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The global shift toward solar photovoltaic (PV) and wind power is crucial to
climate mitigation, yet climate change may intensify extreme low-production
(ELP) events and affect power reliability. Here, we assess future ELP changes
under low (SSP1-2.6), intermediate (SSP2-4.5), and high (SSP3-7.0) greenhouse
gas and air pollutant emissions scenarios. Even under SSP1-2.6, rising ELP risks
are projected to affect more than one-third of global regions, expanding to
nearly two-thirds under SSP3-7.0, regardless of whether systems rely on PV,
wind, or both. Increases in ELP for wind power are nearly inevitable, with over
75% of currently installed areas experiencing 14.0-24.5% greater production
anomalies by the late century. PV power diverges strongly across scenarios,
shifting from a 14.8% decrease in anomaly under SSP1-2.6 to a 26.4% increase
under SSP3-7.0, particularly in East Asia. Additionally, climate-induced risks
disproportionately narrow the benefits of PV development in low- and lower-
middle-income economies, where ELP risks rise at 1.8 times the global rate
under SSP3-7.0. Our results underscore the need for coordinated mitigation
and adaptation to secure power reliability in a changing climate.

Renewable energy is supporting ambitious global warming mitigation  gradients®”. These meteorological drivers—already influenced by
targets', with solar photovoltaic (PV) and wind expected to become anthropogenic climate change”* —are likely to increase the occur-

dominant power sources in the coming decades’. According to pro-
jections by the International Energy Agency (IEA), the share of elec-
tricity generation from wind and PV power could reach 68% in the Net
Zero Emissions by 2050 scenario (NZE)®. Such growing dependence on
wind and solar PV power introduces exposure to climate-induced
underproduction*®, leading to both frequent minor shortages and
rare but severe events’'°. While most shortages can often be managed
through multi-energy scheduling and energy storage, severe events
may quickly exhaust available reserves and impose substantial social
and economic costs” ™,

High temperatures™'®, aerosols”"%, and cloud conditions'*° have
been shown to depress PV power production, while high-pressure
systems induce very low wind speeds by weakening pressure

rence of extreme low-production (ELP) events in the future. Although
previous studies have advanced the understanding of how climate
change affects solar PV and wind power, one or more of the following
limitations remain. First, most work has focused on general trends in
resource variability®***?*?¢, whereas only a few examine the ELP risks
for solar PV, often overlooking key drivers such as air pollutant
emissions. This limits insight into how climate change affects ELP risks
for both technologies—an increasingly important issue as more
countries adopt integrated wind-solar strategies. Second, many stu-
dies assume idealized siting or optimal deployment, overlooking the
spatially uneven and often non-optimal deployment of real-world
installations™. Finally, studies based on power system planning models
propose ways to design resilient wind-solar energy systems that can
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adapt to future extreme weather'>**>*, but these efforts are usually
region-specific and tend to focus on high-income economies.

Here, we systematically assess the global climate-induced impact
on the ELP events for solar PV and wind power in a warmer future.
Using a percentile-based approach, we define an ELP event as one or
more consecutive days with power production below the 10" per-
centile (see Methods and Supplementary Fig. 11 for details). Under
baseline climate conditions, this corresponds to approximately 10% of
days exhibiting extreme low production. The threshold is derived from
power production anomalies for each calendar day during the histor-
ical baseline period (1985-2014), where anomalies are defined as
deviations from the climatological mean. By applying the threshold
consistently across all future scenarios, we track how the production
anomalies evolve along different climate pathways. These changes
reflect the combined effects of climate-induced shifts in both the mean
and variability of power generation. For instance, decreases in mean
output, increases in variability, or both can result in more frequent ELP
occurrences.

We characterize ELP events using frequency, duration, intensity,
and production anomalies to capture climate change impact on their
severity. The power production anomalies during ELP events are then
aggregated to the annual level as a proxy for system-level risks, pro-
viding an integrated measure of extreme shortfalls. Using a spatially
explicit approach that integrates high-resolution installation data, we
quantify the climate-induced production losses and spatial patterns of
the risk for PV and wind power—individually and in combination.
Potentially exploitable areas are also included in our analysis to show
future changes in the available areas, providing a more comprehensive
view of regional vulnerabilities. By applying contrasting climate path-
ways, we quantify the potential outcomes under three scenarios:
optimistic (SSP1-2.6), intermediate (SSP2-4.5), and high (SSP3-7.0)
emission®. Notably, unlike other high-warming scenarios, SSP3-7.0 has
adistinctive design characterized by high aerosol emissions to explore
the diversity of impacts®. The findings contribute insights and
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knowledge on how climate change will impact the ELP events for solar
PV and wind power, with particular emphasis on real-world production
regions.

Results

Climate change causes widespread and pronounced ELP change
globally

As global warming intensifies, the significant and robust upward trend
in ELP is projected to occur across solar PV power, onshore wind
power, and offshore wind power (Fig. 1). Under the SSP3-7.0 scenario,
the power production anomaly during ELP events is rising globally at
an average rate of 3.8 kWh per kW (p < 0.01) per decade for solar PV
power, 2.7 kWh per kW (p < 0.01) for onshore wind power, and 1.3 kWh
per kW (p<0.01) for offshore wind power, respectively. Given the
current installed capacity of solar PV power and wind power, this trend
translates to an additional 116.4 GWh and 942.4 GWh anomalies per
year, respectively. By the mid-21* and late-21*' century, the anomalies
during ELP events for solar PV are projected to increase 15.8% and
26.4% compared to the historical period, respectively, reaching 35.9
TWh and 39.3 TWh annually. Wind power is expected to exhibit even
larger gaps, with anomalies increasing by 10.1% and 22.3%, reaching
245.9 TWh and 273.2 TWh per year. Notably, these additional anoma-
lies will scale further with the continued expansion of installed
capacity.

Change in the number of ELP days — the product of frequency and
duration — dominates the anomalies change in solar PV power, while
changes in event intensity are little (Fig. 1d-i). The increase in ELP days
is largely due to the increase in event frequency, followed by a modest
increase in event duration (Supplementary Figs. 12-19). The global
average of ELP days is expected to increase from 37 to 56 days by the
late-21* century, while the intensity remains at 32-34%. In contrast, the
ELP days for wind power only show a modest increase. However, its
inherently high variability maintains the event intensity at a con-
sistently high level (86% on average) (Fig. 1h, i) —meaning even a small
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Fig. 1| Global trends in extreme low production (ELP) from 1985 to 2100 under
different scenarios. a-c global trends in the anomalies during ELP events for solar
PV power (a), onshore wind power (b), and offshore wind power (c). d-f global

trends in the number of ELP days for solar PV power (d), onshore wind power (e),

2000 2020 2040 2060 2080 2100

T T T 1 T T T T T 1
2000 2020 2040 2060 2080 2100

and offshore wind power (f). g-i global trends in the ELP event intensity for solar PV
power (g), onshore wind power (h), and offshore wind power (i). The solid line
represents the multi-model mean projection, and the shadow represents the range
projected by the multi-model 10™"-90™ percentile.
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Fig. 2 | Spatiotemporal impacts of climate change on extreme low production
(ELP) for solar PV power. a, b Spatial distribution of change in anomalies during
ELP events under different scenarios and periods. The map is based on the multi-
model mean projection. The slash indicates regions with a signal-to-noise ratio
(SNR) greater than 1, suggesting robust multi-model projections. ¢ Spatial dis-
tribution and average power production potential of installed areas and potentially
exploitable areas. Installed areas refer to regions with detected PV panel
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installations, while potentially exploitable areas are those without installations but
with development potential based on land use and topographic suitability (see
“Methods” for details). d Histogram of change in anomalies during ELP events in
installed and potentially exploitable areas. Histogram distribution is plotted based
on the multi-model mean projection under different periods and scenarios. Colors
in panel (d) correspond to panel (c), with purple denoting currently installed areas
and pink indicating potentially exploitable areas.

extension in event duration can introduce substantial additional
anomalies.

Beyond the increasing global risk, the severity of events is also
becoming increasingly pronounced (Supplementary Figs. 20-23). For
solar PV, prolonged downturns may occur, yet the extreme anomaly is
relatively mild. We observe that the longest event durations in current
installed areas exhibit a threefold prolongation (96 days) compared to
the historical period (27 days), while the daily peak anomaly rises from
37 to 104 kWh per kW. In contrast, wind power is projected to
experience much more intense anomalies due to its high event
intensity, making it particularly susceptible to severe supply disrup-
tions. The peak anomaly for onshore wind power increases from 239 to
337 kWh per kW, which is equivalent to at least seven additional days of
complete power disruptions. Offshore wind power is comparatively
less vulnerable, with its largest event anomaly increasing from 77 to
93 kWh per kW. The longest event duration doubles from 19 to 45 days
for onshore wind power, while for offshore wind power, it increases
from 12 to 32 days.

The discernible difference in global trends of ELP change between
contrasting scenarios is particularly pronounced for PV power (Fig. 1).
Moving from the SSP3-7.0 to the SSP1-2.6 scenario, the projected
anomaly in solar PV power decreases by 34% on average by the late-21*
century, accompanied by a significant downward trend. In contrast,
the difference for wind power is projected to be only 5% on average.
Projected trends in solar PV power are robust against climate models
spread, with signal-to-noise ratios (SNR, see “Methods”) exceeding 1in
all scenarios. The inter-model spread largely originates from differ-
ences in response to surface shortwave radiation, particularly those
associated with aerosol and cloud-related processes®. Projections for
wind power exhibit greater inter-model variability, with SNR exceeding
1 only under the SSP3-7.0 scenario. This divergence is partly driven by
differences in response to atmospheric circulation and associated
anomalies”’.

Future pathways shape solar PV power production more than
wind power

Spatial analyses reveal the pronounced regional disparities. For solar
PV in currently installed regions, scenario sensitivity is particularly
notable, with pathway choices potentially leading to markedly diver-
gent outcomes. In comparison, wind power exhibits near-inevitable
ELP increases across all scenarios, persistently affecting both opera-
tional wind farms and potentially exploitable areas (Figs. 2, 3).

According to multi-model mean projection under the SSP2-4.5
scenario, approximately 70% of global land is expected to experience
the increased ELP of solar PV power, respectively (Fig. 2a, b). The
change in anomalies during ELP events exhibits a wide variation
globally, ranging from -32.6% to +239.6%, with a prominent and
robust increase in Africa, the Arabian Peninsula, South Asia, Central
Asia, and western North America. Although most of the global land is
affected by increased ELP, 69.2% and 71.9% of PV-installed areas are
expected to experience decreased ELP by the mid-21* century and the
late-21* century, respectively, which is mainly distributed in East Asia,
Europe, and North America (Fig. 2c, d).

The SSP3-7.0 pathway — characterized by both higher rates of
global warming and weak air-quality controls®*— substantially exacer-
bates the ELP risk of solar PV power. By the mid-21** century, areas
experiencing an increase in ELP events expand to 82.8% globally,
reaching 87.6% by the late-21*" century. In PV-installed areas, the
affected proportion rises to 57.1% and 61.2%, respectively. In the SSP1-
2.6 scenario, 82.3% and 93.2% of the PV-installed areas are expected to
experience decreased ELP by the mid-21* and late-21* century due to
strong climate mitigation and air pollution control, respectively. Cor-
respondingly, the anomalies during ELP events are projected to
decrease by 21.2% and 32.8%, reaching 7.6 TWh and 12.9 TWh annually.
East Asia is particularly sensitive, showing one of the largest ELP
declines under the SSP1-2.6 scenario and the strongest increases under
the SSP3-7.0 scenario (Fig. 2a, b).
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Fig. 3 | Spatiotemporal impacts of climate change on extreme low production
(ELP) for wind power. a, b Spatial distribution of change in anomalies during ELP
events under different scenarios and periods. The map is based on the multi-model
mean projection. The slash indicates regions with a signal-to-noise ratio (SNR)
greater than 1, suggesting robust multi-model projections. ¢ Spatial distribution
and average power production potential of installed areas and potentially exploi-
table areas. Installed areas refer to regions with detected wind turbines, while
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potentially exploitable areas are those without installations but with development
potential based on land use and topographic suitability (see “Methods” for details).
d Histogram of change in anomalies during ELP events. Histogram distribution is
plotted based on the multi-model mean projection under different periods and
scenarios. Colors in panel (d) correspond to panel (c), with purple denoting cur-
rently installed areas and pink indicating potentially exploitable areas.

Obvious divergences are shown in PV-installed areas even under
similar warming levels (Supplementary Fig. 24). For instance, at +3°C
global surface air temperature (GSAT) warming, PV anomalies range
from -23.6% in the SSP1-2.6 scenario to +13.2% in the SSP3-7.0 sce-
nario. This contrast aligns with recent evidence that strict air quality
regulations under SSP1-2.6 enhance surface solar radiation, while lax
policies in SSP3-7.0 amplify aerosol- and cloud-induced losses®*.
Critically, these differences are tied to socioeconomic pathways and
regional development disparities—such as legislative rigor and tech-
nological adoption®’, placing existing PV installations at dispropor-
tionate risk from socioeconomic-driven uncertainties. As the largest
PV-installed region, changes in anomalies during ELP events in East
Asia could reach +28.6% under the SSP3-7.0 scenario, compared to
-16.2% under the SSP1-2.6 scenario.

For wind power, a counterbalance leads to a weak global trend—
growth in the Northern Hemisphere is roughly offset by a decline in the
Southern Hemisphere (Fig. 3a, b). Spatially, approximately
66.2%-73.4% of the global land is expected to experience the increased
ELP of onshore wind power, with small differences between scenarios
and periods. For offshore wind power, 53.5%-63.8% of global offshore
areas are projected to see an increase in ELP. Change in the anomalies
during ELP events ranges from -79.6% to +150.3% for onshore wind
power, and - 46.7% to + 197.4% for offshore wind power. Areas affected
by increased ELP of onshore wind power over 90% in the northern part
of 30°N, while areas widely affected by increased ELP of offshore wind
power include the European coastal region (99.0%) and the American
coastal region (over 80.1%). Hotspots for prominent ELP growth of
wind power include the United States, western China, the east-central
seas of Japan, the western seas of India, and the Somali Peninsula of
Africa. However, it is worth noting that projections exhibit great inter-
model uncertainty under SSP1-2.6 and SSP2-4.5 scenarios, whereas
more robust signals emerge under the SSP3-7.0 scenario, particularly
north of 30°N.

Approximately 92% of areas hosting wind turbines are distributed
in the Northern Hemisphere - primarily in the central United States,
Europe, and East and South Asia - leading to inevitable impact (Fig. 3¢).
Across scenarios and periods, 78.8-91.4% and 75.8-93.9% of onshore-
and offshore-installed areas are projected to experience increased ELP,
respectively (Fig. 3d). On average, anomalies during ELP events are
expected to increase by 7.8-25.6%, approximately three times the
global average. For potentially exploitable areas, while 29.8-37.7%
show a decrease in ELP, a substantial portion is located in regions near
the equator with very low wind power production potential, limiting
the practical benefits (Fig. 3a-c).

The dual ELP risk of solar PV and onshore wind power grows
unevenly
By the mid-21* century, 40.6%, 53.2%, and 63.6% of onshore areas —
including installed and exploitable areas — are projected to encounter
increases in ELP risk for both solar PV and wind power under the SSP1-
2.6, SSP2-4.5, and SSP3-7.0 scenarios, respectively (Fig. 4a). This sug-
gests a dual risk if PV panels and wind turbines are co-located in these
areas. According to the SSP2-4.5 scenario, South Asia, Central Asia, East
Asia, Eastern Europe, and North America emerge as the top five regions
most affected by such dual risk (Fig. 4b). In South Asia, nearly all of the
onshore areas are expected to face dual risk of increased ELP across all
three scenarios. In East Asia, Central Asia, North America, and Eastern
Europe, the proportion of affected areas ranges from 65.8% to 75.7%.
Western Europe, Southern Europe, South Africa, Central America,
and Australia/New Zealand emerge as the five regions least affected by
dual risk. In Western Europe and Southern Europe, nearly all areas
experience an increase in ELP for wind power but a decrease in ELP for
solar PV power, potentially offsetting the overall impact on combined
wind-solar systems. In South Africa, Central America, and Australia/
New Zealand, 33.7% to 85.4% of regions show a decrease in dual ELP for

Nature Communications | (2026)17:734


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-67428-7

Distribution of

a b SSP1-2.6 SSP2-4.5 SSP3-7.0 c mix installed area
© South As@a E 1 u 1 East Asia
o~ Central As!a 1 North America
- East Asia 1 . Northern Europey
o Eastern Europe - | | | South Asi ’/es‘em Europe
8 North America - u u Southern Europe
Middle Africa L L —
Western Asia - m | |
Eastern Africa - = - — SSP1-26
Northern Europe {71 1 1 \
0 Western Africa I I I
< Northern Africa 4 . I L
N Southeast Asia {8 || ] 0 10 20
% South America {8 | ] SSP2-4.5
n Australia/New Zealand - 1 L}
Central America 1 [ | | -~
Southern Africa i 1 =
Southern Europe 10 20
Western Europe 1 . . . SSP3-7.0
S 0 1000 1000 100
o %
s P / L—
= 0 10 20
. - - —: ELP decrease
Wind +: ELP increase Anomaly (TWh)
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changes in production anomalies during ELP events across major regions. All
results are presented based on the multi-model mean projection. Only installed and
potentially exploitable areas are considered.
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income group. a Average potential of power production of solar PV and onshore
wind power between 1985-2014. b the risk structure classified by income group
under different scenarios. All results are presented based on the multi-model mean
projection. Only installed and potentially exploitable areas are considered.

solar PV and wind power, while another 60.9% to 11.0% show a
decrease in ELP for either wind power or solar PV alone.

Co-location of PV panels and wind turbines is most prevalent in
East Asia and Europe. As shown in Fig. 4c, 42.5% of current mixed-
installed areas are concentrated in Western, Southern, and Northern
Europe, followed by East Asia (32.4%) and North America (8.4%).
Although the projected decrease in ELP risk of solar PV could offset the
increase in ELP risk of wind power, the extent of this compensatory
effect depends strongly on the installed capacity structure. Based on
current global installations, the net increase in anomalies during ELP
events is estimated at 11.2-23.3 TWh. Regionally, a clear imbalance
exists. In Europe and North America, decreases in PV-related risk are
more substantial, leading to moderate net increases (0.11-3.55 TWh).
East Asia remains the most vulnerable region, exhibiting the largest net
increase due to high installed capacity, high wind-related risks, and

limited solar PV compensation potential, together with uncertainty in
future socioeconomic pathways. Under different scenarios, the pro-
portion of mixed-installed areas exposed to dual ELP risks ranges from
6.3% to 92.8%, with net increases of 7.42-18.5 TWh.

Notable divergence is also observed across income groups. As
shown in Fig. 5, low- and lower-middle-income economies are more
likely to be impacted by increased ELP for solar PV power, whereas
high-income economies are more impacted by increased ELP for wind
power. Interestingly, it’s the converse for resource endowments—low-
and lower-middle-income economies have better solar resources and
high-income economies have better wind resources. Specifically, 65%
of low-income economies and 51% of lower-middle-income economies
have higher solar PV production potential than the global average.
However, 88-98% of land in low-income economies and 66-88% in
lower-middle-income economies are projected to experience
increased ELP for solar PV across three scenarios by the mid-21* cen-
tury. For wind power, 74% of high-income economies have higher
potential than the global average, compared to only 24-32% for the
other three income groups. Nevertheless, 79-83% of areas are affected
by increased ELP in high-income economies. While natural advantages
and risks exist across income groups, low- and lower-middle-income
economies face greater challenges in realizing their solar PV potential
due to rising adaptation costs. In high-income economies, reductions
in air pollution enhance irradiance, which can partially offset warming-
induced losses in PV output. Such compensatory effects are limited in
lower- and lower-middle-income economies, where weak pollution
controls and intense warming homogenize risks (Supplemen-
tary Fig. 24).

Discussion

Based on multiple downscaled climate model simulations and high-
resolution installation data, this study provides a spatially explicit and
globally comparable assessment of climate change impacts on ELP
events for solar PV and wind power. We use annual production
anomalies to represent ELP risk and characterize ELP events by their
frequency, duration, intensity, and cumulative anomalies. Our results
show that growing ELP risks for wind power are nearly unavoidable,
while those for PV can be substantially reduced through strengthened
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air quality control and climate mitigation, enhancing the potential to
offset wind power shortfalls. As ELP risk increases, events become
significantly more frequent and prolonged—PV power is more prone to
long-time downturns, while wind power is more susceptible to severe
supply disruptions. Regional disparities and vulnerabilities are pro-
jected to widen across socioeconomic pathways.

Notably, we find that the SSP3-7.0 scenario—characterized by high
global warming and weak air pollution control—-leads to widespread
and substantial impacts on solar PV globally. These differences are
especially pronounced in Asia, which has the largest installed capacity
and is undergoing rapid development. Under the SSP3-7.0 scenario,
South, Central, and East Asia face significantly increased ELP risks,
primarily driven by limited pollution control and strong warming. In
contrast, under SSP1-2.6, trends are reversed in East Asia, where strict
air pollution control enhances irradiance and partially offsets
warming-induced losses. Compared to earlier estimates based on
RCPs”, the SSP-RCP framework reveals greater inter-scenario and
inter-regional divergence. This stems not only from the broader range
of air pollutant emissions coupled in SSP-based narratives but also
from socioeconomic disparities in pollution control capacity. High-
income economies are more likely to benefit from improved air quality
and reduced ELP risks, while many lower- and lower-middle-income
economies remain vulnerable due to persistent air pollutant burdens,
stronger warming, and uncertain trajectories of environmental and
technological development. These findings highlight the need for
integrated and synergistic policy approaches that simultaneously
tackle heat adaptation and air quality challenges—especially in lower-
and lower-middle-income economies that either rely on solar PV
power or offer significant potential for high-quality solar energy. For
wind power, previous studies have shown that the impacts of climate
change on long-term resource potential and variability are generally
modest™*”*!, However, such average-based assessments may mask
substantial increases in ELP events. Using an approach based on the
detection of extreme events, we show a pronounced intensification of
ELP conditions under a warming climate, particularly in event severity.
Notably, the strong asymmetry between hemispheres of change in ELP
closely mirrors that of mean wind power density”.

We highlight the necessity for planning and investments in risk
adaptation. Although the extent of the impact is still uncertain due to a
highly uncertain future pathway, most areas, particularly some
resource-rich or densely populated regions, are expected to experi-
ence an unavoidable increased risk. Improving module efficiency is an
effective way to increase generation and reduce costs, yet its mitigat-
ing effect during ELP events is limited (Supplementary Note 1). Some
preparedness, such as capacity reserves and battery storage, is
expected to become increasingly cost-effective in the future. This will
help address more frequent ELP events with longer duration. In some
regions, optimizing the mix of wind and PV capacities is a promising
approach to offsetting the increased ELP risk for wind power with the
decreased ELP risk for solar PV power. However, our findings should
not be interpreted as evidence of real-time operational balancing, as
the use of annual aggregates inherently limits the representation of
temporal co-occurrence events. Further research is needed to assess
the ability of climate models to reproduce the temporal co-occurrence
of ELP events. In addition, the complexity of real-world development
should be acknowledged. Even if some areas show positive change, it
may not be sufficient to support the economics of electricity genera-
tion. The cost brought by the increased ELP versus the benefits of
reducing ELP is also not yet fully clear. Examining these issues could
provide more informed guidance for future energy policies.

Our estimates are subject to several potential limitations and
uncertainties. While the downscaled climate data used in this study
offers improved spatial resolution compared to raw outputs, its daily
temporal resolution limits the ability to capture sub-daily variability in
solar radiation and wind speed. This may lead to biases in regions with

frequent cloud cover or pollution changes. Wind speed fluctuates
more on hourly and even minute scales, which may introduce more
biases using daily-scale input data. Our comparison shows that the
main limitation arises from biases in estimating sub-daily wind speed
distributions from daily means (Supplementary Note 2, 3). The
assumed statistical distribution tends to overestimate the probability
of both very low and very high wind speeds, which leads to an over-
estimation of event intensity. These biases are more pronounced in
regions with low wind energy potential, where near-cut-in conditions
are frequent, and in some mountainous areas where extreme winds
inflate the climatological mean. Despite its limitations, the overall
consistency in most regions with deployment potential supports the
use of daily-resolution data as a reasonable approximation in this study
(Supplementary Figs. 5, 6). Future work could improve accuracy by
incorporating higher-resolution data.

To conclude, we emphasize the uncertainties and systemic risks
associated with the transition to renewable energy under climate
change. This study identifies global hotspots of change in ELP events
for solar PV and wind power, and quantifies the divergent impact
across different pathways and geographic regions. As the related risks
vary widely across regions, the transition to renewable energy requires
enhanced international cooperation. By pooling resources, expertise,
and technological advances, countries can address these challenges
more effectively and accelerate the adoption of renewable energy
globally while ensuring that emissions are reduced sufficiently to avoid
the worst scenarios.

Methods

Global climate model

We use the daily outputs from multiple climate models at a spatial
resolution of 0.25 degrees, which are obtained from the NASA Earth
Exchange (NEX) Global Daily Downscaled Projections (GDDP) dataset
(NEX-GDDP)***3, The NEX-GDDP-CMIP6 dataset provides globally
downscaled climate projections derived from the General Circulation
Model (GCM) or Earth System Model (ESM) runs based on the Coupled
Model Intercomparison Project Phase 6 (CMIP6). It is designed to
support research on climate change impacts at local to regional scales,
particularly for processes sensitive to fine-scale climate gradients and
local topographic effects. Through the Bias-Correction Spatial Dis-
aggregation (BCSD) method, these outputs are more consistent with
the historical record and potentially more realistic in the spatial
domains of interest. Utilizing observationally derived datasets also
provides more spatial detail**. This improvement over previous GCM-
based assessments has been used to evaluate the characteristics of
climate extremes*>*.

The NEX-GDDP-CMIP6 dataset includes both historical simula-
tions (1950-2014) and future projections (2015-2100), based on four
scenario combinations of Shared Socioeconomic Pathways (SSPs) and
Representative Concentration Pathways (RCPs). In this study, we
define 1985-2014 as the baseline period to provide a 30-year clima-
tological reference and define 2015-2100 as the future projection
period, focusing on SSP1-2.6, SSP2-4.5, and SSP3-7.0 scenarios. This
definition aligns with the CMIP6 scenario design, which provides
internally consistent trajectories of socioeconomic drivers and emis-
sions for assessing long-term climate risks. Specifically, the scenarios
characterize, respectively, an optimistic pathway with strict climate
mitigation measures and air pollution controls, aligning with the Paris
Agreement goal of limiting global warming to 2.0 °C (SSP1-2.6), an
intermediate pathway that continues current trends in greenhouse gas
emissions and air pollution control level (SSP2-4.5), a high-warming
pathway with limited mitigation of climate warming and distinctive
weak air pollution controls resulting in high aerosol emissions (SSP3-
7.0)*. To facilitate the reporting and comparison of results, two future
periods are defined: the mid-21* century (2031-2060) and the late-21**
century (2071-2100).
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Surface Downwelling Shortwave Radiation (rsds), Daily Maximum
Near-Surface Air Temperature (tasmax), Daily Mean Near-Surface Air
Temperature (tas), Daily Minimum Near-Surface Air Temperature
(tasmin), and Daily Mean Near-Surface Wind Speed (sfcWind) were
used to calculate PV power production. Tas and sfcWind were used to
calculate wind power production. To address similarity issues within
the results from the same institutions in the multi-model mean pro-
jection process, only one model was retained for each institution®,
provided that all required variables and scenarios were available. Since
the NEX-GDDP-CMIP6 dataset provides daily climate projections only
over land, native-resolution outputs from CMIP6 ESMs/GCMs were
employed for offshore regions. Models available for both were
retained to ensure consistency in model selection between onshore
and offshore regions. Overall, we used 17 GCMs/ESMs for solar PV
power, and 14 GCMs/ESMs for wind power. The specific models used in
this study are detailed in Supplementary Table 1. The signal-to-noise
ratio (SNR), measured as the ratio of multi-model mean change to
inter-model standard deviation, was used to assess robustness. SNR
>1 was considered a robust change relative to inter-model
uncertainty®’.

Calculation of PV power production

Our estimates of solar PV power production are based on the PVLIB
model developed by Sandia National Laboratories*®, which simulates
the total power output from a solar PV system at a given time and
location. Using surface downwelling shortwave radiation data and the
given inclination and azimuth of PV panels, the effective irradiance
received by the PV panel is first calculated. Then, the effective irra-
diance is converted to direct current power using the California Energy
Commission (CEC) module performance model, which also takes the
input of temperature and wind speed data to consider the PV cell
efficiency.

Considering that the estimation of sun-related parameters
depends on specific times of day, we disaggregate daily solar radiation
and temperature data into hourly values. For solar radiation, we apply
the Global Solar Radiation on Horizontal Surface (GSRHS) model*’,
which builds upon extraterrestrial radiation and incorporates an
empirical correction function to improve the hourly distribution.
Further details on the disaggregation method and its validation can be
found in Supplementary Note 2, and Supplementary Figs. 2-4. Hourly
temperature is reconstructed from daily mean, minimum, and max-
imum temperatures using Erbs’s model*°*.

For tilt, we use a third-order polynomial fitting dependent on
latitude®?, which has relatively high accuracy but lower computational
cost. For azimuth, we adopted a south/north-facing configuration in
the Northern/Southern Hemisphere®*. To estimate the effective irra-
diance on a panel at a particular tilt angle, we calculate the diffuse
fraction using the Boland-Ridley-Lauret (BRL) model** to distinguish
between direct horizontal and diffuse radiation from surface down-
welling solar radiation. The BRL model is a multivariate logistic model
that takes into account the clearness index, solar elevation, persistence
index, and apparent solar time. The parameters are estimated by
Lauret et al.® using a Bayesian parameter estimation method based on
nine sites with different environmental conditions in Europe, Africa,
Australia, and Asia. Compared to other local modes, the BRL mode is
more suitable for global applications.

The “Jinko Solar JKM410M-72HL-V” monocrystalline silicon PV
module from the CEC database is used to convert the effective irra-
diance. Utilizing the test module area, all results are consistently
converted into PV power generation per unit area.

Calculation of wind power production

To estimate wind power generation from daily mean wind speed, we
reconstructed sub-daily variability assuming that instantaneous wind
speeds at hub height follow a two-parameter Weibull distribution as

defined in Eq. (1), with a fixed shape parameter (k=2) and the scale
parameter (1) determined from the daily mean wind speed as descri-
bed in Eq. (2). This approach provides a physically reasonable and
widely validated means to approximate the intraday variability
required for wind power generation®?’°¢,

fu=X (%)H exp {— <%>k} W)

where f(U) is the probability density function, and U is the instanta-
neous wind speed at the hub height.

-

A 2

Tra+

where U is the daily mean wind speed at the hub height, and I'() is the
gamma function.

Then, the daily mean power output (P) is calculated by integrating
the product of the turbine power curve and the Weibull probability
density function over the operational wind speed range:

p= / P(Up> f(U)dU 3)

where U,, is the air density-adjusted wind speed that is calculated as
Eq. (4). P(U,) represents the turbine power curve obtained from
manufacturer data, and interpolation is applied to obtain power out-
put at continuous wind speeds. We apply this method to two repre-
sentative utility-scale wind turbines: the Vestas V112-3.075 MW
onshore turbine® and the Vestas V164-9.5 MW offshore turbine’.

13
U,=U <ﬁ> )
Po

where p,, is the standard air density (1.225kgm™), and p is the air
density at the hub height derived from the ideal gas law***°:

- P
P=R.T 3)

where T is the air temperature at the hub height, R; is the specific gas
constant of dry air, and p is the pressure at the hub height estimated as
a function of elevation (h):

Mgh
P=Po - €xp(— R—gr) (6)

where p,, is the standard atmospheric pressure at sea level; M is the
molar mass of dry air; g is the gravitational acceleration; and R is the
universal gas constant. The temperature at hub height (z) is adjusted
from near-surface air temperature (T ,,r,.) using a linear gradient®’:

T@) =T gyrface — 0.0065 - z @)

The wind speed at hub height is estimated from the 10 m wind
speed using the power law®":

U(z)=U(10) (%) ‘ (8)

where U(z) is the wind speed at the hub height z; the U(10) is the wind
speed at the 10 m height; and the exponent a is an empirically derived
coefficient that varies depending on the surface roughness, terrain
type, and the stability of the atmosphere”. Considering the spatial
variability, we derive a at each grid point based on ERAS reanalysis
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wind speed data at 10 m and 100 m heights®***. The estimated « values
mainly range from 0.12 to 0.29, with higher values occurring in
mountainous or heterogeneous regions, while lower values (0.12-0.16)
are found in oceans and smoother terrains (Supplementary Fig. 25).
Given the large spatial and seasonal differences but small annual var-
iations, we use the multi-year seasonal means for each grid cell to
represent spatial heterogeneity.

Definition and analysis of extreme low-production events

We identify ELP events using a percentile-based thresholding method.
For each geographical grid, we first compute daily power production
anomalies over the historical baseline period, which is defined as the
deviation from the multi-year mean of each calendar day. To ensure
sufficient sampling while reducing seasonal biases, the 10™ percentile
is calculated within a 15-day rolling window centered on each calendar
day, aggregating all corresponding days across the 30-year baseline
period?**%%, The choice of window length reflects a trade-off between
sampling size and seasonal bias. Shorter windows provide better sea-
sonal alignment but suffer from limited sample size, while longer
windows improve statistical robustness but may incorporate seasonal
gradients®. Our sensitivity analysis (Supplementary Note 4 and Sup-
plement Figs. 7-10) shows that a 15-day window, combined with the
removal of the mean seasonal cycle in regions with strong seasonality,
achieves a good balance between these factors. Specifically, we
remove the mean seasonal cycle—globally for solar PV due to its strong
seasonality, and only over the Somali Peninsula for wind power. To
avoid artificial discontinuities and ensure comparability across base-
line and future periods, we estimate thresholds using a cross-validation
approach for the baseline period (see ref. 67. for details).

A day is classified as an ELP day if its production falls below the
corresponding percentile threshold. Consecutive ELP days are
grouped into a single ELP event. For each event, we record its duration,
intensity, and cumulative anomaly (i.e., the sum of deviations from the
climatological mean). Intensity is defined as the ratio of the cumulative
anomaly to the corresponding cumulative climatological mean over
the event duration, reflecting the relative severity of power shortfalls
compared to the expected generation. At the annual scale, we further
report the frequency of ELP events and the total power production
anomaly during ELP events. This provides a direct measure of the risk
of power supply shortfalls attributable to ELP events and enables
consistent comparison of climate-induced risks to power supply
reliability across periods and regions.

Distinguishing installed and potentially exploitable areas
Installed areas are defined as 0.25° grid cells that contain power-
generating units. Solar PV facilities were obtained from the TZ-SAM
dataset (Q4 2024)%, which identifies utility-scale assets across 190
countries using satellite imagery, combining machine learning and
manual validation. The dataset covers a total estimated capacity of
922 GW. For wind power, we used wind-farm-level data from The Wind
Power database (accessed March 2025)°°, which provides global cov-
erage of both onshore and offshore projects, with large farms sub-
divided into multiple sub-sites where applicable. Our analysis includes
both operational and under-construction wind farms across 132
countries, with a total installed capacity of 1136 GW—comprising
1038 GW onshore and 98 GW offshore facilities.

To identify potentially exploitable areas, we considered several
constraints and excluded regions already hosting installations. The
stringency of the imposed constraints varied widely across different
studies’® . Here, we used a relaxed constraint to include more pos-
sible areas in the assessment. Specifically, areas were excluded if they
matched any of the following conditions: nature reserves, forests,
water bodies, areas within a 150 m buffer of roads and railways, and
slopes greater than 30°. Urban areas were further excluded from wind-

exploitable areas. The World Database on Protected Areas (WDPA) was
used to identify the distribution of nature reserves’™®. The spatial
location of forests, water bodies, and urban areas was identified based
on the 2022 MODIS Land Cover Type Product (MCD12Q1) dataset at
500 m spatial resolution”. Land Cover Type 2, i.e., University of
Maryland classification, was used in this study. Railway and road data
were obtained from the OSM database’®. Slope angle was developed
from a global elevation model called the Global Multi-resolution Ter-
rain Elevation Data (GMTED2010) at 500 m spatial resolution, devel-
oped by the U.S. Geological Survey (USGS) and the National
Geospatial-Intelligence Agency (NGA)”. We initially performed all fil-
ters at 500 m spatial resolution and then calculated the proportion of
non-exploitable elements at a spatial resolution of 0.25°. Areas were
considered exploitable if the proportion was less than 50%.

Administrative and subregional boundaries

We used the geographic boundaries obtained from the World Bank as
the national and subregional boundaries®, which exclusively define
boundaries on global land extent. To define national marine bound-
aries, we used geographic data obtained from Flanders Marine
Institute’, which provides a standard map coupled with a territory list.
Offshore areas within 200 km of the coast were considered. Country
income groupings follow the standard World Bank definitions®.

Data availability

All data supporting the study have been sourced from freely and
publicly available sources, which are cited within the main text or
Supplementary Information. Source data underlying figures is pro-
vided on Zenodo®.

Code availability

The PVLIB code is available at https://github.com/pvlib. The code used
to produce the results in this study is available at https://github.com/
Vapson/ci_pv_wind-main.git®%.
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