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Concise synthesis of chiral tricyclic γ-lactams
via synergistic isothiourea/Ir catalyzed
asymmetric [3+ 2] annulation

Guorong Xiao, Mengjiao Yang & Duanyang Kong

Accessing trans-fused N-fused tricyclic frameworks with multiple contiguous
stereocenters remains a major challenge in synthesis. We report a synergistic
isothiourea/Ir-catalyzed [3 + 2] annulation of arylacetic acid esters with aza-
benzonorbornadienes, providing trans-fused tricyclic γ-lactams with three
contiguous tertiary stereocenters in high regio-, enantio-, and diastereos-
electivity. The method tolerates diverse arylacetates, heterocycles, and phar-
maceutically relevant carboxylates, and is amenable to gram-scale synthesis.
Mechanistic studies support a cooperative cycle involving C1-ammonium
enolate formation and enantioselective SN2’ attack on the Ir-activated aza-
benzonorbornadiene. Downstream functionalizations, including epoxidation,
hydrogenation, and amino alcohol formation, demonstrate the versatility of
the products. This work establishes a concise and efficient platform for con-
structing sterically challenging trans-fused tricyclic γ-lactams, highlighting the
potential of synergistic catalysis for complex stereocontrolled
transformations.

The stereoselective construction of fused heterocyclic architectures
is of great importance in pharmaceutical research, as their three-
dimensional complexity imparts distinct physicochemical and bio-
logical properties1–3. Among these, chiral N-fused tricyclic frame-
works represent privileged scaffolds in natural products, bioactive
molecules, and catalysts, exemplified by strigolactam, carboxylic
acid receptors, rivastigmine analogs, and chiral NHC precursors
(Fig. 1A)4–7. Conventional approaches to N-fused tricyclic skeletons
bearing multiple stereocenters, particularly chiral tricyclic γ-lac-
tams, typically rely on multistep de novo synthetic routes that are
both laborious and resource-intensive8. Recently, Zhang and co-
workers reported a direct ruthenium-catalyzed tandem dynamic
kinetic resolution (DKR)/asymmetric reductive amination (ARA)/
lactamization of ketoesters with ammonium salts, which furnishes
cis-fused tricyclic lactams in a single step but requires high-pressure
hydrogen gas and offers limited modularity (Fig. 1B)9. Given the
broad utility of these structurally complex motifs, the development
of efficient and general synthetic strategies to access chiral tricyclic
γ-lactams from readily available starting materials remains a cri-
tical goal.

Synergistic catalysis has emerged as a powerful platform for the
stereoselective construction of structurally complex molecules10–15.
Over the past two decades, isothiourea (ITU) catalysis has become a
particularly versatile organocatalytic strategy, enabling significant
advances in asymmetric transformations, especially in synergistic
settings16,17. Since the seminal report by Snaddon and co-workers in
201618, synergistic catalysis involving chiral C(1)-ammonium enolates—
generated via ITU-catalyzed substitution of electron-deficient aryl
esters followed by deprotonation—has driven remarkable progress in
the asymmetric functionalization of esters (Fig. 1C). A wide range of
electrophiles, including η³-allyl species and imines, have been suc-
cessfully coupled through synergistic ITU/transition-metal and ITU/
organocatalysis, affording chiral α-functionalized esters19–30. Despite
these achievements, synergistic annulative transformations for the
construction of pharmaceutically preferred chiral heterocycles remain
largely underexplored31,32. Thus, expanding the scope of ITU-mediated
synergistic catalysis to efficiently access pharmaceutically relevant
heterocycles is highly desirable.

Strained azabicyclic olefins, particularly azabenzonorbornadienes
—a distinctive subclass defined by a bridgehead nitrogen atom and an
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internal C =C bond—offer powerful platforms for complexity genera-
tion through transition-metal-catalyzed asymmetric ring-opening
(ARO) reactions (Fig. 1D)33–35. The bridgehead nitrogen and olefin
moieties enable metal coordination and promote selective C–N bond
cleavage, while the substantial ring strain (~5.2kcal/mol) arising from
shortened bond distances renders the ring-opening process energe-
tically favorable34.Mechanistically, this transformation canproceed via

carbometallation followed by β-heteroatom elimination to afford cis-
ring-opening products36–49, or through oxidative C–N insertion fol-
lowed by SN2′ nucleophilic displacement to yield trans-ring-opening
products (Fig. 1D, top)50–63. Todate, only three examples of asymmetric
annulation of azabenzonorbornadienes have been reported, employ-
ing organic halides, alkynes, or directing-group (DG)-arenes as cou-
pling partners64–66. These strategies, integrating asymmetric ring-

Fig. 1 | Background and reaction development. AChiral N-fused tricyclic scaffold
as a privilegedmotif in functionalmolecules.BA reportedmethod for the synthesis
of chiral tricyclic lactams9. C Asymmetric functionalization of activated esters via

synergistic catalysis. D Asymmetric ring-opening and annulation of azabenzo-
norbornadienes. E Synergistic ITU/Ir catalyzed asymmetric [3 + 2] annulation of
esters and azabenzonorbornadienes (this work).
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opening with oxidative insertion, oxidative cyclization, or transition-
metal-catalyzed C–H activation, exclusively afford cis-fused annulated
products. Despite this progress, the asymmetric construction of
sterically disfavored trans-fused frameworks remains elusive, hindered

by competing facile nucleophilic ARO/protonation pathways and the
substantially higher ring strain of trans-fusion (Fig. 1D, bottom). Con-
sequently, the development of a general catalytic asymmetric strategy
to access enantio- and diastereoselectively enriched trans-fused

Fig. 2 | Optimization of reaction parameters. A Standard conditions. B Impact of
ligands. C Impact of reaction condition. D Impact of leaving group of esters.
Reaction conditions: 1 (0.2mmol, 1.0 equiv.), 2 (0.44mmol, 2.2 equiv.), [Ir(COD)

Cl]2 (3.0mol%), L1 (6.3mol%), (S)-BTM (10.0mol%), DIPEA (2.0 equiv.), MeCN
(2.0mL), 70 °C, 10 h. a Isolated yield. b The enantiomeric excess (ee) was deter-
mined by HPLC analysis. See Section VI in the SI for complete screening details.
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products from azabenzonorbornadienes represents a compelling and
unmet challenge.

Building on the sustained interest in strained oxa/azabicyclic
alkenes67 and the growing potential of synergistic catalysis, we now
disclose a general asymmetric [3 + 2] annulation of actived arylacetic
acid esters with azabenzonorbornadienes, enabled by synergistic ITU/
Ir catalysis (Fig. 1E). This strategy provides streamlined access to a
broad family of trans-fused tricyclic γ-lactams—structural motifs that
have remained synthetically elusive—bearing three contiguous tertiary
stereocenters with excellent levels of regio-, and enantio-, and dia-
stereoselectivity. The modularity of this protocol, together with its

ability to forge sterically disfavored trans-fused architectures from
readily available starting materials, highlights its potential as a pow-
erful platform for the synthesis of pharmaceutically relevant
heterocycles.

Results
Optimization studies
We initiated our investigation by employing aryl acetic acid penta-
fluorophenyl esters 1 and azabenzonorbornadiene 2 as model sub-
strates in MeCN at 70 °C (Fig. 2). Under a synergistic catalytic system
comprising [Ir(COD)Cl]2/(S)-DM-SEGPHOS (L1) and (S)-BTM, with

 

Fig. 3 | Substrate scope of the asymmetric [3 + 2] annulation. Reaction condi-
tions: 1 (0.2mmol, 1.0 equiv.), 2 (0.44mmol, 2.2 equiv.), [Ir(COD)Cl]2 (3.0mol%), L1
(6.3mol%), (S)-BTM (10.0mol%), DIPEA (2.0 equiv.), MeCN (2.0mL), 70 °C, 10 h.

Isolated yield. Unless otherwise noted, all products were obtained with > 20:1 dr. a

(S)-BINAP insteadof (S)-DM-SEGPHOS. b After recrystallization. See Section IV in the
SI for complete details.
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DIPEA as the base, the asymmetric [3 + 2] annulation proceeded
smoothly, delivering the chiral trans-fused tricyclic γ-lactam in 76%
yield with excellent enan-tioselectivity (>99% ee) and diastereoselec-
tivity (>20:1 dr). Alternative diphosphine ligands (L2 and L3) also
promoted the transformation, albeit with slightly diminished yields. In
contrast, other common ligand classes—including Trost ligand (L4),
Josiphos (L5), tBu-Phosferrox (L6), Ph-Pybox (L7), and phosphor-
amidite (L8)—failed to catalyze the reaction, with most starting mate-
rial recovered. Lowering the temperature to room temperature or
40 °C completely halted the reaction, and no conversionwas observed
in alternative solvents such as DCE, THF, or DMSO. Other metal pre-
cursors, including CuOTf, Co(acac)₂, NiCl₂, Pd(OAc)₂, RuCl₂, and var-
ious rhodium complexes, were also ineffective (see Supplementary
Fig. S6 in the SI for details). Reducing the catalyst loading was feasible
but resulted in diminished yields. Several common chiral isothiourea
catalysts were also evaluated; however, none afforded promising
results (see Supplementary Fig. S7 in the SI). Replacing (S)-BTM with
(R)-BTM led to decreases in both yield and enantioselectivity. Control
experiments confirmed that [Ir(COD)Cl]₂/L1 was essential; although
the reaction still proceeded without either (S)-BTM or DIPEA, yields
were significantly reduced. Finally, evaluation of the ester leaving
group revealed thatonly strongly electron-deficient phenol derivatives
(4-SO₂Me, 4-NO₂, 4-CN) afforded the product with moderately
diminished yields, whereas weakly electron-deficient (4-F, 3,4-F₂),
neutral (4-H), and electron-rich (4-OMe) esters failed to promote the
transformation. These results underscore the crucial role of a strongly
electron-withdrawing leaving group for successful reaction outcomes.

Substrate scope
With optimized conditions in hand, we explored the substrate scopeof
the asymmetric [3 + 2] annulation (Fig. 3). The method tolerated a
broad range of functional groups and accommodated electronically
and structurally diverse pentafluorophenyl esters and azabicyclic
alkenes. Arylacetates bearing electron-withdrawing groups such as

halogens (F, Cl, Br, I; 4 −9) or -CF3 (10,11) underwent smooth trans-
formation. The absolute configurationof compound6was determined
via X-ray crystallography (CCDC 2487060). Electron-rich substrates
containing Me (12), NMe₂ (13), and OMe (14, 15) groups also reacted
with excellent stereoselectivity. Notably, substrates with highly reac-
tive functionalities—including boronic ester (16), ester (17), andNHBoc
(18)—were compatible without significant complications. Substrates
bearing OPh (19), SMe (20), or alkenyl (21) groups similarly furnished
the desired products in high efficiency. Polycyclic and heterocyclic
substrates—including naphthalene (22), quinoline (23), indole (24),
benzofuran (25), furan (26), dihydrobenzofuran (27), benzodioxole
(28), and thiophene (29)—also underwent the reaction with high
enantioselectivity (99- > 99% ee). A range of pharmaceutically relevant
carboxyla-tes, including derivatives of Indometacin (30), Actarit (31),
Ibufenac (32), Tolmetin (33), Diclofenac acid (34), Felbinac (35), and
Isoxepac (36), provided satisfactory yields. Various secondary car-
boxylic acid esters were also found to be ineffective (see Supplemen-
tary Fig. S9 in the SI). Symmetric azabicyclic alkenes with substituents
such as F (37), Br (38), methyl (39), and naphthalene (40) underwent
the desired [3 + 2] annulation inmoderate to high yields with excellent
stereocontrol. The benzodioxole-derived azabicyclic alkene (41) was
unsuitable due to competitive isomerization under transition-metal
catalysis68. Compared to Boc protection, isopropoxycarbonyl (41) and
benzyloxycarbonyl groups (42) led to reduced enantioselectivity,
highlighting that bulky protecting groups on the bridgehead nitrogen
are crucial for achieving high enantioselectivity.

Synthetic applications
The practicality and robustness of this methodology were further
demonstrated through gram-scale synthesis and diverse downstream
derivatizations (Fig. 4). The gram-scale reaction of carboxylic ester 1
with azabicyclic alkene 2 afforded product 3 in 61% yield, >99% ee, and
>20:1 dr. Epoxidation of the olefin in 3 with m-CPBA proceeded
smoothly to give 44 without loss of stereochemical integrity.

Fig. 4 | Synthetic applications. See Supplementary Fig. S1 in the SI for complete details.
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Chemoselective hydrogenation of the alkene using Pd/C under H2

furnished the saturated product 47, while treatment of 3 with LiAlH4

yielded amino alcohol 48. Sequential dibromination and Boc depro-
tection of 3 provided 45, and subsequent NaH-mediated HBr elim-
ination afforded vinyl bromide 46. Following Boc deprotection, the
resulting amine 49was protected as a benzyl derivative (50) and could
also be elaborated into a chiral NHC precursor 51 via a three-step
sequence.

Mechanistic studies
Combining our mechanistic studies with literature precedents51,52, we
propose a plausible catalytic cycle for this cooperative process (Fig. 5).
The acyl ammonium ion pair I is formed upon acylation of the iso-
thiourea Lewis base catalyst by arylacetic acid ester 1, followed by
deprotonation with the aryloxide counterion to generate the reactive
C1-ammonium enolate II. Concurrently, the [Ir] catalyst coordinates to
azabenzonorbornadiene 2 on the exo face and promotes C–N bond
cleavage to form intermediate III. Nucleophilic attack of enolate II on
the endo face of III at the C3 position occurs via TS1 through an SN2′
pathway, delivering intermediate IV. Subsequent lactamization fur-
nishes the [3 + 2] annulation product 3 and regenerates both catalysts.
Notably, the byproduct 13′, generated via aryloxy rebound and pro-
tonation of the NMe₂-containing intermediate IV, can be converted to
the final product 13 in 50% yield with >99% ee and >20:1 dr under the
standard conditions, providing strong support for the proposed
mechanism.

In summary, we have developed a general and highly stereo-
selective [3 + 2] annulation of arylacetic acid esters with azabenzo-
norbornadienes, enabled by synergistic isothiourea/Ir catalysis. This
strategy provides streamlined access to trans-fused tricyclic γ-lactams
bearing three contiguous tertiary stereocenters with excellent regio-,
enantio-, and diastereoselectivity. The methodology exhibits broad
substrate scope, tolerating diverse electronic and steric environments,
including functionalized arylacetates, heterocycles, and

pharmaceutically relevant carboxylates. Key features of this approach
include the use of readily available starting materials, the ability to
construct sterically disfavored trans-fused frameworks, and the
potential for further structural elaboration through versatile down-
stream derivatizations. Mechanistic studies support a cooperative
catalytic cycle involving C1-ammonium enolate generation and enan-
tioselective SN2′ attack on the Ir-activated azabenzonorbornadiene.

Methods
General procedure of synergistic ITU/Ir catalyzed asymmetric
[3+ 2] annulation of esters and azabenzonorbornadienes
In an atmosphere-controlled glovebox [Ir(COD)Cl]2 (0.006mmol,
3.0mol%) and (S)-DM-SEGPHOS (0.0126mmol, 6.3mol%) were added
to a 2-dram vial charged with a stir bar, followed by the addition of
anhydrous MeCN (2.0mL). The mixture was stirred at room tem-
perature for 20min. Carboxylic ester (0.20mmol, 1.0 equiv.), azabi-
cyclic alkene (0.44mmol, 2.2 equiv.), (S)-BTM (0.02mmol, 10.0mol%)
and DIPEA (0.40mmol, 2.0 equiv.) were added to another 2-dram vial
charged with a stir bar. Subsequently, the solution of Ir catalyst was
transferred into this vial. The vial was sealed with a PTFE-lined cap and
removed from the glovebox. The reaction was stirred at 70 ˚C in an
aluminum block. Upon completion of the reaction (10 h), themixtures
were concentrated in vacuo and directly purified by silica gel column
chromatography to afford the final product. The ee values were
determined by HPLC using a Daicel chiral column.

Data availability
All data, including experimental details, characterization data, NMR
and HPLC, are available in the Supplementary Information. Crystal-
lographic data for the structure reported in this Article have been
deposited at the Cambridge Crystallographic Data Center, under
deposition number CCDC 2487060 (6). Copies of the data can be
obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. All
other data are available from the corresponding author upon request.

Fig. 5 | Mechanism studies. A Proposed mechanism. B Verification of intermediate.
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