports the potential repurposing of
anti-hypertensive ACE inhibitors for T2D treatment21. Collectively,
these findings highlight the broader utility of this dataset in uncover-
ing disease etiology and accelerating the development of potential
therapeutic targets.

Integration of plasma proteins with polygenic scores derived
from pQTLs facilitates disease risk stratification
Given that pQTLs and robust causal proteins are closely related to the
occurrence of diseases, we aimed to translate these findings into
clinical applications by developing the PRS and ProRS. The PRS was
constructed using pQTLs identified across various diseases, while the
ProRS was derived from proteins robustly associated with disease
causation.

Initially, we used logistic regression to assess the relationship
between PRS, ProRS, their combination, and disease risk. The pQTLs-
based PRS effectively stratifies the high-risk population for 12 diseases,
including skin cancer, DOLM, venous thrombosis (VT) and asthma. The
odds ratios (ORs) observed among individuals in the top quintile
ranging from 1.13 (MACE) to 1.56 (colorectal cancer) compared to the
bottom quintile (Fig. 6A, Supplementary Fig. 8, and Supplementary
Data 17). ProRS, derived from robust causal proteins, demonstrates
significant efficacy across 21 diseases with ORs ranging from 1.22 (HF)

to 25.33 (T2D) (Fig. 6A, Supplementary Fig. 8, and Supplementary
Data 17). By integrating PRS and ProRS into the PRS+ProRS model, we
observed a similar yet enhanced stratification effect for 21 diseases
compared to ProRS, with ORs ranging from 1.27 (HF) to 25.85 (T2D)
(Fig. 6A, Supplementary Fig. 8, and Supplementary Data 17). In con-
clusion, both the pQTL-based PRS and the ProRS derived from robust
causal proteins prove to be valuable in stratifying diseases risk.

Next, we assessed the predictive efficacy of PRS and ProRS in
diverse UKB cohorts representing corresponding diseases. We
incorporated PRS, ProRS, and their combination with basic clinical
factors (age and sex) into Cox proportional hazard models
to develop prediction models for 21 disease endpoints. Harrell’s
C-indexes, employed for evaluating model accuracy, demonstrate
enhanced predictive capability when incorporating PRS and ProRS
into the basicmodel (Age+Sex) (Fig. 6B, and Supplementary Data 18).
The ProRS model demonstrated superior performance to the PRS.
Furthermore, the combined PRS+ProRS model achieved comparable
or slightly better performance than the ProRS alone, with an
improvement of 0.17 observed in T2D (Fig. 6B, and Supplementary
Data 18). These findings underscore the substantial potential of
genetic and proteomic data in disease prediction and highlight the
value of integrated models for precise risk assessment and man-
agement strategies.

Although the amalgamation of PRS with ProRS exhibited com-
mendable efficacy in distinguishing at-risk populations, these results
were not enough to advocate for their clinical application. To enhance
the clinical interpretability of the statistics, we conducted a thorough
analysis using decision curve analysis (DCA). Impressively, we
observed that the incorporation of both PRS and ProRS into the basic
model significantly enhances its clinical utility, with the joint model
showing the highest clinical utility across most diseases (Fig. 6C, and
Supplementary Fig. 9). Altogether, these results highlight the clinical
value of combining plasmaproteins with polygenic scores frompQTLs
in identifying high-risk populations.

An open-access database of pQTL-Atlas
We have developed “pQTL-Atlas”, a user-friendly data portal (http://
pqtl.whu.edu.cn), designed to facilitate the visualization, retrieval, and
exploration of our findings for the biomedical research community
(Fig. 7). The pQTL-Atlas platform comprises six primary modules:
pQTLs, Survival-pQTLs, GWAS-pQTLs, Risk protein by cohort study,
Causal protein by MR, and Drug target (Fig. 7A). Users can perform
queries by selecting the disease type, protein, pQTL type, or by
entering the single nucleotide polymorphism (SNP) ID of interest
(Fig. 7B). In the Risk protein by cohort study and Causal protein byMR
modules, users can identify risk or causal proteins associated with
diseases by selecting a disease type or specific protein. The Drug
Target module allows users to identify drug-gene pairs for diseases by
selecting a disease type. The search results for each module are pre-
sented in a table that lists related information (Fig. 7C, D). Users can
generate a box plot in the pQTLs module (Fig. 7E) or a Kaplan–Meier
plot in the Survival-pQTLs module (Fig. 7F) by clicking the “Plot”
button for each result item. Our database serves as a valuable resource
for advancing the understanding of disease mechanisms, discovering
protein biomarkers and prioritizing innovative drug targets, which is
poised to significantly benefit the research community.

Fig. 4 | Differences and similarities in pQTL regulatory effects between health
and disease states. A Bar and Scatter charts show the number and percentage of
disease-related pQTL associations. B Comparison of absolute effect sizes of the
disease-related pQTL associations (left), disease biased and non-disease associa-
tions (right). The center line of the box presents as the median, the box limits
indicate upper and lower quartiles and whiskers indicate the maximum and
minimum. ***P <0.001 was calculated by a two-sided Mann-Whitney U test.
C Genomic distribution of disease-specific (left), disease biased and non-disease

(middle) pQTLs, alongside enrichment analysis comparing the two. Results were
calculated using the two-tailed Fisher’s exact test. D Sankey plot displays the
clustering results of 27 diseases based on pQTL analysis. From left to right, the
figure shows the disease names, their conventional clinical classifications, and the
corresponding clustering outcomes. E The results of Gene Ontology (GO) biolo-
gical process (BP) enrichment proteins associated with the trans hotspot region
chr8_77.FThe results of GeneOntology (GO) biological process (BP) enrichment of
proteins related to cluster 7.
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Discussion
Proteins play central roles in the vast majority of pathophysiological
processes, bridging the gapbetween the genome andphenome. In this
study, we present a characterization of regulatory genetic variants
across plasma proteins in the human diseases. In total, we character-
ized 25,987 independent pQTL association pairs in 2901 plasma pro-
teins across healthy and 42 diseases, in which 73.11% of primary

associations were replicated, underscoring the reliability and sig-
nificance of our findings as a valuable addition to existing resources.
Building upon large-scale pQTL studies like the UK Biobank Pharma
Proteomics Project (UKB-PPP) that characterized protein regulatory
architecture in the general population,we conducteddisease-stratified
pQTL analysis to uncover disease-related regulatory mechanisms
potentially masked in mixed population data. Using LME models, we
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dived deeper into the impact of disease status on the genetic regula-
tion of plasma protein levels. This analysis identified 1806 disease-
related pQTL associations and 7924 associations biased to particular
diseases. Beyond identifying associations distinct to disease versus
health states, we further explored differences and similarities across
diseases, revealing 2832 pQTL associations with cross-disease dis-
cordance. These findings highlight distinct genetic etiologies and
suggest potential treatment strategies. Additionally, by clustering
diseases based on their pQTL profiles, we re-examined disease
boundaries, leveraging disease convergence to reflect shared biologi-
cal properties. These results provide a comprehensive view of how
genetic variants are linked to plasma protein levels in specific disease
contexts and suggest the broader utility of this dataset in elucidating
disease mechanisms. Through functional annotation and colocaliza-
tion,we illustrate the underlyingmechanismbywhich pQTLs influence
protein abundance and contribute to disease. In addition, through
amalgamating the pGenes with pharmacological information, a med-
ian of 580 drugs interacting with pGenes for each disease were iden-
tified, thus providing promising therapeutic targets and extended
applications for existing drugs. Critically, the capacity for disease and
prediction models based on integrating pQTL-PRS and causal ProRS
showcased markedly superior or comparable performance compared
with established demographic variables across 21 disease endpoints.
Our findings are publicly available, which we expectwill help guide the
development of future clinical diagnosis, prediction, and intervention
strategies (Supplementary Fig. 10).

Protein expression regulation is influenced not only by genetic
factors but also significantly by disease states. We identified 1806
disease-related pQTL associations, implying that the regulatory roles
of the sameprotein can differmarkedly depending ondisease context.
For instance, a MACE-associated pQTL, rs77779567, exhibits a sig-
nificantly enhanced regulatory effect on plasma CDCP1 levels in
hypertensive patients compared to healthy individuals. Previous stu-
dies suggest CDCP1 may modulate cardiac fibrosis and influence sST2
expression, a well-established prognostic biomarker for heart failure,
thereby contributing to adverse cardiac remodeling and worse cardi-
ovascular outcomes14. Similarly, rs4592657 regulates plasma CDH15
expression, with significantly stronger effects in MACE patients (more
than double that in healthy individuals). These findings illustrate how
human diseases substantially modify the regulatory impact of genetic
variations on protein expression and underscore the importance of
disease-associated pQTLs in providing unique insights into disease
etiology and mechanisms.

Further investigation of cross-disease differences and similarities
can reveal distinct genetic etiologies and shared treatment strategies,
advancing precision medicine more effectively. We identified 2832
pQTL associations exhibiting significant cross-disease discordance,
highlighting genetic disparities and treatment implications across
conditions. Asthma and rhinitis, common respiratory diseases sharing
etiological and pathogenic similarities, exemplify this. Notably,
rs62217915-KIT and rs8105105-SIGLEC6 exert stronger effects in
asthma than in rhinitis, underscoring the critical role of mast cell
regulation specifically in asthma22. This finding aligns with the
observed therapeutic efficacy of the KIT inhibitor like imatinib in

asthma but not rhinitis17. Such discordant pQTLs provide a precise
roadmap for developing disease-specific targeted therapies and
genetic risk stratification. Furthermore, traditional disease classifica-
tion, often based on clinical symptoms and phenotypic traits, may
overlook shared molecular etiology. By clustering diseases based on
pQTL profiles, we can redefine disorder boundaries by anchoring the
convergence of diseases in their shared biological properties. Linking
biologically related diseases could explain the co-occurrence of see-
mingly unrelated symptoms and enhance mechanistic understanding
and therapeutic development.

Additionally, joint analyzes of pQTLs anddisease risk loci facilitate
to overcome the bottleneck in the translation of GWAS findings into
biological and possibly clinical insights23. The significant enrichment of
pQTLs within GWAS risk loci, as demonstrated by our study and
othersʼ6,8,24–26, underscores the valuable utility of pQTLs in prioritizing
candidate causal genes for diseases and traits. Notably, the pQTL
mapping approach successfully identified plenty of biologically plau-
sible candidate genes that were not implicated by other QTL mapping
methods. For example, AHSG for osteoporosis, DUSP13 for atrial
fibrillation, SERPING1 for gastro-oesophageal reflux disease and so on.
As the pQTLs provide hints of mechanisms and a considerable pro-
portion are deemed functional, they may contribute to elucidating
some ‘missing heritability’ of complex diseases.

One of the principal challenges in observational studies investi-
gating disease-associated proteins is identifying the causal proteins
that can motivate therapeutic target discovery. To achieve this, we
enable the identification of robust and high-confidence causal proteins
associated with diseases through the integrated analysis of both
effectivemethods for causal inference, cohort study andMR27,28, which
offers a data-driven approach to drug discovery using population-level
data. To estimate the effect of plasma protein levels unconfounded by
disease status, we performedMR analysis using only samples from the
healthy cohort. This robust set of protein-disease associations partially
overlapped with established target-indication pairs in drug databases
(e.g., LPA for CVDs and PCSK9 for DOLM, MACE, PAD), corroborating
the principle that genetically supported targets enhance drug devel-
opment success29. Furthermore, the identificationof risk factors across
disease categories presents opportunities for drug repurposing. For
instance, MR evidence linking T2D to ACE supports the potential
repurposing of anti-hypertensive ACE inhibitors for T2D treatment30.
Beyond validating repurposing potential for known targets, our find-
ings also revealed therapeutic candidates (e.g., SCGB1A1 for asthma),
offering direction for future drug development.

Crucially, the study of both health and disease samples is com-
plementary in terms of identifying plausible drug targets for risk
mitigation and disease treatment. As previous studies suggest, genetic
variations may exert effects only in pathological contexts, where risk
alleles act as an “Achilles” heel’ and accelerate disease progression31.
MR results from the disease population were broadly consistent with
those from the healthy cohort. Additionally, the genetic effects on
some proteins are only detectable under pathological conditions,
representing promising therapeutic targets. For example, we observed
an association between hypertension and BIN2, a protein known to
regulate platelet calcium signaling via the STIM1-IP3R axis and

Fig. 5 | Identificationofproteindrivers ofdifferent diseases.A,B Protein-disease
associations based on cohort study, using protein levels as exposure and disease
onset as outcome. FDR<0.05 was considered significant, taking into account the
testing of 32 disease types tested for each protein. A Scatter plot shows the
-log10(FDR) calculated from Cox models. Colors indicate disease types and num-
bers on top indicate number of significantly associated proteins (FDR <0.05). Grey
dots indicate associations not reaching significance. Positive associations are dis-
played in the upper panel and inverse associations in the lower. B Brick plot dis-
plays the ranking of proteins based on the number of associated incident
endpoints, showing both positive associations (top) and inverse associations

(bottom). Colors represent disease types, and proteins with multiple associations
are annotated. C Causal proteins associated with 33 diseases identified by MR,
includingmultiple proteins that are already targeted with drugs ormarked as high-
confident (annotated). Each colored block corresponds to a disease type, and each
radius represents a protein. The height indicates OR, with red indicating hazardous
effects and green indicating protective effects.DBar charts illustrate the numberof
proteins associated with each disease. Left: Protein-disease associations evaluated
by coxmodels; Right: Causal relationship identified byMR. The intersection reveals
high-confidence proteins, both achieving FDR <0.05.
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Fig. 6 | Integration of Polygenic Risk Scores (PRS) and Proteomic Risk Scores
(ProRS) to predict the onset of multiple diseases. A ORs for each quintile of
the three risk scores (PRS, ProRS and PRS + ProRS), calculated via logistic regres-
sion analysis. Error bars indicate 95% CI. B Forest plots illustrate the Harrell’s
C-index for predictivemodels includingAge+Sex,Age+Sex+PRS,or Age+Sex+ProRS
and Age+Sex+PRS+ProRS. Models were constructed using Cox proportional

hazards regression, with normalization of each risk score. Error bars indicate 95%
CI. C Decision curves for different groups: the four aforementioned predictive
models (Age+Sex, Age+Sex+PRS, Age+Sex+ProRS, Age+Sex+PRS+ProRS), and the
two reference lines (“Treat All” in black, “Treat None” in gray). There are exempli-
fied with four diseases (skin cancer, DOLM, T2D, asthma), and other diseases are
provided in the supplementary materials.
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query return table of the ‘pQTLs’module. D Examples of query return tables from
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hazards regression) visualizing one survival associated pQTLs.
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modulate the thrombo-inflammatory response19. As this response
contributes to vascular dysfunction in hypertension, BIN2 represents a
promising target for future drug development. Collectively, these
robust associations offer valuable insights into disease mechanisms
and therapeutic target identification.

Additionally, our multi-disease profiling also suggests that inte-
grating plasma proteomics with genomics holds promising predictive
capabilities across a spectrum of diseases. There is compelling evi-
dence that PRS complement conventional risk prediction, particularly
in White populations, given the availability of extensive genotyped
individual datasets32,33. Proteins not only mediate the phenotypic
effects of genomic sequence diversity and various environmental
factors but also reflect ongoing biological processes. Consequently,
ProRS derived from large-scale proteomics data could, to a certain
extent, supplement information regarding health status and disease
risk, playing a significant role in disease prediction34–36. While geno-
mics (PRS) and proteomics (ProRS) individually provide predictive
efficacy34–36, our study establishes that the integrated model performs
better than or comparably to those based on ProRS, PRS, or age and
sex alone. This enhanced performance underscores its greater
potential for clinical application. Furthermore, we highlight the
potential for real-world application by harnessing the power of both
proteomics and genomics. The integration of proteomic and genomic
data, obtainable from a single blood draw, demonstrates significant
potential for real-world clinical utility. This approach can enhance
diagnostic support and refine multi-disease risk assessment. Even
modest gains in predictive accuracy enable earlier intervention and
improved patient stratification, thereby improving overall health out-
comes and healthcare efficiency.

However, we also acknowledge several limitations that merit dis-
cussion. Firstly, in current plasma proteomic profiling, definitively
determining whether detected proteins originate solely from their
soluble forms or include contributions from cellular membranes
remains challenging. This complexity further complicates the inter-
pretation of effect directions in MR analyzes. In our study, we further
corrected the effect direction using results from a cohort study.
However, future research should consider employing powerful tech-
niques such as flow cytometry to investigate genetic determinants of
cell surface protein expression. These additional insights will enhance
the interpretation of plasma pQTL studies. Secondly, for diseases with
smaller cohorts, reduced statistical power may limit pQTL detection
and preclude downstream analyzes such as causal inference and pre-
diction model validation. Therefore, increasing cohort sizes in future
studies will be essential for more comprehensive and statistically
robust analyzes across a broader spectrum of diseases. Additionally,
while validation is crucial in proteomics and disease prediction
research, replication in other large prospective studies is currently not
feasible due to the lack of comparable large-scale proteomic resources
covering as many outcomes as our study. Lastly, we did not adjust for
medication use in pQTL analyzes. This factor should be considered in
future studies when precise medication timing and protein measure-
ment data become available in UKB.

In summary, by integrating genetic with plasma proteomic data
from healthy and disease-affected individuals, we conducted sys-
tematic proteogenomic analyzes that investigated cross-disease and
health-state differences. This work provides a comprehensive under-
standing of the genetic architecture of plasma proteins and nominates
putatively causal proteins for disease risk. These findings further
enable precise risk prediction and offer insights that bridge target
discovery and therapeutic development. Moving forward, this open-
access proteogenomics atlas will serve as an invaluable resource,
facilitating a deeper understanding of disease pathogenesis, enabling
the interpretation of future GWAS findings, and promoting the effec-
tive development of biomarkers, predictive models, and therapeutic
targets.

Methods
Ethics
The study design and conduct complied with all relevant regulations
regarding the use of human study participants and was conducted in
accordance with the criteria set by the Declaration of Helsinki. Ethics
approval was granted by the North West Multi-Centre Research Ethics
Committee. All participants provided informed consent via electronic
signatures. Our research was carried out under UKB application
number 94939.

Study design
The study mainly consisted of five steps (Supplementary Fig. 10): (1) a
comprehensive genome-proteome-wide pQTL analysis of 2901 circu-
lating proteins in 35,690 participants (7626 healthy individuals and
28,064patients across42diseases); (2) functional annotationof pQTLs
to elucidate their mechanisms of action on protein abundance; (3) a
comparison of pQTL regulatory patterns between healthy and dis-
eased states; (4) identification of high-confidence causal proteins for
specific diseases by integrating cohort studies with MR; and (5)
development of disease risk prediction models by integrating pQTL-
derived PRS and causal-ProRS.

Data source
The UKB is a large-scale prospective cohort study that enlisted over
500,000 participants aged 37–73 years, who visited one of 22 assess-
ment centers between 2006 and 2010. Participants completed an
online questionnaire including questions about demographic char-
acteristics (for example, age, sex, ethnicity), anthropometry (height,
weight), lifestyle (for example, alcohol and smoke) and diet. Partici-
pants’ follow-up began at their initial visits to the UKB assessment
centers (baseline), coincidingwith the collection of blood samples and
other clinical data. Follow-up was censored either upon disease diag-
nosis or at the last available date from hospital or general practitioner
records, whichever came first (censored time).

Definition of cases in pQTL study
This study included 43 disease types at baseline, encompassing 42 spe-
cific diseases across 9 disease categories, as well as a healthy group.
These disease cases were identified and categorized based on the ICD-10
codes (Supplementary Data 1), and were extracted from the first occur-
rence data (UKB categories 1712) and cancer diagnoses (UKB categories
40005-40006)34,37. The first occurrence data (October 2023 update)
were derived from primary care records (category 3000), hospital
inpatient records (category 2000), self-reported medical conditions
(UKB field 20002), and death register records (fields 40001 and 40002).

The pQTL study only included prevalent cases, i.e., cases whose
event date preceded the enrollment date. Participants without con-
firmed records in the database at baseline and within 6 months of
follow-up for the 42 diseases and medications were included in the
healthy population for pQTL analysis. The exclusion criteria for each
disease were determined based on diagnoses extracted from self-
reported clinical records.

Blood proteomics
The UKB-PPP consortium undertook proteomic profiling of blood
plasma samples. These samples, collected from 54,219 UKB partici-
pants, were analyzed using the Olink™ Explore 3072 Proximity Exten-
sion Assay. This assay measures 2941 protein analytes, capturing 2923
unique proteins8. Proteins were measured across eight panels, which
included cardiometabolic, cardiometabolic II, inflammation, inflam-
mation II, neurology, neurology II, oncology, and oncology II proteins.
Further details on sample selection, processing, and quality control
information for the Olink assay can be found in previous
publications8,38. Supplementary Data 2 provides a list of all proteins
used in this study.
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Genotyping and imputation
The UKB genotyping protocol, imputation and quality control have
been described previously in detail39. In summary, UKB participants
underwent genotyping using two similar arrays, the UKB Axiom array
and the UK BiLEVE Axiom Array. Phasing was accomplished utilizing
SHAPEIT3 in conjunction with the 1000 Genomes Project, while
imputation was carried out with IMPUTE4 using the Haplotype Refer-
ence Consortium as the primary reference panel. We applied addi-
tional quality control procedures for each pQTL calculation: (1)
genotypemissing rate in the sample of less than0.1; (2)MAF > 0.05; (3)
SNP missing rate less than 0.05; (4) Hardy–Weinberg Equilibrium
balance test P > 5 × 10−6. Quality control procedures were executed
using PLINK (version 1.90) separately for each disease, resulting in an
average of 6,107,244 SNPs per disease type remaining for analysis
(Supplementary Fig. 1 and Supplementary Data 3).

Identification of pQTLs
We excluded participants with over 20% missing protein data or with
official withdrawal status from the UKB. Proteins with a missing rate
exceeding 10% were also excluded. The protein data used in our ana-
lysis were subjected to a rank-based inverse normal transformation
method to alleviate the influence of outlier protein values. The final
analytical cohort comprised 35,690 participants following exclusions
for low-quality proteomic data, low-quality genetic data, missing cov-
ariate data, or official withdrawal from UKB. Supplementary Data 3
provides sample size for each disease. Protein quality control was
conducted separately for each disease, resulting in the inclusion of
2895 to 2902 proteins, with an average of 2901 proteins analyzed
(Supplementary Data 3). We adopted a generalized linear regression
model MatrixEQTL in the genome-wide association study of the 2902
proteins across these 42 diseases and the healthy population. To
control potential confounding factors, we adjusted for clinical status
(age, sex), population structures (principal components, PC), and
protein measurement variables (batch and time fasted at blood col-
lection). PC of genetic ancestry were calculated using PLINK (version
1.90) on the imputed genetic dataset per disease type and we adjusted
for the top tenPC inanalysis. For the pQTLs found ineachdisease type,
SNPs reaching the Bonferroni-corrected threshold of P < 1.72 × 10−11

(5 × 10−8 adjusted for 2901 unique proteins) were defined as pQTLs8.
Figure 1A presents the pQTL study design and workflow. Cis-pQTLs
were defined as a signal within 500 kb upstream or downstream of the
protein-encoding gene, and all other signals were defined as trans-
pQTLs, consistent with most previous studies7,25,40. A protein was
classified as a pQTL-regulated protein (pProtein) for a specific disease
if at least one significant pQTLwas identified for thatproteinwithin the
disease context.

Definition of pQTL regions
We defined a protein quantitative trait locus (pQTL) as a genetic locus
significantly associated with protein abundance (P < 1.72 × 10−11). For
each protein within every disease type, we: (1) collected all significant
genetic variants and expanded region of ±500 kb around each variant,
(2) iteratively merged overlapping regions until no overlap remained,
and (3) designated themost significant variant in each resulting region
as the sentinel variant. This window-merge procedure was imple-
mented using BEDtools v.2.27.0. In addition, we treated the extended
major histocompatibility complex (MHC) region (chr6: 25.5–34.0Mb)
as a single region.

To determine whether such a region were associated with multi-
ple plasmaproteins, we adopted the “LD-based clumping approach”by
Sun et al.6. Regional sentinel variants in high LD (r2 >0.8) with each
other were combined together into a single region. Finally, we
obtained 2224 independent regions across 43 disease types (Supple-
mentary Data 4).

Comparison with reported pQTLs
To evaluate whether the independent pQTL associations were pre-
viously undescribed, we interrogated previous studies. The literature
screening applied three criteria: (1) inclusion of studies profiling
plasma/serum samples; (2) inclusion of associations reported in
European-ancestry populations; and (3) exclusion of studies not
assessing proteins. Throughmanual review of records published since
2018, we included 23 studies and documented their key character-
istics, including detection method, sample size, number of proteins,
and number of pQTLs, in Supplementary Data 5. We then manually
extracted all reported association summaries (rsID, UniProt ID, P value,
and cis/trans designation) from the main texts and supplementary
materials. For each region, we contrasted our independent results with
primary pQTL associations from previous studies, which were con-
sidered replicated when LD r2 ≥ 0.17.

Identification of survival-associated pQTLs
Survival-associated pQTLs were identified using the “survival” R
package within the UKB population. Patients for each disease were
selected based on identical ICD-10 codes for survival analysis. Criteria
included removing participants with missing data (age, sex, genetics)
and excluding individuals who opted out of the program. The MHC
region (chr6:25.5–34.0Mb) was excluded. The outcome was the
observed occurrence of death from the disease. After individual-level
quality control, 218,570 patients from 36 diseases remained for ana-
lysis (the seven diseases: PA, cataracts, glaucoma, depression, rhinitis,
and gout were not observed in the mortality records) (Supplementary
Table 3). Disease survival follow-up timewas calculated fromdiagnosis
to death or the last follow-up. Survival pQTLs were defined as those
with a survival analysis result of P <0.05 and a pQTL result of
P < 1.72 × 1011 (Detailed results can be accessed online).

Enrichment analyses of pQTLs in regulatory elements
For comparative analysis, we generated matched non-pQTLs for each
disease type by randomly selecting genomic variants using vSampler
(http://www.mulinlab.org/vsampler/) based on the 1000 Genomes
Project Phase 3 (1000G P3). These non-pQTLs were matched to the
pQTLs based on the number of LD-associated variants, MAF, and var-
iant type (Supplementary Table 2). All independent pQTLs and control
variants were annotated using the SnpEff software41. Enrichment ana-
lyzes of pQTLs among each position region using a two-tailed Fisher’s
exact test, with the following 2 × 2 table: columns; pQTLs and non-
pQTLs, and rows; pQTLs within and not within the annotated region.

The functional file of histone modifications, including H3K4me1,
H3K4me2, H3K4me3, H3K9ac, H3K27ac, H3K27me3, as well as tran-
scription factor (TF) binding sites was downloaded from the ENCODE
portal (https://www.encodeproject.org). BEDtools v.2.27.0was used to
find instances of SNPs overlapped with the peaks of regulatory ele-
ments. Enrichment analyzes of pQTLs within regulatory elements
using a two-tailed Fisher’s exact test, with the following 2 × 2 table:
columns; pQTLs and non-pQTLs, rows; pQTLs within and not within
the regulatory element.

Variance explained
We estimated the variance explained by pQTLs for plasma levels of
eachproteinwith at least one associated pQTL. Themodels were fitted
using three distinct genetic instrument sets: (1) the cis-pQTL, (2) trans-
pQTLs, and (3) all pQTLs, with the respective model R² providing the
estimate of explained variance.

Classification of pQTLs
Independent pQTL associations were classified following Pietzner
et al.7. For each protein, Gene Ontology (GO) biological process terms
were obtained from UniProt using all corresponding UniProt
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accessions. pQTLs were classified into three categories: (1) Specific-
protein: associated with only one protein; (2) Specific-pathway: all
associated proteins share a common GO term; (3) Non-specific: either
no GO term encompasses all associated proteins, or at least one pro-
tein lacks GO annotation. This categorization was conducted inde-
pendently for each disease context.

The eQTL-pQTL colocalization analysis
We performed pairwise statistical colocalization analyzes of cis-pQTLs
with cognate cis-eQTL data from PancanQTL database42, GTEx v.843

(https://www.gtexportal.org/) and eQTLGen Consortium44 (https://
www.eqtlgen.org/cis-eqtls.html). For each plasma protein sentinel cis-
pQTL, we extracted results from its surrounding ±500 kb region and
obtained the same genomic window from cis-eQTL data associated
with the relevant tissue for the corresponding disease.

To perform the colocalization analysis, we utilized the coloc R
package45. The package provides posterior probabilities (PP) that
indicate the likelihood of various scenarios: PP0 (genetic locus not
associated with either plasma protein or mRNA), PP1 (associated with
protein abundance but not mRNA expression), PP2 (associated with
mRNA only), PP3 (associated with both protein and mRNA, but with
different causal variants), and PP4 (both protein and mRNA share a
common causal variant). We considered PP4 > 0.7 as strong evidence
of colocalization between cis-pQTLs and cis-eQTLs.

The sQTL-pQTL colocalization analysis
We performed pairwise statistical colocalization analyzes of cis-pQTLs
identified in our study, comparing them with cognate cis-sQTL data in
corresponding tumor tissues in TCGA from CancerSplicingQTL
database46 (http://www.cancersplicingqtl-hust.com/) and disease-
related tissues from GTEx v.843 (https://www.gtexportal.org/). The
next steps aligned with the eQTL-pQTL colocalization analysis.

The pQTL-disease GWAS colocalization analysis
We explored evidence of shared genetic associations between variants
that directly impact protein expression levels and diseases using the
Coloc software package implemented in R45. Subsequently, we per-
formed pairwise colocalization analyzes between cis-pQTLs and dis-
easeGWAS signals, applying default priors.We considered PP4 greater
than 0.7 as indicative of shared genetic associations. The download of
42 GWAS summary statistics followed the procedure outlined in the
MR section.

GWAS enrichment analyses
We obtained the GWAS summary statistics for each disease from
OpenGWAS (https://gwas.mrcieu.ac.uk/datasets) and the GWAS catalog
(https://www.ebi.ac.uk/gwas/downloads) (Supplementary Data 10), as
detailed in the MR section. And selected SNPs that achieved genome-
wide significance (P< 5× 10⁻⁸) for subsequent enrichment analyzes.
Enrichment analyzes of pQTLs among disease-related GWAS variants
were performed by two-tailed Fisher’s exact test (with the 2 × 2 table
(columns; pQTLs and non-pQTLs, rows; variants within and not within
the GWAS variants). Then, to estimate the impact of pQTLs on disease
heritability, we adopted Linkage Disequilibrium Score Regression
(LDSC) using above summary.

Pathway enrichment analysis
For each disease, we performed enrichment analyzes for Gene Ontol-
ogy (GO) biological process terms and Reactome pathways using the
pQTL-associated proteins, with the set of genes encoding the Olink
panel proteins serving as the background. The ClusterProfiler R
package (v4.10.0)47 was employed to uncover over-represented bio-
logical processes based on the GO database. Then, Reactome pathway
enrichment analysis was performed using the ReactomePA R package
(v1.47.0)48.

Drug-gene interaction analysis
To identify potential drug targets that could be repurposed for disease
treatment, we searched for target genes in the DGIdb database
(https://www.dgidb.org/), which provides information on drug-gene
interactions and druggable genes from various sources, including
publications and databases. Medications were categorized using the
Anatomical TherapeuticChemical classification system, retrieved from
the Kyoto Encyclopedia of Genes and Genomics (KEGG) drug section
(https://www.genome.jp/kegg/drug/).

Assessment of disease status on independent pQTLs
As themethodmentioned inprevious studies49,50, we re-evaluated each
pGene associated with the identified independent pQTLs using LME
models within a combined cohort of both disease cases and healthy
controls. We first fitted a null model (M0) in which protein levels were
regressed age, sex, genetic principal components, batch, and sampling
time, against a genotype-includingmodel (M1). Associations whereM1
outperformedM0were considered supported.We further assessed an
interaction model (M2) by including an interaction term between
disease diagnosis (D) and genotype (G). A likelihood ratio test (LRT)
was used to compare the M2 vs M1models. A significant LRT result (q-
value < 0.05) indicated that the more complex model provided a bet-
ter fit for the SNP-gene association.

Associations of protein levels with disease onset
To investigate the association between plasma protein levels and dis-
ease onset in UKB participants, we standardized protein levels using a
rank-based inverse normal transformation method. Proteins with a
deletion rate over 40% were excluded, resulting in 2905 unique pro-
teins for analysis. Exclusion criteria were applied to each endpoint,
excluding samples with more than 50% missing data or with official
withdrawal status from the UKB. Prevalent cases that occurred before
or during the baseline assessment were excluded, as well as those
recorded within the first 6 months after baseline. We utilized Cox
proportional hazard models, adjusting for sex, age, smoking, drinking
status and bodymass index, to predict disease onset across endpoints
with 250 or more events per protein (Model 1). Finally, analyzes were
conducted for 32 diseases, involving a total of 45,188 participants
(Supplementary Table 5). Statistically significant associations were
reported when FDR was less than 0.05. Additionally, we conducted
sex-specific analyzes for gender-specific diseases (breast cancer for
females and prostate cancer for males), excluding sex as a covariate in
the respective subsets. Sensitivity analyzes were performed by
excluding individuals with disease onset within the first year (Model 2)
and those with medication records to assess protein-disease risk
associations (Model 3). To further assess the influence of comorbidity,
we performed a sensitivity analysis with stringent quality controls
(Model 4). Specifically, for each incident disease, we excluded indivi-
duals diagnosed with any condition from the same disease category
prior to baseline.We also removedparticipants from the control group
who developed an incident disease within the same category. Addi-
tionally, we adjusted for baselinemultimorbidity fromall other disease
categories. Detailed results are available on our online platform.

Mendelian randomization analyses
To identify the proteins with causal roles in disease processes and
potential pharmacological targets, we conducted MR analyzes. We
used proteins with cis-pQTLs identified outside the MHC region
(chr6:25.5-34.0Mb) and that reached genome-wide significance
(P < 5 × 10−8) as exposures.We obtainedGWAS summary statistics from
either OpenGWAS (https://gwas.mrcieu.ac.uk/datasets) or the GWAS
catalog (https://www.ebi.ac.uk/gwas/downloads). When multiple
datasetswere available for a disease, we selected the onewith themost
cases, ensuring it met specific criteria: (1) adequate genotype data
coverage at relevant loci, (2) European ancestry alignment with our
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pQTL study participants, and (3) available or computable effect esti-
mates and standard error values (Supplementary Data 10). Tomitigate
weak instrument bias, we excluded SNPs with an F-statistic below 10.

Two-sample MR analyzes were conducted using the two-sample
MR package (version 0.5.6) in R (version 4.1.0). PLINK (version 1.90)
was employed to select independent variants as instrument variables
(IVs) that reached genome-wide significant (P < 5 × 10−8) for each pro-
tein. LD clumping ensured SNP independence (10MB, r2 <0.001). For
proteins with only one instrument, we used the Wald ratio method to
estimate the log odds change in disease risk for per standard deviation
(SD) increment of plasma protein levels (proxied by instrumental
variables). Proteins with multiple instruments were analyzed using the
IVW method. The IVW method assumes an intercept of 0 in the Men-
delian randomization linear regressionmodel, indicatingnohorizontal
pleiotropy (i.e., SNPs do not simultaneously affect exposure and out-
come). To assess potential pleiotropy impact, we scrutinized it further
using the MR-Egger and MR-PRESSO methods. Additionally, we
implemented other prevalent MR methods (weighted median, weigh-
tedmode, and simplemode) to enhance the robustness of ourfindings
(Supplementary Data 14 and 15).

Definition of proteins with robust causal associations with
diseases
To evaluate the robustness of these associations, we conducted
additional checks by integrating the results from protein-disease
associations with those obtained from MR. Proteins consistently
showing associations in both analyzes were retained as “high-con-
fidence proteins” (Supplementary Data 16).

Polygenic risk score development
PRS were generated using the C+T (clumping + thresholding) method,
based on pQTLs identified for each disease type. These PRS were used
to predict the risk of corresponding diseases in the UKB cohort. Spe-
cifically, we predicted the risk of 21 diseases in the UKB cohort,
including participantswhowere free of the specific disease and related
conditions at baseline. The PRScalculation followed aweightedmodel,
as described below:

PRS=
Xn

i= 1

βiSNPi ð1Þ

in which n means the number of variants, SNPi (0, 1, or 2) means
thenumber of the risk alleles for the ith variant, and βi means the effect
size of the risk alleles. Individuals are then additively scored in a
weighted patten based on the number of risk alleles they carry for each
variant in the PRS.

Protein risk score and composite risk score development
To compute proteomic and other composite risk scores, we adapted
the PRS methodology with few modifications36,51. Specifically, we used
a high-confidence set of proteins associated with each disease to
generate protein risk scores. Coefficients for each protein were
derived from Cox proportional hazards models, adjusted for all other
proteins in the set. These coefficients, representing the multivariable-
adjusted hazard ratio per log-unit increase in protein level, were used
asweights in aweighted sumof the standardized protein levels to yield
an individual protein risk score. Prior to modeling, all continuous
variables were log-transformed and centered and scaled. Protein risk
scores were then computed for all individuals following established
procedures51. Our composite risk score model integrated all high-
confidenceproteins in aCoxmodel, alongwith the additionof the PRS.
This resulted in coefficients for both proteins and PRS, ultimately
generating a composite score using a weighted model.

Disease-risk prediction with different risk scores
Initially, we employed logistic regression analysis to evaluate the rela-
tionship between PRS, ProRS, and composite scores with disease risk.
Each score (PRS, ProRS, or their combination) was used individually to
rank individuals and divide them into equally sized risk subgroups
(quantiles). Subsequently, to assess the predictive efficacy of the risk
scores on disease outcomes, we constructed Coxmodels incorporating
clinical features like gender and age. Four multivariable prediction
models were developedwith different combinations of PRS, ProRS, and
clinical features as follows: Model 1 (clinical features), Model 2 (clinical
features +PRS),Model 3 (clinical features +ProRS), andModel 4 (clinical
features + PRS + ProRS). Survival outcomes were defined using follow-
up time to event and the binary incident event indicator. For all disease
outcomes, prevalent cases were excluded from the dataset before
models were run. Additionally, the predictive performance was vali-
dated using Harrell’s C-index and DCA. These analyzes were conducted
only for the 21 disease types with high-confidence proteins.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All results of pQTL associations, survival-pQTL associations, protein-
disease associations, causal proteins for diseases, and drug target have
beendeposited through an interactive portal (https://pqtl.whu.edu.cn/
pqtls) and are publicly available. Individual-level genetic and Olink
proteomics data from the UKB are available at https://biobank.ndph.
ox.ac.uk/ by application. This research has been conducted using the
UKB Resource under application number 94939. The ICD-10 codes
identified and categorized for the disease cases are listed in Supple-
mentaryData 1. The accession codes for all publicly available cis-eQTL,
cis-sQTL datasets, and GWAS summary datasets are provided in Sup-
plementary Data 8, 9, and 10, respectively. ChIP-seq peaks and TF-
binding sites data were downloaded from the ENCODE portal (https://
www.encodeproject.org). The drug-gene interactions can be found
from the DGIdb database (https://www.dgidb.org/). Source data are
provided with this paper.
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