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Challenges in global climate models to
represent cloud response to aerosols:
insights from volcanic eruptions

Yu Wang 1 , David Neubauer 2, Ying Chen 3, George Jordan 4,
FlorentMalavelle5, Tianle Yuan6,7, Daniel Partridge 8, Paul Field5,9, HaoWang10,
Minghuai Wang 10, Martine Michou11, Pierre Nabat 11, Anton Laakso12,
Gunnar Myhre 13 & Ulrike Lohmann 2

Aerosol-cloud interactions (ACI) remain a major source of climate uncertainty
due to missing large-scale observational constraints. Such a constraint, with
global cloud representativeness, has recently been developed based on the
Holuhraun-2014 volcanic eruption from machine learning with satellite
observations. Here, we confront this large-scale observational constraint
against six diverse global climatemodels to advance our understanding of ACI
simulation uncertainty. We show that marine liquid cloud optical depth
responses to aerosols are reasonably well simulated, although through com-
pensating errors. However, all models largely underestimate cloud cover
responses to aerosols, with five of them outside the 90% confidence level. This
persistent bias remains despite tuning five distinct cloud schemes and testing
various key cloud processes. Such bias in cloud cover response is a major
driver of simulation uncertainty in ACI cooling and needs to be addressed
urgently to improve climate projections and estimations of climate sensitivity.

The global mean near-surface temperature in 2024 was a record
breaking +1.55 °C above pre-industrial levels, according to WMO,
temporarily overshooting the +1.5 °C threshold. Under current emis-
sion trajectories, a warming well above +2 °C is expected by 2100,
driving devastatinghazards1,2. Accurate climateprojections are needed
to guide policymaking for decarbonisation strategies and climate
interventions tominimise losses from subsequent climate andweather
extremes1,2.

A series of Intergovernmental Panel on Climate Change (IPCC)
reports has identified large uncertainties in climate assessments1,2. One
major source of uncertainty is aerosols, tiny particles suspended in the

atmosphere, and their impacts on clouds1,2. Modern-day global
observations (e.g., satellite, aircraft, in-situ) have improved constrain-
ing simulations of aerosol and cloud in terms of the present-day cli-
mate (e.g., refs. 3,4). However, how clouds respond to aerosol
perturbations (usually quantified as the susceptibility of cloud prop-
erties to changes in aerosol, “dlnCloud/dlnAerosol”) is still poorly
constrained5–7. Cloud susceptibility is critical for climate projections,
since “Future clouds =Current cloud state + Exp(dlnCloud/dlnAer-
osol ×ΔlnAerosol) + Feedback of clouds to climate change”. The long-
standing challenge for constraining cloud susceptibility is the lack of
large-scale observational constraints to calibrate global climate
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models (GCMs), leaving discrepancies of more than a factor of 10 that
have existed for decades amongst GCMs8. These large discrepancies in
cloud susceptibility can propagate significant uncertainties in climate
projections across future scenarios, even with similar current states of
clouds and aerosols. Therefore, constraining cloud processes and
susceptibility is critical for reducing climate uncertainty5,8,9.

Aerosols can influence cloud formation by serving as cloud con-
densation nuclei (CCN) and ice-nucleating particles1. In this study, we
focus on marine warm clouds given that their net effect on radiative
forcing is the largest and their likeliness to be perturbed by human
emissions due to their low altitude10. Increased aerosol concentration
results in more CCN and more, yet smaller, cloud droplets (effective
droplet radius (Re) decrease), making clouds brighter (Twomey
effect)11. In response, clouds tend to adjust their liquid water path
(LWP) and liquid cloud cover (LCC) through complex cloud micro-
physical processes. Two competing effects determine the changes of
LWP and LCC to aerosol perturbations. On the one hand, numerous
smaller cloud droplets could suppress precipitation, leading to an
increase in LWP and LCC, and prolonging cloud lifetime (Albrecht
effect)12,13. On the other hand, numerous smaller cloud droplets could
increase cloud-top entrainment of dry air, leading to droplet eva-
poration and hence decreasing LWP and LCC (entrainment effect)14.
Both the Twomey effect and the larger LWP result in a negative forcing
via optically thicker and brighter clouds, resulting inmore reflection of
sunlight and cooling. In addition, a larger LCC has been found to
contribute to a large negative forcing6,7.

To date, the Twomey effect11 has been well documented in mul-
tiple lines of evidence, including modelling (e.g., refs. 15,16) and
observations (e.g., refs. 6,7,17–21). However, evidence for the cloud
Albrecht effect, including LWP and LCC adjustments, is much less
clear, with signals in the range frompositive to negative reported17,21–29.
A major challenge is disentangling aerosol impacts on clouds from
confounding meteorological co-variability, especially on a climate-
relevant scale of thousands of km where meteorological conditions
can differ spatially and temporally21. In 2014, the Icelandic effusive
eruption known as Holuhraun resulted in an aerosol plume over the
North Atlantic for months, affecting clouds with a regime spectrum
analogous to global cloud regimes21,30. This opportunistic experiment
has been proposed to serve as a benchmark case for studying ACI at a
climate-relevant scale21,30. The challenge of confounding meteorology
has been addressed in a recent work6, using machine-learning-based
counterfactual clouds without volcanic influence to contrast real-
world observations (i.e. clouds with volcanic influence). The detected
ACI signals effectively minimise the noise from satellite observational
uncertainty, by aggregating over anextensive region spanningmillions
of square kilometres6. By applying this machine-learning approach in
Hawaii trade wind region, large ACI signals were detected in the
downstream of volcanic aerosol plume while negligible signals in the
upstream7; suggesting this methodology is able to estimate cloud
susceptibility at large scale from satellite observations, making it
possible to calibrate cloud susceptibility in GCMs.

Now, this study leverages the observational constraint of cloud
susceptibility at a climate-relevant scale to challenge a group of six
diverse GCMs with distinct cloud schemes, the group chosen as they
well represent the uncertainty range of current state-of-the-art GCMs8.
We found that all models significantly underestimate cloud cover
response to the aerosol perturbation, although they simulate cloud
optical depth response reasonably well, but with compensating errors.
This multi-model intercomparison pinpointed key ACI uncertainties.
Here, we echoMalavelle et al.21 to call for thewider climate community
takes the Holuhraun-2014 eruption as an anchor case, and stress vali-
dation of cloud susceptibilities in addition to cloud properties to
decompose and unravel the largest uncertainty in climate radiative
forcing, i.e. ACI simulation, therefore pointing towards a vital direction
to improve future climate simulations.

Results
Multi-model ACI structural uncertainty
The structural uncertainty in ACI simulations refers to the uncertainty
arising from limitations in the representations of physical processes in
models8. Here we use the large-scale observational constraint of cloud
susceptibility from Holuhraun-20146, to challenge six GCMs and
uncover their structural uncertainty of ACI. These GCMs include
ECHAM6.3-HAM2.331, CESM2.1.032, UKESM133, CNRM-ESM2-134,
ECHAM6.3-SALSA2.035, CAM5.3-Oslo36. The discussion and evaluation
of cloud state simulations are consistent with a previous study by
Malavelle et al.21, see details in the Supplementary Discussion Sec-
tion S1. In contrast to the widely used method of evaluating cloud and
aerosol states, here we re-evaluate the performance of GCMs using
cloud susceptibilities as a proxy for ACI. Cloud susceptibilities are
defined as changes in cloud properties (i.e., Re, LWP) and LCC in
response to volcanic aerosol-induced changes in cloud droplet num-
ber concentration, Nd (i.e., -dlnRe/dlnNd, dlnLWP/dlnNd, and dlnLCC/
dlnNd), using paired GCM simulations with and without Holuhraun-
2014 volcanic emissions (see Methods). Together, these cloud sus-
ceptibilities determine the change in cloud radiative effect.

Figure 1a displays the results of the evaluation of GCMs overlaid
on violin plots illustrating the observational ACI constraints6. These
violin plots represent the probability distributions of each cloud sus-
ceptibilitywith a 90%confidence interval, i.e., “very likely” as defined in
the IPCC uncertainty guideline37. The best estimates (median values
[90% confidence interval]) are: -dlnRe/dlnNd =0.37 [0.16–0.92],
dlnLWP/dlnNd = 0.02 [−0.18–0.21], dlnCOD/dlnNd =0.39 [0.11–0.96],
and dlnLCC/dlnNd = 0.42 [0.09–1.06], where COD stands for cloud
optical depth. The Twomey effect, indicated by -dlnRe/dlnNd, is rela-
tively well simulated in six GCMs, falling within the 90% likelihood of
the observational constraint, although they are slightly under-
estimated (below the 50thpercentile), ranging from0.15 in ECHAM6.3-
HAM2.3/UKESM1 to 0.32 in CNRM-ESM2-1.

Regarding the liquid water path adjustments (dlnLWP/dlnNd), all
models except for CNRM-ESM2-1 overestimate the LWP response to
changes in Nd compared to the observational constraint. Four GCMs
fall within the observational uncertainty range, from the 50th per-
centile for CNRM-ESM2-1 to the 90th percentile for CAM5.3-Oslo.
Two GCMs, ECHAM6.3-HAM2.3 and ECHAM6.3-SALSA2.0, show
excessive LWP adjustments, far exceeding the observational con-
straints. These overly strong LWP adjustments in some of the GCMs
compared to machine-learning-based observational constraints6 are
in line with Malavelle et al.21, who compared four GCMs with climato-
logical anomalies from satellite observations21. However, we
further show that this overestimation of LWP adjustment in GCMs is
balanced by the underestimation of the Twomey effect in all six
GCMs to give a reasonable value of cloud optical depth
response to ACI.

The COD (an indicator of albedo) response can be obtained by
combining the Twomey effect and LWP adjustment (i.e., dlnCOD/
dlnNd = -dlnRe/dlnNd + dlnLWP/dlnNd)

8. All models simulate the COD
response well within 25–75th percentiles of the observational con-
straint. Although, except for CNRM-ESM2-1, five GCMs do so by com-
pensating between low biases in the Twomey effect and high biases in
LWP adjustment. An exception is CNRM-ESM2-1, which excels in
simulating both the Twomey effect and the LWP adjustments in best
agreement with observations. The dlnCOD/dlnNd in ECHAM6.3-
HAM2.3 and ECHAM6.3-SALSA2.0 is higher than the best estimate,
primarily driven by the excessively strong LWP adjustment. Mean-
while, the low dlnCOD/dlnNd in UKESM1 is driven by an overly weak
Twomey effect.

We find that the susceptibility of cloud cover is largely under-
estimated in all six GCMs. Almost all GCMs fall out of the 90% con-
fidence interval of observational constraints, with only ECHAM6.3-
SALSA2.0 touching the lower bound, indicating “very unlikely” that
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current state-of-the-art climatemodels are able to capture the aerosol-
induced cloud cover increase. Liquid cloud cover is usually para-
meterised in terms of relative humidity (RH) and liquid water content
in CESM2.1.038,39 or only a function of RH in the other five GCMs40–43

(Table 1 in Methods). This systematic bias indicates a lack of connec-
tion between aerosols and cloud cover parameterisations in GCMs.
Further improvements in representations in entrainment or rain for-
mation could improve cloud lifetime44,45 and thus cloud cover
responses to aerosol changes in GCMs.

Multi-scheme ACI structural uncertainty
Although the cloud cover in models is diagnosed by grid-mean RH, it
remains closely linked to cloud microphysical processes through the
partitioning of water in the vapour, liquid, and ice phases. Thus, the
chosen cloud schemes in the model are expected to influence cloud
susceptibilities, causing structural uncertainty of ACI. To further
understand this issue, we select ECHAM6.3-HAM2.3 as a showcase
model to explore whether ACI uncertainty, especially for cloud cover,
can be reduced by implementing different cloud schemes. ECHAM6.3-

Table 1 | Model treatments

Model name Aerosol CCN activation Stratiform cloud microphysics Cloud cover scheme

ECHAM6.3-HAM2.3 (REF) M774,75 ARG76 LN46: 2-mom Sundqvist40

CESM2.1.0 MAM477 ARG76 MG278: 2-mom CLUBB38,39

UKESM1 GLOMAP-mode79 ARG76 WB9980: 1-mom PC241

CNRM-ESM2-1 TACTIC_v281 Menon0282 Lopez0242: 1-mom Roehrig2034

ECHAM6.3-SALSA2.0 SALSA2.035 ARG76 LN46: 2-mom Sundqvist40

CAM5.3-Oslo OsloAero5.336 ARG76 MG1.583: 2-mom Park1443

Fig. 1 | Intercomparison of liquid cloud properties response to aerosol per-
turbations (i.e., cloud susceptibilities) from volcanic degassing at Holuhraun,
Iceland (October 2014), based on multiple model simulations with varying
cloud schemes and process sensitivities, alongside observational constraints6.
Cloud susceptibilities (-dlnRe/dlnNd, dlnLWP/dlnNd, dlnCOD/dlnNd, and dlnLCC/
dlnNd) are changes in cloud properties (Re cloud droplet effective radius, LWP
liquid water path, COD cloud optical depth, LCC liquid cloud cover) in response to
changes in droplet number concentration, Nd. a Six general circulation models
(GCMs) from this study, representative of theHoluhraun regionbehaviour, and two

GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6), repre-
sentative of the global behaviour. b ECHAM6.3-HAM2.3 model with varied cloud
schemes. c ECHAM6.3-HAM2.3 model (default cloud scheme) with cloud process
sensitivities. The violin plots represent 90% confidence intervals of machine-
learning-based observational constraints6, with the inner box showing the 25th,
50th, and 75th percentiles. Note: Liquid cloud cover is not available in CMIP6, so
total cloud cover is used to calculate dlnLCC/dlnNd for MPI-ESM-1-2-HAM and
UKESM1-0-LL in panel a.
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HAM2.3 is chosen because its LCC adjustment is about in themiddle of
six GCMs, indicating a good representative (in line with Ghan et al.8)
and because multiple cloud schemes (both diagnostic and prognostic
ones) have been embedded in the model.

In total, five different cloud schemes have been implemented in
the ECHAM6.3-HAM2.3 model to test various cloud microphysics and
cover parameterisations. The default cloud schemes include a two-
moment cloud microphysics scheme46 and an RH-based cloud cover
scheme40, referred to as REF. One additional cloud microphysics
scheme is implemented: Predicted Particle Properties scheme (P3)47.
Next to the default RH-based cloud cover scheme, we implement the
Xu and Randall cloud cover scheme (XR)48 with REF and P3 micro-
physics schemes. In the XR scheme, the cloud cover is determined by
both liquid water and RH48. In addition, we used the Prognostic cloud
cover scheme (PROG_CC)49, a Tiedtke-like scheme50 similar to that in
GFDL’s CM4.0 Climate Model51,52, which simulates cloud fraction
prognostically based on in-cloud water vapour and convective activity
and uses an updated cloudmicrophysics scheme. In total, we have five
different cloud scheme setups in ECHAM6.3-HAM2.3, including REF,
REF-XR, P3, P3-XR, and PROG_CC.

As shown in Fig. 1b, all five cloud schemes in ECHAM6.3-HAM2.3
demonstrate a reasonable simulation of the COD response. The rea-
sonable COD response is again due to the compensation of biases in
the Twomey effect and the LWP adjustment. The Twomey effect
(-dlnRe/dlnNd) is underestimated, falling below the 25th percentile of
the observational constraint, although the simulations with the
P3 scheme perform slightly better than with the REF and PROG_CC
schemes. The LWP adjustment (dlnLWP/dlnNd) in all schemes exceeds
the observational constraint, showing excessively strong signals, even
though PROG_CC is much improved (close to the 90th percentile)
compared to other schemes. As a result, the ensemble spans the range
of the observed COD response (dlnCOD/dlnNd) within the 45–85th
percentiles. Nevertheless, none of the cloud schemes reproduce the
observed increase in cloud cover (dlnLCC/dlnNd), even the cloud cover
schemes that depend on liquid water (XR) or prognostic scheme
(PROG_CC) still underestimate dlnLCC/dlnNd, suggesting a major
structural uncertainty in current cloud cover schemes. Further inves-
tigations of the cloud cover schemes and relevant cloud processes are
imperative to clarify cloud cover response to aerosol changes and to
inform model improvements.

ACI parametric uncertainty
Similar to the cloud schemes, tuned cloud microphysical processes
impact the partitioning of water in the vapour, liquid, and ice phases,

therefore impacting cloud cover and causing parametric uncertainty
of ACI. To further explore the influence of individual cloud micro-
physical processes on cloud susceptibilities, we selected two distinct
cloud schemes, REF (diagnostic cloud cover scheme) and PROG_CC
(prognostic cloud cover scheme). Detailed parameter settings of the
sensitivity studies are listed in Table 2 (Methods). Briefly, based on a
previous ECHAM model tuning study53, we tuned the parameters of
key microphysical processes that influence cloud cover towards
maximising cloud cover response to changes in aerosols53. For the
default scheme (REF), the perturbed processes include autoconver-
sion rates for stratiform and convective clouds, the RH threshold for
cloud formation, entrainment rate, and the fraction of shallow con-
vection into the free troposphere (details in Table 2). Similarly, we
perturbed processes for the prognostic cloud cover schemes
(PROG_CC), including the detrainment rate, entrainment rate, turbu-
lence, and the RH threshold for large-scale cloud formation.

As shown in Fig. 1c, for the REF scheme, despite the perturbed
simulations slightly increasing the cloud cover susceptibility com-
pared to the default setup, as expected, the dlnLCC/dlnNd fell outside
the range of the observational constraint. As a side effect, the per-
turbed runs simulated an even higher bias in LWP adjustment
(dlnLWP/dlnNd) than the default setting (except for REF-S2), whilst the
Twomey effect (-dlnRe/dlnNd) is relatively insensitive, leading to a
greater overestimation of the COD response (green hue lines). For the
PROG_CC scheme (blue hue lines), perturbed runs only changed cloud
cover responses and COD response slightly. The reasons for this are
unclear, but the prognostic cloud cover scheme49 hasmore degrees of
freedom to respond to cloud processes compared to the default
diagnostic scheme REF46. These dichotomous results further highlight
the complexity of influencing the cloud cover response through cloud
microphysical processes. Since different cloud schemes and models
may provide various responses, further investigations with a more
detailed evaluation of the results with ECHAM6.3-HAM2.3 and more
models are required to address this issue.

Global representativeness and robustness of the Holuhraun
eruption
To evaluate the global representativeness of the Holuhraun-2014
eruption case, we compared its cloud regime distribution and cloud
susceptibilities to global ones. Malavelle et al.21 and Chen et al.6 have
shown that the Holuhraun-2014 eruption occurred in a region
encompassing the full range of cloud regimes, whose distribution is
closelymatchedwith the global distribution observed by satellite from
2002 to 2014 (see Extended Data Fig. 1 in Chen et al.6). In addition, we

Table 2 | Perturbed parameters in sensitivity studies in ECHAM6.3-HAM2.3

Sentivitiy runs Perturbed parameter

REF Default diagnostic scheme

REF-S1 Reducing autoconversion rate (ccraut) in stratiform clouds from 5 (default value) to 1 → Delayed rain formation in stratiform clouds

REF-S2 Reducing threshold RH ηcrit by applying a scaling factor of 0.8, only over the ocean → more marine clouds

REF-S3 Increasing evaporation of raindrops to 200% of default evaporation rate → Increase RH and therefore cloud cover

REF-S4 Reducing entrainment rate for shallow convective clouds (entrscv) from 0.003 to 0.001 → Drying the boundary layer and reducing cloud cover

REF-S5 Reducing fraction of overshooting of shallow convection (cmfctop) from 0.2 to 0.1 → Keeping more moisture in the planetary boundary layer

REF-S6 Reducing autoconversion rate for convective clouds (cprcon) from 0.0009 to 0.00002 → Delayed rain formation in convective clouds

PROG_CC Default prognostic scheme

PROG_CC-S1 Reducing scaling factor for cloud formation bymixing of detrained air with environmental cloud-free air (tuningDetrainedMixing) from0.8 (default
value) to 0.6 → Reducing cloud formation

PROG_CC-S2 Reducing scaling factor for entrainment rate for shallow convection (tuningConvEntrShallow) from 0.003 (default value) to 0.0003 → Drying the
boundary layer and reducing cloud cover

PROG_CC-S3 Increasing scaling factor for turbulent mixing (tuningTurbulentMixing) from 0.0 (default value) to 1.0 → Affect cloud formation

PROG_CC-S4 Reducing critical RHat the surface abovewhich large-scale cloud cover can form (tuningRHcritSurface) from0.9 (default value) to0.8 everywhere
→ more clouds
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assessed cloud susceptibilities at a global scale resulting from
anthropogenic aerosol emissions throughout 2000–2014 in
CMIP6 simulations (MPI-ESM-1-2-HAMandUKESM1-0-LL, equivalent to
ECHAM2.3-HAM2.3 and UKESM1 in this study, respectively). We com-
pare CMIP6 simulations of “historical” and “hist-piAer” experiments,
representing with and without anthropogenic aerosol influence,
respectively; details are given in the Methods. The susceptibilities of
clouds to anthropogenic aerosol emissions at the global scale are
consistent with the Holuhraun-2014 eruption in our GCMs simulations
(Fig. 1a). The consistency in both cloud regimes distribution and cloud
susceptibilities suggests that the Holuhraun-2014 eruption provides a
valid and representative analogue for understanding global cloud
responses to aerosol perturbations due to human emissions in
recent years.

To strengthen robustness of our results, we quantified model
uncertainty caused by the inherently chaotic nature of cloud dynamics
and radiative effects through ensemble simulations. We used
ECHAM6.3-HAM2.3 as a showcase model and explored uncertainty
across five representative experiments, each reflecting distinct cloud
schemes and process sensitivities, with ten ensemble simulations per
experiment. We find only a small degree of uncertainty is introduced by
model internal variability. For cloud cover, the ensemble uncertainty is a
magnitude smaller than the gap between GCMs and the observation
(Fig. 2). Furthermore, we demonstrate the robustness in global repre-
sentativeness using ensembles in CMIP6 simulations (three ensembles
for each). Again, a negligible difference is found between CMIP6
ensembles (Fig. 2). These well demonstrate the robustness of the key
conclusions and its global representativeness in this study.

Discussion
Our study highlights two critical needs to reduce ACI uncertainty in
global climate models. Firstly, to improve simulation of processes
relevant to COD response so that we get the “correct answer for the
right reasons” for cloud albedo change, we must investigate aerosol
and cloudmicrophysics schemes inmore detail to better represent the
Twomey effect and the LWP adjustment. Secondly, it is essential to
further develop model schemes that better represent processes (e.g.,
entrainment, auto-conversion, etc.) for the cloud cover responses to
aerosol changes (hence the changes in cloud droplet number). High-
resolution large-eddy simulations that more explicitly simulate cloud
microphysical processes, have the potential to simulate the cloud
cover increase in response to aerosol changes54. A combination of
machine learning and the results of high-resolution cloud-resolving
models would be a plausible way forward for improving cloud para-
meterisations in global models to better represent the cloud cover’s
responses to aerosol changes55.

Our study is not without limitation. The observational constraints
may suffer from uncertainty in satellite observations56, even though
satellite retrievals are currently the only measure to provide con-
tinuous long-term cloud cover observations over a large scale. In
future studies, using multiple satellites along with machine-learning
development could further reduce uncertainty in the observations of
cloud cover and cloud susceptibility to better constrain global climate
models. The nonlinearity of cloud response to aerosol means that
cloud susceptibilities can also depend on meteorology7,57 and the
strength of aerosol source compared to background9,57,58. For example,
Gettelmanet al.57 performed sensitivity simulations ofHoluhraun-2014
using a GCM and demonstrated that meteorological diversity could
introduce up to 30% difference in ACI radiative forcing, and that the
forcing is not proportional to the change in aerosol emissions. This
suggests the need of more opportunistic experiment studies, such as
IMO shipping emission reduction since 202059, together with the
Holuhraun-2014 to have a holistic investigationof ACI in diverse global
conditions. In addition, due to the complexity of clouds and climate
systems, even a perfect simulation of cloud susceptibilities still cannot
guarantee anunbiased estimateof ACI radiative forcing, this is because
the efficiency in radiative effect of clouds varies significantly between
GCMs; for example, CESM2 shows similar cloud susceptibilities to
CNRM-ESM2-1 (Fig. 1a), but shows some of three times larger ACI
radiative forcing60. A recent study highlighted that high equilibrium
climate sensitivity (≥2.93 K) is needed to reproduce the trend in the
observed Earth energy imbalance, where changes of clouds are critical
for climate assessments but highly uncertain61. Therefore, radiative
transfer processes of clouds and cloud feedback following ACI radia-
tive forcing are also key to improving climate projections.

Methods
Model setup
The effusive volcanic eruptions at Holuhraun (Iceland, 2014) emitted
tens to hundreds of kilotons of SO2, creating a sulfate aerosol plume in
the marine boundary layer which spread over the whole North
Atlantic21, providing an ideal natural experiment to investigate aerosol-
cloud interactions. Malavelle and Yuan proposed an AeroCom multi-
model intercomparison project (VolcACI)62–64 to use this Holuhraun
eruption as a benchmark case to study uncertainty in aerosol-cloud
interaction simulations. In this study, we used five GCMs from the
VolcACI project, based on available data for analysis, including
UKESM133, CNRM-ESM2-134, ECHAM6.3-SALSA2.035, CAM5.3-Oslo36,45,
ECHAM6.3-HAM2.331. In addition, CESM2.1.032,65 was added for this
experiment following the VolcACI protocol.

The model setups and the simulations followed the VolcACI
protocols62. Model treatments of aerosols and cloud schemes are

Fig. 2 | Intercomparison of liquid cloud properties response to aerosol per-
turbations (i.e., cloud susceptibilities) from Holuhraun-2014 eruption in
ECHAM6.3-HAM2.3 with different cloud schemes and sensitivities (each
experiment with ten ensemble runs, ensemble mean values and one standard
deviation are shown) and two models from the Coupled Model Inter-
comparison Project Phase 6 (MPI-ESM-1-2-HAM and UKESM1-0-LL, each with
three ensemble runs). Cloud susceptibilities (-dlnRe/dlnNd, dlnLWP/dlnNd,

dlnCOD/dlnNd, and dlnLCC/dlnNd) are changes in cloud properties (Re cloud
droplet effective radius, LWP liquid water path, COD cloud optical depth, LCC
liquid cloud cover) in response to changes in droplet number concentration, Nd.
The violin plots represent 90% confidence intervals of machine-learning-based
observational constraints6, with the inner box showing the 25th, 50th, and 75th
percentiles. Note: the three ensemble runs for each CMIP6 model are all plotted,
but they overlap with each other due to negligible differences.
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summarised in Table 1. A brief description is provided below. Emis-
sions from the Holuhraun eruption were specified in the VolcACI
protocol62, while other anthropogenic andnatural emissions follow the
AeroCom Phase III guidelines. Sea surface temperature and sea ice
extent were prescribed using time-varyingmonthlymean values of the
year 2014, as given in the AMIP data66. Model winds and surface
pressure are nudged towards time-varying reanalysis data (e.g., ERA-
Interim or MERRA2). The spin-up period was set to one year to allow
themodels to stabilise prior to the volcano simulations. Significant ACI
signals and increaseof cloud fraction have beendetected usingMODIS
observations during September-October 20146. Here, we focus on the
month of October 2014, because the volcanic plume has been well
dispersed over the whole North Atlantic by then, influencing a cloud
regime spectrum that closely represents the global clouds6,21. Control
and volcano scenarioswere runwith andwithoutHoluhraun emissions
for October 2014, respectively. The difference between the two sce-
narios dictates the clouds’ response to volcanic aerosol perturbations.

Cloud scheme and process sensitivities
ECHAM6.3-HAM2.3 has 47 vertical levels from the surface to the top
level at 0.01 hPa and runs at T63 spectral horizontal resolution
(1.875° × 1.875°). The two-moment cloudmicrophysics scheme (REF) is
used as the default scheme for stratiform clouds in ECHAM-HAM46.
This scheme simulates number concentrations andmass mixing ratios
of cloud droplets and ice crystals prognostically. These hydrometeors
interact with rain drops, snow, and water vapour, through various
microphysical processes. A schematic figure showing the inter-
connections ofmicrophysical processes in REF schemecanbe found in
ref. 67. Liquid cloud cover is diagnosed based on grid-mean RH and a
height-dependent thresholdRH68. To test different cloudmicrophysics
and cloud cover schemes, we employed five different cloud scheme
setups in ECHAM6.3-HAM2.3, including REF, REF-XR, P3, P3-XR, and
PROG_CC. To test the sensitivity of individual processes, we perturbed
specific microphysical processes in the REF and PROG_CC schemes to
assess the sensitivity of liquid water path and cloud cover to these
processes. Detailed parameter settings for the sensitivity studies are
shown in Table 2.

CMIP6 data for global cloud susceptibility
Global cloud property changes (i.e., cloud susceptibility) in response
to present-day anthropogenic aerosol emissions are calculated
through CMIP6 simulations and compared with Holuhraun-2014
eruption in this study to validate its global representativeness.

Among the six GCMs used in our study, only two models from
CMIP6 provide complete outputs for both cloud microphysical and
macro-physical properties: MPI-ESM-1-2-HAM and UKESM1-0-LL
(equivalent to ECHAM6.3-HAM2.3 and UKESM1 in this study). We
used paired “historical” and “hist-piAer” simulations (2000–2014) for
MPI-ESM-1-2-HAM69,70 and UKESM1-0-LL71,72 from CMIP6. For each

experiment, three ensemble runs (r1, r2, r3) are available and used to
assess the robustness of the results. The “historical” experiments
simulate Earth’s climate from 1850 to 2014, including both natural and
anthropogenic forcings. In contrast, the “hist-piAer” experiments fol-
low the same setup but exclude anthropogenic aerosols. Comparing
these two experiments over the present-day period (2000–2014)
allows us to isolate the influence of anthropogenic aerosols on global
cloud properties. Consistent with Holuhraun-2014 simulations,
monthly cloud variables (i.e. Nd, Re, LWP, CC) from “hist-piAer” and
“historical” experiments are used to calculate cloud susceptibilities
(i.e., -dlnRe/dlnNd, dlnLWP/dlnNd, dlnCOD/dlnNd, and dlnLCC/dlnNd).
Note that liquid cloud cover is not available from the
CMIP6 simulations, so total cloud cover is used to calculate cloud
cover response. Detailed information of CMIP6 simulations is given in
Table 3.

Data availability
The GCM simulation data used to produce the figures are available at
Zenodo (https://doi.org/10.5281/zenodo.16926288)73. The MODIS
cloud products from Aqua (MYD08_L3) and Terra (MOD08_L3) are
openly available from the Atmosphere Archive and Distribution Sys-
tem Distributed Active Archive Center of National Aeronautics and
Space Administration (LAADS-DAAC, NASA) (https://ladsweb.modaps.
eosdis.nasa.gov). CMIP6 data for MPI-ESM-1-2-HAM and UKESM1-0-LL
models are openly available through the Earth SystemGrid Federation
(ESGF) network (https://esgf-ui.ceda.ac.uk/cog/projects/esgf-ceda/).

Code availability
The ECHAM-HAMMOZ model (ECHAM6.3-HAM2.3 and ECHAM6.3-
SALSA2.0) is available to the scientific community under theHAMMOZ
Software License Agreement at https://redmine.hammoz.ethz.ch/
projects/hammoz/wiki/2_How_to_get_the_sources. The UKESM1 is
released for use by UK researchers at https://ukesm.ac.uk/model-
releases/. The CESM2 is available at: https://www.cesm.ucar.edu/
models/cesm2/release_download.html. The documents and code of
each module of CNRM-ESM2-1 are documented on the CNRM website
(https://www.umr-cnrm.fr/cmip6). CAM5.3-Oslo (the atmospheric and
aerosol module of NorESM) model code is available from GitHub:
https://github.com/NorESMhub/.
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