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PhenoProfiler: advancing phenotypic
learning for image-based drug discovery

Bo Li 1, Bob Zhang 1,2 , Chengyang Zhang 3, Minghao Zhou4,
Weiliang Huang1, ShihangWang 5, QingWang 4, Mengran Li6, Yong Zhang3 &
Qianqian Song 4,7

In image-based drug discovery, accurately capturing cellular phenotypic
responses to chemical perturbations is crucial for understanding drug
mechanisms and predicting efficacy. However, existing approaches often
depend on complex, multi-step pipelines that are computationally intensive
and prone to error. PhenoProfiler addresses these challenges with an efficient,
end-to-end deep learning framework that directly transforms high-content,
multi-channel cellular images into low-dimensional quantitative representa-
tions. Evaluated on nearly 400,000 high-content images and 8.42 million
single-cell images, PhenoProfiler consistently outperforms state-of-the-art
methods by up to 20% in both accuracy and robustness. Its tailored phenotype
correction strategy further emphasizes treatment-induced variations,
improving the detection of biologically meaningful and reproducible signals.
PhenoProfiler also effectively clusters treatments with shared molecular
pathways and biological annotations, facilitating mechanistic interpretation
and target discovery. Collectively, PhenoProfiler establishes a scalable, inter-
pretable, and generalizable framework for high-throughput phenotypic pro-
filing, paving the way for next-generation AI-driven drug screening, precision
therapeutics, and systems-level understanding of cellular responses.

In image-based drug discovery1,2, particularly with techniques like Cell
Painting, learning robust image representations is essential for
extracting meaningful insights from complex, high-throughput image
datasets. Cell Painting involves usingmultiple fluorescent dyes to label
various organelles and cellular components, producing multi-channel
images that capture phenotypic changes in response todifferent drugs
and perturbations3. These high-dimensional images are rich in infor-
mation, making automated methods for learning image representa-
tions crucial. These representations enable the development of
predictivemodels for drug discovery, allowing for better identification

of therapeutic compounds, understanding drug mechanisms, and
predicting off-target effects2–4. Many laboratories and companies have
generated extensive Cell Painting datasets5–8, facilitating the identifi-
cation of phenotypic changes in response to drug treatments and
supporting various downstream applications. For example, analyzing
changes in cell morphology can provide insights into drug targets and
mechanisms of action9,10, while comparisons of cell morphology
before and after treatment can help evaluate drug efficacy and identify
promising candidates with significant impacts7,11. Additionally, these
image representations can be integratedwith other data types, such as
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gene expression profiles6,12, allowing for comprehensive multimodal
analyses that further advance drug discovery and biomedical
research8,13.

The high-dimensional nature of Cell Painting images often intro-
duces redundancy and noise, necessitating extensive preprocessing
steps such as normalization, segmentation, and artifact removal7,14.
Furthermore, the large-scale nature of these datasets demands sub-
stantial computational resources for scalable processing, and the
extracted morphological features may lack biological interpretability,
making it challenging to directly utilize these images for meaningful
analysis. General-purpose models pre-trained on ImageNet15, such as
ResNet5016 and ViT17, offer general solutions for image processing and
representation learning. ResNet50 provides hierarchical feature
representations through residual connections, while ViT captures
long-range dependencies in image data. ImageNet pre-training further
enhances their generalizability for computational image analysis
across diverse datasets. To address the specific challenges posed by
Cell Painting images, tailored methods including CellProfiler18,
DeepProfiler9, SPACe19 and OpenPhenom20 have been developed to
extract informative and compact representations of cell morphology.
CellProfiler is a versatile, open-source tool for high-throughput image
analysis, enabling biologists to extract physical cellular features (e.g.,
size, shape, intensity, texture) through modular pipelines. SPACe
enhances computational efficiency using less but refined feature set
and GPU-accelerated texture analysis. DeepProfiler adopts a deep
learning approach, utilizing the EfficientNet21 model architecture to
generate morphological profiles from Cell Painting sub-images.
OpenPhenom leverages Vision Transformer (ViT)-based masked
autoencoders to analyze large-scale microscopy images. By trans-
forming complex image data into concise and interpretable repre-
sentations, these methods enable phenotypic profiling, providing
valuable insights into drug effects and cellular perturbations.

Despite these advancements, existingmethods formorphological
representation learning face several critical limitations, particularly
when applied to high-dimensional Cell Painting images. First, these
methods often process whole multi-channel images by decomposing
them into multiple sub-images, resulting in a complex and resource-
intensive workflow. These approaches typically involve segmenting

the whole images to identify individual cell locations, extracting sub-
images for each cell, applying models to extract features from these
sub-images, and finally integrating those features to generate a com-
prehensive representation of the original whole multi-channel image.
This multi-step process not only increases computational and acqui-
sition costs but also introduces additional sources of error, such as
inaccuracies in segmentation and feature integration. Second, these
methods rely on drug treatment conditions as classification labels9,22,
which provide limited information for capturing the diversity and
complexity of cellular responses. This reliance often results in less
biologically meaningful phenotypic representations, as those condi-
tion labels may fail to capture subtle morphological changes. More-
over, these labels lack universality and are often specific to certain
plates or experimental setups. Consequently, existing models trained
on these limited labels struggle to generalize effectively across diverse
experimental conditions, reducing their scalability and applicability.
These limitations highlight the need for more streamlined, efficient,
and robust method to obtain biologically meaningful representations.

In this paper, we introduce PhenoProfiler, an innovative tool for
learning phenotypic representations of cell morphology from high-
throughput images. Unlike existing methods, PhenoProfiler functions
as an end-to-end framework that directly encodes high-content multi-
channel images into low-dimensional feature representations, without
the need for extensive preprocessing such as segmentation and sub-
image extraction. PhenoProfiler consists of three main modules: a
gradient encoder, a transformer encoder, and a multi-objective
learning module that integrates classification, regression, and con-
trastive learning. These modules establish a unified and robust feature
space for representing cellular morphology. Additionally, PhenoPro-
filer incorporates a tailored phenotype correction strategy, designed
to emphasize relative changes in cell phenotypes under different
treatment conditions, enhancing its ability to capture meaningful
biological signals. Extensive benchmarking on nearly 400,000 multi-
channel images demonstrates PhenoProfiler’s state-of-the-art perfor-
mance in extracting accurate and interpretable phenotypic repre-
sentations. By addressing the complexity, high costs, and limited
generalization capabilities of existing workflows, PhenoProfiler repre-
sents a significant advancement in phenotypic profiling and offers a

Fig. 1 | Framework of the PhenoProfiler for morphology representations.
a Flowchart comparison of end-to-end PhenoProfiler with existing non-end-to-end
methods. b PhenoProfiler includes a gradient encoder to enhance edge gradients,
improving clarity and contrast in cell morphology. A transformer encoder then
captures high-dimensional dependencies and intricate relationships, enriching

image representations. A designed multi-objective learning module is utilized for
accurate morphological representation learning. c For model inference, Pheno-
Profiler uses phenotype correction strategy (PCs) with hyperparameter α to iden-
tify morphological changes between treated and control conditions. Created in
BioRender. Song, Q. (2025) https://BioRender.com/v0nqs11.
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powerful tool for accelerating image-based drug discovery. Pheno-
Profiler is freely accessible at https://phenoprofiler.org.

Results
Overview of the PhenoProfiler model
PhenoProfiler learns morphological representations and extracts
phenotypic changes of treatment effects from high-throughput ima-
ges.Differentwith existingmethods (Fig. 1a), PhenoProfiler is designed
as an end-to-end model with three key modules (Fig. 1b): a gradient
encoder using difference convolution23,24, which enhances cell edge
information and improves the clarity and contrast of cell morphology,
and thus enhances the model’s adaptive perception of cells. A

transformer encoder with multi-head self-attention mechanisms22

further captures long-range dependencies and intricate relationships
within the data. A multi-objective learning module, composed of two
multi-layer perceptron layers, is then utilized to enhance accuracy and
generalization. This module integrates classification, regression, and
contrastive learning. The classification learning maps image repre-
sentations to categorize treatment conditions based on their corre-
sponding labels. The regression learning leverages the rich and
continuous supervisory information provided by regression objective
to capture detailed morphological representations across different
treatments, thereby significantly improving model performance. The
contrastive learning improves robustness and generalization by

Fig. 2 | Performance analysis of benchmarking methods in biological
matching tasks. a Comparison of end-to-end feature representation performance
across different methods in biological matching tasks using three benchmark
datasets (BBBC022, CDRP-BIO-BBBC036, and TAORF-BBBC037) under leave-
perturbations-out setting, evaluated with two evaluation metrics (MAP, FoE), and
four comparison methods (DeepProfiler, ResNet50, ViT, OpenPhenom).
b Performance comparison of different methods at different recall rates (recall@1,
recall@3, recall@5, and recall@10). c Ablation experiments of PhenoProfiler,
showing performance changes after sequential removal of each module. Specifi-
cally, “-MSE”, “-Con”, and “-CLS” represent the removal of regression, contrastive,

and classification learning in the multi-objective module, while “-Gradient” repre-
sents the exclusion of difference operations. d Performance curve of PhenoProfiler
under solely classification learning, showing variations in MAP and FoE as the
classification loss decreases. e Sensitivity analysis of multi-objective learning of
PhenoProfiler, exploring the impact of regression and contrastive learning (λ2 and
λ3) while maintaining fixed classification learning. f Hyperparameter analysis of θ₁
and θ₂ in the gradient encoder in parallel branches. MAP: Mean Average Precision;
FoE: Folds of Enrichment; MSE: Mean Squared Error; Con: Contrastive Learning;
CLS: Classification Learning. Source data are provided as a Source Data file.
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Fig. 3 | Benchmarking zero-shot performance across multiple datasets.
a Performance evaluation of different models using leave-plates-out validation.
b Performance evaluation of different models using leave-dataset-out validation.
c Performance evaluation of different models using out-of-distribution validation.

The test plates include BR00115125-BR00115134 (cpg0001) and SQ00014812-
SQ00014816 (cpg0004). FoE: Folds of Enrichment; MAP: Mean Average Precision;
BBBC036: CDRP-BIO-BBBC036; BBBC037: TAORF-BBBC037. Source data are pro-
vided as a Source Data file.
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maximizing similarity among representations of similar treatment
conditions and minimizing it among dissimilar ones. After well train-
ing, PhenoProfiler identifies a unified and robust feature space for
representing cell morphology. During the inference phase (Fig. 1c),
PhenoProfiler utilizes a phenotype correction strategy to emphasize
relative phenotypic changes under different treatment conditions,
thereby revealing associated biological matches and treatment-
associated representations. The detailed rationale for the design of
PhenoProfiler is provided in Supplementary Note 1.

Superior performance of PhenoProfiler in biological
matching tasks
For comprehensive and robust evaluation of the PhenoProfiler, we
compare it with established methods, including DeepProfiler9,
OpenPhenom20, ResNet5016, and ViT17 (Benchmarking Methods) using
the leave-perturbation-out strategy. Two evaluation metrics (Evalua-
tion Metrics) are used: Folds of Enrichment (FoE) and Mean Average
Precision (MAP).

First, we use over 230,000 images from three datasets
(BBBC02225, CDRP-BIO-BBBC03626, and TAORF-BBBC03727), covering
231 plates and 4285 treatments, including both compound and gene
overexpression perturbations. The experimental results are illustrated
in Fig. 2, demonstrating that PhenoProfiler surpasses all competing
methods across three benchmarking datasets in both FoE and MAP
metrics. As shown in Fig. 2a, PhenoProfiler achieves FoE improvements
of 23.8%, 2.1%, and 12.9% over the second-best method (DeepProfiler)
on the BBBC022, CDRP-BIO-BBBC036, and TAORF-BBBC037 datasets,

respectively. For MAP evaluation, PhenoProfiler outperforms the
second-best method by significant margins of 3.3%, 7.3%, and 7.1%
across these datasets. Additionally, as depicted in Fig. 2b, we con-
ducted comprehensive recall analysis at multiple thresholds
(Recall@1,@3,@5,@10),where recall ratesmeasure theproportionof
biologically relevant treatments retrieved within top-ranked predic-
tions (Evaluation Metrics). Using Recall@10 as a representative
benchmark, PhenoProfiler exhibits performance enhancements of
17.4%, 4.3%, and 10.5% compared to DeepProfiler on the BBBC022,
CDRP-BIO-BBBC036, and TAORF-BBBC037 datasets, respectively.

To further illustrate the contributions of each module within
PhenoProfiler, we have performed extensive ablation experiments
using BBBC022 dataset in end-to-end pipeline (Fig. 2c). First, we
remove the regression learning component within the multi-objective
learning module (i.e., “-MSE” option), retaining only classification and
contrastive learning. The results show that removing the regression
learning results in a notable performance drop, with FoE and MAP
decreasing by 12.0% and 12.7%. Next, we test various combinations of
loss functions (e.g., “-Con”, “-CLS”, “-MSE-Con”, “-Con-CLS”, and “-CLS-
MSE”). For example, the removal of both regression and classification
learning leads to more performance decrease, with FoE and MAP
reduced by 28.0% and 20.6%, respectively. Moreover, compared to the
averageperformanceofmodelswithout gradient encoding (i.e., “-MSE-
Con-Gradient”, “-Con-CLS-Gradient”, and “-CLS-MSE-Gradient”), this
modification results in a reduction of 25.2% in FoE and 11.5% in MAP,
highlighting the effectiveness of gradient-based feature encoding.
Additionally, themeasurementmetrics do not consistently improve as

Fig. 4 | Robustness of feature representations across differentmethods. UMAP
visualizations of well-level features predicted by DeepProfiler and PhenoProfiler
across three benchmark datasets. Features are colored by plate IDs and treatment
conditions (control vs. treatment). IMAD quantifies the cohesiveness of the UMAP

patterns, with higher values indicating better batch effects removal. UMAP: Uni-
formManifold Approximation and Projection; BC: Batch Correction; IMAD: Inverse
Median Absolute Deviation.
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classification loss decreases. As illustrated in Fig. 2d, while both MAP
and FoE initially increase with decreasing classification loss, they
eventually decline. This observation highlights the importance of
PhenoProfiler’s multi-objective learning design. The optimal weights
for multi-objective learning were systematically determined through
sensitivity analysis on the BBBC022 datasets. Figure 2e–f presents the
tuned parameters of PhenoProfiler achieved optimal performance.
Detailed evaluation of leave-sites-out are shown in Supplementary
Notes 2 and 3.

PhenoProfiler demonstrates robust generalization and
applicability
To evaluate the generalization of PhenoProfiler, we conduct experi-
ments on the benchmarking datasets using the leave-plates-out and
leave-dataset-out evaluation strategies. For the leave-plates-out strat-
egy, A subset of plates are used as the test set while the remaining
plates are used for training. For the leave-dataset-out strategy, one
dataset is used for training and the other two serve as test sets. For
example, “BBBC022→BBBC036” indicates training on the BBBC022

Fig. 5 | Quantitative analysis of the phenotype correction strategy in Pheno-
Profiler. aThe conceptualmotivation for the designof PCs. Phenotypic differences
between treated- and controlled- wells capture the treatment response. b Ablation
experiments demonstrating the impact of PCs across three datasets, showing a
consistent increase in the FoE with the inclusion of PCs. c Sensitivity analysis of the
hyperparameter α in the PCs. d UMAP visualizations of feature representations

generated by PhenoProfiler, with andwithout PCs, evaluating the harmonization of
well-level features using IMAD. PCs: Phenotype correction strategy; IMAD: Inverse
Median Absolute Deviation; FoE: Folds of Enrichment; MAP: Mean Average Preci-
sion; UMAP: Uniform Manifold Approximation and Projection. Source data are
provided as a Source Data file. Created in BioRender. Song, Q. (2025) https://
BioRender.com/y4tl93e.
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Fig. 6 | Quantitative and qualitative evaluation of feature representations of
treatment effects. a UMAP projections of treatment profiles using well-level fea-
tures providedby PhenoProfiler in non-end-to-end scenario.bUMAPprojections of
treatmentprofiles usingwell-level featuresprovidedbyPhenoProfiler in end-to-end
scenario. Well-level profiles, control wells, and treatment-level profiles are inclu-
ded. Text annotations highlight clusters where all or most points share same bio-
logical annotations for treatment-level profiles. UMAP: Uniform Manifold

Approximation and Projection. c Heatmap visualization of PhenoProfiler-derived
features demonstrates significant feature shifts in drug-treated groups compared
to DMSO controls. d Biological interpretability of key drug-responsive phenotypic
features captured by PhenoProfiler. The directionality of feature changes captured
by PhenoProfiler (with red indicating increase and blue representing decrease)
shows strong concordance with established pharmacological mechanisms.
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dataset and validating on BBBC036 (CDRP-BIO-BBBC036). Regarding
the leave-plates-out scenario (Fig. 3a), PhenoProfiler consistently sur-
passes othermethods in both FoE andMAP. Specifically, PhenoProfiler
has higher FoE than the second-best method by 57.0%, 10.7%, and
13.7%. For theMAPmetric, PhenoProfiler outperforms the second-best
method by 16.9%, 17.3%, and 6.0%. Figure 3b illustrates the perfor-
mance comparison in the leave-dataset-out scenario, highlighting the
consistent superior performance of PhenoProfiler. For example, in the
BBBC022→BBBC036 scenario, PhenoProfiler outperforms the next
best method with higher FoE and MAP metrics by 13.0% and 17.1%,
respectively. Similarly, in the BBBC022→BBBC037 scenario, Pheno-
Profiler surpasses the next best method with higher FoE and MAP
metrics by 6.9% and 5.4%, respectively. Collectively, PhenoProfiler
demonstrates better generalization than existing methods, enhancing
more accurate downstream tasks in drug discovery.

To further validate PhenoProfiler’s generalization capability, we
performed an out-of-distribution (OOD) evaluation using 10 diverse
plates (BR00115125-BR00115134) from cpg0001 dataset, comprising
76,800 images covering 83 unique treatments and 47 annotated
mechanisms of action (MoA). As shown in the upper panel of Fig. 3c,
we directly applied PhenoProfiler models pretrained on BBBC022,
BBBC036, and BBBC037 to these OOD plates. Remarkably, Pheno-
Profiler outperformed the second-best model (DeepProfiler) by an
average of 45.8% in FoE and 27.3% in MAP across all test plates (upper
panel of Fig. 3c), demonstrating robust generalization and OOD
robustness. Moreover, since these evaluations were exclusively from
theU2OS cell line, we further evaluated PhenoProfiler on five A549 cell
line plates (SQ00014812, SQ00014813,…, SQ00014816 fromcpg0004
dataset, lower panel of Fig. 3c). Remarkably, PhenoProfiler outper-
forms the second-bestmodel (OpenPhenom) by 21.4% (FoE) and 20.3%
(MAP) on average (lower panel of Fig. 3c), demonstrating robust
generalization across different cell lines.

PhenoProfiler effectively removes batch effects for robust phe-
notypic representations
Variations stemming from technical and instrumental factors9,28 can
introduce batch effects between plates subjected to the same treat-
ment, which obscure true biological phenotypic signals and compro-
mise downstream analyses. To evaluate PhenoProfiler’s ability to
mitigate batch effects, we employed the Inverse Median Absolute
Deviation (IMAD) metric, which quantifies the dispersion of image
representations. Higher IMAD values indicate reduced dispersion,
reflecting successful batch effect correction (details provided in the
Evaluation Metrics section).

Figure 4 illustrates the well-level representation features, with
plate IDs distinguished by different colors to highlight batch effects.
For DeepProfiler, its representation features extracted from the
BBBC022 dataset exhibit clear separation between plate IDs (IMAD=
0.326), indicating the presence of significant plate-specific biases. This
separation shows strong technical variations among the extracted
representation features, which can obscure true biological signals and
hinder downstream analyses. Upon applying extra batch correction
step to DeepProfiler’s representation features, the UMAP projections
displayed improvements in feature cohesiveness (IMAD=0.458).
Notably, the representation features learned by PhenoProfiler exhibit a
distinctly more integrated distribution (IMAD=0.603). This superior
performance suggests that PhenoProfiler learns harmonized repre-
sentation features across different plates, effectively addressing batch
effects without additional corrections. This pattern is consistently
observed across all three datasets, further validating PhenoProfiler’s
reliability in generating phenotypic representations that are robust to
technical confounders. The inherent capacity of PhenoProfiler to learn
harmonized representations directly from raw data not only reduces
the need for computationally intensive post-processing but also
ensures that biological signals are preserved.

Phenotype correction strategy of PhenoProfiler improves bio-
logical matches
To effectively capture relative changes under treatments, PhenoPro-
filer is tailor designed with a phenotype correction strategy (PCs,
Fig. 5a, details in Materials and Methods section) to refine learned
phenotypic presentations, which distinguishes PhenoProfiler from
existing methods. As illustrated in Fig. 5a, PhenoProfiler with PCs
corrects image representations by leveraging controlled and treated
wells within one plate and emphasizing relative changes in cell phe-
notypes under treatments.

As shown in Fig. 5b, we assess the impact of the PCs through
ablation experiments on three benchmark datasets. The results
demonstrate that PCs consistently improves the FoE metric with
minimal impact on the MAP metric (Supplementary Fig. 3). We also
analyze the hyperparameter α in PCs, which determines the relative
weight of controlled and treated wells. As illustrated in Fig. 5c, the
outer circle of the radar chart corresponds to the value of α, with α = 0
representing PhenoProfiler without PCs. Asα increases from0 to 1, the
relative weight of controlled wells increases, resulting in more pro-
nounced differential effects. Meanwhile, the FoE generally trends
upward while the MAP metric remains relatively stable. When α is
greater thanorequal to0.7, the FoEbegin to reach itsmaximum.These
results demonstrate that PhenoProfiler with PCs can effectively cap-
ture the relative changes of cell phenotypes under treatments.

Furthermore, we analyze the aggregation of features before and
after incorporating PCs across the three benchmark datasets. UMAP
with well-level image representations are quantitatively measured for
their dispersion before and after adding PCS using the IMAD metric
(Fig. 5d). After implementing PCs, the representation features from
different plates become significantly more clustered. Additionally, the
IMAD metrics increases notably, with substantial improvements of
51.5%, 69.7%, and 11.6% across the three benchmark datasets,
respectively.

PhenoProfiler efficiently captures representations of treatment
effects
To visually illustrate the treatment effects, we obtain phenotypic
representations using PhenoProfiler under various treatment condi-
tions. Figure 6 displays a UMAP projection of PhenoProfiler repre-
sentations across three benchmark datasets, providing a clear
demonstration of howPhenoProfiler captures andorganizes biological
patterns in both non-end-to-end (Fig. 6a) and end-to-end (Fig. 6b)
scenarios. For the BBBC022 and CDRP-BIO-BBBC036 datasets, which
involve compound treatments, distinct clusters emerge based on their
mechanisms of action (MoA). These clusters represent the functional
similarities between compounds with shared MoAs, effectively
demonstrating how PhenoProfiler translates phenotypic profiles into
meaningful groupings that align with known biological functions.
Similarly, the TAORF-BBBC037 dataset, which involves gene over-
expression perturbations, reveals clear clusters of treatments corre-
sponding to their genetic pathways, such asMAPK and PI3K/AKT. This
clustering reaffirms established biological relationships and validates
PhenoProfiler’s capability to accurately discern pathway-specific fea-
tures. Notably, these groupings remain consistent across different
wells, showcasing PhenoProfiler’s robust performance in feature
extraction and its reliability in accurately representing treatment
effects across experimental variations. However, someclusters are less
distinctly discerned in the UMAP projections, suggesting that incor-
porating additional features, such as compound structures or gene
expression data, could enhance the understanding of MoAs.

To further assess PhenoProfiler’s ability to identify clinically
actionable phenotypic patterns while maintaining biological inter-
pretability, we performed an in-depth evaluation using the cpg0004-
LINCS dataset, which includes treatments with well-characterized
MoAs. As shown in Fig. 6c, all drug-treated groups exhibited significant
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feature shifts compared to DMSO controls. Notably, quadruplicate
wells of the same drug class demonstrated high consistency, while
distinct separation was observed between different drug categories.
These results confirm PhenoProfiler’s dual capability: sensitive detec-
tion of drug-induced phenotypic perturbations and precise dis-
crimination between pharmacological mechanisms. To elucidate the
model’s biological interpretability, we focused on key phenotypic
features responsive topharmacological perturbations. Fromfivemajor
feature categories (granularity, correlation, spatial distribution,
intensity, and area shape), we identified 15 most drug-sensitive bio-
markers (three per category). Quantitative analysis in Fig. 6d demon-
strates that PhenoProfiler-captured feature dynamics (red for
upregulation, blue for downregulation) show remarkable concordance
with established pharmacological mechanisms. For example, for the
aclidinium, PhenoProfiler detected significantly increased cellular
compactness and decreased eccentricity, aligning with its known
mechanism of vesicle trafficking inhibition through mAChR
blockade29,30. More remarkably, PhenoProfiler also captured a
decrease in Golgi fluorescence intensity (Cells_Intensity_MeanIntensi-
ty_AGP) and an increase in RNA distribution heterogeneity (Cells_In-
tensity_MADIntensity_RNA), which highly coincides with the secretory
dysfunction caused by aclidinium inhibiting muscarinic receptors and
leading to signalingblockade29,30. Additionally,we specifically analyzed
a typical case of the PKC activator TPA (12-O-Tetradecanoylphorbol-13-
acetate). PhenoProfiler accurately captured the cell area expansion
induced by this drug, which perfectly matches the theory of PKC-
mediated cytoskeletal reorganization31,32.

Discussion
In this study, we present PhenoProfiler, an advanced tool for pheno-
typic representations of cell morphology in drug discovery. Pheno-
Profiler operates as a fully end-to-end framework, transforming multi-
channel images into low-dimensional, biologically meaningful repre-
sentations. By integrating a multi-objective learning module that
incorporates classification, regression, and contrastive learning, Phe-
noProfiler effectively captures a unified and robust feature space. The
extensive benchmarking conducted in this study, involving over
400,000 images from seven publicly available datasets, demonstrates
that PhenoProfiler significantly outperforms existing state-of-the-art
methods in both end-to-end, leave-plates-out, leave-dataset-out, and
out-of-distribution validation scenarios. Moreover, PhenoProfiler
achieves greater computational efficiency compared to existing non-
end-to-end approaches (Supplementary Note 4). Furthermore, in non-
end-to-end settings, we utilize over 8.42 million single-cell images for
comparative analysis. PhenoProfiler’s superior performance on these
large-scale datasets across all scenarios highlights its robustness,
generalizability, and scalability, positioning it as a highly effective tool
for advancing image-based drug discovery.

A key challenge in phenotypic representation learning lies in the
heterogeneity of cellular responses to treatments. To address this,
PhenoProfiler incorporates a multi-objective loss function that effec-
tively guides the model’s learning process. First, the classification loss
serves as the foundation, capturing phenotypic distinctions across
treatments and enabling macro-level differentiation while aligning the
learned representations with biologically meaningful semantics. Sec-
ond, the regression component, supervised by pre-extracted mor-
phological features, directs the model’s attention to cells exhibiting
significant phenotypic perturbations, filtering out noise from unaf-
fected cells and mitigating the effects of intracellular heterogeneity.
Third, contrastive learning improves robustness to batch effects and
morphological variability by encouraging similar representations for
similar treatments and distinguishing between different treatments.
Together, these objectives enable PhenoProfiler to learn rich hier-
archical features, from local morphological details (via regression) to
global treatment-specific patterns (via classification and contrastive

learning), without relying on segmentation or sub-image extraction.
Finally, the Phenotype Correction strategy (PCs) enhances the learned
features by contrasting control and treated wells, amplifying biologi-
cally meaningful signals related to spatial distributions. In practical
applications, PhenoProfiler supports flexible strategies for obtaining
the pre-extracted morphological features used in regression super-
vision. These can be derived either from CellProfiler-extracted fea-
tures, commonly available in Cell Painting assays, or frommorphology
profiles generated by a non-end-to-end EfficientNet model (Supple-
mentary Note 5, Supplementary Figs. 4, 5).

While PhenoProfiler sets a new benchmark in phenotypic repre-
sentation learning, there are several areas for future explorations and
enhancement. First, the design of the multi-objective learning module
can be further refined by exploring the interconnections and synergies
among classification, regression, and contrastive objectives. Under-
standing the dependencies between these objectives33,34 could lead to
more cohesive learning strategies. Additionally, while PhenoProfiler
currently employs a stepwise training approach to address conflicts
between objectives35,36, future work could focus on developing joint
training and optimization techniques to balance these objectivesmore
effectively. Second, recent advancements in largebiomedical language
models37–40 offer opportunities to integrate extensive domain knowl-
edge into computational frameworks. Integrating these models’
embeddings into PhenoProfiler could enhance its generalizability,
robustness, and effectiveness. Last, future efforts should prioritize
integrating assays with complementary data modalities, such as
genetic profiles12,41 and chemical structures42,43. Combining these
multi-modal data would enable more comprehensive representations,
offering a holistic view of cell states and phenotypic responses to
various treatments.

The ability of PhenoProfiler to consistently capture and organize
complex biological information across diverse datasets and treatment
types underscores its versatility and utility in high-throughput drug
screening and discovery. By addressing critical challenges in pheno-
typic profiling, such as scalability, robustness, and interpretability,
PhenoProfiler enhances our understanding of treatment effects at the
phenotypic level. Additionally, its potential for integrativemulti-modal
analysis, combining phenotypic data with complementary modalities
such as genetic profiles, transcriptomics, and chemical structures,
opens new opportunities to explore drug mechanisms and novel drug
targets.

Methods
The PhenoProfiler model
PhenoProfiler is an end-to-end model, with input as multi-channel
images and output as phenotypic representations under treatments.
The overall framework includes three key modules: a gradient enco-
der, a transformer encoder, and a multi-objective learning module.

Gradient encoder
To enhance the model’s ability to understand cell morphology, we
design a gradient encoder based on difference convolution (DC)23,24.
This DC function enhances gradient information around cell edges,
improving the perception of morphological structures44,45. Formally,
let p0 represent the central position of a local receptive field Rðp0Þ,
with pi 2 R p0

� �
. The pixel value at position pi in the input image is

denoted as xpi
, and the DC function is defined as:

DC xp0
,θ

� �
=
X

pi2R p0ð Þwpi
� xpi

� θ�xp0

� �
, ð1Þ

wherewpi
is a learnable parameter, and θ 2 ½0, 1� is a hyperparameter

that controls the balance between semantic and gradient information.
When θ=0, the DC function reduces to traditional convolution (TC),
i.e., TC p0

� �
=
P

pi2R p0ð Þwpi
� xpi

.
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The gradient encoder consists of two components: gradient
enhancement and residual feature extraction. The gradient enhance-
ment includes two parallel branches of difference convolution: the
Deep Gradient branch, denoted as DG=DCð�, θ1Þ, and the Shallow
Gradient branch, denoted as SG=DCð�,θ2Þ. We conducted a sys-
tematic experimental analysis of the hyperparameters θ1 and θ2 in the
gradient encoder module (see Parameter Tuning section, Supple-
mentary Note 3). Through comprehensive evaluation of different
weight combinations, we ultimately determined the optimal config-
uration of θ1 = 0:7 and θ2 =0:3 for the two-branch architecture. The
multi-channel input images, represented as xin, are processed in par-
allel through the two branches. The outputs of these branches H1 are
then concatenated and passed through a Multi-Layer Perceptron
(MLP) layer as follows:

GDG =BN ReLU DG xin

� �� �� �
, ð2Þ

GSG =BN ReLU SG xin

� �� �� �
, ð3Þ

H1 =BN ReLU MLP GDG,GSG

� �� �� �� �
: ð4Þ

Here H1 is the enhanced latent features. Batch normalization (BN)
ensures stable and efficient training by normalizing the intermediate
latent features.

The subsequent residual feature extraction component employs
the ResNet5016 model, pre-trained on ImageNet15. By incorporating
residual connections, the ResNet50 model effectively addresses the
vanishing gradient problem encountered in training deep neural net-
works, enabling the network to extract deeper features. This step
outputs a fixed-length feature vector H22RB × 2048, where B denotes
the batch size.

Transformer encoder
The latent features H2 is passed through the transformer encoder17,46

withmulti-head self-attentionmechanism, effectively capturing global
dependencies among features. Then, layer normalization and residual
connections are applied to ensure stable gradient propagation. Sub-
sequently, a Feed-Forward Neural Network (FFN) is used to further
extract high-level features, resulting in the output feature vector
H42RB× 2048. This process is formulated as below:

H3 =MultiHeadAttention H2,H2,H2

� �
, ð5Þ

H4 = LayerNorm H2 +Dropout H3

� �� �
, ð6Þ

H5 = FFN H4

� �
=ReLU W 2 ReLU W 1H4 +b1

� �� �
+b2

� �
, ð7Þ

H6 = LayerNorm H4 +Dropout H5

� �� �
: ð8Þ

Here, MultiHeadAttention computes attention weights across multi-
ple attention heads to capture diverse feature dependencies. The FFN
consists of two fully connected layerswith non-linearReLU activations,
parametrized by weights W 1, W 2, and biases b1, b2. This transformer
encoder effectively captures global and local information simulta-
neously, ensuring the generation of rich and informative feature
representations.

Multi-objective learning
To facilitate efficient multi-objective learning, we use a feature pro-
jection that maps latent features to a lower-dimensional space,
facilitating efficient multi-objective learning. Specifically, the latent
feature H62RB× 2048 is first linearly transformed to a lower-

dimensional space. A GELU activation function is then applied to
introduce non-linear characteristics, followed by further processing
through a fully connected layer with dropout to prevent overfitting.
This feature projection process provides final output Ẑ2RB×672 as
follows:

Z 1 =W3H6 +b3, ð9Þ

Z2 =Dropout W 4�GELU Z 1

� �
+b4

� �
, ð10Þ

Ẑ =LayerNorm Z 1 +Z2

� �
: ð11Þ

Then a classification head is implemented as a simple linear layer
maps output representations Ẑ to ŷ, representing the predicted
treatment labels.

Classification learning. To characterize the phenotypic responses of
cells under various treatments and enable the model to learn dis-
criminative features among different treatments, we employ a cross-
entropy loss function to quantify the discrepancy between themodel’s
predictions and the ground truth:

LCLS = �
XN

i= 1

yi log ŷi
� �

: ð12Þ

Here, N represents the number of treatment categories, and yi is the
one-hot encoding of the treatment label in ground truth. If the ground
truth is treatment category i, then yi = 1; otherwise, yi =0.

Regression learning. Here, we have innovatively designed a regres-
sion learning component to learn cell morphological representations.
Unlike discrete classification labels, this approach leverages richer and
more nuanced feature information, enabling the model to focus on
cells exhibiting the most pronounced phenotypic perturbations while
effectively disregarding interference fromunaffected cell populations.
To obtain regression labels, we use the median of the morphology
profiles of cpg0019 as the regression morphology labels and train the
model using Mean Squared Error (MSE) loss:

LMSE =
1
m

XM

i= 1

ðZ i � Ẑ iÞ
2
, ð13Þ

where Z i is the morphology profiles of the i-th image, Ẑ i is predicted
morphology features, and M is the number of images.

Contrastive learning. Contrastive learning enhances the model ‘s
ability to distinguish features by maximizing the similarity between
similar images and minimizing the similarity between dissimilar ones.
Specifically, contrastive learning does not rely on ground truth labels
but focuses on learning feature representations based on the relative
relationships between images. This approach not only reduces the
negative impact of noisy labels but also improves the model’s
robustness and generalization when handling unseen data. The con-
trastive loss function is formulated as follows:

LCon = � 1
B

XB

i = 1

log exp Ẑ i � Z i=τ
� �

=
XB

j = 1

expðẐ i�Z i=τÞ ð14Þ

where B is the batch size, Ẑ i denotes the predicted morphology fea-
tures of the i-th image, and Z i is the morphology profiles, and τ is the
temperature parameter. This objective trains the model to produce
discriminative feature vectors by maximizing the similarity between
matching image-embedding pairs while minimizing the similarity
between non-matching pairs.
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Multi-objective loss. By integrating classification, regression, and
contrastive learning, PhenoProfiler provides a unified and robust fea-
ture space, comprehensively learns the image representations of
multi-channel cell images. This multi-object learning architecture
enhances the overall generalization performance of the model. To
achieve an effective balance in multi-object learning, we assign a
weight parameter to each object and adjust these weight parameters
to balance the losses. The final total loss function can be expressed as:

Ltotal = λ1LCLS + λ2LMSE + λ3LCon, ð15Þ

where λ1, λ2, λ3 are the weight parameters for the classification,
regression, and contrastive learning, respectively. Based on extensive
ablation experiments (see Fig. 2e), we set theseweights to 0.1, 100, and
1, respectively. This multi-loss balancing strategy enables PhenoPro-
filer to find the optimal trade-off among different objects, thereby
enhancing the overall performance and robustness of the model.
Additionally, this strategy allows us to flexibly adjust the weights of
each learning according to the specific requirements of the application
scenario, achieving optimal feature representation and prediction
performance.

Parameter tuning
PhenoProfiler is an end-to-end multi-channel image encoder designed
to convert multi-channel images into corresponding morphology
representations. During training, conflicts among objects in multi-
objective joint training caused themodel to struggle to converge to an
optimal state35,36. To address this, we adopted a stepwise training
strategy. Initially, we trained the regression learning using MSE loss to
optimize the model. After approximately 100 epochs, we proceeded
with joint optimization based on the multi-object learning archi-
tecture. The hyperparameter settings were as follows: a batch size of
300, a maximum of 200 training epochs, and 12 workers. The learning
rate followed a staged decay strategy: 2e-3 for the first 10 epochs, 1e-3
for the next 50 epochs, 5e-4 for the subsequent 60 epochs, and 1e-4 for
the final 80 epochs. The training environment was Ubuntu 22.04, uti-
lizing four NVIDIA A100 GPUs (40GB version). Details on the tuning of
loss function coefficients and the gradient encoder hyperparameters
are provided in Supplementary Note 3 and Supplementary Fig. 2.

Model inference
In model inference, we first clarify the four levels of data involved in
this task. The dataset comprises four levels of features: plate-level,
treatment-level, well-level, and site-level. Specifically, a dataset con-
tains P plates, each plate includes T treatments, each treatment cor-
responds to W wells, and each well contains S sites, with each site
corresponds to a multi-channel image. Hence, the output of Pheno-
Profiler is a site-level feature Ẑ . The values of P, T,W, and S vary across
datasets. Following the validation procedure used in DeepProfiler, we
applied mean aggregation at both stages to get the next level aggre-
gated features. After obtaining well-level features, we employed
Sphering transform as a batch correction method to minimize con-
founders. Through these aggregation processes, we obtained the final
treatment-level features for evaluation.

Phenotype Correction Strategy (PCs) directly optimizes the out-
put of the PhenoProfiler in a plate. It aims to leverage the differences
between treated wells and controlled wells within a plate to refine
image representation. The implementation process of PCs is detailed
in Fig. 1c. First, we calculate themean of all control wells in the current
plate, denoted asW i, where i represents the i-th plate. Assuming that a
plate contains C controlled wells, the calculation is as follows:

W i =
1

C*S

XC

j = 1

XS

k = 1

Ẑ jk : ð16Þ

Then, define α as a hyperparameter that balances the weight
between controlled wells and treatedwells, Ê ij represent the predicted
embedding vector for the j-th well in the i-th plate. α*W i is subtracted
from all predicted embeddings Ê ij in the current plate to obtain the
refined embeddings E ij . The process is as follows:

E ij = Ê ij � α*W i: ð17Þ

PCs serves as a correction and optimization operation applied to
the extracted features, making it virtually cost-free and plug-and-play.

Web server implementation
The PhenoProfiler web server integrates a JavaScript/TypeScript
frontend (Next.js framework) with server-side rendering and Tailwind
CSS styling, enhanced with React hooks for dynamic interactivity. The
Python Django backend supports scalable data processing, coupled
with an SQLite database for lightweight storage. A RESTful API coor-
dinates client-server communication, enabling seamless file uploads
and standardized JSON responses. Deployment utilizes the Caddy
server with automated HTTPS/SSL and reverse proxy configurations,
ensuring secure and efficient operations. The platform is publicly
accessible at https://phenoprofiler.org.

Benchmarking methods
To intuitively evaluate PhenoProfiler’s performance within an end-to-
end pipeline, we compared it against four benchmarking methods:
DeepProfiler9, OpenPhenom20, ResNet5016, and ViT-Base17. DeepPro-
filer is a deep learning-based phenotyping tool that processes single-
cell imaging data using an EfficientNet model architecture to generate
single-cell morphological features. To adapt it for end-to-end image
processing tasks, we trained the EfficientNet model on our end-to-end
image dataset. OpenPhenom is a self-supervised learning method
based on masked autoencoders. Since its training includes multi-cell
images, we directly used the official pre-trained weights (available at
https://huggingface.co/recursionpharma/OpenPhenom) for inference,
resizing all input images to 256×256 resolutionwithout further training
or fine-tuning. ResNet50 and ViT-Base are widely recognized as
general-purpose benchmark models in computer vision, serving as
standard references for performance comparison. We made uniform
adjustments to apply these methods to high-content multi-channel
image processing. Specifically, to handle five-channel Cell Painting
images, we included a convolutional layer at the front of eachmodel to
adjust the number of input image channels from five to three and
reduce the dimensionality. The networks were initialized using the
corresponding pre-trainedweights provided by the “timm” library. For
example, the ViT-Base model utilized the weights for vit_base_-
patch32_224. Notably, we adopted a fully trainable parameter mode
for all models, without freezing any task weights, and maintained
consistent training methods and hyperparameters throughout the
training process.

In the non-end-to-end scenarios, we included three additional
comparison methods: CellProfiler18, SPACe19, and EfficientNet21. Cell-
Profiler is an open-source software tool designed for measuring and
analyzing cell images, providing a robust platform for extracting
quantitative data from biological images. It enables researchers to
identify and quantify phenotypic changes effectively. SPACe is an
open-source single-cell image analysis platform. Compared to Cell-
Profiler, it achieves faster processing speeds while maintaining high
accuracy by optimizing feature extraction and employing CellPose-
powered cell segmentation. Following SPACe’s pipeline, we merged
the five feature files extracted in its fourth step to obtain 423-
dimensional features, encompassing intensity, morphology, and tex-
ture measurements, which were then used for downstream perfor-
mance evaluation. It is worth noting that this tool has a relatively high
entry barrier and learning curve, as it requires handling multiple
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prerequisites. For instance, users need to create customized guideline
files tailored to their dataset characteristics andmodify corresponding
data-loading code accordingly. As for EfficientNet, adhering to the
design framework of DeepProfiler, we utilized models pre-trained on
the large-scale ImageNet dataset without additional training or fine-
tuning on Cell Painting images. By incorporating these models, we
aimed to benchmark our pipeline’s performance against established
standards in the field, ensuring a comprehensive evaluation of its
capabilities.

Benchmarking datasets
The PhenoProfilermodel leverages seven distinct datasets: BBBC02225,
CDRP-BIO-BBBC03626, TAORF-BBBC03727, LUAD-BBBC04347, LINCS48,
cpg00017, and cpg000412. Among these, BBBC022, CDRP-BIO-
BBBC036, LINCS, cpg0001, and cpg0004 focus on phenotypic
responses to compound treatments, whereas TAORF-BBBC037 and
LUAD-BBBC043 address phenotypic responses to gene over-
expression. Together, these datasets form a comprehensive dataset of
nearly 400,000 multi-channel images. These images encompass two
treatment types (compounds and gene overexpression), two control
types (empty and DMSO), and two cell lines (A549 and U2OS), col-
lected from 246 plates. Detailed dataset information is summarized in
Supplementary Data 1. To facilitate data storage and transmission, we
apply image compression and illumination correction to convert the
images from TIFF to PNG format, achieving approximately six times
(via 2× bit-depth reduction from 16-bit to 8-bit and ~3× PNG lossless
encoding) the compressionwithout significant quality loss9. To further
validate the cell morphology representation capability of PhenoPro-
filer in a non-end-to-end pipeline, we introduce the cpg0019 dataset9.
This dataset comprises 8.4 million single-cell images, which were
cropped from multi-channel images across these first five datasets. It
includes 450 treatments, meticulously selected to represent a diverse
array of phenotypic responses.

Given the distinct input requirements of the end-to-end and non-
end-to-end pipelines, we trained and validated them on different
datasets. For the end-to-end pipeline, we directly used the BBBC022,
CDRP-BIO-BBBC036, and TAORF-BBBC037 datasets. For the non-end-
to-end pipeline, cells from the first five datasets were segmented into
single-cell sub-images and supplemented with a subset from the
cpg0019 dataset. Because the other two datasets lacked ground truth,
both pipelines were ultimately evaluated on BBBC022, CDRP-BIO-
BBBC036, and TAORF-BBBC037, with the main distinction being
whether the input images were cropped. To ensure robust evaluation,
we applied two complementary validation strategies: leave-
perturbations-out (Fig. 2) and leave-sites-out (Supplementary Fig. 2).
In the leave-perturbations-out setting, the training and test sets con-
tained entirely distinct perturbations, ensuring evaluation on unseen
experimental conditions. The leave-sites-out strategy assessed per-
formance at the site level, the smallest input unit, by systematically
holding out a subset of sites from each well, providing an additional
layer of fine-grained validation. Finally, the cpg0001 and cpg0004
datasets were used to test out-of-distribution generalization.

Data preprocessing involves three main components: (1)
Image data preprocessing: We stack images from different channels
in the order of [‘DNA’, ‘ER’, ‘RNA’, ‘AGP’, ‘Mito’] to obtainmulti-channel
images. The images are resized to a uniform size of (5, 448, 448)
pixels and the pixel values are scaled to the range of 0 to 1. (2) Clas-
sification label preprocessing: We read the CSV file and initialize the
label encoder. Labels are encoded based on the column names
(Treatment or pert_name) in the CSV file. (3) Morphology profiles
preprocessing for the regression and contrastive learning. For the
supervisory labels in regression and contrastive learning, we select the
median values of the morphology profiles provided in the cpg0019
dataset.

Evaluation metrics
We evaluate the model’s capacity to represent cell morphology
using a reference collection of treatments to identify biological
matches in treatment experiments. Following strategies outlined
in previous studies9,49–51, we implement a biological matching task
where users can search for treatments associated with the same MoA
or genetic pathway, applicable to both compound and gene
overexpression perturbations. Initially, we aggregate features
from various methods at the treatment level and assess the
relationships among these treatments within the feature space, guided
by established biological connections. This approach allows us to
identify treatments that are proximally situated, suggesting potential
similarities in their biological effects or mechanisms of action. This
evaluation not only demonstrates the model’s effectiveness in repre-
senting cell morphology but also offers a valuable framework for
advancing biological research. To quantify the similarity between
query treatments, we utilize cosine similarity and generate a ranked
treatment list based on relevance, presented in descending order. A
positive result is achieved if at least one biological annotation in the
sorted list matches the query; otherwise, the result is regarded as
negative.

For evaluating the quality of results for a given query, we employ
two primary metrics: (1) Folds of Enrichment (FoE) and (2) Mean
Average Precision (MAP).

(1) Folds of Enrichment (FoE): This metric assesses the over-
representation of predicted features in the reference set, indicating
the model’s ability to identify relevant biological treatments. We cal-
culate the odds ratio using a one-sided Fisher’s exact test for each
query treatment, which employs a 2 × 2 contingency table. The first
row contains the counts of treatments with the same MoAs or path-
ways (positive matches) versus those with different MoAs or pathways
(negative matches) above a pre-defined threshold. The second row
contains the corresponding counts for treatments below the thresh-
old. The odds ratio is computed as the sum of the first row divided by
the sum of the second row, estimating the likelihood of observing
treatments sharing the same MoA or pathway among the top con-
nections. We average the odds ratios across all query treatments, with
the threshold set at the top 1% of connections, thus anticipating sig-
nificant enrichment for positive matches49.

(2) Mean Average Precision (MAP): For each query treatment, we
calculate the average precision, which is the area under the precision-
recall curve, following standard practices in information retrieval. The
evaluation process starts with the result most similar to the query and
continues until all relevant pairs (those with the same mechanism of
action or pathway) are identified. MAP effectively captures both the
precision and recall of the model’s predictions, offering insights into
its reliability and robustness. The specific calculation process is as
follows:

Precision=
TP

TP+FP
, ð18Þ

Recall =
TP

TP+FN
: ð19Þ

Here, TP stands for true positives, FP for false positives, and FN for
false negatives. MAP refers to the average precision across multiple
queries. For each query, we calculate the area under the precision-
recall curve and then average these values across all queries.Given that
the number of MoAs or pathways varies, precision and recall are
interpolated for each query to cover the maximum number of recall
points. The interpolated precision at each recall point is:

Pinter rð Þ=maxr 0 ≥ rP r0ð Þ ð20Þ
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The average precision of a query treatment is the mean of the
interpolated precision values Pinter at all recall points. The reported
MAP is the average of the average precision values across all queries.
Together, these metrics provide a rigorous assessment of PhenoPro-
filer’s performance in capturing biological relevance in treatment
experiments and underscore its utility in phenotypic drug discovery.

We also used recall rates at various levels (recall@1, recall@3,
recall@5, and recall@10) to evaluate the model’s performance.
Recall@K is an important metric in information retrieval and recom-
mendation systems, indicating the proportion of correct results within
the top K returned results. For instance, recall@5 represents the pro-
portion of biologically related treatments retrieved within the top five
positions of a predicted treatments ranked list. This is crucial for user
experience, as users typically only look at the first few results, and the
relevance of these results directly impacts user satisfaction.

In addition to the main metrics mentioned above, we introduced
the InverseMedian Absolute Deviation (IMAD)metric to quantitatively
evaluate the aggregation degree of features. The calculation steps for
the IMAD metric are as follows: First, Principal Component Analysis
(PCA) is performed to reduce the dimensionality of the data, retaining
95% of the variance. Then, we use Uniform Manifold Approximation
and Projection (UMAP) for further dimensionality reduction and
embedding. Next, we combine the UMAP 1 andUMAP 2 columns into a
coordinate array and calculate the pairwise distances between all
points. Subsequently, we compute the Median Absolute Deviation
(MAD) of these distances. Finally, we take the reciprocal of theMAD to
obtain the IMAD. A higher IMAD indicates a tighter aggregation of
the data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All experiments in this study utilized publicly available datasets, which
can be accessible from public S3 buckets. To download the data, you
need to install the AWS CLI that matches your device by following the
instructions at AWSCLI InstallationGuide. Use the following command
with the cp or sync command, along with the --recursive and --no-sign-
request flags for data retrieval. For the BBBC022 dataset can be
downloaded with the following command: “aws s3 cp s3://cytodata/
datasets/Bioactives-BBBC022-Gustafsdottir/./ --recursive --no-sign-
request”. For the other datasets, use the following commands: CDRP-
BIO-BBBC036: “aws s3 cp s3://cytodata/datasets/CDRPBIO-BBBC036-
Bray/./ --recursive --no-sign-request”; TAORF-BBBC037: “aws s3 cp s3://
cytodata/datasets/TA-ORF-BBBC037-Rohban/./ --recursive --no-sign-
request”; cpg0001-cellpainting-protocol: “aws s3 sync s3://cellpaint-
ing-gallery/cpg0001-cellpainting-protocol/source_4/images/
2020_08_11_Stain3_Yokogawa/./2020_08_11_Stain3_Yokogawa --no-
sign-request”; cpg0004-lincs: “aws s3 cp --recursive “s3://cellpainting-
gallery/cpg0004-lincs/broad/workspace/profiles/
2016_04_01_a549_48hr_batch1/SQ00014815/“ “./SQ00014815” --no-
sign-request”. For thenon-end-to-enddataset cpg0019: “aws s3 cp s3://
cellpainting-gallery/cpg0019-moshkov-deepprofiler/./ --recursive --no-
sign-request”. Source data are provided with this paper.

Code availability
All source codes and trained models in our experiments have been
made publicly available under the MIT License at Github and Zenodo
(https://github.com/QSong-github/PhenoProfiler)54.
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