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Warmer environments harbor greater
thermal trait diversity in moth assemblages

Ming Liu1,2,10, Tzu-Man Hung 1,3,4,10, Shipher Wu 1,5,10, Mark Liu1,
Guan-Shuo Mai 1, Yi-Shin Jang1,6, Chien-Chen Huang4,7, Chun-Yung Hsu1,8,9,
Chia-Hsuan Wei 4, Mao-Ning Tuanmu 1, Shih-Fan Chan 1,
I-Ching Chen 4 & Sheng-Feng Shen 1,3,8

Thermal trait diversity is critical for understanding species’ responses to cli-
mate change, yet its ecological drivers remain unclear. Using eco-evolutionary
simulations and empirical data from 653 moth species across three Asian
elevational gradients, we examine how temperature regimes shape thermal
strategies in assemblages. Warmer environments support larger hypervo-
lumes of moth assemblages, reflecting a broader array of coexisting thermal
strategies. Contrary to the climatic variability hypothesis, which predicts
generalized traits under stable climates, we find that warmer sites foster
assemblage-level diversity even while individual species retain narrow thermal
tolerance ranges. Short-term temperature fluctuations exert minimal influ-
ence, while seasonal variability promotes generalists but reduces overall
hypervolume. These results demonstrate that mean temperature, not varia-
bility, is the dominant force structuring thermal trait diversity. By revealing
how thermal strategies assemble under different climates, our study provides
a mechanistic basis for predicting biodiversity responses to warming and
emphasizes the conservation value of low-elevation ecosystems.

Understanding trait diversity has been central to ecology since Hum-
boldt, Darwin, and Wallace first documented tropical organisms’
remarkable variation in form and function1–4. This early recognition of
trait diversity’s importance has evolved into modern approaches
examining both species and assemblage levels. While species-level
studies provide foundational insights, assemblage-level research has
emerged as crucial for understanding physiological trait variation5.
The strength of assemblage-level analyses is that they capture emer-
gent properties—attributes of the whole assemblage that cannot be
inferred by inspecting species in isolation. For example, coral assem-
blages recover only 60% of their original trait space after extreme heat
waves6, a pattern undetectable through individual species analyses7–9.

However, conducting large-scale studies of assemblage-level physio-
logical traits presents significant challenges, particularly in data col-
lection across broad environmental gradients. These challenges have
historically limited our understanding of how environmental condi-
tions shape thermal adaptations at the assemblage level.

Three alternative hypotheses have been proposed to explain
thermal trait patterns across environmental gradients, each offering
distinct and testable predictions. These mechanisms—favorability,
long-term seasonal variation, and short-term daily fluctuation—are not
mutually exclusive andmay jointly influence trait evolution depending
on the ecological context and temporal scale. The favorability
hypothesis, developed from Wallace’s 1878 observations, proposes
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that benign tropical environments permit continuous evolution of life
forms under reduced selective pressures10 (Fig. 1a). Fischer extended
this concept, predicting higher functional diversity in favorable tro-
pical environments, which aligns with both the “more-individuals
hypothesis”5 and “hotter is better” principle11–14. These interconnected
theories suggest that favorable conditions promote not only greater
abundance and species richness but also broader functional trait
diversity through reduced environmental filtering in productive
environments. The mechanism underlying this pattern involves com-
plex interactions between environmental productivity and species’

thermal adaptations, allowing the persistence of diverse thermal
strategies.

In contrast, Janzen15 proposed that species in environments with
lower seasonal temperature variations evolve narrower thermal toler-
ances, explaining tropical biodiversity patterns through climatic
stability15–17. This perspective spawned Rapoport’s rule, which suggests
that decreasing seasonal variation at lower latitudes leads to reduced
geographical ranges and higher species overlap18 (Fig. 1b). The impli-
cations of this climatic variability hypothesis (also referred to as the
long-term variability hypothesis) extend beyond species distributions
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Fig. 1 | Summary of the favorability, climatic variability hypotheses, and short-
term variability and their key predictions regarding thermal trait diversity at
the assemblage level. Each panel shows (1) an environmental time series in the
left column, (2) the assemblage before environmental filtering with summarized
environmental conditions in the center column, and (3) the surviving species
after environmental filtering in the right column. a The favorability hypothesis
predicts that thermal traits within an assemblage (the set of species in a single
place) are more diverse in warmer places, due to greater productivity.
b The climatic variability hypothesis predicts that thermal trait diversity
decreases with climatic variability (usually referred to as seasonality). c The short-

term variability hypothesis predicts that thermal trait diversity increases
with short-term variability. d Schematic overview of the process in the eco-
evolutionary model. After initialization, each time step repeats the process
from updating environmental temperature to the current assemblage. The arrows
from population size and assemblage back to thermal performance and species
competitiveness indicate the information from the previous time step is used as
input (e.g., whether we need to consider a new thermal performance because a
species migrated in the last time step). The calculation of n-dimensional hyper-
volume is only carried out after the simulation is completed (i.e., final
assemblage).
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to fundamental questions about the evolution of thermal tolerance
and its relationship with environmental variability. Nevertheless,
empirical support for this hypothesis has been mixed, particularly
regarding its predictions about thermal trait evolution across different
taxonomic groups and geographic regions19–21.

Recent work has introduced an alternative perspective focusing
on short-term environmental variability16, suggesting that daily tem-
perature fluctuations favor thermal specialization by providing fre-
quent favorable conditions16,22,23 (Fig. 1c). Short-term temperature
variability is thought to enhance trait diversity in a manner funda-
mentally different from long-term seasonal variation. This hypothesis
provides a framework for understandinghowdifferent temporal scales
of environmental variation might select for different thermal strate-
gies. The distinction between short-term and long-term variability
effects represents an important advance in our understanding of
thermal adaptation mechanisms, because it highlights that environ-
mental fluctuations at different temporal scales can select for funda-
mentally different thermal strategies.While long-term variability tends
to favor generalists with broad tolerance ranges, short-term fluctua-
tions may support specialists adapted to transient favorable
conditions16,22,23. Recognizing this separation allows for more precise
predictions about how organisms respond to climate dynamics,
especially in the face of increasing environmental variability under
global change.

Although adaptation to the environment at the species level is
closely related to the diversity of functional traits at the assemblage
level, factors such as interspecific interactions and the number of
species that can be supported by primary productivity24–26 must be
considered at the assemblage level. These factors influence both the
functional traits of individual species and the functional diversity of
assemblages—critical properties for understanding ecological char-
acteristics across different levels of biological organization. At the
species level, thermal specialization refers to the breadth of a single
species’ thermal-tolerance range (TTrange = CTmax – CTmin); narrow
ranges indicate specialists, while wider ranges indicate generalists. In
contrast, assemblage-level diversity in thermal-adaptation strategies is
quantified as the n-dimensional hypervolume formed by all species’
CTmin–CTmax combinations. As such, an assemblage may simulta-
neously exhibit high specialization (many narrow-range species) and
high hypervolume (a wide collective niche space) when specialists
occupy distinct regions of trait space. However, how these three
hypotheses and their underlying mechanisms affect thermal func-
tional trait diversity at the assemblage level has not been directly
studied within a comprehensive framework.

We address this knowledge gap by establishing eco-evolutionary
simulation models based on these three hypotheses to generate tes-
table predictions (Supplementary Table 1). We then use data from
large-scale field experiments across latitudes and elevations to inves-
tigate howclimate variability affects the functional traits of species and
assemblages. We focus on moths, which, as small ectotherms, rely on
thermal interactions with their environment to regulate body tem-
perature, making them particularly vulnerable to temperature
fluctuations27,28. Moths often exhibit remarkable species diversity in
thermally stable tropical forests—for example, a single 16 km² Andean
cloud-forest plot supports over 1100 geometrid species,more than 6%
of global geometrid diversity29. The developmental rate of moths
changesmarkedly with climate. Under warm conditions, many species
complete their entire life-cycle from egg to adult in about 6–10 weeks,
whereas at higher latitudes or in cooler environments, a generation can
stretch to 3–4 months, with some species even requiring over-
wintering before eclosion. By contrast, the adult stage is typically very
brief—most noctuid moths live only 7–14 days30. Accordingly, our
model assumes that organismal lifespan exceeds short-term (e.g.,
daily) fluctuations but is shorter than long-term seasonal variation,
enabling us to test how environmental variability across timescales

influences the evolution of thermal traits. Our integrated approach
combines theoretical modeling with extensive empirical data to
examinehowenvironmental conditions shape thermal trait diversity at
the assemblage level, providing insights into biodiversity responses to
climate change.

Results
The eco-evolutionary models of favorability, short-term varia-
bility, and climatic variability hypotheses
We developed an eco-evolutionary and individual-based model to
investigate how themeanand variability of temperature shape thermal
traits at both species and assemblage scales. In this context, an
assemblage refers to the complete set of individuals from all species
that are currently alive and subjected to shared environmental con-
ditions. A characteristic thermal performance curve is shared by all
individuals of the same species, while the thermal trait diversity of an
assemblage is characterized by the set of all viable species it contains.

In our framework, the mechanisms shaping thermal trait com-
position arise from two simultaneous processes: environmental fil-
tering imposed by thermal regimes, and biotic interactions such as
interspecific competition. The former determines which thermal
strategies are viable, while the latter regulates the abundance and
success of those strategies within assemblages (Fig. 1d). Abiotic fil-
tering is imposed by thermal fluctuations, which determine repro-
duction and survival based on species’ thermal performance curve.
Biotic interaction occurs through competition, where the relative fit-
ness of each species is defined as the product of its thermal perfor-
mance and its population size. This formulation ensures that species
that are both well-adapted to current conditions and numerically
abundant have a greater influence on assemblage composition. For
tractability, we initially constrain all species’ thermal performance
curves to have equal total performance area, establishing a trade-off
between thermal specialization and generalization31 (this constraint is
later relaxed; Supplementary Fig. 1).

To test the favorability hypothesis, we manipulated mean envir-
onmental temperature and its effect on population dynamics. Higher
environmental temperatures (up to 30 °C) increase resource avail-
ability and metabolic efficiency11–14, leading to elevated population
growth rates across species in the assemblage. Beyond this threshold,
population growth rates decline due to physiological stress, eventually
reaching zero. This relationship creates an unimodal productivity
curve typical of biological systems (see Supplementary Fig. 2 for
comparison with constant growth rate scenarios).

Temperature in our model is implemented through a hierarchical
sampling process. At each time step, the actual temperature is drawn
from a Gaussian distribution centered on a short-term average. This
short-termaverage is itself updated every Tspan time steps by sampling
from another Gaussian distribution centered on the mean ambient
temperature. This dual-scale approach allows us to simulate both daily
fluctuations and longer-term temperature patterns (detailed para-
meters in Supplementary Methods and Supplementary Table 2). We
raneach simulation for 105 time steps,with reproduction andmortality
occurring in every step, to ensure stable species compositions were
reached.

To analyze the model outcomes, we examined both the critical
thermal limits composition and the niche-space hypervolume of the
assemblages. The hypervolume analysis quantifies functional diversity
by measuring the volume occupied by species in multi-dimensional
trait space32, using probability functions to describe trait distribution
patterns while controlling for variation in species richness across
assemblages (see “Methods” for details). This approach enabled us to
assess how different thermal strategies distribute within assemblages
and how functional trait space responds to environmental conditions.
We specifically tested theoretical predictions for: (1) the favorability
hypothesis by varying mean ambient temperature; (2) the short-term
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variability hypothesis by altering short-term thermal fluctuations; and
(3) the climatic variability hypothesis by modifying long-term thermal
variability.

Model predictions for the favorability, short-term variability,
and climatic variability hypotheses
Our eco-evolutionary, individual-based model revealed that mean
ambient temperature exerts the strongest influence on assemblage
thermal traits. Increasing mean temperature led to a significant
expansion in the assemblage’s thermal trait space— quantified as the
n-dimensional hypervolume encompassing species’ thermal toler-
ances (β = 1.01, p <0.001, R2 = 0.9, 95% CI [0.79, 1.23]; Fig. 2a). Specifi-
cally, we observed that the upper bound of critical thermal minimum
(CTmin) increased markedly with rising environmental temperature,
while the lower bound of critical thermal maximum (CTmax) showed
moremodest changes. This pattern resulted in a steady increase in the
assemblage’s hypervolume as mean temperature rose (Fig. 2b),
reflecting the influence of enhanced environmental productivity.

The model revealed greater thermal trait diversity at higher
temperatures through two mechanisms. First, the range between
CTmax and CTmin expanded. Second, thermal performance curves
showed more diverse shapes, indicated by increased variance in
thermal tolerance ranges (TTrange, a species-level attribute). This
suggests that warmer environments can support species with a wider
variety of thermal strategies. Notably, we observed an increase in
thermal specialists—species with narrow thermal tolerance ranges—in
high-temperature environments (Fig. 2c and Supplementary Fig. 3).

To characterize how warming reshapes assemblage composition,
we used k-means clustering to classify species into four thermal stra-
tegies: warm-adapted (high CTmin), heat-tolerant (intermediate
CTmin, high CTmax), cold-adapted (low CTmin), and heat-sensitive
(intermediate CTmin, low CTmax). As mean temperature increased,
warm-adapted and heat-tolerant species became more prevalent,
while cold-adapted and heat-sensitive species declined (Fig. 3a, b).
However, this diversification effect has limits—ourmodel predicts that
thermal trait diversity begins to decline when temperatures exceed
30 °C (Supplementary Fig. 4).

In contrast to mean temperature effects, short-term temperature
fluctuations had surprisingly modest impacts on thermal trait com-
position. Neither the overall trait diversity (measured by hypervolume
analysis) nor the variation in thermal tolerance breadth showed sub-
stantial changeswith increasing daily temperature variability (Fig. 2d, e
and Supplementary Fig. 5). The average thermal tolerance breadth of
species showed only a slight decrease under greater short-term
variability (Fig. 2f). While we observed minor shifts toward warm-
adapted species and away from cold-adapted species, the relative
proportions of thermal strategies remained largely stable (Fig. 3c, d).

Long-term climate variability produced distinct effects from
short-term fluctuations. Increased seasonal temperature variation led
to amodest reduction in overall trait diversity (Fig. 2g), driven by lower
CTmin values and slightly higher CTmax upper bounds. This pattern
resulted in larger average thermal tolerance ranges without increased
variance in ranges, indicating selection for thermal generalist strate-
gies (Fig. 2h, i and Supplementary Fig. 6). At the assemblage level,
greater long-term variability reduced the proportion of warm-adapted
specialists while slightly increasing cold-adapted and heat-sensitive
species (Fig. 3e, f). We also found the results hold true with an alter-
native design of long-term variation (i.e., sine waves; Supplemen-
tary Fig. 7).

Importantly, our model revealed that, although high mean tem-
perature and low long-term seasonal variation both appear to reduce
selective pressures, they generate contrasting evolutionary outcomes.
Favorability enables diverse strategies under high productivity, pro-
moting the coexistence of both specialists and generalists. In contrast,
low long-term seasonal variation consistently favors narrow-range

specialists by limiting the adaptive value of generalist strategies. These
findings highlight how seemingly similar environments can produce
divergent patterns of trait diversity. Our model demonstrates that
mean temperature, rather than temperature variability, plays the
dominant role in shaping thermal trait diversity. Warming promotes
trait diversification primarily by enabling more specialist strategies
through enhanced environmental productivity. While long-term cli-
mate variability selects for generalist strategies and slightly reduces
overall trait diversity, short-term temperature fluctuations have mini-
mal impact on assemblage thermal traits. These differential effects
across temporal scales provide a mechanistic framework for predict-
ing how climate change may reshape biodiversity patterns through
both direct temperature effects and altered climate variability.

Validating the generality of the models
In addition to generating predictions for the three main hypotheses,
we extended our analyses for the eco-evolutionary model in multiple
directions. First, we investigated the interaction between mean ambi-
ent temperature and short-term temperature variability on a broader
scale of parameter combinations (Supplementary Fig. 8). We found
that, invariably, increasing mean and short-term temperature varia-
bility both result in larger hypervolumes, higher TTranges, more sur-
viving species, and longer average lifespans of species. Second, when
we relaxed the constraint between the width and height of thermal
performance curves, we found that the resulting effect on hypervo-
lume, nonetheless, remains very consistent (Supplementary Fig. 1).
Third, we tested a scenario where higher ambient temperatures no
longer increase environmental productivity. Under this altered
assumption, we observed no systematic trend in hypervolume across
mean temperatures (Supplementary Fig. 2), confirming that the posi-
tive relationship between temperature and trait diversity in our main
model arises through a productivity-mediated mechanism. In warmer
environments, elevated growth rates reduce the extinction risk of rare
species, thereby enhancing overall trait diversity.

To further explore the evolutionary mechanisms underlying trait
diversity, we implemented an alternative scenario in which new spe-
cies arise via mutation from resident species, simulating sympatric
speciation. This alternative produced consistent results across all
environmental scenarios (see Supplementary Fig. 9), which reinforces
the generality of our conclusions. Finally, we reran the simulationswith
and without interspecific competition (see Supplementary Note and
Supplementary Figs. 10–12). These comparisons revealed a two-step
process: (i) environmental filtering imposed by the thermal regime,
determiningwhether a species canpersist, followedby (ii) interspecific
competition, which further narrows the realized trait distribution
through differential reproductive success. Together, these analyses
underscore the robustness and mechanistic transparency of our
framework.

Empirical testing with moth assemblages
To test these theoretical predictions, we conducted field experi-
ments measuring thermal tolerances of moths across three eleva-
tional gradients in Asia: Cameron Highlands, Malaysia
(140–1959m asl), Mt. Hehuan, Taiwan (343–3140m asl), and Mt. Jia-
jin, Sichuan, China (860–4150m asl). At each site, we established
thermal testing stations at 500m intervals to measure critical ther-
mal maxima (CTmax) and minima (CTmin) under natural conditions
(detailed methodology in Methods; experimental setup shown in
Fig. 4a). Temperature loggers recorded ambient conditions
throughout the experimental period.

Using our two complementary metrics—assemblage-level trait
hypervolume (the n-dimensional space defined by CTmin–CTmax
combinations) and species-level specialization (TTrange = CTmax—
CTmin)—we found clear support for the favorability hypothesis.
Hypervolume increased significantly with mean annual temperature
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(Tmean; β =0.7, p =0.005, R2 = 0.67, 95% CI [0.29, 1.1]; Fig. 4b), indi-
cating that warmer assemblages occupy a broader region of thermal
niche space. At the same time, higher temperatures were linked to
greater prevalence of thermal specialists, as shown by a decline in
mean TTrange (β = −0.2, p <0.001, R2 = 0.65, 95% CI [−0.32, −0.08])

and a rise in its among-species variance (β =0.09, p = 0.013, R2 = 0.46,
95% CI [−0.04, 0.22]; Fig. 4c, d). Species-composition analyses corro-
borated this pattern, revealing significant increases in warm-adapted
(β =0.02, p <0.001, R2 = 0.63, 95% CI [0.01, 0.04]) and heat-tolerant
species (β = 0.06, p < 0.001, R2 = 0.52, 95% CI [0.04, 0.08]), alongside
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critical thermal limits in three assemblages at low (1st, blue), middle (6tht, purple),
and high (11tht, red) levels. In a, c, d, f, g, i, solid lines indicate significant relation-
ships, dashed lines indicate insignificant relationships, and shaded areas represent
the 95% confidence interval for the fitted regression line. Lastly, short-term varia-
bility is 2.5 and long-term is 0 in (a–c), Tmean is 18 and long-term variability is 2.5 in
(d–f), Tmean is 18 and short-term variability is 2.5 in (g–i). For detailed results of
linear regression models, see Supplementary Table 3.
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Fig. 3 | K-means clusters distribution of critical thermal limits and changes of
cluster ratio across different ambient gradients. K-means clusters of model-
simulated species (a) and ratio of 4-cluster species: warm-adapted species, heat-
tolerant species, cold-adapted species and heat-sensitive species changes (b)
across an average annual mean temperature gradient. K-means clusters of model-
simulated species (c) and ratio of 4-cluster species changes (d) across the short-

term variability gradient. K-means clusters ofmodel-simulated species (e) and ratio
of 4-cluster species changes (f) across long-term variability gradient. Inb, d, f, solid
lines indicate significant relationships, dashed lines indicate insignificant relation-
ships, and shaded areas represent the 95% confidence interval for the fitted
regression line. For detailed results of linear regressionmodels, see Supplementary
Table 4.
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decreases in cold-adapted taxa (β = −0.06, p < 0.001, R2 = 0.69, 95% CI
[−0.09, −0.03]; Fig. 5b).

We used daily temperature range (DTR) to represent short-term
variation, as it fluctuates more rapidly than seasonal variations and is
an important environmental factor shaping species’ adaptation to
environmental variation16.We foundDTRhas no significant correlation
with thermal trait hypervolume (β = −0.74,P = 0.459; Fig. 4e). However,

increased DTR was associated with more thermal generalists, as indi-
cated by higher average TTrange (β =0.47, P =0.033, R2 = 0.4, 95% CI
[−0.54, 1.48]) and greater TTrange variation (β =0.48, P = 0.004,
R2 = 0.27, 95%CI [0.07, 0.88]; Fig. 4f, g). Species composition remained
stable across the DTR gradients (all P >0.05; Fig. 5c). These results
suggest limited effects of short-term environmental variation on
assemblage thermal traits and agree with model predictions.
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Following the literature convention, we use the seasonal tem-
perature range (STR) to represent long-term thermal variations. Such
analyses provided partial support for the climatic variability hypoth-
esis. Thermal trait diversity decreased with increasing STR (β = −0.41,
p =0.038, R2 = 0.45, 95% CI [−0.78, −0.03]; Fig. 4h). Higher STR pro-
moted thermal generalists, shown by increased average TTrange
(β =0.16, P < 0.001, R2 = 0.83, 95% CI [0.1, 0.22]; Fig. 4i, j). However,
only cold-adapted species showed significant compositional changes
with STR (β =0.02, P =0.048, R2 = 0.33, 95% CI [−0.004, 0.04]; Fig. 5d),
indicating limited predictive power for detailed assemblage compo-
sition. We further examined how environmental variables affect
CTmax and CTmin (Supplementary Fig. 13). Using SHapley Additive
exPlanations (SHAP) analysis (see Methods for details), we identified
that CTmax is primarily driven by diurnal maximum temperature
(DTmax), while CTmin is most strongly influenced by diurnal mean
temperature (DTmean) (Supplementary Fig. 13a, b). These relation-
ships were confirmed through linear regressions, showing significant
positive associations between CTmax and DTmax (β = 0.42, P <0.001,
R2 = 0.3, 95% CI [0.36, 0.46]; Supplementary Fig. 13g), and between
CTmin and DTmean (β = 0.44, P < 0.001, R2 = 0.17, 95% CI [0.32, 0.48];
Supplementary Fig. 13i).

Microclimate structure along the elevational gradients helps
explain the assemblage-level patterns we report. First, our analyses
controlled for potential sampling effects, as species richness did not
significantly influence assemblage hypervolume (P = 0.557; Supple-
mentary Fig. 14). These findings, derived from three distinct envir-
onmental gradients, provide robust evidence for the differential
effects of mean temperature and temperature variability on thermal
trait evolution, though future studies across additional taxa would
help further improve the generality. Finally, to improve our under-
standing of the thermal conditions experienced by species across the
elevation gradient, we plotted the relationships between annual
mean temperature, STR and DTR against elevation (Supplementary
Fig. 15). As expected, mean temperature decreased significantly with
elevation, while STR increased and DTR remained relatively stable.
We then examined microclimate heterogeneity (i.e., temperature
variability) and found a significant three-way interaction among
region, period, and elevation (LMM, Region × Period × Elevation,
P < 0.001; Supplementary Fig. 16; Supplementary Table 7). Across all
elevations and periods, Mt. Jiajin exhibited the highest temperature
heterogeneity, followed by Cameron Highlands and thenMt. Hehuan
(P < 0.001 for all post hoc comparisons; Supplementary Fig. 16;
Supplementary Table 8). Daytime heterogeneity consistently excee-
ded nighttime heterogeneity in all regions (P < 0.001; Supplementary
Fig. 16; Supplementary Table 9). Elevational trends differed among
regions and diel periods. In Mt. Jiajin, temperature heterogeneity
increased significantly with elevation during both day and night
(P < 0.001 for both; Supplementary Fig. 16a; Supplementary
Table 10). In Mt. Hehuan, daytime heterogeneity also increased with
elevation (P < 0.001), whereas nighttime heterogeneity showed no
significant trend (P = 0.08; Supplementary Fig. 16b; Supplementary
Table 10). In Cameron Highlands, neither daytime nor nighttime
heterogeneity exhibited significant elevational patterns (P > 0.1 for
both; Supplementary Fig. 16c; Supplementary Table 10). Together,
these macro- and microclimatic patterns provide an intuitive

geographical context for interpreting the observed changes in ther-
mal trait diversity.

Discussion
Through an innovative combination of theoreticalmodeling and large-
scale field experiments, our study reveals three key insights into how
environmental factors influence thermal trait diversity in biological
assemblages. First, warmer environments support more species and
harbor greater diversity in thermal adaptations. These environments
include assemblages of both narrow-range thermal specialists and
broad-range generalists. Second, contrary to earlier theoretical
expectations, short-term temperature variability exerts minimal influ-
ence on assemblage-level thermal trait composition. Third, long-term
climatic variability fosters species with broader tolerances; however,
its impact on overall trait composition is modest compared to the
dominant effect of mean temperature.

Our eco-evolutionary model and empirical data support the
favorability hypothesis, which states that benign, productive environ-
ments maintain a wider variety of thermal performance curves. This
pattern emerges because reduced selective pressure allows both
specialists and generalists to coexist. The resulting expansion of trait
space in warmer assemblages aligns with classical theory linking high
primary productivity to elevated species diversity6,8,30, and extends
that principle to functional-physiological diversity. Conversely, cooler
assemblages are dominated by cold-tolerant yet heat-intolerant spe-
cies, reflecting stronger environmental filtering that constrains trait
hypervolume9,18. Our analysis further reveals distinct roles for short-
term versus long-term temperature variability. Daily fluctuations sur-
prisingly have little effect on critical limits or assemblage hypervo-
lume, contradicting earlier two-species models whose simplifications
evidently limit their predictive scope. On the other hand, while our
data partially support Janzen’s original climatic-variability hypothesis,
theweak influenceof long-termvariability on assemblage composition
suggests that its selective force is less pervasive than previously
assumed.

Most sampled moths are nocturnal fliers that rely on shivering
endothermy to elevate thoracic temperatures to approximately
33–38 °C33, thereby buffering operative temperature fluctuations
during activity. However, selective pressures on thermal physiology
are also likely to act during periods of inactivity. Although adultmoths
typically seek shaded refugia during daylight hours, immobile life
stages remain exposed to fine-scalemicroclimatic gradients shaped by
topography and solar input. Microclimatic thermal heterogeneity
exhibits significant three-way interactions among region, diel period,
and elevation. Across multiple regions and time periods, high-
elevation environments consistently show greater thermal
heterogeneity34, with daytime variability exceeding that of nighttime.
Previous studies further indicate that in mountainous systems, het-
erogeneity is strongly shaped by topographic roughness, canopy
architecture, and spatiotemporal variation in precipitation34. In the
montane cloud forests of Taiwan, fog and low cloud layers exert
powerful radiative control over the diurnal temperature range (DTR),
producing nonlinear elevational gradients and marked discontinuities
at mid- to high elevations35. These discontinuities align with zones of
persistent fog and highlight the complex spatial structure of thermal

Fig. 4 | Effects of mean temperature and climatic variability on thermal trait
diversity at the assemblage level. a Assemblages in each location. The metho-
dology illustration is by Yun-Kae Kiang, created for this study without third-party
content. b Relationship between average annual mean temperature (Tmean) and
thermal trait hypervolume. c Histogram of frequency of thermal tolerance range
(TTrange) for high (M2, T1, M1) and low (C4, C3, C2) Tmean groups. d Mean and
standard deviation (SD) of TTrange as a function of Tmean. e Relationship between
diurnal temperature range (DTR) and thermal trait hypervolume. f Histogram of
frequency ofTTrange for high (T1, C3,C1) and low (M1,M2,T3)DTRgroups.gMean

and SD of TTrange as a function of DTR. h Relationship between seasonal tem-
perature range (STR) and thermal trait hypervolume. i Histogram of frequency of
TTrange for high (C2, C3, C4) and low (M2, M1, T1) STR groups. j Mean and SD of
TTrange as a function of STR. In b, d, e, g, h, j, solid lines indicate significant
relationships, dashed lines indicate insignificant relationships, and shaded areas
represent the 95% confidence interval for the fitted regression line. For detailed
results of linear regression models, see Supplementary Table 5. Underlying data
files are provided in a permanent Zenodo repository under the accession code
17409650.
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Fig. 5 | K-means cluster distribution of critical thermal limits and changes of
cluster ratio across mean temperature and climatic variability. a K-means
clusters of empirical species. Ratio of warm-adapted species, heat-tolerant species,
cold-adapted species and heat-sensitive species changes across average annual
mean temperature (b), diurnal temperature range (c) and seasonal temperature
range (d). Solid lines indicate significant relationships, dashed lines indicate

insignificant relationships, and shaded areas represent the 95% confidence interval
of the regression line. For detailed results for the fitted regression line, see Sup-
plementary Table 6. In b–d, texts next to the points represent different assem-
blages in Fig. 4a. Underlying data files are provided in a permanent Zenodo
repository under the accession code 17409650.
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regimes in montane ecosystems. Within this framework, environ-
mental favorability—defined by the confluenceof benign temperatures
and high primary productivity—emerges as a principal driver of ther-
mal trait diversity. Warm, productive environments support both
thermal specialists and generalists, expanding trait hypervolume and
increasing assemblage-level variability. By contrast, although high-
elevation habitats exhibit substantial microclimatic variation, their
overall thermal severity imposes strong environmental filtering that
compresses trait distributions. Greater DTR may elevate CTmax in
sedentary stages and increase average TTrange, yet this occurs with-
out corresponding expansion in trait hypervolume. These findings
support the idea that even short-term fluctuations, occurring on
timescales shorter than species’ generation lengths, can shape evolu-
tionary outcomes distinct from those driven by long-term means.
However, local environmental conditions—averaged over biologically
relevant timescales—may exert stronger selective pressures than those
reflected in long-term climatic averages alone36.

Turning to longer time scales, the climatic variability hypothesis,
assessed via STR, receives only partial support. Elevated STR broadens
individual tolerance breadth andmodestly increases the proportion of
cold-adapted taxa; however, it contracts the overall hypervolume. In
high-elevation forests, prolonged cool seasons impose strong selec-
tion for low CTmin, while summer extremes remain moderate. This
keeps CTmax comparatively low and compresses trait space. Fur-
thermore, multivoltine lowland species can adjust their phenology to
alignwith favorable seasons. In contrast,manyhigh-altitude congeners
are univoltine and overwinter in diapause, which reduces their meta-
bolic demand. These life-history constraints limit the spectrum of
viable strategies where STR is large, yielding the narrower hypervo-
lumes observed.

Collectively, these results align assemblage-level patterns with
organismal biology and model expectations. Mean temperature,
through its effects on productivity and microclimatic niche richness,
emerges as the principal structuring axis of thermal diversity. Short-
term variability has secondary effects within species, which are tem-
pered by nocturnal ecology. Long-term seasonality defines lower tol-
erance bounds without broadening assemblage trait space.
Understanding how different life stages and activity windows sample
their thermal environments explainswhy favorability dominates in this
moth system. This finding underscores the need to integrate behavior,
phenology, and microclimate into future predictive frameworks.

Previous work on thermal tolerance has mainly focused on
species-level responses3,37,38. These studies demonstrate that greater
climatic variability often results in broader tolerance ranges, yet upper
thermal limits do not necessarily increase toward the tropics. A critical
distinction is that assemblage-level analyses examinemean values and
variance across co-occurring species, while species-level studies typi-
cally track mean traits alone.

Taken together, our findings demonstrate how thermal trait dis-
tributions are shaped by the combined effects of environmental fil-
tering and biotic interactions, which act as the core ecological and
evolutionary mechanisms within assemblages. Our assemblage-scale
approach reveals how thermal strategies are distributed within com-
munities and clarifies which species occupy distinct functional posi-
tions, i.e., thermal niches. By integrating both immigration-based and
local diversification scenarios, the model offers a flexible framework
for understanding how thermal strategies evolve and persist under
variable environmental conditions.To isolate environmental effects on
competition, we held immigration/mutation rate constant across sce-
narios; although this can potentially overestimate adaptive responses
under rapid change, it offers a clear baseline, and a natural next step is
to relax this assumption to test the robustness of persistence predic-
tions. While climatic variability can foster generalist species, its pre-
dictive power for assemblage composition remains limited, suggesting

that species- and assemblage-level perspectives provide com-
plementary insights into the evolution of thermal traits.

Our findings provide a continental-scale investigation of
assemblage-level thermal traits across multiple elevational gradients.
The observation that warmer environments harbor greater thermal
trait diversity emphasizes the conservation importance of low-
elevation and low-latitude assemblages. However, it also raises
urgent questions about vulnerability, as extreme warming events have
already eroded functional diversity in other systems14. The hetero-
geneous effects of warming on different organisms underscore the
need to identify which thermal trait combinations make species
especially susceptible to climate change. Our theoretical framework
provides a basis for such evaluations, althoughmany questions remain
regarding how thermal trait diversity influences ecosystem responses
in the context of accelerating global change.

Methods
Field sampling design
The research took place in three mountain areas in East Asia, posi-
tioned at varying latitudes: Cameron Highlands, Malaysia (July
24–August 21, 2019; 4°28’0”–4°36’0”N, 101°11’0”–101°23’0”E), Mt.
Hehuan, Taiwan (July 20–August 28, 2015; 24°16’0”–24°21’0”N,
121°10’0”–121°40’0”E), and Mt. Jiajin, Sichuan, China (June 28–July 22,
2017; 30°23’0”–30°51’0”N, 102°41’0”–102°54’0”E).

Thermal tolerance measurements
Critical temperatures of species signify the cessation of primary eco-
logical functions, like locomotion, assessed as the CTmax orminimum
(CTmin) to assess how species adjust thermally to their environment39.
Prior studies on the thermal tolerance of species were primarily lab-
based37,38,40,41. However, the natural patterns of CTmin and CTmax,
varying with elevation and latitude, likely stem from genetic factors
paired with adaptive environmental responses41. Consequently, we
captured individuals and tested their critical thermal tolerances
directly in the field. This approach mirrors individuals’ genuine phy-
siological reactions to ambient temperatures. Historically, two thermal
tolerance measurement methods were employed: static temperature
and ramping temperature42. Different methodologies usually make
cross-comparison of studies challenging. However, these differences
havebeen reconciled recently usingphysiologicalmodels42. Therefore,
in consideration of accessibility, we used the static temperature
method for assessing moths’ thermal tolerances.

We stationed thermal testing stations at roughly 500m intervals
along each elevation transect. Each station had a hot-water bath
(WB212-B1, Double Eagle Enterprise Co., Ltd.; 10,398 cm3), a cold-water
bath (BL720D, Yihder Technology Co., Ltd.; 19,440 cm3), and an
infrared thermal camera (FLIR T420, FLIR Systems Inc., Danderyd,
Sweden). The hot-water bath was set at 50 °C, controlled by a ther-
mostatwith a sensitivity range of 0 to 100 °C,while the cold-water bath
was at −5 °C, controlled by a thermostat with a sensitivity range of
−20–100 °C. The camera, with a 320 × 240-pixel resolution, captured
temperature variances as slight as 0.045 °C, accurate within 2% of our
testing range. To guarantee precision, the calibration service provided
by FLIR Systems Inc. was applied.

We used a 100-watt lamp and a white screen to attract moths. We
placed each moth in a sealed glass container (100*80*55mm) for
manipulation and observation. We confirmed that moth thorax tem-
peratures matched the surroundings by the thermal camera. There-
after, containerswere immersed in either a cold- or a hot-water bath to
observe the moth’s reaction. We defined CTmin and CTmax as the
temperature at which moths lost muscle control or showed spasms43.
When individuals first showed signs of losing standing ability (i.e.,
inability tomaintain an upright posture), we immediately removed the
containers from the water bath and took thermal images of the
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individual. Each moth was subjected to either CTmax or CTmin
experiments, but not both44,45.

After experiments, we used ThermaCAM Researcher Pro 2.10 for
image analysis. Thermal images under the CTmax or CTmin experi-
ments provided thorax temperature values of individuals46,47. The
lowest and the highest temperature values (rounded to the first deci-
mal place) in the thorax region were averaged as the critical tem-
perature for that individual. Average CTmax and CTmin for species
were derived from individual records. In total, we assessed 1475 indi-
viduals inMalaysia, 2257 in Taiwan, and 1917 in China.We deposited all
specimens at the Biodiversity Research Museum, Academia Sinica,
Taipei, Taiwan.

Identification of moth species
We initially identified specimens to themorpho-species level based on
their morphological characteristics, with each being assigned a unique
name code. Subsequently, we consulted relevant academic literature,
especially the faunistic reviews in sampling sites or neighboring
regions48–50, to determine the formal scientific names of these mor-
phospecies. Once the scientific names were confirmed, we used these
names to record the specimens. When visual differences between taxa
were vague or when polymorphisms were hard to identify, we dis-
sected the genitalia to facilitate recognition. We included species that
exhibited thermal attributes (both CTmax and CTmin) for our study.
Altogether, we found 16 families with 264 species in Malaysia, 14
families with 157 species in Taiwan, and 15 families with 232 species
in China.

Environmental data collection
We positioned iButton thermometers (Maxim Integrated Products,
Inc.) at 250m elevation intervals near each moth light trap site,
housing each device in a T-shaped PVC tube mounted 1.5m above
ground level. This setup, following standardmeteorological protocols,
protected sensors from direct solar radiation and rain while ensuring
adequate ventilation. We validated measurement accuracy by cali-
brating iButton readings against a standard weather station at the
Department of Atmospheric Sciences, National Taiwan University.
Temperature recordings were taken every 30min throughout the
experimental periods (July 24–August 21, 2019, in Cameron Highlands;
July 20–August 28, 2015, in Mt. Hehuan; June 28–July 22, 2017, in Mt.
Jiajin). For each site, we calculated the daily mean temperature from
the recording periods and derived the DTR from the difference
between the dailymaximumandminimum temperatures.We assigned
ambient temperature to each species based on the midpoint of its
elevational distribution, using linear interpolation between the two
nearest elevation temperatures when direct measurements were
unavailable.

For seasonal temperature, we sourced monthly temperature
records from CHELSA (version 2.1)51 spanning 1990 to 2019. We fol-
lowed the ANUCLIM criteria when determining the annual
temperature52. The average annualmean temperature is the average of
themean daily air temperature for eachmonth from 1990 to 2019. The
STR is the difference between the average maximum temperature of
the warmest month and the average minimum temperature of the
coldest month, where the former corresponds to the mean of July
mean dailymaximum air temperature across the 30-year span, and the
latter corresponds to the mean of January mean daily minimum air
temperature over the same 30-year duration.

Thermal trait hypervolume of assemblages
We used the “hypervolume_gaussian” function from R package
“hypervolume“32 (v3.1.6) in R (v4.3.0) to calculate the n-dimensional
kernel density of each assemblage to represent thermal trait diversity.
The hypervolume method can make the measurement of biodiversity
independent of the number of species, because it focuses on the

distribution and coverage of functional traits in the multidimensional
space. To further avoid the effects of the number of species, we ran-
domly sampled 20 species when calculating the hypervolumes (and
100 species for mean ambient temperature, diurnal and seasonal
temperature range group analyses), repeated 100 times, and used the
averaged value to summarize each assemblage. To avoid the influence
of the scale difference of traits, we used standardized CTmax and
CTminof species as the thermal traits and used the ratio of sample size
for each species to weight the random points in the hypervolume for
each assemblage. Finally, we used linear mixed-effects models (R
package “lme4”53 v1.1.36) to examine the linear relationship between
the hypervolume of assemblages and ambient temperature
measurements.

Kernel density estimation and k-means clusters
We used the R package “ks”54 (v1.14.3) for two-dimensional kernel
density estimation55 to estimate the density and position of a given
variable in the trait space defined by CTmax and CTmin. The optimal
bandwidth of the smoothing kernel was determined by the “samse”
pilot bandwidth selector56. To characterize and compare thermal trait
compositions between theoretical predictions and empirical assem-
blages, we employed k-means clustering (R base function “kmeans”
v4.3.0). Sensitivity analyses with different k values (k = 2–4) revealed
that k = 4 provided the most biologically interpretable groupings,
corresponding to four distinct thermal strategies: warm-adapted spe-
cies (high CTmin), heat-tolerant species (intermediate CTmin with
high CTmax), cold-adapted species (low CTmin), and heat-sensitive
species (intermediate CTmin with low CTmax). This clustering scheme
facilitated meaningful interpretation of thermal strategies while
maintaining robustness, as the concordance between theoretical and
empirical patterns remained consistent across different clustering
approaches.

SHapley additive exPlanations (SHAP) analysis
Analyses were run in Python v3.11.5. To assess the relative importance
of environmental variables in predicting critical thermal limits (CTmax
and CTmin), we applied SHAP analysis using “TreeExplainer” function
(from package “shap” v0.42.1)57,58 to random-forest regression models
fitted with “RandomForestRegressor” (from package “scikit-learn”
v1.3.0)59. SHAP values quantify the marginal contribution of each pre-
dictor to model outputs by averaging over all possible orderings of
feature inclusion. This method allows for interpretable, model-
agnostic estimation of variable importance, while accounting for
interactions among predictors. We report the mean absolute SHAP
value for each environmental variable, which reflects its overall influ-
ence on predicted thermal limits.

Elevational patterns anddiurnal variation in forestmicroclimate
heterogeneity across three biogeographic regions
To assess variation in forest microclimate heterogeneity along eleva-
tional gradients across three geographic regions—CameronHighlands,
Malaysia; Mt. Hehuan, Taiwan; and Mt. Jiajin, Sichuan, China—and to
compare diurnal and nocturnal patterns, we derived gridded hourly
macroclimate data for July (the warmest month during the field sam-
pling years) from the ERA5 reanalysis dataset60 using the “mcera5” R
package61 (v0.4.0). Microclimatic conditions for each sampling point
were then modeled using the “microclima” package62 (v0.1.0) in con-
junction with “NicheMapR”63.

For each sampling site, a 500-m buffer was established, within
which four random points were selected in addition to the central
sampling point (n = 5 per site). Digital elevation models (30-m resolu-
tion) were retrieved for each point using the “get_dem” function in
“microclima”. Concurrently, 30-m resolution habitat classificationdata
were obtained from the GLC_FCS30D dataset64, providing forest type
inputs essential for microclimate modeling. Although GLC_FCS30D
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distinguishes between open and closed canopy types, this differ-
entiation was ignored during modeling (e.g., both “Open” and “Closed
Evergreen Broadleaved Forest” were categorized as habitat = “Ever-
green Broadleaf forest” in “microclima”). Only forested points were
retained for subsequent analyses.

Hourly temperature estimates were computed for five vertical
strata—forest floor (0.05m), top of the herbaceous layer (0.25m), low-
shrub canopy (0.5m), breast height (1.5m), and sub-canopy (2.5m)—
using the “runauto” function in “microclima” over the sampling inter-
val (July 12–18) of the respective years. Notably, breast height (1.5m)
represents a standard level for understory light measurements65,66,
while the other strata may differentially influencemoth activity across
life stages.

Day and night periods were delineated based on local sunrise and
sunset times: 23:00–12:00 UTC for Mt. Jiajin, 00:00–11:00 UTC for
Cameron Highlands, and 22:00–10:00 UTC for Mt. Hehuan. Micro-
climate heterogeneity was quantified as the standard deviation of
temperature across the five vertical strata for each hour, separately for
daytime and nighttime. Daily values were averaged across the 7-day
sampling window.

We fitted linear mixed models using the “lme4” R package53,
treating microclimate heterogeneity as the response variable, with
geographic region, diel period (day vs. night), and elevation as fixed
effects, and sampling point ID as a random effect. Where significant
interactions were detected, post hoc pairwise comparisons (Tukey
tests) and slope comparisons (using the “emtrends” function with
Kenward–Roger correction) were conducted with the “emmeans”
package67 (v1.8.8).

Further methodological details, including the eco-evolutionary
model framework and simulation procedures, are provided in the
Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated or used in this study have been deposited in the
Zenodo repository under the accession code 1740965068.

Code availability
The analysis code used in this study has been deposited in the Zenodo
repository under the accession code 1740965068.
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