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Multiomics insight into disease trajectories
of cardiometabolic diseases and cancer

Xuanwei Jiang1,3, Guangrui Yang1,3, Meng Chen1, Nannan Feng1, Lan Xu1,
Xihao Du 1 , Chunlai Zeng2 & Victor W. Zhong 1

Multimorbidity of cardiometabolic disease (CMD) and cancer is a growing but
understudied global challenge in an aging world. Here, we performmultistate
analysis in 429,555 UK Biobank participants to investigate transition patterns,
identifymultiomics signatures, and construct predictionmodels frombaseline
to single and multiple morbidities. During a median follow-up of 15 years,
105,903 participants develop single morbidity and 15,088 develop multi-
morbidity ofCMDandcancer. Participantswithmultimorbidity have a 13%-33%
higher mortality probability than those healthy or with single morbidity. In
individuals livingwithmultimorbidity, the development of CMDbefore cancer
presents a higher mortality risk than the reverse order. Distinct and shared
multiomics signatures are identified, with proteomics scores outperforming
other omics in predicting disease trajectories (ΔC-statistic vs. base model:
0.03–0.14). This study reveals distinct transition patterns in CMD-cancer
multimorbidity cluster and develops potentially useful prediction tools for
supporting risk management if externally validated.

Multimorbidity is a major health concern worldwide due to the fast
pace of population aging1. Approximately 30% of individuals aged
45–65 years live with 2 or more chronic diseases, and over 80% have
multiple chronic conditions among thoseaged80ormore2. Compared
to those with a single chronic condition, individuals with multi-
morbidity are more likely to experience significant decreases in phy-
sical and mental capacity and face a higher risk of premature death1.
However, current studiesmainly focus on disease-specific care, leaving
a gap in understanding the trajectories and interplay of multiple
chronic diseases simultaneously3. Further understanding and early
prediction of disease trajectories in a multimorbidity cluster are
important for improving healthcare systems and promoting precision
prevention and intervention strategies.

Cardiometabolic diseases (CMD), including cardiovascular dis-
eases (CVD) and type 2 diabetes (T2D), and cancer are the most pre-
valent and leading causes of death among chronic diseases4.
Approximately 30–50% of cancer survivors had concurrent

morbidities of CMD2. Previous studies have suggested that the devel-
opment between CMD and cancer was bidirectional and they shared
common risk factors (e.g., aging and obesity) as well as pathophysio-
logical pathways (e.g., inflammation and hypoxia)5,6. However, how
coexisting diseases develop over time within a multimorbidity cluster
of CMDand cancer, andwhethermortality risk varies bymorbidities or
multimorbidity with different temporal orders remain to be
investigated.

Among aging diseases, diagnosis is commonly delayed bymonths
or even years from the initial onset of pathologies or symptoms7.
Recent studies suggested thatmultiomics profileswith comprehensive
information relevant to human health conditions and physiological
states have shown moderate to good performance for the occurrence
of each individual disease up to 10–15 years before the onset8–10.
However, among elderly populations with high multimorbidity risk,
single disease prediction is still insufficient for providing personalized
healthcare and optimal prognosis. Whether multiomics profiles could
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effectively capture the characteristics of disease transitions and
achieve improved predictions for disease trajectories requires
investigation.

In this work, we characterize disease trajectories from health to
chronic morbidity, multimorbidity, and mortality within the CMD and
cancer multimorbidity cluster, assess mortality risk acrossmorbidities
and multimorbidity with different temporal orders, and investigate
multiomics signatures associated with disease transitions and develop
machine learning-based omics scores to assess their predictive per-
formance for disease trajectories within this multimorbidity cluster.

Results
Baseline characteristics
A total of 429,555 participants were included for analysis (Fig. S1). The
median age of the participants was 55.9 years (standard deviation, 8.1).
Among them, 194,907 (45.4%) were male, and 404,461 (94.2%) were
White (Supplementary Table 1). During a median follow-up of 14.5
(interquartile range, 13.5–15.3) years, 64,990 individuals developed
CMD (including a total of 27,114 T2D cases and 54,523 CVD cases), and
71,089 developed cancer. Moreover, 49,902 individuals developed
single CMD morbidity without subsequent cancer diagnosis, 56,001
developed single cancer morbidity without subsequent CMD diag-
nosis, and 15,088 participants developed multimorbidity of CMD and
cancer. Individuals diagnosed with multimorbidity tended to be male
and older compared with those who had CMD or cancer as a single

diagnosis. During the follow-up, 6035 (Transition V, 10.7%) of 56,651
individuals with CMD and 11,062 (Transition VII, 17.2%) of 64,340
individualswith cancer as thefirst diagnosis died, and 6749 (Transition
IV, 11.9%) of those with CMD and 8339 (Transition VI, 13.0%) of those
with cancer further developed multimorbidity. Among participants
with multimorbidity, 2435 (Transition VIII, 36.1%) of 6749 individuals
with CMD-cancer and 2640 (Transition IX, 31.7%) of 8339 individuals
with cancer-CMD died afterward (Fig. 1).

Transition probabilities and prognostic outcomes
Participants with multimorbidity had a 28–33% higher probability of
death compared to healthy individuals, with a loss of 5.0–5.3 years in
mean survival time, and an 11–23% higher probability of death com-
pared to those with single morbidity, with a loss of 2.4–3.6 years in
mean survival time (Fig. 2a, b and Supplementary Dataset 1). A rapid
rise in the probability of developing multimorbidity was observed
approximately 5 years after the initial diagnosis of either CMD
or cancer morbidity. Compared to those first diagnosed with CMD,
participants initially diagnosed with cancer had an 8% higher prob-
ability of death at 5 years, with the difference narrowing at 10 and
15 years, and a 3% higher probability of developing multimorbidity at
15 years. Within the multimorbidity of CMD and cancer, developing
CMD first presented a 1–2% higher mortality risk and a greater loss of
0.3 years in survival time compared to developing cancer first
(all p <0.01).
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Fig. 1 | Numbers (percentages) of participants transitioning from baseline to
single cardiometabolic disease or cancer morbidity, cardiometabolic disease
and cancer multimorbidity, and death. Transitions include: I, baseline to cardi-
ometabolic disease; II, baseline to cancer; III, baseline to death; IV, cardiometabolic

disease to cancer; V, cardiometabolic disease to death; VI, cancer to cardiometa-
bolic disease; VII, cancer to death; VIII, cardiometabolic disease to cancer to death;
IX, cancer to cardiometabolic disease to death. CA, cancer; CMD, cardiometabolic
disease.
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After propensity score matching, baseline characteristics became
more comparable across the 5 states, although minor differences
remained between the healthy, morbidity, andmultimorbidity groups.
Importantly, comparability improved significantly between the 2 sin-
gle morbidity groups (single CMD and cancer morbidity groups) and
between the 2 multimorbidity groups (CMD-cancer and cancer-CMD
multimorbidity groups) (Supplementary Table 2). The mean survival
times across CMD morbidity, cancer morbidity, CMD-cancer multi-
morbidity, and cancer-CMD multimorbidity remained consistent
compared with the primary result (Fig. S2).

Subgroup analysis by CMD and cancer types
For specific CMD subtypes, participants with stroke and heart failure
had a higher probability of direct death, while the probability of fur-
ther developing cancer was similar across participants with different
CMD subtypes (Fig. 2c). For high-survival-rate cancers, 11% of partici-
pants with prostate cancer died directly, while 18% further developed
CMD, higher than that observed in skin and breast cancers. Among
low-survival-rate cancers, 72% of participants with pancreatic cancer
experienced direct mortality, much higher than that in people with
other cancers; 25% of participants with liver cancer further developed
CMD, followed by those with pancreatic cancer (19%) and esophageal

cancer (17%). Participants with low-survival-rate cancers generally had
a 6% higher probability of subsequently developing CMD than those
with high-survival-rate cancers (Fig. S3 and Supplementary Dataset 1).
Thedevelopment ofCMDbefore cancer showed a 7% lower probability
of death compared to the development of cancer before CMD in the
high-survival-rate cancer subgroup, while showing a 9% higher prob-
ability of death in the low-survival-rate cancer subgroup.

Among participants who initially developed either benign or
in situ tumors or malignant tumors, the probabilities of subsequently
developing CMDwere similar (Fig. 3a, b and Supplementary Dataset 1).
In the benign or in situ tumor subgroup, developing CMD before
cancer presented a slightly lower probability ofmortality compared to
the reverse order. In contrast, in the malignant tumor subgroup, the
onset of CMD before cancer showed a 3% higher probability of death
than the reverse sequence. Similar results were observed across mild
and severe CMD subgroups (Fig. 3c, d and Supplementary Dataset 1).
Specifically, the probability of developing cancer remained similar
among participants who first developed mild or severe CMD. In the
severe CMD subgroup, multimorbidity of CMD to cancer had an 8%
higher probability of death compared to the reverse order, while in the
mild CMD subgroup, the probabilities were similar. Furthermore, in
the subgroup of both severe CMD and malignant tumor, developing
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Fig. 2 | Transition probabilities and prognostic outcomes for morbidities or
multimorbidity with different temporal orders. a Transition probabilities from
baseline to first disease or death, first disease to second disease or death, and
second disease to death during follow-up (n = 429,555 individuals). Data are pre-
sented as estimated transition probabilities and 95% confidence intervals in bar
plots. The transition probabilities were calculated using a multistate model
adjusting for age, sex, ethnicity, Townsend deprivation index, employment status,
education level, smoking status, drinking status, physical activity, diet quality
score, sleep duration, BMI, family history of T2D, CVD, and cancer, medication use
for CMD and cancer, and participation in cancer screening. T-tests were used to

compare the transition probabilities. p was calculated with a 2-sided test. The
detailed results are shown in Supplementary Dataset 1. b Restricted mean survival
time of morbidities or multimorbidity with different temporal orders (n = 429,555
individuals). The curves represent survival estimates, and the shaded areas indicate
95% confidence intervals. Restricted mean survival time was calculated from the
timeof diagnosis of the last diseasewithin afixed follow-upperiodof 15 years. cThe
proportions of subsequent events across subtypes of cardiometabolic disease or
cancermorbidity. CA, cancer; CAD, coronary artery disease; CMD, cardiometabolic
disease; HF, heart failure; T2D, type 2 diabetes.
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multimorbidity of fromCMDto cancerwas associatedwith a 9%higher
probability of death compared to the reverse order, and this prob-
ability of transitioning to death was also significantly higher than in
cases with only a single severe disease (Fig. 3e and Supplementary
Dataset 1). Conversely, developing malignant tumors before severe
CMDexhibited a similar probability of death to thosewith only a single
severe disease.

Multiomics signatures and biological mechanisms
Genomics dataset (N= 375,239), metabolomics dataset (N = 234,452),
and proteomics dataset (N = 44,816) were constructed among partici-
pants with corresponding omics data. The associations of omics-based
markers with the 9 transitions in both the discovery and replication
datasets are summarized in Supplementary Datasets 2 and 3, with
significant markers presented in Supplementary Dataset 4. Polygenic
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risk score (PRS) for CMD (PRS-CMD)was positively associatedwith the
development of CMDmorbidity, CMDand cancermultimorbidity, and
mortality, and PRS for cancer (PRS-cancer) was positively associated
with baseline cancer and cancer-death (Fig. 4a). The top 4 positively
and negatively associated metabolites and proteins for 9 transitions
are annotated. Among the significant metabolites, phospholipids, tri-
glycerides, and their related metabolites exhibited strong positive
associations across 9 transitions. Glucose and glycoprotein acetyls
were strongly associated with morbidity-related and multimorbidity-
related death. Conversely, cholesteryl esters and related metabolites
showed the strongest negative associations with most transitions.

Across all the proteins, PRAP1 was strongly linked to CMD morbidity
and progression from CMD to cancer, while KLK3 exhibited a strong
positive association with cancer morbidity and the development of
cancer-CMD multimorbidity. Notably, GDF15 had the strongest posi-
tive associations withmost transitions. In contrast, ITGA11 andMXRA8
had strong negative associations with baseline-CMD, CMD and cancer
multimorbidity, and mortality.

Distinct and shared metabolites and proteins for transitions at
different stages were identified, with a higher proportion of shared
markers identified in the metabolomics dataset and more distinct
markers for different transitions found in the proteomics dataset

Fig. 3 | Transition probabilities from baseline to first disease or death, first
disease to second disease or death, and second disease to death across sub-
groups defined by cancer type (benign/in situ vs. malignant) and cardiome-
tabolic disease severity (mild vs. severe). a Transition probabilities in benign or
in situ tumor subgroup (n= 366,001 individuals); b Transition probabilities in
malignant tumor subgroup (n= 421,828 individuals); c Transition probabilities in
mild CMD subgroup (n = 410,414 individuals); d Transition probabilities in severe
CMD subgroup (n= 383,706 individuals); e Transition probabilities in both severe

CMD and malignant tumor subgroup (n= 377,154 individuals). Data are presented
as estimated transition probabilities and 95% confidence intervals in forest plots.
The 10-year transition probabilities were calculated using a multistate model
adjusting for age, sex, ethnicity, Townsend deprivation index, employment status,
education level, smoking status, drinking status, physical activity, diet quality
score, sleep duration, BMI, family history of T2D, CVD, and cancer, medication use
for CMD and cancer, and participation in cancer screening.

Fig. 4 | The associations of omics-based markers with disease transitions.
a Volcano plots of omics-based markers with the 9 transitions in the discovery and
replication datasets (n = 375,239 for genomics dataset, n = 234,452 for metabo-
lomics dataset, and n = 44,816 for proteomics dataset). The associations were
estimated based on multistate models adjusting for age, sex, ethnicity, Townsend
deprivation index, employment status, education level, smoking status, drinking
status, physical activity, diet quality score, sleep duration, BMI, family history of
T2D, CVD, and cancer, medication use for CMD and cancer, and participation in
cancer screening. The volcano plots were drawn using the regression coefficients
from the discovery dataset. False discovery rate (FDR)-adjusted p values were

applied for multiple comparisons in the discovery dataset, and raw p values were
applied in the replication dataset. The top 4 positively and negatively associated
metabolites and proteins for 9 transitions are labeled with the abbreviations, and
their full names are provided in Supplementary Information. b The number of
shared and distinct metabolomics and proteomics markers for the 9 transitions.
c The top 5 biological pathways enriched in KEGG based on significant metabo-
lomics and proteomics markers for the 9 transitions, respectively. One-sided
hypergeometric tests (or Fisher’s exact tests) were used, and raw p values were
reported to indicate potential biological functions. CA cancer, CMD cardiometa-
bolic disease, PRS polygenic risk score.
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(Fig. 4b). Principal component analysis (PCA) revealed no significant
outliers or distinct clustering across the 5 disease states (Fig. S4).
Amino acids, including branched-chain amino acids, alanine,
aspartate, and others, are primarily involved in the development of
CMD or cancer morbidity (Fig. 4c and Supplementary Dataset 5).
Amino acids and carbohydrates are crucial in the progression of
CMD to multimorbidity and death, while the biosynthesis of neo-
mycin, kanamycin, and gentamicin is associated with the develop-
ment of cancer to multimorbidity and mortality outcomes.
Significant inflammatory processes enriched by proteins were
identified across the 9 transitions, including cytokine-cytokine
receptor interaction, lysosome, Th1 and Th2 cell differentiation,
and key signaling pathways such as PI3K-Akt, NF-kappa B, and IL-17.
Moreover, these inflammatory biological pathways were particularly
activated during transitions from cancer to CMD or death, as well as
from CMD-cancer multimorbidity to death (Fig. S5a). Similar
inflammatory alterations were identified based on significant pro-
teomics signatures through the Gene Ontology database (Fig. S5b
and Supplementary Table 3).

Model development and performance
Omics-based scores were developed according to the procedures
shown in Fig. 5a. Significant omics-based markers for each transition
were used to develop prediction models using LASSO in the discovery
dataset, with the coefficients presented in Supplementary Dataset 6.
After LASSO regression, key predictors across 9 trajectory outcomes
were identified (Fig. 5b). Among all metabolites and proteins, phos-
pholipids to total lipids in very small VLDL percentage, glucose, lino-
leic acid to total fatty acids percentage, GDF15,WFDC2, andAREGwere
key predictorsmost frequently included inmorbidity, multimorbidity,
and mortality models. These frequently observed markers presented
dose-response characteristics from health to morbidity and multi-
morbidity (Fig. S5c). In the replication dataset, genomics score (Gen-
Score) and metabolomics score (Met-Score) showed modest to mod-
erate predictive performance, and proteomics score (Prot-Score)
performed the best for all 9 outcomes (Fig. 5c–e and Supplementary
Table 4). Across the 9 outcomes, Prot-Score achievedΔC-statistic (95%
confidence intervals [CI]) of 0.14 (0.12, 0.16) for only CMD, 0.04 (0.03,
0.05) for only cancer, 0.03 (0.02–0.05) for only CMD-cancer, 0.04
(0.01–0.07) for only cancer-CMD, 0.08 (0.06–0.11) for direct death,
0.10 (0.07–0.13) for CMD-death, 0.05 (0.03–0.07) for cancer-death,
0.10 (0.06–0.15) for CMD-cancer-death, and 0.05 (0.02–0.09) for
cancer-CMD-death.

In the combined dataset, 22,789 participants remained with
complete data for genomics, metabolomics, and proteomics. Prot-
Score performed comparable to the combined score (Combined-
Score), much better than the base model, lifestyle model, clinical
model, and other omics-based scores at 10 and 15 years
(Figs. 6 and S6). The corresponding area under receiver-operating
characteristic curves (AUCs [95% CI]) of Prot-Score for only CMD,
only cancer, only CMD-cancer, only cancer-CMD, direct death,
CMD-death, cancer-death, CMD-cancer-death, and cancer-CMD-death
at 10 years were 0.79 (0.78–0.81), 0.66 (0.64–0.67), 0.82 (0.80–0.85),
0.78 (0.75–0.81), 0.82 (0.80–0.85), 0.90 (0.88–0.93), 0.76 (0.73–0.78),
0.88 (0.84–0.92), and 0.80 (0.76–0.85), respectively, with a median
improvement in AUCs of 0.09 compared with the base model
(p ≤0.001). Similar improvements were also observed at 15 years.

Sensitivity analysis
In the sensitivity analysis, baseline characteristics were found to be
comparable across the 3 omics datasets and the overall study popu-
lation (Supplementary Table 5). Similar transition probabilities were
observed after excluding skin cancer from cancer diagnosis, both
overall and across the 3 individual omics datasets (Figs. S7–8 and
Supplementary Table 6).

To further confirm and explore transition patterns, the US Health
and Retirement Study (HRS) was utilized as an external cohort for
validation. A total of 8418 participants in HRSwere eligible for analysis
(Fig. S9). Among the 8418 individuals in HRS, 2343 developed single
CMD, 606 developed single cancer, and 298 experienced CMD and
cancermultimorbidity during a follow-up of 12 years. Compared to the
UK Biobank, participants in HRS had a baseline age of approximately
10 years older, a higher proportion of unemployment, and relatively
lower educational attainment (Supplementary Table 1 and Supple-
mentary Table 7). Similar transition patterns were observed in HRS.
Specifically, participants first diagnosed with cancer had a 10% higher
probability of death at 8 years and a 12% higher probability of devel-
oping multimorbidity compared to those first diagnosed with CMD
(Fig. S10 and Supplementary Table 8). Among individuals with CMD
and cancer multimorbidity, developing CMD before cancer was asso-
ciated with an 18% higher mortality probability. Different from the UK
Biobank, a much higher proportion of participants in HRS developed
CMD first, and those with multimorbidity had a lower probability of
death compared to individuals with a single cancer.

Prot-Score showed robust predictive performance after skin
cancer cases were excluded from cancer diagnosis (Fig. S11a and
Supplementary Table 9). Further analysis revealed that among parti-
cipants with pre-baseline CMD and cancer, Prot-Score significantly
outperformed the basemodel for 8 outcomes, except for cancer alone
(Fig. S11b and Supplementary Table 9). This predictive performance
remained consistent between northern and southern UK populations
(Supplementary Table 9). Prot-Score maintained consistently high
predictive performance when the elastic net model was used (Sup-
plementary Table 9). Prot-Score consistently outperformed the score
consisting of a comprehensive biochemical profile across the majority
of disease trajectories (Fig. S12).

Discussion
In the multimorbidity cluster of CMD and cancer, participants with
multimorbidity hada 28–33%highermortality risk and a loss of 5.0–5.3
survival years than those who remained healthy, and an 11–23% higher
mortality risk and a loss of 2.4–3.6 survival years than those with only
single morbidity. Initial development of cancer showed a higher
probability of death and developingmultimorbidity comparedwith an
initial diagnosis of CMD. The probability of developing subsequent
multimorbiditywas primarily observedwithin 5 years after theonset of
the first morbidity. Development of CMD-cancer presented a poorer
prognosis than the reverse order, especially in severe cancer and CMD
cases. Distinct and shared multiomics signatures captured features of
disease sequences and prognosis. For most disease trajectories, Prot-
Score achieved good predictive performance, with AUCs up to 0.90 at
10 years, and was better than traditional lifestyle and clinical models.

Studies have increasingly focused on multimorbidity develop-
ment in the context of population aging, but most defined static
clustering of diseases from a cross-sectional perspective and ignored
the dynamic disease transitions and trajectories2,11,12. By tracing the
temporal trajectories within the multimorbidity cluster of CMD and
cancer, this study determines the occurrence, transitions, and prog-
nosis of multimorbidity in this cluster. In this study, participants
initially diagnosed with cancer had a particularly higher mortality risk
at 5-year follow-up and a higher multimorbidity risk at 15-year follow-
up than thosewith CMDas the first diagnosis. Similarly, a US study also
reported a high mortality rate in cancer patients, with long-term can-
cer survivors more likely to die of noncancer-related causes, primarily
due to heart disease13. The higher probability of multimorbidity in
individuals with an initial cancer diagnosis may be attributed to mul-
tiple factors, including shared risk factors and biological pathways
between CMD and cancer, as well as the significant role of cardio-
toxicity associated with anti-cancer therapies5,14. Studies have indi-
cated that prolonged chemotherapy and radiation therapy for cancer
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b.  Key predictors identified through LASSO regression
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Fig. 5 | The performance of omics-based scores for disease trajectories.
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can lead to oxidative stress and cellular damage, resulting in cardio-
myocyte injury, impaired left ventricular function, and subsequent
development of overt heart failure, arrhythmias, and myocardial
ischemia14. In addition to these functional cardiotoxic effects, several
studies have also reported disruptions in lipid metabolism induced by
anti-cancer therapies, specifically elevated triglycerides and low-
density lipoprotein cholesterol (LDL) levels, which may further
increase the risk of atherosclerotic CVD15. These results highlight the
importance of specialized care for cancer survivors at different stages,
focusing on short-term cancer management and long-term cardio-
vascular health. Interestingly, participants who first developed cancer
followed by CMD had a slightly better prognosis, gaining 0.3 years of
survival time, than thosewith CMD followed by cancer. Thismight be a
result of enhanced monitoring and management among participants
with cancer as the first diagnosis, such as through routine clinics,
leading to better overall wellbeing16. Additionally, the CMD-cancer
multimorbidity sequence may pose an added burden on pre-existing
CMD conditions due to the cardiotoxic effects of cancer treatments14.
Although such a small improvement in survival time might not be
significant at the individual level, it provides evidence at the popula-
tion level to guide CMD patients to enhance health monitoring and
cancer screening. However, the potential benefits of implementing
such preventive health services depend on the types of healthcare
systems and the efficiency of the implementing institutions in the
real world.

Among all CMD and cancer subtypes, stroke and low-survival-rate
cancers had a 21–72% probability of direct death, much higher than
other subtypes, which is consistent with the findings from the Global
BurdenofDiseaseStudy andCancer Statistics4,17. AUS study found that
participants with atherosclerotic CVD had a 20% higher risk of cancer
than those without CVD and an 11% higher risk of cancer compared to
those with nonatherosclerotic CVD18. However, this study observed
similar probabilities of developing cancer between participants with
atherosclerotic CVD (coronary artery disease and stroke) and those
with nonatherosclerotic CVD (heart failure). Whether the discrepancy
is driven by different study populations, various genetic backgrounds,
or heterogeneities among subtypes of atherosclerotic or nonathero-
sclerotic CVD requires further investigation. During the follow-up,
11–25% of participants with incident cancer transitioned to incident
CMD, with the highest proportion observed in those with liver and
pancreatic cancer. Consistent with a study in China, participants with
pancreatic cancer and liver cancer presented the highest risk of CVD19.
Notably, the higher mortality probability in the CMD-cancer multi-
morbidity sequence was observed in cases of severe CMD, malignant
tumors, or low-survival-rate cancers. Specifically, among individuals
with both severe CMD andmalignant tumors, developing CMD before
cancer was associatedwith an approximately 10% higher probability of
death compared to the reverse sequence. This may be attributed to
intensive and prolonged treatments required formore severe cancers,
which likely induce greater cardiotoxic effects14, resulting in a higher

Fig. 6 | Receiver operating characteristic curves andmodel performance across
different omics-based prediction models. Receiver operating characteristic
curves for a single morbidity outcomes, b multimorbidity outcomes, and
c mortality outcomes at 10 years (n = 22,789 individuals). Area Under the Curve
(AUC) values were compared across the basemodel, lifestylemodel, clinicalmodel,

genomics score, metabolomics score, proteomics score, and the combined omics
score. Pairwise AUC comparisons were performed using non-parametric, 2-sided
bootstrap resampling, and raw p values were reported. CA cancer, CMD cardio-
metabolic disease.
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probability of transition frommultimorbidity tomortality, especially in
those with severe CMD. The above results indicated the risks of mul-
timorbidity and mortality for patients with different subtypes of CMD
and cancer, providing individualized guidance in clinical settings.

Previous studies have repeatedly reported the associations of
genomics, metabolomics, and proteomics states with individual dis-
ease outcomes8–10. Beyond individual disease occurrence, this study
first revealed that multiomics profiles provided comprehensive
insights into disease trajectories of CMD and cancer, including disease
transitions, multimorbidity development, and prognosis. For geno-
mics, our findings indicated that PRS-CMD and PRS-cancer were sig-
nificantly associated with the progression of CMD and cancer
morbidity or multimorbidity, but the associations indicated by hazard
ratios (HRs) were very modest. These results suggested that CMD or
cancer progression and its subsequent events may largely be deter-
mined by environmental factors in later life9. Glucose and lipid meta-
bolism are key factors in determining the occurrence and prognosis of
CMD and cancer20,21. In our study, among all metabolites, triglyceride
and phospholipid metabolism emerged as key markers across nine
transitions, while glucose and glycoprotein acetyls were specifically
associated with transitions tomultimorbidity andmortality during the
development of CMD and cancer. Notably, GDF15 may serve as a
compelling target in the CMD and cancer trajectories given its robust
associations with seven of the nine transitions in this study. As men-
tionedpreviously, GDF15 serves as a critical biomarker of cellular stress
response and mitochondrial dysfunction, with strong relationships
with various obesity-related metabolic disorders22. Our findings fur-
ther suggested that the GDF15 expression level was a strong predictor
of higher multimorbidity risk and worse clinical outcomes following a
dose-response pattern. Furthermore, based on the key proteins and
metabolites identified above, no significant clustering effects were
observed across the five disease states. Previous studies have empha-
sized that metabolomics and proteomics capture molecular features
associated with various biological processes8,10. However, the sub-
stantial individual heterogeneity within disease states may complicate
the interpretation of metabolite and protein effects, particularly given
that the first two PCs explained only a small proportion of the overall
variance. The findings revealed that while several key proteins and
metabolites were identified for specific disease transitions, significant
individual variability existed.

The top protein-enriched pathways, such as cytokine-cytokine
receptor interaction, PI3K-Akt signaling, and lysosome-related path-
ways, were mainly associated with inflammatory and immune pro-
cesses and were present across nearly all transitions23,24. Moreover,
more altered inflammation- and immune-related signaling was
observed in transitions from cancer to CMD, cancer to death, and
CMD-cancer to death. Beyond the high baseline inflammation levels,
many cancer therapies, such as radiation and immune therapies, can
induce acute inflammatory changes25,26, potentially contributing to the
high multimorbidity risk and poor outcomes in individuals initially
diagnosed with cancer or those developing cancer after CMD. The
identification of these shared and distinct biological pathways pro-
vides valuable insights into themolecularmechanisms associatedwith
different disease states, supporting our understanding of disease
progression and highlighting potential opportunities for early
intervention.

Among three omics-based scores, Gen-Score showed a modest
predictive performance for different disease trajectories. Although
PRSs have been widely applied in research, these genomics scores
cannot capture environmental exposures and physical conditions of
individuals and may be limited in predicting complex age-related dis-
eases or multimorbidity9. Met-Score showed moderate to good per-
formance in predicting CMD development and progression, but
showed only modest performance for cancer-related outcomes. This
may be attributed to a relatively narrow metabolite coverage of

current metabolomic techniques, with many disease signals unde-
tected. Additionally, cancer-related metabolic alterations could be
localized to distal or more refined tissues, making it more challenging
to detect early through blood-based metabolomics. Prot-Score
achieved the best performance among omics profiles, comparable to
the combination of demographic, lifestyle, clinical, and multiomics
markers, in predicting disease trajectories of CMD and cancer up to ~15
years in advance. The AUCs of Prot-Score ranged from 0.76 to 0.90 at
10 years and 0.77 to 0.91 at 15 years across 8 disease trajectory out-
comes. The performance of Prot-Score for predicting cancer alonewas
relatively modest, although it remained statistically significant. This
observationmay be attributable to the fact that detectable proteomics
markers are more likely to exist in specific tissues among individuals
with cancer alone, compared to those with high multimorbidity and
mortality risk. In contrast, robust performance of Prot-Score was
observed in predicting both cancer-CMD multimorbidity and cancer-
related mortality in people with cancer. These findings suggest that
more detectable proteomics markers in the blood can be observed in
cancer patients with poor prognosis than in cancer-only individuals,
thereby enhancing the identification of high-risk cancer patients who
would benefit most from early intervention and intensive monitoring.
Importantly, without leveraging any laboratory or clinical information,
our study strongly emphasizes the predictive value of Prot-Score as a
single-source, individualized health assessment tool for predicting
disease trajectories.

The robust performance of Prot-Score highlights the potential
utility of incorporating a targeted set of proteins into routine clinical
assessments for informing risk management of multimorbidity devel-
opment and progression, particularly in older adults. This approach
closely aligns with the use of routine biochemical profiles in clinical
practice for monitoring general health and detecting potential disease
risks27. However, unlike conventional biochemical tests that focus
primarily on general physiological parameters, proteomics offers a
deeper layer of biological insights. Protein-level data reflect upstream
processes, such as gene expression regulation, activation of signaling
pathways, and metabolic dysregulation, underlying the development
of CMD and cancer multimorbidity cluster. This molecular-level reso-
lution provides precise targets for disease prediction, personalized
treatment, and early intervention strategies. Furthermore, even when
compared to a comprehensive panel of 22 standard blood biochemical
markers, Prot-Scorepresented superior predictivepower and accuracy
in forecasting disease transitions. These findings underscore the
added value of proteomics in potentially enhancing conventional risk
stratification approaches.

This study has several limitations. First, this study only focused on
the 2 most common and related chronic diseases—CMD and cancer.
More comprehensive multimorbidity patterns may be investigated in
future studies with larger sample sizes. Second, dynamic changes in
metabolomics and proteomics states during follow-up were not mea-
sured. However, baseline omics data provides an early snapshot to
identify potential biomarkers and initial disease mechanisms, setting
the stage for future studies that incorporate longitudinal data. Third,
CMD and cancer diagnoses were obtained from hospital inpatient
records and national cancer registries. Misdiagnosis or missed diag-
noses may exist and introduce outcome misclassification. Fourth, the
UK Biobank is a volunteer cohort. Participants may be generally heal-
thier than the total population,whichmay introduce selection biases28.
Fifth, information on participants’ medication use or other treatment
during follow-up cannot be obtained in UK Biobank, which may influ-
ence the risk of subsequent events. Sixth, we used HRS as an external
cohort to replicate the transition patterns, but the geographic loca-
tion, survey approaches, and baseline characteristics vary significantly
between HRS and the UK Biobank. Additionally, the 2-year survey
intervals inHRSmay result in loss of follow-up or incomplete outcome
recording. However, these differences also confirm the population-
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level generalizability. Finally, the comprehensive analysis of disease
trajectories poses substantial challenges in finding suitable external
cohorts with multiomics data and long follow-up for validation of our
identified multiomics signatures and omics-based risk scores.
Although the discovery and replication datasets were rigorously
designed internally, with participants selected from different geo-
graphical regions, and omics-based risk scores were thoroughly vali-
dated through multiple sensitivity analyses, further studies with well-
characterized cohorts are still needed to establish the generalizability
of the study findings.

In conclusion, this study found that the prognosis varied with
different morbidities and multimorbidity with different temporal
orders, as well as different subtypes in the multimorbidity cluster of
CMD and cancer. Shared and distinct multiomics signatures were
identified in the developmental trajectories of CMD and cancer. Prot-
Score, independent of complex laboratory tests or clinical measures,
showed good predictive capability of disease trajectories. This study
identified a potentially useful proteomics-based approach for pre-
dicting disease trajectorieswithin specificmultimorbidity clusters. The
findings may guide further validation studies in independent popula-
tions to assess its effectiveness and applicability in riskmanagement of
CMD and cancer multimorbidity, with the ultimate goal of informing
future healthcare strategies in a rapidly aging world.

Methods
Study design and participants
The UK Biobank is a large population-based prospective cohort study
consisting of approximately 0.5 million UK residents. UKB received
approval from the National Information Governance Board for Health
and Social Care and the National Health Service NorthWest Centre for
Research Ethics Committee (Ref11:/NW/0382). All participants pro-
vided written informed consent. This research was conducted using
the UK Biobank Resource under application number 101169, utilizing
data provided by patients and collected by the National Health Service
as part of their care and support. Participants aged 37–73 years were
enrolled from 2006 to 2010 from 22 assessment centers located in
England, Wales, and Scotland29. Following the standardized process of
interviews and questionnaires, extensive information on socio-
demographics, health behaviors, and medical conditions was col-
lected. All participants provided written informed consent.
Information on participant compensation followed UK Biobank’s
standard procedures, and participants received feedback on their
health measurements. Participants without baseline CMD and cancer
were included in this study.

Multiomics data collection and processing
Genomics,metabolomics, and proteomics data used in this studywere
collected at a single time point during baseline assessment
(2006–2010). No repeated or longitudinal omics measurements were
included in the analysis.

Genomics
Genome-wide genotype data have been collected from all participants
at baseline (2006–2010). DNA was extracted from whole blood sam-
ples and genotyped using Applied Biosystems™ UK BiLEVE Axiom™
Array by Affymetrix (10% participants) and Applied Biosystems™ UK
Biobank Axiom Array (90% participants)30. Phasing and imputation
were performed based on the merged UK10K and 1000 Genomes
Phase 3 reference panels and theHRC referencepanel. Comprehensive
quality control was conducted, including both marker-level and
sample-level assessments30. Single-nucleotide polymorphisms for
CMD and cancer were obtained from publicly available summary sta-
tistics from published genome-wide association studies (GWAS)31–35.
PRS-CMDand PRS-cancerwere calculated by the sumof an individual’s
risk alleles,weightedby risk allele effect sizes derived fromGWASdata.

Details on the selected single-nucleotide polymorphisms are shown in
Supplementary Dataset 7.

Metabolomics
Metabolomics data were generated by a high-throughput nuclear
magnetic resonance metabolomics platform using baseline plasma
samples (2006–2010) from a randomly selected subset of approxi-
mately 280,000 UK Biobank participants36. Metabolic measures from
each plasma sample, including both absolute values and ratios, were
quantified. A quality control protocol was conducted, addressing
technical and biological repeatability, quality control flags, technical
variation, and outlier plates37,38. Metabolomic variables with over 80%
missing values across samples were removed. The remaining missing
values were imputed using the K-nearest neighbors algorithm39.

Proteomics
Proteomics data were measured using the antibody-based Olink
Explore 3072 proximity extension assay technology based on plasma
samples collected randomly during the initial visit (2006–2010) from
UK Biobank participants. Proteins were measured across 8 protein
panels (cardiometabolic, cardiometabolic II, inflammation, inflamma-
tion II, neurology, neurology II, oncology, and oncology II). Quality
control was performed to confirm no observed batch effects, plate
effects, or abnormalities in protein coefficients of variation40. Pro-
teomics data with more than 80% missing values across samples were
excluded. The remaining missing values were imputed using the
K-nearest neighbors algorithm39.

All omics data were standardized to ensure a mean of 0 and a
standard deviation of 1. The 3 omics datasets included 2 PRSs, 251
metabolomics markers, and 2920 proteomics markers, respectively.

Outcomes and follow-up
Incident CMD, incident cancer, death, and diagnosis time were
obtained from hospital inpatient records, national cancer registries,
and national death registries during follow-up. Death and death time
were sourced from the NHS Information Centre (England and Wales)
and the NHS Central Register (Scotland) until 30 October 2023. CMD
diagnoses were defined by the International Classification of Diseases
10th revision (ICD-10) and included T2D (E11), coronary artery disease
(I20-I25), stroke (I60-I64), and heart failure (I50), as detailed in Sup-
plementary Table 10 41,42. All-cause cancer was obtained through link-
age to national cancer registries. The top low- and high-survival-rate
cancer subtypes were defined by using the following ICD-10 codes
recorded on the cancer registry: skin cancer (C44), breast cancer
(C50), prostate cancer (C61), liver cancer (K760 and C22), lung cancer
(C33-C34), esophageal cancer (C15), and pancreatic cancer (C25).
Cancers were categorized into benign or in situ tumors andmalignant
tumors according to the behavior of cancer tumors (UK Biobank Field
40012). According to the top 4 risk factors for death among CMD
individuals (high systolic blood pressure, high LDL, high body mass
index [BMI], and high plasma glucose). High systolic blood pressure
was defined as systolic blood pressure ≥130mmHg; high LDL as
LDL ≥ 2.6mmol/L; high BMI as BMI≥ 30 kg/m2; and high glucose as
blood glucose ≥7mmol/L. CMDwas further grouped intomild (<3 risk
factors) and severe (≥3 risk factors) subgroups. Participants were
considered at risk from enrollment to death, loss to follow-up, or 30
October 2023, whichever came first.

Covariates
The covariates included demographic (age, sex, and ethnicity), socio-
economic characteristics (Townsend deprivation index [TDI],
employment status, and education level), lifestyle factors (smoking
status, drinking status, physical activity, diet quality score, sleep
duration, and BMI), family history (family history of T2D, CVD, and
cancer), medication use for CMD and cancer, and participation in
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cancer screening. Sex was defined based on self-report information.
Ethnicity was self-reported and categorized as White and others.
Education level was categorized as a higher degree (college degree,
university degree, or professional qualifications), any school degree
(advanced levels, advanced subsidiary levels, ordinary levels, General
Certificate of Secondary Education, Certificate of Secondary Educa-
tion, or equivalent), vocational qualification (National Vocational
Qualification, Higher National Diploma, Higher National Certificate, or
equivalent), and none of the preceding groups. Smoking and drinking
status were categorized as never, ever, and current. Physical activity
was defined by totalmetabolic equivalent taskminutes per week for all
activity. Diet quality score was calculated based on seven commonly
eaten food groups according to the American Heart Association
guidelines43. Medication use for CMD was defined as medication for
cholesterol, blood pressure, or diabetes (UK Biobank Field 6177).
Cancer-related medications were derived from treatment or medica-
tion records (UK Biobank Field 20003), primarily including immuno-
modulatory and cytotoxic therapies. Participation in cancer screening
was defined as undergoing screening for breast, bowel, or prostate
cancer.

Statistical analysis
Transition patterns. Baseline characteristics were described using
means and standard deviations or counts and percentages. The pro-
portionofmissing covariate datawas shown in SupplementaryTable 11
and missing data were imputed using multiple imputations through
chained equations with the R package “mice”. A total of five imputed
datasets were created, and the results were pooled following
Rubin’s rules.

Multistate models were used to analyze the transition prob-
abilities in the temporal disease progression from health (i.e., free of
CMD and cancer) to a single CMD or cancer, multimorbidity with both
CMD and cancer, and death. The multistate model was conducted
using Markov proportional hazards, an extension of competing risks
survival analysis44,45. Competing risks deal with one initial state and
several mutually exclusive absorbing states. This study applied a
4-statemodel with all individuals starting in a disease-free state (Fig. 1).
From this state, individuals could transition to single CMD or cancer
morbidity, multimorbidity, or death. The model facilitates the simul-
taneous estimation of each trajectory by analyzing all potential for-
ward transitions between different health states.

Nine transitions in themultimorbidity cluster were constructed in
this study (Fig. 1): Transition I, baseline-CMD; Transition II, baseline-
cancer; Transition III, baseline-death; Transition IV, CMD-cancer;
Transition V, CMD-death; Transition VI, cancer-CMD; Transition VII,
cancer-death; TransitionVIII, CMD-cancer-death; Transition IX, cancer-
CMD-death. Participants diagnosed with CMD and cancer on the same
date were excluded from the analysis because the temporal order of
disease occurrences could not be ascertained. For participants who
were diagnosed with CMD or cancer and died on the same date, we
assigned the death date as the previous disease state plus 0.5 day.

Transition probabilities for the 9 transitions were estimated at 5,
10, and 15 years. Transition probabilities frombaseline toCMD, cancer,
or deathwere assessed in all participants, while transition probabilities
from single morbidities to multimorbidity or death were evaluated in
those with a diagnosed morbidity. Transition probabilities from mul-
timorbidity to death were assessed in participants with both CMD and
cancer. For participants at baseline or with a single morbidity, sub-
sequent events were treated as mutually competing states (e.g., first
diagnosis ofCMD,first diagnosis of cancer, anddirect death). Since the
probability of transitioning frommultimorbidity to death was the final
state in our multi-state framework, no further competing events were
defined beyond this point. Covariates, including age, sex, ethnicity,
TDI, employment status, education level, smoking status, drinking
status, physical activity, diet quality score, sleep duration, BMI, family

history of T2D, CVD, and cancer, medication use for CMD and cancer,
and participation in cancer screening, were adjusted when estimating
transition probabilities for participants at different stages. T-tests were
used to compare the probabilities between transitions.

Subgroup analysis. Proportions of subsequent events for major sub-
types of CMD (type 2 diabetes, coronary artery disease, stroke, and
heart failure) and cancer (skin, breast, prostate, liver, lung, esophageal,
and pancreatic cancers) were calculated. Subgroup analyses were
further conducted across various categories, including participants
with benign or in situ tumors, malignant tumors, mild CMD, severe
CMD, malignant tumors combined with severe CMD, low-survival-rate
cancers, and high-survival-rate cancers. Transition probabilities were
then estimated within each subgroup at a 10-year follow-up with the
same adjustment above.

Survival analysis. The Kaplan–Meier method was used to construct
survival curves for the health state, single CMD morbidity, single
cancer morbidity, CMD-cancer multimorbidity, and cancer-CMD mul-
timorbidity. As the proportional hazards assumption was violated,
restricted mean survival time (RMST) with an upper limit of 15 years
was estimated for the 5 states using the R package “survRM2” to
compare their prognostic outcomes. To enhance the comparability of
covariates across the five states, propensity score matching was per-
formed to account for covariates with substantial differences among
the five states in the sensitivity analysis. The adjusted covariates
included age, sex, ethnicity, education level, employment status,
smoking status, drinking status, and BMI. RMST was calculated in the
dataset after matching to further evaluate the robustness of the
results.

Multiomics signatures. Participants born in England were used as the
discovery dataset, while those born in non-England regions were held
out as the replication dataset. To identify significant multiomics sig-
natures associated with the nine transitions, multistate models were
used to assess the associations of omics-based markers with nine
transitions in the discovery and replication datasets. The same full set
of covariates was adjusted. HRs and CIs were estimated for the nine
transitions. In each omics dataset, significant omics-based markers
were identified with FDR-adjusted p <0.05 in the discovery dataset to
account for multiple tests, a nominal p < 0.05 in the replication data-
set, and consistent direction of associations. The Kyoto Encyclopedia
of Genes and Genomes (KEGG) is a comprehensive database for the
systematic analysis of gene functions, metabolic pathways, cellular
processes, and molecular interactions, offering valuable biological
insights for both metabolomics and proteomics markers46. Pathway
analysis was conducted using significant metabolomics and pro-
teomics markers based on the human KEGG database. To further
validate the pathways enriched by significant proteomics markers, an
additional pathway enrichment analysiswas performedusing theGene
Ontology database. The top five significantly enriched pathways
(p < 0.05) from KEGG and Gene Ontology were presented. Subse-
quently, inflammation-related pathways meeting the criteria of
p <0.05 and gene ratio >0.05 in KEGGwere further identified for each
transition, and their key contributing proteins were systematically
summarized.

PCA was further applied to assess the variation and clustering
structure of participants based on the top five and bottom five meta-
bolites and proteins identified by HRs ranking in the discovery set. All
variables weremean-centered and scaled to unit variance. Participants
were grouped to assess whether metabolomics and proteomics pro-
files exhibited distinct separation or clustering patterns across five
disease states (i.e., healthy, single CMD, single cancer, CMD-cancer,
and cancer-CMD). Thefirst 2 principal components (PC1 andPC2)were
extracted for visualization and interpretation.
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Model development and comparison. Significant omics-based mar-
kers were retained for model development for each transition out-
come. Nine outcomes in the multimorbidity cluster were predicted,
including (1) singlemorbidity outcomes: onlyCMDandonly cancer; (2)
multimorbidity outcomes: CMD-cancer and cancer-CMD; and (3)
mortality outcomes: direct death, CMD-death, cancer-death, CMD-
cancer-death, and cancer-CMD-death. We employed a 4-step machine
learning framework consisting of: (1) feature selection, (2) hyperpara-
meter tuning, (3) omics-based score calculation, and (4) performance
evaluation. First, in the discovery dataset, feature selection was per-
formed using least absolute shrinkage and selection operator (LASSO)
Cox models for each outcome, incorporating age, sex, and significant
omics-basedmarkers in the 3 omics datasets separately. This approach
enabled the data-driven identification of the most predictive markers,
as our machine learning framework applies coefficient shrinkage to
highly correlatedmarkers. Second, the hyperparameter lambda values
were determined using ten-fold cross-validation within the discovery
dataset, implemented via the “caret” package in R. Model coefficients
were then derived with the optimal lambda value identified through
this process. Third, Gen-Score, Met-Score, and Prot-Score were calcu-
lated for each outcome as the weighted sum of the selected variables,
using the coefficients obtained from the LASSO procedure. Fourth, in
the replication set, Harrell’s C-statistic was estimated for the base
model (age and sex) and three omics-based scores in three omics
datasets, respectively; improvements in prediction were evaluated by
comparing the two models using ΔC-statistic. The 95% CI for ΔC-
statistic was calculated based on the bootstrap samples (n = 200).

To compare the predictive performance of different models, we
further evaluated the performance of the base model, lifestyle model,
clinical model, 3 individual omics-based scores (Gen-Score,Met-Score,
and Prot-Score), and the Combined-Score in participants with all
multiomics data. The base model included age and sex. The lifestyle
model consisted of age, sex, 4 lifestyle behaviors (smoking status,
physical activity, diet quality score, and sleep duration) based on Life’s
Essential 847, and participation in cancer screening. The clinical model
was adapted from Systematic Coronary Risk Evaluation 2 (SCORE2)
prediction models and included age, sex, smoking status, systolic
blood pressure, non-HDL, and glucose48. The Combined-Score inte-
grated base model, lifestyle model, clinical model, Gen-Score, Met-
Score, and Prot-Score. Cox proportional-hazard models were fitted
using the base model, lifestyle model, clinical model, Gen-Score, Met-
Score, Prot-Score, and Combined-Score in the combined dataset. To
assess the predictive performance of the Coxmodels, time-dependent
AUCs at 10 and 15 years were calculated using the predicted prob-
abilities of each outcome and the corresponding true event status for
each individual. The distribution of bootstrapped differences in the
time-dependent AUCs was used to statistically infer differences
between the models.

Sensitivity analysis. Several sensitivity analyses were performed to
confirm the stability and generalizability of the transition patterns.
First, skin cancer was excluded from the cancer diagnosis since it is
typically less severe and has a high survival rate17. Second, transition
patterns were further examined in the three individual omics datasets
to confirm the comparability and representativeness across datasets.
Third, an external validation was conducted based on the HRS cohort.
Specifically, HRS is a nationally representative longitudinal survey of
more than 37,000 individuals over age 50 in the USA. The detailed
study design of HRS has been described elsewhere49. Questionnaire
interviews were conducted every wave (2 years apart on average),
whilephysical examinationwas conducted every2waves (4 years apart
on average). To ensure a comparablebaseline periodbetweenHRS and
the UK Biobank, waves 9 to 15 of HRS (2008–2020) were used for
replication in the sensitivity analysis. All participants provided written
informed consent. The HRS was approved by the Institutional Review

Board at the University of Michigan and the National Institute on
Aging. Participants without self-reported CMD and cancer before
baseline were included in the HRS. CMDwas defined as diabetes, heart
disease, heart attack, heart failure, and stroke. In each interview wave,
participants were asked whether they had been diagnosed with CMD
or cancer by a doctor. If so, the earliest wave year of diagnosis was
recorded as the time of diagnosis. Similar covariates, including age,
sex, education level, employment status, income, smoking status,
drinking status, physical activity, and BMI, were considered. Education
level was categorized as less thanprimary school, primary school, high
school, and college or higher. Income was classified into low, inter-
mediate, and high levels. Smoking and drinking status was categorized
into current and never or ever. Physical activity was categorized into
hardly ever or never, once a week or less, and more than once a week.
Other variables with substantial missing data or not collected in HRS
were not adjusted for. Transition probabilities were estimated at an
8-year follow-up.

Prot-Score was further validated in five aspects: (1) evaluate the
performance after excluding skin cancer from cancer diagnosis; (2)
assess its performance in participants with pre-existing CMD and
cancer diagnoses before baseline, who were excluded from the pri-
mary analysis; (3) estimate its performance across different geo-
graphical regions, specifically among individuals from the northern
and southern areas of the UK, with the classification criteria detailed in
Supplementary Table 12; (4) use the elastic net model to construct
predictionmodels and assess its performance; and (5) compare its 10-
year predictive performance, measured by AUCs, with that of a com-
prehensive biochemical profile consisting of 22 standard biochemistry
markers. The biochemical profile included albumin, alkaline phos-
phatase, alanine aminotransferase, apolipoprotein A, apolipoprotein
B, aspartate aminotransferase, bilirubin, urea, cholesterol, creatinine,
C-reactive protein, cystatin C, gamma glutamyltransferase, glucose,
HbA1c, high-density lipoprotein cholesterol, insulin-like growth factor
1, LDL, lipoprotein A, total bilirubin, triglycerides, and urate.

Statistical analyses were performed using R version 4.2.0. Major R
packages used in the analysis included caret (v7.0.1) and glmnet (v4.1-
10) for model training and regularized regression; mstate (v0.3.3) for
multi-state modeling; dplyr (v1.1.4) for data manipulation; mice
(v3.18.0) for multiple imputation; and survival (v3.8-3) for survival
analysis.

Statistics and reproducibility
This research was conducted as an observational cohort study using
data obtained from the UK Biobank. No statistical methodwas used to
predetermine sample size. Sample inclusion and exclusion criteria are
detailed in Fig. S1 and the “Study design and participants” section.
Participants with pre-existing cardiometabolic diseases or cancer at
baseline were excluded from the analysis. The study design did not
involve any intervention, and therefore, traditional experimental pro-
cedures such as randomization and blinding are not applicable. The
investigators were not blinded to allocation during experiments and
outcome assessment, as this was an observational study analyzing pre-
existing data.

Ethical approval
This research complies with all relevant ethical regulations. UKB
received approval from the National Information Governance Board
for Health and Social Care and the National Health Service North West
Centre for Research Ethics Committee (Ref11:/NW/0382). The HRSwas
approved by the Institutional Review Board at the University of
Michigan and the National Institute on Aging.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The UK Biobank data used in this study are available under restricted
access for approved research purposes. Access can be obtained by
submitting a research application through the UK Biobank Access
Management System at www.ukbiobank.ac.uk. All genomics, plasma
metabolomics, and plasma proteomics are publicly available at the UK
Biobank and could be accessed with a reasonable request. This
research was conducted under UK Biobank Application Number
101169. The raw UK Biobank participant-level data are protected and
are not available due to data privacy laws and the terms of our data
access agreement. The Health and Retirement Study data used for
external validation in this study are available in the HRS database
under public use datasets at https://hrs.isr.umich.edu/ following
completion of a data use agreement. Source data are provided with
this paper.

Code availability
The R code used for all analyses in this study is publicly available on
GitHub at https://github.com/jiangxuanwei/Disease-Trajectory-
Code50. Additional figures were created using the BioRender plat-
form. Figures created with BioRender are in compliance with BioR-
ender’s Academic License Terms and are intended for publication
purposes.
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