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Multi-center multi-omics integration
predicts individualized prognosis in
medullary thyroid carcinoma

Yan Zhou 1,2,3,4,17, Yingrui Wang 2,3,4,17, Xiao Shi 5,6,17, Jiatong Wang2,3,4,17,
Zelin Zang 7,17, Likun Zhang8,17, Zhiqiang Gui9, Xue Cai2,3,4, Pingping Hu2,3,4,
Jiaxi Wang 10, Hanqing Liu11, Zhihong Wang9, Haixia Guan 12, Xiaohong Wu13,
Cenkai Shen5,6, Yi He14, Mo Li15, Hao Zhang 9, Jianbiao Wang16, Yijun Wu 11,
Chuang Chen 10, Yi Zhu 2,3,4, Yaoting Sun 2,3,4 , Zhiyan Liu 8 ,
Yu Wang5,6 & Tiannan Guo 1,2,3,4

Medullary thyroid carcinoma (MTC) is a rare, aggressive neuroendocrine
tumor with limited treatment options and frequent recurrence. Comprehen-
sive recurrence risk stratification remains lacking. Here, we profile 482 MTC
samples from 452 patients across ten Chinese clinical centers, identifying
10,092 proteins and mutations in 87.0% of patients. Clinically, MTC grading,
concurrent papillary thyroid carcinoma, and lymph node metastasis are sig-
nificant recurrence risk factors, whereas at the genetic level, RET M918T and
RET S891A mutations are correlated with high recurrence risk in sporadic and
hereditary MTC, respectively. Ubiquitinomics show downregulated E3 ligases
CUL4B and TRIM32 are associated with structural recurrence. We define three
molecular subtypes with distinct outcomes and present an integrative
machine learningmodel combining clinical, genomic, and proteomic features,
validated in an independent test dataset of 105 patients and a published
dataset. This multi-center, multi-omics study enhances the understanding of
MTC heterogeneity and facilitates personalized patient management.

Medullary thyroid carcinoma (MTC) is a rare neuroendocrine tumor
arising from parafollicular C cells1. The incidence of MTC represents
only 2% of all thyroid cancers2,3, yet it accounts for 8% of thyroid
cancer-related deaths. MTC is characterized by aggressive behavior
and elevatedmetastatic potential, leading to amedian disease-specific
survival of 8.6 years4. At primary diagnosis, 75% of patients with MTC
had metastases in cervical lymph nodes, while 10–15% present with
distant metastasis5,6. The disease’s inherent resistance to radioiodine
therapy significantly restricts viable treatment options. The primary
treatment for MTC is surgical intervention, specifically total thyr-
oidectomy and bilateral central neck lymph node dissection7. How-
ever, postoperative recurrence remains a significant issue, with a
reported reoperation rate of 16.3% and amedian time to reoperationof

6.4 months8. Disease recurrence significantly affects disease-free sur-
vival and quality of life, underscoring the importance of effective risk
stratification to predict outcomes and optimize long-term follow-up
strategies for improved results.

The current postoperative prognostic assessment of MTC pri-
marily relies on the TNM staging system, which evaluates maximum
primary tumor size, extrathyroidal extension (ETE), lymph node
metastasis (LNM), and distant metastasis. However, this system does
not incorporate other critical prognostic factors, such as age, sex,
heredity, and postoperative levels of calcitonin and carcinoembryonic
antigen9–11. Consequently, there is a need for a more comprehensive
tool that integrates these diverse factors to accurately assess prog-
nostic risk in MTC patients. Xu et al. recently introduced the
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international MTC grading system (IMTCGS), which incorporated
measures of proliferative activity, including the mitotic index and/or
Ki67 proliferative index, as well as tumor necrosis12. This grading sys-
tem stratifies MTC into high and low grades, with high-grade tumors
demonstrating worse disease-specific survival and higher recurrence
rates at both local and distant sites. While the system has been vali-
dated in several cohorts from Europe, the United States and Australia,
its generalizability to large Asian populations remains uncertain12–16.

Genomic and transcriptomic technologies have been extensively
utilized to investigate MTC prognosis, revealing genomic features
associated with heredity17,18, IMTCGS grade14, and clinical outcomes11.
The RETmutation plays a pivotal role in both hereditary and sporadic
MTC. Hereditary MTC involves germline RET mutations, accounting
for approximately 25% of all MTC cases. For sporadic MTC, somatic
RET M918T mutations are linked to a worse prognosis11. Notably, 10-
20% of sporadicMTC cases lack known drivermutations, necessitating
other technologies to elucidate the underlying pathogenesis11,17.

Proteins represent the final product of gene expression, but their
abundances do not always align with DNA or RNA levels. Mass spec-
trometry (MS)-based proteomic analysis19 remains underexplored
despite its potential to enhance prognostic assessment in MTC. One
study involving three MTC patients demonstrated that decreased
fibronectin 1 (FN1) expression was correlated with reduced
progression-free survival20. In a prior study involving 102 Chinese
patients with MTC, three proteomic subtypes with distinct biological
traits and prognoses were identified21. However, these studies are
limitedby small sample sizes and/or a lackof validation in independent
test cohorts. Proteomic analyses focusing on structural recurrence in
MTC are particularly scarce, yet such research could illuminate the
molecular mechanisms associated with MTC aggressiveness and
metastatic potential.

Ubiquitination is a versatile post-translational modification in
which the 76-amino-acid ubiquitin protein is covalently attached to
lysine residues of substrate proteins. Substrate proteins tagged by
ubiquitin will be recognized and degraded by proteasome, through
which to regulate protein stability, trafficking, and signaling
transduction22. Ubiquitination is reversible and dynamically regulated
by E3 ubiquitin ligases and deubiquitinases (DUBs)23. Increasing evi-
dence indicates that perturbations of the ubiquitin–proteasome sys-
tem intersect with RET signaling, cell-cycle control, and apoptosis,
highlighting ubiquitination as a mechanistically relevant layer in
MTC24–27. MS-based ubiquitinomics enables proteome-wide site map-
ping of ubiquitination by identifying the characteristic di-glycine (K-
GG) remnant that remains on modified lysines after tryptic
digestion28–30. Proteome-scale studies on ubiquitination dynamics in
MTC remain limited. Such investigations may provide insights into
potential therapeutic strategies, including the development of pro-
teasome or ubiquitin pathway inhibitors31.

In this study, we systematically analyze data from 482 samples
obtained from 452 Chinese MTC patients from 10 clinical centers. We
integrate proteomics, ubiquitinomics, gene panel data, and clinical
information and identify three molecular subtypes based on 52 pro-
teins, each demonstrating distinct clinical, prognostic, and molecular
characteristics. Furthermore, we develop a predictive model combin-
ing proteomic and clinical features to assess the risk of structural
recurrence in MTC.

Results
Clinicopathological characteristics of MTC patients
After careful curation, we procured 377 (N = 347) and 105 (N = 105)
eligible formalin-fixed, paraffin-embedded (FFPE) samples in the dis-
covery and the independent test datasets, respectively (Fig. 1a). The
study design is summarized in Fig. 1b. We collected 12 clinical indica-
tors, sequenced a panel of 28 genes, and quantified the proteome

using pressure cycling technology (PCT) for sample preparation
followed by data-independent acquisition (DIA) MS32,33. The baseline
clinical characteristics are summarized in Table 1. The mean age at
primary surgery for all patients in the study is 49.7 ± 12.2 (mean ±
standard deviation) years, with a mean maximum nodule size of
2.2 ± 1.4 cm. Male patients comprise 45.8% of the cohort, and heredi-
taryMTC represents 17.0% of cases. During the follow-up period in the
discovery dataset, 20.7% of MTC patients experienced structural
recurrence (SR), and 3.5% died from MTC-specific causes. The mean
time from primary surgery to SR or disease-specific mortality (DSM) is
52.5 and 78.6 months, respectively. In comparison, the corresponding
control groups have mean follow-up times of 102.0 and 106.5 months,
respectively. Compared to non-recurrence (NR) cases, patientswith SR
exhibit larger maximum nodule sizes, a higher proportion of males,
and more frequent multifocal and bilateral lesions, extrathyroidal
extension (ETE), and lymph nodemetastasis (LNM). Similarly, the DSM
group has larger maximum nodule sizes, higher tumor grades, and
more ETE and LNM than the survival (S) group.

Association of RET and RAS mutations with clinicopathologic
characteristics and disease prognosis
In addition, we explored the clinical features stratified by RET and RAS
mutation status. Gene sequencing revealed germline RETmutations in
17.3% of MTC patients, somatic mutations in 69.9%, and no detectable
mutations in 12.8% (Fig. 1b). Patients with germlineRETmutationswere
younger than those with RET/RAS wild-type patients (P =0.003,
Table 2). Five patients were not sequenced for mutation, so they were
not included in the table. Both germline and somatic RET mutations
were associated with higher incidences of ETE and LNM compared to
RET/RAS wild-type cases (germline: P =0.038 (ETE) and P =0.017
(LNM); somatic: P =0.011 (ETE) and P =0.013 (LNM)). RET somatic
mutations present a higher rate of structural recurrence than the RET/
RASwild-type group (29.0% vs. 14.9%). However, RET or RASmutations
do not significantly correlate with DSM. There are no statistically sig-
nificant differences between RAS mutations and RET/RAS wild-type
cases regarding clinical characteristics or prognosis. In summary, our
results show that RET/RAS mutation is not related to SR or DSM when
specific mutation sites are not considered.

To further investigate the recurrence risk associated with specific
mutation sites, Kaplan-Meier (K-M) survival analyses were performed.
Among sporadic MTC cases, patients harboring the RET M918T
mutation exhibit a higher recurrence risk than those without the
mutation (P =0.0013, Fig. 2b). In hereditary MTC, the RET S891A
mutation presents a higher recurrence risk, whereas the RET C634
mutation is associatedwith a lower recurrence risk (P = 0.0015, Fig. 2c).

A comparative analysis was subsequently conducted to evaluate
the frequencies of genetic mutation sites between our dataset of
Chinese patients (Westlake) and those of Western populations (Pisa17,
MSKCC11). Among sporadic MTC patients, the RET M918T, HRAS, and
RETC634mutations are the threemostprevalentmutation sites across
the three datasets (Supplementary Fig. 1a, Supplementary Data 1).
Notably, the Westlake dataset exhibits an HRAS mutation frequency
higher than the other two datasets (30.0% vs. 17.1% and 14.8%). For
hereditary MTC cases, the RET C634 mutation is the most common in
the Westlake dataset, accounting for 44.1%, compared to 27.5% in
the MSKCC dataset (Supplementary Fig. 1b). Conversely, the RET
C609Ymutation, which is themost prevalent in the MSKCC dataset, is
rare in the Westlake cohort (35.0% vs. 1.7%). Additionally, the RET
S891A mutation is identified as the second most frequent mutation in
the Westlake dataset (11.9%) but is absent in the MSKCC dataset.
In conclusion, Chinese MTC patients have a unique mutation
pattern compared toWestern patients, especially withmoreHRAS and
germline RET C634 mutations and fewer germline RET C609Y
mutations.
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Clinical, genomic, and proteomic characterization of MTC
patients with different prognoses
To identify risk factors related to the disease prognosis of MTC, uni-
variate Cox proportional hazards (CoxPH) models were constructed
for each of the 12 clinicopathological features. The analysis identifies
sex, IMTCGS, max nodule size, multifocality, concurrence of papillary
thyroid carcinoma (PTC), vascular invasion, ETE, and LNM as risk fac-
tors associated with SR (Supplementary Table 1). Subsequently, a

multivariate CoxPH model was employed to assess these 12 factors
collectively (Fig. 2a). The results indicate that IMTCGS (P =0.0096,
hazard ratio, HR = 4.5), concurrence of PTC (P = 1.83e−04, HR = 5.6),
and LNM (P = 1.65e−04, HR = 16.2) are independent risk factors asso-
ciated with SR in MTC.

Using parallel accumulation–serial fragmentation (PASEF) com-
bined with DIA techniques34, a total of 115,134 peptides and 10,092
proteins were quantified from 377 samples in the discovery dataset.

a

b

455 samples assessed for eligibility
       Clinical center 1: n=222
       Clinical center 2: n=88
       Clinical center 3: n=47
       Clinical center 4: n=45
       Clinical center 5: n=31
       Clinical center 6: n=22

Discovery cohort Independent test cohort

Sample exclusion
  10 loss to follow-up
  32 lymph node
  18 non-primary surgery
    6 normal thyroid
  12 non-radical surgery

376 samples for model building
    82 structure recurrence samples
    294 non-recurrence samples

377 samples eligible

Sample exclusion
    1 lacking RFS time 

105 samples for model building
    13 structure recurrence samples
    92 non-recurrence samples

105 samples eligible

118 samples assessed for eligibility
       Clinical center 7: n=82 
       Clinical center 8: n=19
       Clinical center 9: n=12
       Clinical center 10: n=5

Machine learning-based
recurrence prediction model

Molecular subtyping
by 52 proteins

452 MTC patients 
from 10 clinical centers

Discovery dataset

6 centers 

N=347, n=377

Sample exclusion
  12 loss to follow-up
    1 non-radical surgery

• Independent test dataset
      4 centers 
      N=105, n=105

Validation datasets

• FUSCC dataset
      5 centers
      N=64, n=64

12 clinical indicators
Age, sex, heredity, HT,
IMTCGS, multifocality,
bilaterality, max nodule size, 
concomitant with PTC, ETE, 
LNM, vascular invasion

Clinical indicators related to SR
    IMTCGS
    Concomitant with PTC
    LNM

60 min diaPASEF
10,092 proteins
115,134 peptides

MS-based proteomics 
Dysregulated protein analysis
    SR vs. NR: 141 DEPs
    DSM vs. S: 395 DEPs

28-gene panel
Somatic mutation - 69.9% 
    RET: 57.7%
    RAS: 41.0%
Germline mutation - 17.3% 

Mutations related to SR

Proteome, n=482

n=105
Discovery
dataset

 Independent test 
dataset 

n=347 30 biological replicates

n=342
Gene panel, n=477FFPE samples

Ubiquitinomics
24 min DIA

Ub
Ub
Ub

Ub

22,811 diGly-modified sites

Fresh frozen

N=9, n=16

Ubiquitinome, n=16FF samples Proteome, n=16

Fig. 1 | Study Design. a Sample exclusion criteria; b The diagram shows the study
workflow, including sample collection, MS-based proteomics, ubiquitinomics,
gene-panel-based sequencing, and data analysis (Created in BioRender. lab, g.
(2025) https://BioRender.com/vsdjlxg). IMTCGS International Medullary Thyroid

Carcinoma Grading System, HT Hashimoto’s thyroiditis, PTC papillary thyroid
carcinoma, ETE extrathyroidal extension, LNM lymph node metastasis, SR struc-
tural recurrence, NR non-recurrence, DSM disease-specific mortality, S survival.
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After excludingproteinswithover 90%missing values, thefinaldataset
comprises 9380proteins. Pearson correlations for pooled samples and
eachpair of biological and technical replicates are above0.92, showing
the high quality and reproducibility of the proteomic data (Supple-
mentary Fig. 2a). Given the multi-center origin of the data, batch

effects were evaluated and minimized. Visualization of the corrected
data by the t-distributed stochastic neighbor embedding (t-SNE)
method reveals no significant batch effects (Supplementary Fig. 2b, c).

RET and RAS are two of the most frequently mutated genes in
MTC. We examined the effects of these mutations on proteins in their

Table 1 | Clinical characteristics of the MTC discovery dataset

Clinical characteristics All cases,
n = 347 (%)

Outcome 1 P value Outcome 2 P value

Structure recurrence,
n = 72 (%)

Non-recurrence,
n = 275 (%)

Death,
n = 12 (%)

Survival,
n = 335 (%)

Age at surgery (years) 49.7 ± 12.2 48.4 ± 10.6* 50.1 ± 12.5 0.311 54.8 ± 10.4 49.6 ± 12.2 0.146

Max nodule size (cm) 2.2 ± 1.4 2.6 ± 1.7 2.1 ± 1.3 0.017 4.6 ± 2.3 2.1 ± 1.3 2.2e−4

Sex 0.033 0.767

Male 159 (45.8) 41 (56.9) 118 (42.9) 6 (50.0) 153 (45.7)

Female 188 (54.2) 31 (43.1) 157 (57.1) 6 (50.0) 182 (54.3)

Heredity 0.536 0.673

Hereditary 59 (17.0) 14 (19.4) 45 (16.4) 1 (8.3) 58 (17.3)

Sporadic 288 (83.0) 58 (80.6) 230 (83.6) 11 (91.7) 277 (82.7)

IMTCGS 0.333 0.001

High 14 (5.1) 5 (8.3) 9 (4.2) 4 (40.0) 10 (3.8)

Low 262 (94.9) 55 (91.7) 207 (95.8) 6 (60.0) 256 (96.2)

Unknown 71

Hashimoto’s thyroiditis 0.679 1.000

No 257 (84.3) 55 (85.9) 202 (83.8) 10 (83.3) 247 (84.3)

Yes 48 (15.7) 9 (14.1) 39 (16.2) 2 (16.7) 46 (15.7)

Unknown 42

Multifocality 3.5e−4 0.781

No 263 (75.8) 43 (59.7) 220 (80.0) 10 (83.3) 253 (75.5)

Yes 84 (24.2) 29 (40.3) 55 (20.0) 2 (16.7) 82 (24.5)

Bilaterality 0.043 1.000

No 296 (85.3) 56 (77.8) 240 (87.3) 10 (83.3) 286 (85.4)

Yes 51 (14.7) 16 (22.2) 35 (12.7) 2 (16.7) 49 (14.6)

Vascular invasion 0.074 0.120

No 210 (84.7) 44 (77.2) 166 (86.9) 7 (63.6) 203 (85.7)

Yes 38 (15.3) 13 (22.8) 25 (13.1) 4 (36.4) 34 (14.3)

Unknown 99

Concurrence with PTC 0.191 0.574

No 317 (91.4) 63 (87.5) 254 (92.4) 12 (100.0) 305 (91.0)

Yes 30 (8.6) 9 (12.5) 21 (7.6) 0 (0.0) 30 (9.0)

Extrathyroidal extension 4.0e–4 0.002

No 278 (80.1) 47 (65.3) 231 (84.0) 5 (41.7) 273 (81.5)

Yes 69 (19.9) 25 (34.7) 44 (16.0) 7 (58.3) 62 (18.5)

Lymph node metastasis 7.3e−11 0.003

No 146 (42.1) 6 (8.3) 140 (50.9) 0 (0.0) 146 (43.6)

Yes 201 (57.9) 66 (91.7) 135 (49.1) 12 (100.0) 189 (56.4)

Biochemical recurrence 1.0e−19 0.013

No 167 (53.5) 3 (4.5) 164 (66.9) 1 (10.0) 166 (55.0)

Yes 145 (46.5) 64 (95.5) 81 (33.1) 9 (90.0) 136 (45.0)

Unknown 35

Disease specific
mortality

6.5e−9

No 335 (96.5) 61 (84.7) 274 (99.6)

Yes 12 (3.5) 11 (15.3) 1 (0.4)

Follow-up RFS (months) 91.8 ± 54.2 52.5 ± 45.4 102.0 ± 51.7 1.8e−13

Follow-up DSS (months) 105.5 ± 52.6 78.6 ± 41.4 106.5 ± 52.7 0.063

IMTCGS International Medullary Thyroid Carcinoma Grading System, PTC papillary thyroid carcinoma, RFS recurrence-free survival, DSS disease-specific survival.
P valueswere calculatedby independentdouble-sidedStudent’s t-test for age, nodule size and follow-up time, andChi-square test for theother variables. *marks variables that didnot conform to the
normal distribution, which were analyzed using the nonparametric Mann-Whitney U test. Bold values mark statistical significance.
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respective pathways. RETmutations led to an increased abundance of
RET protein (Supplementary Fig. 3), consistent with previous
findings35. In the RAS pathway, proteins like neurofibromin 1 (NF1) and
protein sprouty homolog 4 (SPRY4) were regulated oppositely in RET
and RASmutation patients. NF1 and SPRY4 were downregulated in the
RETmutation patients but upregulated in the RASmutation patients. A
previous study suggest that low expression of NF1 could serve as a
potential biomarker for high recurrence risk inMTC21, while SPRY4 has
been identified as a candidate susceptibility gene for familial non-
medullary thyroid cancer36. These proteins may contribute to recur-
rence risk differentiation between RET and RAS mutation patients.

By exploring the expression of reported markers of MTC20,21, we
find that the calcitonin gene-related peptide 1(CGRP1, P = 0.021) and
NF1 (P = 2.8e−05) are differentially expressed between the SR and NR
groups (Supplementary Fig. 4a). CGRP1 and NF1 are also differentially
expressed between DSM and S groups (Supplementary Fig. 4b).

To further investigate expression differences between MTC
prognostic groups in the proteomic scale, we analyzed proteins with
dysregulated expression in SR and DSM. The volcano plot shows 141
differentially expressed proteins (DEPs) that are significantly increased
(in red) or decreased (in blue) in patients with structural recurrence
compared to those without recurrence, highlighting potential bio-
markers related to recurrence risk (Fig. 2d, Supplementary Fig. 5a).
Similarly, there are 395 DEPs between DSM and S groups of MTC
patients (Fig. 2e, Supplementary Fig. 5b). We further examined whe-
ther the DEPs varied between male and female patients. Only four
upregulated proteins and two downregulated proteins were shared
between both sexes (Supplementary Fig. 6): pancreatic secretory
granule membrane major glycoprotein GP2 (GP2), 15-
hydroxyprostaglandin dehydrogenase (HPGD), tenascin C (TNC), and
serine/threonine-protein kinase DCLK1 (DCLK1) (upregulated), as well
as neuronal pentraxin-1 (NPTX1) and LIM/homeobox protein
Lhx2 (LHX2) (downregulated).

Interestingly, DEPs up-regulated in SR compared to NR showed
evenhigher expression inDSM,while down-regulatedDEPs exhibited a
progressive decrease, revealing a continuous expression trend across
the NR-SR-DSM progression (Fig. 2f). Each column of the heatmap
represents a DEP, with red indicating higher and blue indicating lower
expression levels. The top color bar marks druggable or secreted
proteins, suggesting potential molecular markers and therapeutic
targets relevant to disease progression. Pathways enriched at the
bottom right highlight that proteins positively associated with worse
prognosis are related to extracellular matrix (ECM) remodeling, col-
lagen synthesis, and angiogenesis. In contrast, those negatively asso-
ciated are related to basement membrane reorganization and
metabolism (Fig. 2f, Supplementary Fig. 5c). Transforming growth
factor beta receptor 2 (TGFBR2), cyclin-dependent kinase inhibitor 1 A
(CDKN1A), erb-b2 receptor tyrosine kinase 4 (ERBB4), and ERBB2 are
predicted to be upstream regulators of dysregulated proteins in SR
samples (Supplementary Fig. 5d). These findings suggest that different
prognosis groups have various proteomic patterns, especially the
dysregulated functions happening in the ECM, which may lead to SR
and DSM.

Characterization of the MTC ubiquitinome landscape
Proteomic analysis revealed pathways associated with different prog-
noses in MTC, which may also be affected by post-translational mod-
ifications. Previous studies have reported that E3 ligases, such as
HUWE1, and DUBs, including USP9X and UBP7, exhibit differential
expressions and oncogenic functions in PTC primary and metastatic
tumors37,38. Building on these findings, we further characterized the
ubiquitinome of MTC to gain insights into the regulation of
recurrence.

We collected fresh-frozen tissues of nine MTC samples (four NR
and five SR), and seven normal adjacent thyroid (NAT) samples from
clinical center 1 (Supplementary Table 2), and quantified both the

Table 2 | Clinical characteristics between RET and RAS mutations in the discovery dataset

Clinical
characteristics

All cases,
n = 342 (%)

Genotype P valuea P valueb P valuec

RET germline,
n = 59 (%)

RET somatic,
n = 138 (%)

RAS somatic,
n = 98 (%)

RET/RASwildtype,
n = 47 (%)

Age at surgery (years) 49.8 ± 12.1 43.5 ± 11.9* 51.1 ± 11.1* 51.4 ± 12.7* 50.5 ± 11.5 0.003 0.750 0.668

Max nodule size (cm) 2.2 ± 1.4 2.2 ± 1.4 2.3 ± 1.5 2.2 ± 1.3 2.0 ± 1.6 0.210 0.095 0.146

Sex 0.527 0.904 0.920

Male 157 (45.9) 24 (40.7) 66 (47.8) 45 (45.9) 22 (46.8)

Female 185 (54.1) 35 (59.3) 72 (52.2) 53 (54.1) 25 (53.2)

Extrathyroidal
extension

0.038 0.011 0.256

No 273 (79.8) 45 (76.3) 102 (73.9) 83 (84.7) 43 (91.5)

Yes 69 (20.2) 14 (23.7) 36 (26.1) 15 (15.3) 4 (8.5)

Lymph node
metastasis

0.017 0.013 0.549

No 142 (41.5) 19 (32.2) 48 (34.8) 49 (50.0) 26 (55.3)

Yes 200 (58.5) 40 (67.8) 90 (65.2) 49 (50.0) 21 (44.7)

Structural recurrence 0.257 0.055 0.531

No 270 (78.9) 45 (76.3) 98 (71.0) 87 (88.8) 40 (85.1)

Yes 72 (21.1) 14 (23.7) 40 (29.0) 11 (11.2) 7 (14.9)

Disease specific
mortality

1.000 0.537 1.000

No 330 (96.5) 58 (98.3) 130 (94.2) 96 (98.0) 46 (97.9)

Yes 12 (3.5) 1 (1.7) 8 (5.8) 2 (2.0) 1 (2.1)
aThe P value represents the result of the comparisonbetween theRETgermline andRET/RASwildtype groups. bTheP value represents the result of the comparisonbetween theRET somatic andRET/
RAS wildtype groups. cThe P value represents the result of the comparison between the RAS somatic and RET/RAS wildtype groups.
P values were calculated by independent double-sided Student’s t test for age and nodule size, and Chi-square test for the other variables. *marks variables that did not conform to the normal
distribution, which were analyzed using the nonparametric Mann-Whitney U test. Bold values mark statistical significance.
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Fig. 2 | Clinical, genomic, and proteomic profiling between patients with dif-
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global proteome and ubiquitinome. In total, 22,811 diGly-modified
sites and 6505 diGly-modified proteins were identified. After filtering
for sites with < 75%missing values, 7090 diGly-modified sites (5925 in
NAT, 6517 in NR, 6780 in SR) and 3161 diGly-modified proteins (2719 in
NAT, 2968 in NR, 3086 in SR) remained for downstream analysis.

Although NR and SR showed extensive overlap in diGly-modified
sites and proteins, a subset of sites was uniquely detected in only one
group (Fig. 3a), suggesting potential roles in recurrence. The numbers
of diGly-modified sites and proteins were both higher in MTC than in
NAT, whereas NR and SR showed no significant difference (Fig. 3b).
t-SNE analysis of all modified sites clearly separated MTC from NAT,
whereas NR and SR clustered closely (Fig. 3c).

Ubiquitin can be attached to a substrate to form mono-ubiquiti-
nation, or multiple ubiquitins can be linked through one of its seven
lysine residues or the N-terminalmethionine to generate polyubiquitin
chains. Differently branched ubiquitin chains encode distinct signals
that mediate diverse cellular outcomes39. By quantifying seven diGly-
modified lysine residues (K6, K11, K27, K29, K33, K48, K63) of ubiquitin,
we found that K33-linked sites were detected only in MTC tissues but
absent from NAT, implicating the potential role of K33 linkage in
tumorigenesis (Fig. 3d). In addition, K11 ubiquitination was sig-
nificantly reduced in SR compared with NR. K11-linked chains are best
known for their role in cell-cycle regulation, particularly during mito-
sis, and act as degradation signals similar to K48 linkage40,41.

To further investigate the role of ubiquitination in MTC devel-
opment and recurrence, we analyzed diGly-modified sites with sig-
nificantly different intensities in both MTC vs. NAT and SR vs. NR. In
total, 1067 sites were differentially regulated between MTC and NAT
groups (Supplementary Data 2). By contrast, only 15 sites exhibited
significant differences between SR and NR (Fig. 3e, Supplementary
Data 3), with the enriched pathways shown in Fig. 3f. The label in the
volcano plot shows the increasing diGly-modified sites (red) and
decreasing diGly-modified sites (blue), with the number representing
the position of amino acid at the protein where the ubiquitin is at.
These enriched pathways were primarily related to intracellular and
transmembrane transport, processes whose aberrant regulation has
been reported to enhance the invasiveness andmetastatic potential of
cancer cells42,43.

Given that ubiquitination regulates diverse signaling networks
through the coordinated action of ubiquitin-activating enzymes (E1),
ubiquitin-conjugating enzymes (E2), ubiquitin ligases (E3), and deubi-
quitinases (DUBs), we compiled lists of these enzymes from
GeneCards44, UniProt45 and UbiBrowser46 and mapped them with our
dataset. Differential expression analysis revealed three E2 ubiquitin-
conjugating enzymes, seven E3 ligases and one DUB were significantly
changed between SR and NR groups, including ubiquitin-conjugating
enzyme E2 I (UBE2I, E2), ubiquitin-conjugating enzyme E2 L3 (UBE2L3,
E2), ubiquitin-conjugating enzyme E2 E2 (UBE2E2, E2), interferon reg-
ulatory factor 2-binding protein-like (IRF2BPL, E3), UBX domain-
containing protein 7 (UBXN7, E3), tripartite motif-containing protein
32 (TRIM32, E3), F-box/LRR-repeat protein 18 (FBXL18, E3), E3
ubiquitin-protein ligase DTX3L (DTX3L, E3), cullin-4B (CUL4B, E3),
F-box only protein 2 (FBXO2, E3) and ubiquitin carboxyl-terminal
hydrolase 10 (USP10, DUB).

Among these, E3 ligases IRF2BPL, CUL4B, FBXO2, and
TRIM32 showed consistent differences across both comparisons (SR
vs. NR, MTC vs. NAT; Fig. 3g). To validate these findings, we examined
the protein intensities of the four E3 ligases in external fresh frozen
samples21, and found that CUL4B and TRIM32 were consistently
downregulated in SR relative to NR in the external FUSCC dataset
(Fig. 3h). Finally, by integrating significantly altered diGly-modified
sites, E2 ubiquitin-conjugating enzymes, E3 ligases and DUB, we con-
structed an interaction network using STRING47, providing ubiquitin-
mediated regulatory pathways potentially involved in MTC recur-
rence (Fig. 3i).

In summary, we characterized the ubiquitinome ofMTC, revealed
differentially expressed diGly-modified sites, E2 ubiquitin-conjugating
enzymes, E3 ligases, and DUBs, and reconstructed their potential
regulatory networks, with key dysregulated E3 ligases CUL4B and
TRIM32 validated in an independent larger dataset. These findings
raise important considerations regarding their potential functions in
MTC pathogenesis.

Molecular subtyping of MTC based on proteomic profiles
To investigate the prognostic relevance of proteomic heterogeneity in
MTC, we applied the non-negative matrix factorization (NMF) algo-
rithm to perform unsupervised clustering of differentially expressed
proteins (Supplementary Fig. 7). The algorithmprioritized 52 proteins,
stratifying the cohort into three distinct molecular subtypes: M1, M2,
andM3. These subtypes exhibit divergent clinicopathological features,
mutational landscapes, and proteomic profiles.

Comparative analysis reveals significant demographic and genetic
disparities among subtypes. The three subtypes significantly differ in
terms of structural recurrence rate. The M2 subtype has a poorer
prognosis, with a 5-year recurrence-free survival (RFS) rate of 68.8%
and a DSM rate of 6.3%, while samples of the M3 subtype have a better
prognosis, with a 5-year RFS of 94.2% and no DSM (Table 3). In the
heatmap, each column represents a patient, and each row represents
either a clinical feature (Fig. 4a), a gene mutation (Fig. 4b), or the
expression level of a protein (Fig. 4c). TheM3has a lower proportionof
males and a higher proportion of hereditary MTC patients than the
other two subtypes (Fig. 4a, Supplementary Fig. 8a). The M2 subtype
has larger max nodule sizes and more cases of ETE, LNM, and high-
grade MTC (Supplementary Data 4). M2 also contains a higher pro-
portion of patients with the RET M918T mutation (Fig. 4b). The
52 subtyping proteins cluster into three groups, each highly expresses
in one of the subtypes (Fig. 4c). Notably, MTC-specific marker (calci-
tonin), pan-neuroendocrine markers have higher protein abundances
in M3 (Supplementary Fig. 8b). TNC, a reported prognosis biomarker
of MTC21, is enriched in M2 and decreased in M3.

To further explore the association between protein subtypes and
prognosis, we used the samemolecular typingmethod based on these
52 proteins to validate in our independent test dataset consisting of
four hospitals and a published dataset (FUSCC21). Quality control
details for the independent test datasets are shown in Supplementary
Fig. 2d–g. Survival analysis shows that the RFS rates of M2 and M3 are
significantly different in the discovery dataset (P = 4.57e−06), inde-
pendent test set (P =0.034), and the 64 MTC samples from the pub-
lished literature21 (P =0.017) (Fig. 5a-c), demonstrating the robustness
of our 52-protein classifier in classifying patients into proteomic sub-
types with different prognostic outcomes.

Functional analysis by Metascape reveals that proteins highly
expressed in M1, M2, and M3 are related to metabolic process, cell
adhesion, and ECM regulation, respectively (Fig. 4c). The interaction
network of subtyping proteins highly expressed in M2 reveals their
involvement in multicellular organismal processes, cell adhesion,
protein digestion and absorption, and non-integrin membrane-ECM
interactions (Fig. 5d). Pathway enrichment analysis using GSVA high-
lights distinct functional characteristics that may play important roles
across the three subtypes (M1, M2, M3), suggesting potential
mechanisms underlying disease heterogeneity. A larger absolute t
value indicates greater significance, and a positive value denotes
higher pathway activity. TheM1subtype is linked to integrin activation,
metabolism, andmonocyte aggregation (Fig. 5e), while M2 is enriched
for apoptotic process, response to prostaglandin, modification of
amino acids, and cell signaling. M3 is associated with neurotransmis-
sion, synaptic transmission, and intracellular environmental regula-
tion. Given the association between epithelial-mesenchymal transition
(EMT) and tumor aggressiveness, we quantified EMT pathway activity.
M2 tumors exhibit elevated expression of EMT drivers, such as Zinc
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Fig. 3 | Ubiquitinome landscape of MTC. a Overlap of quantified diGly-modified
sites and proteins across groups. b Numbers of identified diGly-modified sites and
proteins in each group. The significance is determined byWilcoxon rank sum test.
c t-SNE plot of the MTC ubiquitinome. d Intensities of ubiquitination at different
lysine residues of ubiquitin. The significance is determined by Wilcoxon rank sum
test. e Differentially regulated diGly-modified sites between SR and NR. Numbers
after protein names indicate the position of ubiquitinated lysine residues. P values
were calculated by empirical Bayesmoderated t test (limma). Cutoff: |log2(FC) | > 1,
B-H adjusted P <0.05. f Pathways enriched by diGly-modified sites with significant
changes between SR and NR groups (one-sided Fisher’s Exact Test). g E3 ligases
differentially expressed in both SR vs. NR and MTC vs. NAT. P values were

calculated by empirical Bayes moderated t test (limma). h Validation of E3 ligases
CUL4B and TRIM32 expression in the FUSCC dataset21 (yellow, NR, n = 77; orange,
SR, n = 25). Box plots show the first quartile, median, and third quartile, and the
whiskers represent ±1.5 interquartile range. P values were calculated by two-sided
Welch’s t test. i Interaction networkof differentially expressedE3 ligases, DUBs and
ubiquitinated proteins between SR and NR. Green, downregulated ubiquitinated
proteins; orange, dysregulated E2 ubiquitin-conjugating enzymes; purple, dysre-
gulated E3 ligases; blue, dysregulated DUB. Abbreviations: NAT, normal adjacent
thyroid tissue;NR, non-recurrence; SR, structural recurrence.Data in panel b,d and
g are presented as mean values +/− SEM. Sample size in panel b, c, d and g: NAT,
n = 7; NR, n = 4; SR, n = 5.
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finger E-boxbinding homeobox 2 (ZEB2), alongside downregulation of
epithelial markers cadherin 1 (CDH1), indicating a more mesenchymal
phenotype (Supplementary Fig. 9).

Since the three subtypes of MTC showed differences in clinical
indicators, genetic mutations, and protein expression, we further
explored potential therapeutic targets related to MTC subtypes. We
first matched all the proteins that differed among the three subtypes
(at least one group P <0.05, n = 6756) with the drug targets in the
Ingenuity Pathway Analysis (IPA) database and the Human Protein
Atlas48 (HPA) database. Then, we used multivariate Cox to remove
confounding factors to find 12 significant targets. The left heatmap
shows the expressionpatterns of the 12 drug-target proteins across the
three subtypes, particularly highlighting their differential expression
between the SR and NR groups. The right panel presents the corre-
sponding risk scores, reflecting the prognostic impact of each drug-
target protein. Among these, macrophage migration inhibitory factor
(MIF) has the highest risk factor (Fig. 5f).

We computed the immune infiltration scores by xCell49 and found
that M1 had the highest immune scores. Further exploration of cell-
type specific immune cell infiltration reveals different levels of
CD8+T cells, Tregs, dendritic cells, NK cells, macrophages, and gran-
ulocytes in the three subtypes (Supplementary Fig. 10a). M2 and M3
have more CD8+ T cells, and M3 has the lowest Tregs. Higher levels of
infiltration of dendritic cells, NK cells, macrophages, and granulocytes
are found in M1. The expression of immune checkpoints in each sub-
type is also examined. Among the 24 immune checkpoints quantified
in our dataset, 7 are significantly higher in M1 (Supplementary
Fig. 10b).

To validate the immune infiltration results estimated by xCell, we
performed immunohistochemistry (IHC) staining for immune cells
using aCD45 antibody on the threemolecular subtypes. Quantification
of CD45+ cells showed higher immune cell infiltration in the
M1 subtype compared with M2 andM3, while no significant difference
was observed between M2 and M3 (Supplementary Fig. 11).

In conclusion, we identified three proteomic subtypes of MTC
based on 52 proteins. M1 with an intermediate prognosis is featured in
the upregulated metabolic process and immune infiltration score. M2
with the worst prognosis is featured in the upregulated EMT pathway
and the lowest immune score. The M3 subtype exhibits favorable
prognosis and distinct neuroendocrine differentiation, characterized
by overexpression of pan-neuroendocrine markers and enhanced
synaptic signaling pathways.

Machine learning model for recurrence prediction
To predict prognostic risk and develop individualized treatment and
follow-up plans for patients, four machine learning models were
developed to predict the probability of structural recurrence after
initial surgery, each derived from clinical indicators, gene mutations,
and proteomic data, respectively, and one that integrated three kinds
of data. The construction of the model consisted of three phases:
feature selection, model training and cross-validation, and model
prediction (Fig. 6a). The detailed process of model construction is
described in the Methods section.

Themodelswere further validated in the independent test dataset
(n = 105) and FUSCC dataset (n = 64) to evaluate the generalization
ability (Fig. 6b). In the independent test set, the integrated model and
the protein model obtain similar areas under the curve (AUCs) (0.87
and 0.85), which are higher than the clinical (0.76), genomic (0.47)
models, and IMTCGS (0.51). In the FUSCC dataset, the proteomic
model obtains the highest AUC (0.78), followed by the integrated
model (0.77), the clinical model (0.76), and the genomic model (0.53).
It is worth noting that the samples in the FUSCC dataset are fresh
frozen, which is different from the FFPE samples in the discovery
dataset used to train ourmodel. The similar performance of themodel
further demonstrates the robustness of our model. In addition, the
number of features in the integrated model is 31% fewer than that in
the protein model, so with a similar AUC, the integrated model is
considered better.

Based on the expression of proteins in the integrated model and
clinical indicators, we divided the patients in the two test sets into
high-risk and low-risk groups, and their RFS probabilities are shown in
Fig. 6c (P = 1e−4 and P =0.046). Figure 6d and Supplementary Fig. 12
illustrate the ranking of feature importance, where features with
higher scores contribute more significantly to the model. Of the 18
proteins in the integrated model, five proteins are reported to be
associated with thyroid: melanotransferrin (MELTF)50, VGF nerve
growth factor inducible (VGF)51, inter-alpha-trypsin inhibitor heavy
chain 1 (ITIH1)52–54, platelet-activating factor acetylhydrolase 1b cata-
lytic subunit 3 (PAFAH1B3)55, and selenoprotein 1 (SELENOI)56. Of the
remaining 13 proteins, all have been reported to be associatedwith the
progression of multiple cancers, except for lysophospholipase D
GDPD1 (GDPD1), which is not reported to be related to cancer. The
relative abundance of the 18model proteins and clinical characteristics
in the different risk groups is illustrated in the heatmap (Fig. 6e).
MELTF, sorcin (SRI), protein tyrosine phosphatase receptor type M
(PTPRM), laminin subunit alpha 5 (LAMA5), protein associated
with Lin7 1 (PALS1), and transmembrane channel like 4 (TMC4)
have lower abundance in the high-risk group, while the other 12 pro-
teins have higher abundance. Pathway enrichment by STRING
database47 revealed that GDPD1, SELENOI, and PAFAH1B3 were sig-
nificantly enriched in the ether lipid metabolism pathway (false dis-
covery rate = 0.0041). Ether lipid metabolism is elevated in several
cancers and supports tumor proliferation and survival, suggesting its
potential role in MTC progression and recurrence57,58. The network
established by IPA shows that there are 13 proteins out of the 18 pro-
teins connected with each other (Fig. 6f), which are regulated directly
or indirectly by CDH1, CDKN1A and cyclin-dependent kinase inhibitor
2A (CDKN2A).

To investigate the expression levels of the three key regulators,
we explored the expression levels in a dataset comprises various
thyroid nodule pathologies from multiple clinical centers (https://
www.ebi.ac.uk/pride/archive/projects/PXD061183). Due to its very
low abundance, CDKN1A was not detected in this dataset. Addition-
ally, we examined cyclin-dependent kinase 4 inhibitor C (CDKN2C),
which, together with CDKN2A, inhibits cyclin binding to CDK4 and
CDK659. CDH1 was significantly lower in MTC compared to normal,

Table 3 | Summary of the clinical features of the MTC proteomic subtypes

Proportion of
patients (%)

Prognosis 5-year
RFS

Disease-specific
mortality

Hereditary
MTC

RET
mutation

High- grade
MTC

Other clinical information

M1 51.6% middle 87.2% 4.5% 13.4% 57.3% 4.9% more micro-MTC (size < 1 cm), less multifocality,
bilaterality

M2 18.4% poor 68.8% 6.3% 10.9% 66.7% 9.8% more macro-MTC (size ≥ 1 cm), LNM, multifocality,
vascular invasion, ETE, males

M3 30.0% good 94.2% 0.0% 26.9% 52.5% 2.5% more macro-MTC (size ≥ 1 cm), and bilaterality, less
LNM, vascular invasion, ETE, males

RFS recurrence-free survival, LNM lymph node metastasis, ETE extrathyroidal extension.
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MNG, and FTC samples, but higher than in PTC, PDTC, and ATC
(Supplementary Fig. 13a), indicating a negative correlation with
metastasis tendency. CDKN2A was higher in PTC, while CDKN2C was
elevated in MNG, PTC, and FTC than in MTC. We further examined

these proteins across the identified molecular subtypes and found
that M2 was characterized by low CDH1 and CDKN2C but high
CDKN2A expression, a pattern similar to that of ATC (Supplementary
Fig. 13b).
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The differential expressions of CDH1, CDKN2A, and CDKN2C
across various histological types suggest associations with disease
aggressiveness and metastatic potential. CDH1, a regulator of
epithelial-mesenchymal transition, has been linked to thyroid cancer
progression and metastasis60,61. Our findings are consistent with pre-
vious studies but extend them by incorporating a broader range of
histological types.

We also investigated how the 18 proteins in the integrated model
were affected by mutation patterns and sex. COL10A1 expression was
higher inmales and in patients harboringRETmutations, includingRET
M918T (Supplementary Fig. 14). OLFM3 and ITIH1 exhibited opposite
expression trends based on RET and RAS mutations. VGF expression
was significantly elevated in RAS mutation patients. In addition, age
influenced protein expressions differently among the three subtypes.
For instance, COL10A1 increased with age inM1 patients, while OLFM3
and SCUBE3 increased, and MELTF decreased with age in M3 patients
(Supplementary Fig. 15).

To sum up, the integratedmodel comprising two clinical features
and 18 proteins demonstrated the best performance among the
models and performedwell in predicting structural recurrence inMTC
patients.

Discussion
This study represents amulti-center data resource ofMTC, integrating
proteomic, genomic, and clinical data from 452 MTC patients from 10
clinical centers and quantified 10,092 proteins through MS-based
proteomics. Our work identified clinical, genomic, and proteomic risk
factors of structural recurrence and produced an MTC subtyping
classifier that divided patients into three subtypes with various char-
acteristics and prognoses. We built a machine learning model for
predicting the risk of SR in MTC and validated it in two independent
test datasets. The model performed better compared to reported
prognostic indicators such as IMTCGS and RET mutations, which may
facilitate tailored risk stratification and informing individualized
follow-up strategy.

The univariate CoxPH analysis identified male62, high-grade
tumor13–16,63, multifocality64, concurrence with PTC, vascular
invasion65,66, ETE10, and LNM10 as risk factors of SR in MTC, consistent
with previous studies.Our study applies the IMTCGS to a large Chinese
dataset, validating its utility for identifying SR and DSM risk. The co-
occurrenceof PTC andMTChas rarelybeen studied.We report the risk
of this co-occurrence in MTC, hinting at potential interactions. In
contrast to preoperative67 and postoperative10 unstimulated serum
calcitonin levels, which are reported to be associated with prognostic
risk, we found no significant association between calcitonin levels in
tumor tissues and recurrence. Instead, CGRP1, from the same coding
gene of calcitonin and alternative RNA splicing, exhibited a positive
correlation with structural recurrence, indicating a potential MTC
prognosis marker. Future work could further examine CGRP1 levels in
serum and validate its effect.

This study reported an overall mutation rate of 60.0% for RET and
26.4% for RAS in MTC patients. Although the RAS mutations were
relatively frequent, neither our study nor the literature found a sig-
nificant association between RAS mutations and the prognosis of
MTC11. Additionally, our data revealed distinct germline RETmutation
patterns in Chinese hereditary MTC patients compared to Western
populations. Similar frequencies were reported in other published
Asian datasets. Separate studies from Japan68 (# families = 75), South
Korea69,70 (# families = 48), and China71–74 (# families = 62) consistently
identified RET C634 as the most common mutation site, with fre-
quencies of 60%, 47.9%, and 66.1%, respectively. Our previous study21

also reported a 60% prevalence of RET C634 locus in patients with
germline RET mutations. According to the 2015 American Thyroid
Association (ATA) guidelines1, RET C634 is classified as a high-risk
mutation, suggesting a higher risk for Asian hereditary MTC patients.

In our study, we found differential expression of the E3 ubiquitin
ligases CUL4B and TRIM32 across NAT, NR, and SR groups, and the
network analysis further predicted regulatory pathways involving
these ligases and downstream dysregulated diGly-modified sites.
CUL4B participates in DNA damage repair, chromatin remodeling, and
cell cycle regulation75. It is overexpressed in various solid tumors,
including thyroid carcinoma, compared to normal tissues, and corre-
lates with tumor malignancy and poor prognosis76. In thyroid cancer
specifically, emerging data demonstrate that CUL4B promotes ded-
ifferentiation and poor prognosis by ubiquitinating ARID1A and
repressing PAX8 expression77. This process contributes to the devel-
opment of anaplastic thyroid carcinoma and modulates sensitivity to
MAPK inhibitors. TRIM32 enhances proliferation, migration, and che-
moresistance by degrading tumor suppressors such as p53 and acti-
vating oncogenic pathways including Wnt/β-catenin and TGF-β78,79.
High expression of TRIM32 is associated with metastasis and poor
prognosis in various cancers, including prostate cancer and lung
cancer79–81. Although direct evidence in MTC remains limited, their
known roles suggest that CUL4B and TRIM32may promote recurrence
and metastasis. Our findings highlight them as potential regulators of
MTC pathogenesis and therapeutic targets, providing a valuable
direction for future investigation.

Compared with the previously reported molecular subtypes of
MTC21, the subtypes in this study not only reproduced certain clinical
and molecular associations observed in earlier studies but also pro-
vided several notable advances. First, the subtypes in this study are
based on fewer proteins (52 vs. hundreds) and validated in more
samples and multiple independent testing datasets (Supplementary
Table 3). Second, it demonstrated stronger associations with patient
outcomes. For example, the M3 subtype was characterized by favor-
able prognosis and very low disease-specific mortality, while
M2 showed poor outcomes, highlighting improved prognostic strati-
fication. Finally, the proteomic signatures also corresponded to
immune contexture, with M1 exhibiting higher immune scores, sug-
gesting potential therapeutic implications. We further observed sig-
nificantly lower expressions of CGRP1 andCGRP2 inM1 than inM2/M3.
Thisfinding alignswithprior evidence82 linking elevatedCGRP levels to
abnormal dendritic cell development and impaired tumor-infiltrating
T-cell activity, which collectively foster an immune-suppressive
microenvironment. Importantly, subtype malignancy (prognostic
risk) positively correlates with CD276 abundance. This immune
checkpoint protein enabling tumor immuneevasion via suppressionof
cytotoxic T cells andNKcells83, andhas recently emerged as apotential
therapeutic target for MTC84. Together, these data indicate distinct
immune microenvironments across subtypes and suggest that mole-
cular heterogeneity drives divergent prognostic outcomes in MTC.

This study has several limitations. First, its retrospective design
and reliance on postoperative FFPE samples may limit the general-
izability of the findings. Future studies should validate the identified
MTC prognostic biomarkers using preoperative plasma or fine-needle
aspiration (FNA) samples to improve their clinical utility. Second, tar-
geted proteomic approaches could be applied to quantify selected
model proteins in independent cohorts, offering a cheaper, more
accurate technology to validate the model’s performance and
robustness. Additionally, expanding the number of centers for mole-
cular subtyping validation and experimentally validating potential
drug targets in cell lines or animal models are important directions for
future research. Despite these limitations, our study contributes sig-
nificantly to MTC recurrence risk stratification.

In conclusion, this study provides a valuable data resource on
proteomics and gene mutations in Chinese MTC patients while iden-
tifying potential biomarkers and therapeutic targets. The proteomic
subtypes associated with varying prognoses offer a foundation for
investigating disease heterogeneity and developing personalized
therapies. Furthermore, the machine learning model, which utilizes
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multidimensional features to stratify recurrence risk in MTC patients,
may facilitate thedevelopment of individualized treatment, potentially
benefiting patient outcomes.

Methods
Patients and samples
This study was conducted in accordance with the ethical principles in
the Declaration of Helsinki. The Ethics Committee of Westlake Uni-
versity reviewed and approved the study protocol with the study
number 20240527GTN001. Informed consent waswaived because this
retrospective study analyzed previously archived clinical data and
specimens, and all patient identifiers were removed to ensureminimal
risk and protection of privacy.

This retrospective study included 543 patients with MTC who
underwent surgical treatment between 2002 and 2022. The exclusion
criteria were as follows: (a) non-primary surgery, (b) loss to follow-up,
or (c) a prior historyofMTC-relatedmedication. Disease remission and
recurrence were determined according to the ATA management
guidelines1. Only structural recurrences were considered in this study,
which was defined as recurring histological or radiologic evidence of
MTC after radical surgery. RFS was defined as the time from initial
surgery to the first SR. For patients without SR, RFS was the time from
initial surgery to the last follow-up.

FFPE slides were collected for each sample. All samples
were reviewed by at least two experienced pathologists. Ninety-
onepatientswere excluded for the following reasons: (1) loss to follow-
up (n = 22), (2) not-thyroid tissue (n = 32), (3) non-primary surgery
(n = 18), (4) normal thyroid tissue (n = 6) and (5) non-radical surgery
(n = 13). After careful review, 377 and 105 samples were included in the
two datasets respectively (Fig. 1a, Supplementary Table 4). The dis-
covery dataset includes 30 biological replicate samples from the same
patient. The MTC tumor grades were determined according to the
IMTCGS12.

FF samples were collected from the tissue bank of clinical center 1
under the same criteria for FFPE slides, including four NR samples, five
SR samples, and seven normal adjacent thyroid (NAT) samples.

Gene-panel based sequencing
We obtained both MTC and adjacent cancer-free normal tissue sam-
ples for gene sequencing during sample collection. Sequencing
libraries were created using a next-generation sequencing panel
developed by RigenBio to detect variations in 28 genes associatedwith
thyroid cancer (see Supplementary Table 5 for the gene list). DNA was
extracted from 477 FFPE thyroid samples, excluding five samples from
the discovery dataset, using the DNA Extraction Kit (Rigen Biotech,
China). The extraction and sequencing protocol was previously
described50. In brief, the DNA underwent multiplex amplification of
target regions after extraction, followed by PCR amplification to
incorporate unique dual-index and Illumina sequencing adapters.
After purification using beads, the indexed libraries were quantified
using a Thermo Fisher Qubit fluorometer and sequenced on the Illu-
mina NovaSeq 6000 System, generating 150 bp paired-end reads.

The quality of the raw sequencing data was assessed using FastQC
(v0.11.9). The raw reads were preprocessed to remove adapters and
low-quality bases through Cutadapt (v1.18). The processed reads were
then aligned to the hg19 human reference genome using Burrows-
Wheeler Aligner software (v0.7.17). Single nucleotide variants (SNVs)
and insertions/deletions (InDels) were identified using VarScan2
(v2.4.4), and Ensembl Variant Effect Predictor was used for variant
annotation to assess potential impacts.

Proteomic sample preparation
FFPE tissues were prepared as previously described33,85. Briefly, the
FFPE slides were dewaxed, rehydrated, and de-crosslinked using hep-
tane, three different concentrations of ethanol (100%, 90%, and 75%),

100% of water and 100mM Tris-HCl solution (pH=10.0), sequentially.
Samples were then lysed, assisted by PCT, in a buffer containing 6M
urea, 2M thiourea, 10mMTris(2-carboxyethyl)phosphine, and 40mM
iodoacetamide. Trypsin and lysC were mixed and used for digestion
using PCT. Finally, the digested peptides were quenched with tri-
fluoroacetic acid and desalted using C18 columns (Thermo Fisher
Scientific, USA).

Ubiquitinomic sample preparation
Fresh frozen samples were lysed in 8M urea, supplemented with
protease inhibitor cocktail (Roche, Germany). The lysis process was
assisted by a cryogenic grinder under 65Hz and -20 °C. The protein
yield was determined by BCA protein assays (Thermo Fisher Scientific,
USA). The lysates were reduced (Tris(2-carboxyethyl)phosphine,
10mM), alkylated (iodoacetamide, 40mM), and digested (trypsin, 1:50
w/w). The first digestion took 4 hours and the second digestion took
12 hours. The digested peptides were desalted using 100mg C18
SepPak cartridges (Waters, USA). Thedesaltedpeptideswere dried in a
vacuum concentrator. Ubiquitin remnant were enriched from 1.5mg
cleaned peptides by immunoaffinity purification (Cell Signaling Tech-
nology, USA) according to the manufacturer’s protocol. The enriched
peptides were desalted using C18 columns (Thermo Fisher
Scientific, USA).

DIA-MS data analysis
Peptide samples were injected into a custom-packed C18 separation
column (15 cm × 75 μm × 1.9 μm, 120Å) equipped with a nanoElute®
system (Bruker Daltonics, Germany). Then, samples were separated by
a 60min liquid chromatography (LC) gradient, from5% to 27%buffer B
in 50min, then to 40%buffer B in 10min. Buffer A contains 0.1% formic
acid in water and buffer B contains 0.1% formic acid in 100%
acetonitrile.

Peptides eluted from the LCwere analyzed in a hybrid trapped ion
mobility spectrometry quadrupole time-of-flight mass spectrometer
(timsTOF Pro, Bruker Daltonics, Germany) through a CaptiveSpray
nanoflow electrospray ion source. PASEF was performed in DIAmode.
The dual TIMS analyzer had an accumulation and ramp time of 100ms
and a total cycle time of 1.17 s, consisting of 14 PASEF scans with four
ion mobility- m/z two-dimensional isolation windows per scan. Ion
mobility scans ranged from0.6 to 1.6 Vs/cm2.MS1 andMS2 acquisition
was performed within the m/z range from 100 to 1700 Th. Precursor
ions with single charge were excluded.

DIA raw files were analyzed by DIA-NN86,87 (v1.8.1) against a
thyroid-specific spectral library88, containing 12,000 proteins and
215,000 precursors. Variable modifications were set to include
methionine oxidation and N-terminal acetylation. The fixed modifica-
tion included cysteine carbamidomethylation. Peptide length range,
precursor m/z range, and fragment ion m/z range were set as 6–30,
300–1800, and 200–1800, respectively. The false discovery rate for
both precursor and protein was set to 1%. “unrelated run” and “use
isotopologues” options were selected. Protein inference was set to
“off”. Other parameters were kept as default.

For ubiquitinome, the enriched peptides were separated using a
custom-packed C18 separation column (15 cm× 75 μm× 1.9 μm, 120Å)
in a Vanquish™ Neo UHPLC system (Thermo Fisher Scientific, USA).
The separation process consisted of a 19.5-min gradient running step
and a 4.5-min column washing step. During running step, buffer B
increased from 3% to 7% in 1min, then to 30% in 18.5min. The mobile
phase comprised buffer A (98% MS grade H2O, 2% MS grade ACN, and
0.1% FA) and buffer B (98% MS grade ACN, 2% MS grade H2O,
and 0.1% FA).

Following LC separation, the eluted peptides were analyzed in an
OrbitrapAstralmass spectrometer equippedwith aNanospray Flex ion
source (Thermo Fisher Scientific, USA). The total carrier gas flow was
set to 4 L/min. The Orbitrap MS1 full scan settings included a
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resolution of 240k, a scan range of 380-980m/z, a FAIMSCVof−48 V, a
radio frequency (RF) lens of 40%, a normalized automatic gain control
(AGC) target of 500%, and a maximum injection time (IT) of 3ms. The
Astral DIA-MS2 parameters included a scan range of 150 to 2000m/z,
an isolation window of 2m/z, a higher-energy collisional dissociation
(HCD) collision energy of 25%, and a loop control time of 0.6 s. Other
parameters were kept identical to those used for MS1.

Raw files for ubiquitinome were analyzed by DIA-NN (v2.2.0)89

using a predicted spectral library. The predicted library was generated
by DIA-NN using the FASTA file downloaded from UniProt (v 29/06/
2025). Variablemodificationswere set to includemethionine oxidation
and diGly-modification. The fixed modification included N-term
methionine excision and cysteine carbamidomethylation. Peptide
length rangewas set to 6–30. “Unrelated run” optionwas selected, and
“MBR” was disabled. Mass accuracy was set to 10, and MS1 accuracy
was set to 4. Scoringwas set to “Proteoforms”mode.Other parameters
were kept as default.

Proteomic data quality control and preprocessing
To minimize possible bias during sample preparation and mass spec-
trometry acquisition, we randomly assigned recurrent and non-
recurrent samples. Each batch had 15 tissue samples and one thyroid
pooled peptide sample (quality control). Samples from the same
patient were used as biological replicates. One sample per batch was
randomly selected as a technical replicate, which was injected twice to
evaluate the quantification stability of mass spectrometry.

Missing values in the protein matrix were imputed by the ridge
regressionmethod90 through NAguideR91. The resulting protein matrix
was corrected for batch effects using the empirical Bayesian frame-
work Combat in the R package sva92 (v3.48.0). Batch effects were
corrected for different clinical centers and sample batches. Each pair
of technical replicate samples was combined into one sample by cal-
culating the average protein abundance.

Proteomic-based unsupervised clustering
The coefficient of variation (CV)was calculated for all proteins, and the
200 proteins with the highest CV values were selected and combined
with DEPs. These highly variable proteins were subjected to unsu-
pervised clustering using the non-negative matrix factorization
method (NMF93 package, v0.26) in R (v4.3.1). The optimal number of
subtypes was obtained using the rank survey function. A total of 150
iterations were conducted to ensure the robustness of the clustering
results.

In silico immune infiltration analysis
The immune score was calculated by xCell49 (https://comphealth.ucsf.
edu/app/xcell) using the xCell gene signatures which contained 64 cell
types. For in silico immune infiltration, we used CIBERSORTx94 (https://
cibersortx.stanford.edu/) to deconvolute the proportions of nine
immune cells. An MS-based proteomic data of immunocytes95 was used
as a protein expression profile for generating a custom signaturematrix.

Immunohistochemistry
FFPE sections (5μm) were deparaffinization, antigen retrieval, and
nonspecific binding blockage (10% normal goat serum). Subsequently,
the slides were incubated overnight with anti-CD45 (1:500, DAKO) and
then subsequently probed with secondary antibody (DAKO DAB kit).
Stained slides were scanned by KF-SCAN-ST (Kfbio, China) at 10 × 40.
Qupath (v0.5.1) was used for image processing and positive cell
counting.

Cox proportional hazards analysis
To identify risk factors associated with structural recurrence, uni-
variate and multivariate CoxPH analyses were performed using 12
clinicopathological features: age, sex, heredity, tumor grade, presence

of Hashimoto’s thyroiditis (HT), multifocality, bilaterality, max nodule
size, concurrence of PTC, ETE, LNM, and vascular invasion.

Univariate CoxPH models were initially constructed for each of
the 12 factors to identify those with a significance level of P < 0.05.
Subsequently, a multivariate CoxPH model was developed, incorpor-
ating all 12 factors to identify independent risk factors associated with
structural recurrence.

Druggable protein screening
Proteins differentially expressed among the three subtypes were
identified using the Kruskal-Wallis test and Dunn test. Proteins with a
B-H adjusted P <0.05were considered significant andmatched to drug
targets in the IPA and theHPAdatabases. Subsequent filtering retained
only DEPs from this protein pool. Univariate CoxPH analysis was
employed to identify significant drug targets, followed bymultivariate
CoxPH analysis to control for potential confounders.

Dataset partitioning and cross-validation in machine learning
The dataset consisted of a discovery dataset and two test datasets. The
two test datasets included one independent test dataset collected
from four independent medical centers (n = 105) and the other from
published literature21 (FUSCC dataset, n = 93). Of the 93 patients in the
FUSCC dataset, 29 were also included in the discovery set. After
removing the overlapping patients, 64 patients remained in the FUSCC
dataset. Due to variations in the instruments, laboratories, and sample
types, batch effects were observed between the proteomic data of the
three datasets. These effects were corrected using the Combat92

method. The preprocessing steps for the test datasets were consistent
with those applied to the discovery dataset. To optimize model per-
formance, the discovery dataset was evenly divided into five folds for
cross-validation. During each iteration, four subsets were used to train
the model, and one subset was used to validate the model.

Feature selection and model generation
Initially, proteins withmissing values greater than 90%were excluded,
with 9380 proteins remaining. Then, the proteins were screened in the
discovery dataset to identify those significantly associated with prog-
nosis by differential protein analysis and the CV values. DEPs were
defined as |log2(FC) | > 0.25 and B-H adjusted P <0.05 between SR vs.
NR and DSM vs. S groups. The DEPs and top 200 CV proteins were
combined, yielding 610 prognosis-related andmost dynamic proteins.
Additionally, gene mutation sites with mutation rates > 1% were
retained. Subsequently, a genetic algorithm (GA) was employed for
feature selection, with a detailed methodology previously
described96,97. Briefly, the genetic algorithm was implemented using
the eaSimple function (Python package DEAP, v1.4.1), with the follow-
ing parameters: a crossover probability (cxpb) of 0.5, a mutation
probability (mutpb) of 0.2, and a total of 400 generations (ngen). The
population was iteratively optimized to retain subsets of features with
better performance.

Basedon the optimal feature subset selected byGA, three random
forest (RF) models were constructed, each utilizing one of the feature
types: clinical, genomic, and proteomic. In addition, the genetic algo-
rithm was employed for all 38 features of three types, leading to a
further reduction in the number of features. This process culminated
an integrated model encompassing 18 proteins and 2 clinical features.

The RF models predict the final classification result by aggregat-
ing the predictions from all decision trees through majority voting.
During each iteration, the fitness of feature subsets was evaluated
using a RandomForestClassifier (with random_state=42) as the primary
performance metric. The classifier assessed the contribution of each
feature subset to the classification task, according to which the sam-
ples were divided into high-risk and low-risk groups. The model was
optimized in the discovery set using 5-fold cross-validation (training
set to validation set ratio 4:1).
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Bioinformatics and statistical analysis
The tables of baseline clinical characteristics were calculated by SPSS
Statistics (v23.0, IBMCorporation). The Kolmogorov-Smirnov test was
used for normality testing of continuous variables, and the indepen-
dent double-sided Student’s t test was used for variables that conform
to the normal distribution. P values were calculated using the non-
parametric Mann-Whitney U test for variables that did not meet nor-
mality. The chi-square test was used for calculating the P values of
categorical variables.

The differentially expressed analyses were performed using the
limma package98 (v3.56.2). The P values were adjusted using the B-H
method. Samples lacking RFS information or exhibiting persistent
disease were excluded when conducting the differentially expressed
analyses. The secreted protein data were obtained from the Human
Protein Atlas portal (www.proteinatlas.org). Druggable proteins were
annotated from the IPA software database. IPA was also used for
pathway enrichment of the differentially expressed proteins. Func-
tional analysis of the 52 subtyping proteins was performed by
Metascape99. The networkwas visualized using the STRING database47.
Functional enrichment of proteins in subtypes was performed using
the R package gsva with the C5 gene ontology biological process gene
sets (v2024.1) from the Molecular Signatures Database (MSigDB). Chi-
square test was used to calculate the statistical differences in the
characteristics among the three proteomic subtypes. The P values in
the Kaplan–Meier curvewerederived from the Peto-Peto test. The RAS
and RET pathway protein list was curated from the MSigDB
(v2025.05)100. The differences in protein expression between the gene
mutation and wildtype groups were calculated by unpaired two-sided
Wilcoxon rank sum test. The P values were adjusted using the B-H
method.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomic raw data generated in this study
have been deposited in the ProteomeXchange Consortium101 (https://
proteomecentral.proteomexchange.org) via the PRIDE database102

under accession code PXD063677. The FUSCC21 dataset used in this
study is available in the iProX database103,104 under accession code
IPX0004234000. The thyroid dataset is publicly available in the PRIDE
database under accession code PXD061183. The remaining data are
availablewithin theArticle, Supplementary InformationorSourceData
file. Source data are provided with this paper.

Code availability
Code relevant to data analysis in this study is available at https://
github.com/guomics-lab/MTC.
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