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% Check for updates Deep learning (DL) -based automated treatment planning (ATP) shows sig-

nificant promise in streamlining radiotherapy workflow and reducing varia-
bility in plan quality. However, it often lacks the flexibility needed for achieving
individualized trade-offs in real-world practice. Herein, we propose a hybrid
strategy by integrating DL-based dose prediction with clinical-goal-guided
inverse optimization to generate directly deliverable plans within five minutes.
DL models for five disease sites were trained separately using datasets from a
single institution and were tested retrospectively for clinical application
among three institutions, with tailored prioritized clinical goals. We find that
over 80% of the 250 auto-plans met clinical criteria, and 60% were preferred
over manual plans in blinded reviews. Dosimetric analyses show that the auto-
plans quantitatively matched or exceeded the quality of human-driven plans.
This study highlights ATP’s potential to transform radiotherapy practice, with
ongoing efforts aimed at refining its versatility and adoption across diverse
clinical settings.

Radiotherapy planning involves designing an optimal dose distribu-
tion that ensures adequate coverage of planning target volume (PTV)
with minimizing exposure to organs at risk (OARs). This process, vital
to treatment efficacy, has become more sophisticated since the
introduction of intensity-modulated radiotherapy (IMRT) in the 1980s.
Efforts to improve plan quality have increased the time, cost, and
complexity of manual planning'. Human-driven plans, shaped by trial
and error, depend heavily on planner’s expertise. Variability in hyper-
parameter tuning, such as constraint weights and dose thresholds,
often leads to inconsistencies in plan quality, which may ultimately
undermine patient outcomes. In fact, if better target conformality and/

or homogeneity, as well as improved normal tissue sparing should
have been achieved at no cost, patients will be exposed to substantial
excess risk of local failure or complications due to suboptimal
planning’.

To improve efficiency and reduce variability in plan quality,
automated radiotherapy treatment planning (ATP) has been exten-
sively studied®. Several commercial treatment planning systems
(TPSs) now offer mature ATP solutions, including protocol-based
optimization (e.g. AutoPlanning™, Philips Radiation Oncology Sys-
tems, Fitchburg, WI), which mimics human-driven iterative adjust-
ments, knowledge-based planning (e.g. RapidPlan™, Varian Medical
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Systems, Palo Alto, CA), which leverages prior clinical plan database,
and multi-criteria optimization (e.g. RayStation multi-criteria opti-
mization (MCO), RaySearch Laboratories, Sweden), which utilizes
Pareto optimality. These approaches are now widely adopted in
clinical practice, with numerous studies*® confirming ATP’s effi-
ciency and its noninferiority to manual planning. Furthermore,
recent advancements of deep learning (DL) in ATP have led to sig-
nificant improvements in both the accuracy and efficiency of dose
prediction and final plan generation®'°, marking a new era in ATP
development.

For Al-based applications like ATP, a frequently asked question is:
how can it best serve clinical practice? That is to say, should the goal be
to surpass human planners entirely, as AlphaGo did", or to efficiently
generate clinically usable plans with minimal human involvement. The
answer lies in three critical factors. First, ATP plans must meet essential
clinical constraints, ensuring safety for patient treatment. These con-
straints, defined by the Radiation Therapy Oncology Group (RTOG)
protocols, represent “clinical acceptability” and can be explicitly
incorporated into algorithms. Second, plans should strive for Pareto
optimality—maximizing OARs sparing without sacrificing tumor con-
trol—known as “clinical optimality”. Lastly, efficiency is a key concern,
particularly for on-couch treatments. This includes rapid planning,
minimal human involvement, ease of adjustment, and seamless
workflow integration, collectively termed “clinical applicability”. In
current ATP practice, achieving clinical acceptability is non-negotiable,
while optimality and applicability are desirable bonuses over manual
planning. However, balancing these factors still remains a significant
challenge®* ™,

This study seeks to address these challenges through a retro-
spective analysis of ATP implementation across multiple institutions
and disease sites, using a single-institutional DL framework. Instead of
merely comparing auto-plans to manual plans, we focus on evaluating
their acceptability and generalizability, as well as improving their
applicability in real-world settings. This includes accounting for var-
iations in target definitions, beam arrangements, and evaluation pro-
tocols across institutions. Figure 1 outlines the study framework.

Inspired by knowledge-based planning (KBP) dose prediction and
MCO wish lists, this study introduces a hybrid ATP method that inte-
grates DL-based dose prediction with clinical-goal-guided inverse
optimization, enabling the generation of directly deliverable plans in a
treatment planning system (uTPS, United Imaging Healthcare, Shang-
hai, China). In this system, we employed a channel attention densely

Solution Development

Acceptability Evaluation

connected U-Net (CAD-UNet)® to predict voxel-based dose distribu-
tions using patient-specific CT scans and contours as input (Supple-
mentary Fig.1 and 2). Models were trained and validated separately for
five disease sites—nasopharyngeal carcinoma (NPC), lung, breast,
cervix, and rectum—using high-quality datasets from a single institu-
tion (Institution A) (Supplementary Table 1). For each site, a clinical
goal list was prioritized to balance target coverage and OARs sparing,
providing a reference for DVH prediction (Supplementary
Tables 2 and 3). A tolerance parameter was used to correct bias in each
predicted goal (Supplementary Tables 3 and 4). Executable plans were
generated in uTPS through inverse optimization guided by these
clinical goals, typically within 5 min. The prediction models developed
by Institution A have been implemented in the ATP module of the uTPS
and are available for clinical use with permission.

The acceptability evaluation phase tested the ATP solution ret-
rospectively across three institutions: internal institution A and two
external institutions B and C. Single-institutional DL models and fixed
clinical goal lists were used, with tolerance adjustments made for
Institution C’s local protocols (Fig. 1 and Supplementary
Tables 3 and 4). Each site enrolled 30, 10, and 10 patients, randomly
selected in A, B, and C, respectively. The enrolled cases ranged in
target definitions, delivery techniques, and prescribed dosages, as
shown in Table 1.

ATP plans (250 cases in total) were independently generated,
maintaining original beam configurations and without patient-specific
goal adjustments. These plans were compared to clinically approved
manual plans (MNL plans) based on subjective and objective criteria.
Blinded assessments were conducted by three local physicians per site,
who evaluated the plans for clinical acceptability, dosimetric pre-
ference, and generation method (ATP or MNL). Feedback from these
assessments was collected for further analysis. Dosimetric perfor-
mance was evaluated using RTOG-defined DVH endpoints'®?°, with
statistical significance determined through paired two-tailed t-tests
(p<0.05). Dosimetric parameters between ATP-preferred and MNL-
preferred cohorts were compared to quantify the strengths and
weaknesses of the ATP solution. Differences across institutions in
planning protocols and assessment results were examined to evaluate
the solution’s generalizability and robustness in varying clinical
contexts.

In the applicability improvement phase, particular focus was
placed on the auto-plans deemed unacceptable or unfavorable during
the evaluation phase. Tailored strategies were then implemented
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Fig. 1| Framework of the current study on the proposed ATP solution. The third-party elements are from Health icons (https://healthicons.org/).
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Table 1| Characteristics of the enrolled patient cohorts across different institutions

Site Characteristics Institution A (30)

Institution B (10)

Institution C (10)

NPC PTV volume (ml) 779.69 £132.27, (554.50 ~ 996.62)

764.09 +223.12, (497.27 ~1074.04)

352.87+96.81, (199.91~565.87)

Treatment technique 9/1-field dIMRT (30)

2/3-arc VMAT (10)

2/4-arc VMAT (10)

66-60-54 Gy/30 F (8)
70.4-66-60-54 Gy/32 F (15)
70-66-63-56 Gy/35 F (7)

Prescribed dose

70-66-60-56 Gy/35 F (10)

69.96-66-61.05-54.45 Gy/33 F (7)
69.96-62.7-60.06-54.45 Gy/33 F (3)

Lung PTV volume (ml) 458.33 +309.09, (49.38 ~1353.09) 226.44 £110.19, (82.31~ 413.56) 251.86 +76.45, (142.09 ~ 414.88)
Treatment technique 7 ~10-field sIMRT (3) 2-arc VMAT (10) 4/6-arc VMAT (10)
7 ~10-field dIMRT (27)
Prescribed dose 50 Gy/25F (20) 60 Gy/30F (10) 60 Gy/30F (10)
60 Gy/30F (10)
Breast PTV volume (ml) 697.18 + 308.69, (81.59 ~1310.56) 774.43 +292.49, (385.22 ~1220.02) 749.93+156.63, (488.47 ~1004.97)
Treatment technique 8/9-field sIMRT (4) 2/4-arc VMAT (10) 4/6-arc VMAT (10)
8/9-field dIMRT (13)
4-arc VMAT (13)
Prescribed dose 50 Gy/25F (13) 50 Gy/25F (10) 43.5Gy/15F (1)
42.56 Gy/16 F (6) 50 Gy/25F (9)
40.05 Gy/15F (11)
Rectum PTV volume (ml) 1120.63 +205.57, (782.56 ~1602.94) 1062.01+224.82, (729.56 ~1468.91) 788.45 +145.28, (572.03 ~1085.41)
Treatment technique 9-field sIMRT (10) 2-arc VMAT (10) 2-arc VMAT (10)
9-field dIMRT (3)
2-arc VMAT (17)
Prescribed dose 50 Gy/25F (22) 50-45 Gy/25F (10) 25 Gy/5F (10)
25Gy/5F (8)
Cervix PTV volume (ml) 1470.85+173.03, (1205.56 ~1892.88) 1460.91+237.75, (1027.88 ~1767.72) 1120.45 + 364.49, (352.66 ~1709.44)

Treatment technique 9-field dIMRT (30)

2-arc VMAT (10)

2-arc VMAT (10)

Prescribed dose 50.4 Gy/28 F (13)

58.8-50.4 Gy/28 F (17)

45 Gy/25F (10)

45Gy/25F (10)

The numbers in bracket indicate either the range of PTV volume or the respective number of patients corresponding to each treatment technique or prescription regimen.

within the ATP framework to address clinical concerns and improve
plan quality. In addition, total time savings of the end-to-end ATP
process were also analyzed in real-world settings.

In this work, the proposed ATP solution demonstrates broad
acceptability and strong physician preference across multiple institu-
tions and cancer types. Compared with manual planning, ATP reduces
the total time required to finalize a deliverable plan in real-world sce-
narios by approximately 40%. This ATP approach is anticipated to
enable immediate availability and enhanced applicability in diverse
clinical contexts, while also providing a practical methodology to
transition ATP from single-institutional validation to multi-institutional
deployment.

Results

Subjective assessment

Visual comparisons of dose distributions between ATP and MNL
plans across five sites are presented in Fig. 2, and the subjective
assessment results are summarized in Fig. 3. Across all institutions,
82% of ATP plans (205/250) were unanimously deemed clinically
acceptable by three reviewing physicians, and 60% (149/250) were
preferred over MNL plans. The highest clinical acceptability rate was
observed for NPC cases, achieving 100% consensus across all insti-
tutions. Moderate acceptability rates were noted for breast (84%),
cervix (80%), and rectum (80%) cases, while lung cases had a lower
rate of 66%. Preference for ATP plans over MNL plans also varied by
site. Cervix cases had the highest preference rate (76%, 38/50), while
breast cases had the lowest (46%, 23/50). NPC, lung, and rectum
cases showed preference rates of 54%, 60%, and 62%, respectively.
On average, 61% of ATP plans were recognized as Al-generated, with
recognition rates ranging from 40% to 83%, showing no clear
dependence on site or institution. Physicians noted that plan sources
were nearly indistinguishable, often leading to arbitrary choices in
some cases.

Inter-institutional comparisons reveal notable differences in ATP
performance. Institutions A and C exhibited similar ATP performance,
with Institution C achieving a 100% acceptability rate, reflecting the
robust generalization of the method with tailored goal lists. In con-
trast, Institution B showed significant variability, with acceptability and
preference rates dropping as low as 30% for breast and lung cases.
Interestingly, NPC and cervix cases performed better in Institution B
and C compared to Institution A, both in terms of acceptability and
preference. These findings highlight the variability in ATP performance
across institutions and the importance of site-specific and institution-
specific factors in clinical implementation.

This analysis also emphasizes inter-observer variability in asses-
sing ATP’s effectiveness and suitability. As shown in Fig. 3, physicians at
Institution C exhibited greater agreement compared to those at
Institutions A and B. When majority consensus among reviewers was
considered, the overall acceptance rate for ATP plans rose to 92%, with
72% of plans being preferred. More than 60% of ATP plans were
favored over MNL plans across all sites. Reviewers’ comments under-
scored the importance of target coverage, conformality, homogeneity,
and OARs sparing (Supplementary Fig. 3). However, variability arose
from differing perspectives on how to balance these factors, even
when the plans met clinical acceptance criteria, contributing to dis-
crepancies in final decisions.

Objective comparison

To quantify the differences between ATP and manual planning, plan
quality metrics were compared across institutions and preferable
cohorts. Dot plots in Fig. 4 depict the average differences in dosimetric
parameters of ATP plans relative to MNL plans across five sites. The
results show that ATP plans generally achieved comparable or superior
performance in conformality indices (CI), homogeneity indices (HI) of
target and sparing of most OARs, while maintaining target coverage
and similar beam modulation (total MUs) to MNL plans. Compromises
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Fig. 2 | Visual comparisons of representative dose distributions between
automated (ATP) plans and manual (MNL) plans across five disease sites. The
sectional visualizations of each disease site are derived from an example case in the

retrospective evaluation, illustrating the dose distribution patterns of both ATP and
MNL plans side by side. The color-coded filled regions represent the dose levels of
100%, 95%, 80%, and 60% of the prescription dose.

in sparing of individual OARs were observed in certain locations, yet
these had negligible statistical significance. The site-specific analyses
are described as follows.

For NPC cases, the ATP plans showed better sparing of brainstem,
TMJs, oral cavity at Institution A, and improved overall target
conformality at Institution B, whereas exhibited slightly deviated
but comparable dosimetric parameters to the MNL plans at
Institution C.

For breast cases, discrepancies in comparing results were
observed among the institutions. While lower V5Gy in ipsilateral
and contralateral lungs as well as reduced mean dose of ipsilateral
humeral head were achieved at Institution A, the ATP plans
resulted in moderate sparing of ipsilateral lung at Institution B and
C, but significant over-sparing of ipsilateral humeral head in B and
contralateral breast in C. Relatively speaking, the ATP plans in
Institution C demonstrated more balanced improvements in
contrast to MNL plans (except for PTV HI and V20Gy of lung),
owing to tailored goals to local guidelines. This fact was also
reflected by higher reviewer preference in C than that in B.

In the lung cohort, the results of plan quality comparison were less
differentiating, where slightly better lung sparing in A and

improved target conformality in B were noticed. There seemed no
sufficient dosimetric merit/demerit to explain the wide difference
in subjective selection. In Institution C, no significant dosimetric
advantage of ATP was observed, despite a higher selection rate
(70%) compared to Institution B (30%). At Institution A, despite
the improvement in lung sparing, ATP plans were preferred in
only 67% of cases. Even when MNL plans were favored, the
counterpart auto-plans were quantitatively noninferior across all
metrics, suggesting that subjective selection may have been
influenced by minor perceived flaws.

In spite of marginal weaknesses of PTV V95% in A and bladder
V45Gy in B for cervical cases, ATP plans in the pelvic region gen-
erally showed significant improvements in target conformality,
homogeneity, and substantial OARs sparing across institutions,
leading to notable reviewer recognition.

The superior plan quality of the ATP preferable cohort, consistent

with subjective selections, underscores its strengths in various con-

texts. Importantly, no significant deficiencies were observed in unse-

lected ATP plans across the five sites, with some exhibiting better

Nature Communications | (2026)17:867


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-67581-z

a. Blinded clinical acceptable
assessment

b. Blinded comparison between ATP and MNL plans

c. ATP plan identification
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Fig. 3 | Results of blinded physician assessments across all sites and institu-
tions. For each site, n=30, 10, 10 cases at Institution A, B, C, respectively. a and
b show the percentages of the ATP plans considered to be clinically acceptable and

preferable to MNL plans by different numbers of physicians, respectively. ¢ shows
the average proportion of the ATP plans to be correctly identified as Al-generated
by three physicians. Source data are provided as a Source data file.

conformality (lung cohort), or OARs sparing (cervical cohort) than
MNL plans. This demonstrates the holistic nature of human review,
which considers dose distributions across slices rather than focusing
solely on isolated dosimetric metrics (Supplementary Fig.3).

Generalizability across institutions

To evaluate the generalizability of ATP, the observed inter-institutional
variations in assessment results must be understood in terms of
patient cohort characteristics and differing evaluation protocols. First,
we found that varying fractionation schedules across institutions had
no impact on final results, as target doses were derived from pre-
scriptions rather than the models. Second, treatment volumes were

generally consistent across the three institutions, with one notable
exception: NPC cohorts at Institution C had only half the volume of
those at the other institutions (Table 1). This volume difference at
Institution C likely correlated with greater deviations in DVH para-
meters from MNL plans compared to the other two centers, as shown
in Fig. 4. The explanation lies in the expected differences in predicted
dose falloff patterns between larger and smaller PTVs under similar
adherence to OARs sparing guidelines. In Fig. 4, the improved parotid
protection at Institution C could stem from the inherent feature of
steep dose gradients near parotids in the NPC training sets of Institu-
tion A. The inter-institutional bias arising from variations in target
definition (to be specific, spatial relationship between OARs and PTV)
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Fig. 4 | Dot plots of plan quality comparison between ATP and manual planning
across five disease sites. For each site, n =30, 10, 10 cases at Institution A, B, C,
respectively. The dots and shaded bars in a-e represent the average and 95% CI
(confidence interval) bounds of the metric difference between the ATP and MNL
plans in each institution or in each preferable group (by unanimous selection).
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Significant differences (p < 0.05) are shown in red (ATP worse) or blue (ATP better),
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been corrected to account for multiple comparisons across numerous dosimetric

endpoints. Source data are provided as a Source data file.

can be effectively managed by adjusting clinical goal prediction tol-
erances. For example, when treatment volumes of NPC site in external
institutions quantitatively exceed those in Institution A, predicted
parotid doses will unsurprisingly be higher, and comparable sparing
can be achieved by simply reducing prediction tolerance (compressing
the isodoses near parotids). This measure applies to other tumor sites
as well.

Beam geometry variations, namely delivery technique and beam
angle configuration, also played a role in multi-institutional perfor-
mance of ATP. While volumetric-modulated arc therapy (VMAT) was
exclusively used in Institution B and C, Institution A primarily
employed IMRT (with some exceptions for breast and rectal cases in
testing cohort and training datasets; see Table 1 and Supplementary
Table 1). Beam setup practices varied not only across institutions but
also among individual planners. Since the ATP plans relied on pre-

existing MNL beam configurations, using configurations different from
the training data could potentially affect the achievable final plans,
even with identical predictions.

Similar to comparisons with MNL plans, we compared ATP
outputs with predicted dose distributions for the 250 testing cases
to investigate the impact of beam configurations and the effective-
ness of optimization algorithm, as shown in Fig. 5 and Supplemen-
tary Fig.4. The mean voxel-wise errors within body structure
exhibited a range of 2.5% to 6.2% across disease types and institu-
tions (Supplementary Fig.4), indicating that ATP plans largely mat-
ched dose predictions through effective optimization,
despite varying beam configurations. Discrepancies on DVH end-
points of some OARs were observed in Fig.5, with trends roughly
consistent among institutions (except for cervix and rectum in C,
which used additional isodose controls; see Methods section and
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Fig. 5 | Dot plots of DVH endpoint comparison between the ATP outputs and
predicted doses across different disease sites and institutions. For each site,

n=30, 10, 10 cases at Institution A, B, C, respectively. The dots and shaded bars in
a-e represent the average and 95% Cl bounds of the metric difference between the
final plans and predicted doses in each institution. Significant differences (p < 0.05)
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are shown in red (lower than prediction) or blue (higher than prediction), while
data points of no significance (p > 0.05) are denoted in black. The p values have
been corrected to account for multiple comparisons across numerous dosimetric
endpoints. Source data are provided as a Source data file.

Supplementary Table 3 for details). This also suggests that beam
geometry differences between training and testing populations
generally had less impact on final plans than anticipated. The DVH
prediction discrepancies were primarily subject to institutional
variations in prediction tolerance and priority adjustments, as pre-
dicted doses were reshaped during clinical-goal-guided optimiza-
tion to accommodate tailored goals with different priority levels and
tolerances.

To summarize, variations in fractionation schedules, delineation
guidelines, beam geometry setups, and evaluation protocols basically

had minimal effects on the robustness of final plan generation,
emphasizing ATP’s generalizability across institutions.

Further improvement of unfavorable auto-plans

We identified several inadequacies in the less favorable auto-plans,
including suboptimal OARs sparing and less conformal dose profiles.
These shortcomings stemmed, either directly or indirectly, from
inappropriate dose predictions. This indicates that neither the DL
models nor fixed goal lists can universally adapt to all patient popu-
lations. To address this limitation, various adjustment strategies were
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explored within the current framework to better align with clinical
judgment.

Thoracic cases from external institutions exemplify the need of
such adjustments. Unlike Institution A, which employed a moderate
sparing strategy, Institutions B and C prioritized maximal lung pro-
tection. For six breast cases rejected by two or more reviewers at
Institution B, goal tolerances were refined on a case-by-case basis,
achieving plans comparable or superior to MNL plans. These refine-
ments involved a 20-30% reduction in ipsilateral lung V5Gy and
V20Gy, balanced by a 10-30% relaxation in tolerances for the mean
dose of heart and ipsilateral humeral head, as well as V5Gy for con-
tralateral breast and lung. As shown in Fig. 6a, these adjustments
brought the output auto-plans closer to MNL plans across most
metrics, while maintaining HI and total MU within clinical guidelines.
These findings underscore the feasibility of adjusting goal tolerances
to enhance plan quality, and also suggest that institution-specific tai-
loring of goal lists, as implemented in Institution C, would substantially
improve the clinical acceptability and preference for auto-plans.

At Institution C, while OARs sparing in ATP plans was adjusted to
levels comparable to that of MNL plans by tailoring goal lists, inferior
isodose conformality led to unfavorable clinical judgements, as illu-
strated in Fig. 6b. This defect was highly case-specific and could not be
adequately captured by a single CI parameter. Fine-tuning of the iso-
dose profile was achieved by per-patiently editing the conflicting goals,
or by incorporating handcrafted patch contours into the goal list.

As a summary of this subsection, adjusting tolerances of pre-
dicted goals is an effective strategy for adapting single-institutional
models to meet diverse clinical needs. Our findings demonstrate that
tailored goal list at the institutional level significantly enhances the
overall acceptability of ATP plans in external validations by accounting
for discrepancies in local guidelines. Furthermore, patient-level
refinements are helpful for addressing individualized preferences
and further improving plan quality.

Real-world time saving analysis

A typical end-to-end process of radiotherapy treatment planning from
plan preparation to final plan production is shown in Fig. 7. Within this
framework, the detailed procedures and elapsed time in ATP and MNL
planning were compared step-by-step across the five disease types and
participating institutions, with the analysis based on a supplementary
study involving real-world planning for 75 new patients (see Methods
section for study details). While manual interventions remained
necessary for plan creation in the present ATP framework, the most
time-intensive processes of plan objective specification and iterative
tuning were automated and expedited in ATP. This yielded an overall
ATP planning time of 10-20 minutes (including necessary per-patient
fine-tunings), achieving a 40% reduction in median time compared to
MNL-based approaches.

Furthermore, as shown in Fig. 8, the case-by-case analyses of ATP
optimization rounds and total time savings indicate that, with pre-
defined initial clinical goals, external institutions generally required
more rounds of optimization than internal Institution A to produce
acceptable plans in real-world settings. Notably, Institution B needed
additional time for iterative plan refinements when using the untai-
lored goal list as a starting point—with some ATP plans even taking
longer than MNL plans—whereas Institution C achieved time savings
comparable to those of Institution A after moderate tuning rounds.
Among the five tumor sites, ATP delivered the greatest time savings for
NPC cases, while demonstrating similar time savings for the remaining
four sites.

Itis noticed that only 64%, 20%, and 28% of ATP plans in Institution
A, B, and C, respectively, were deemed acceptable by participating
physicists on the first attempt—far lower than the physicians’ accep-
tance rates observed in the retrospective assessments. This dis-
crepancy arises because, beyond adhering to physicians’ criteria for

plan acceptability, physicists were also subject to additional inspection
of plan quality; to ensure first-pass approval, they tended to prioritize
developing a plan they perceive as “optimal” through repeated fine-
tunings when time allowed. This again underscores the need for flex-
ibility in ATP implementation. Even so, the overall trend of the real-
world data remains consistent with the findings of the earlier retro-
spective study.

Discussion

The increasing availability of commercial ATP solutions has led to
growing interest in their clinical assessment. Recent studies®® show
that clinical acceptability rates of ATP within a single optimization
reach between 80% and 100% across various treatment sites, with auto-
plans outperforming manual plans in 50% to 80% of cases based on
retrospective selection. In this study, we introduce an ATP alternative,
offering several advantages over previous researches.

The proposed ATP solution provides a coarse-to-fine approach to
the perfection of automated planning across diverse clinical settings.
To start with, the single-institutional knowledge-based model predicts
a generally optimal dose distribution for a new patient anatomy.
Subsequently, individualized trade-offs are accounted for by incor-
porating dynamic adjustments of clinical goals into the rigid dose
prediction. In contrast to laborious trial-and-error tuning in manual
planning, the present ATP solution directly forwards the optimal goals
down into automated optimization to generate a desired final plan
ideally in one go, significantly reducing the dedicated time by
approximately 40% in real-world settings.

Our multi-institutional assessments demonstrate a general
acceptability and a promising preference for the proposed ATP solu-
tion across a range of clinical scenarios, aligning with previous
studies™®. Notably, the first-pass approval rate in external validations
matched that of local validations based on the same dose prediction
models, despite the differences in delineation guidelines, beam setup
practices, fractionation schedules, and evaluation protocols among
the institutions. This achievement underscores the practicality of
employing site-specific goal lists that accommodates institutional
variability in clinical priorities without necessitating retraining of the
models. Furthermore, our approach highlights the effectiveness of
modifying inferior plans within the ATP framework to align with clin-
ical preferences, enabling rapid plan generation for both initial treat-
ment and plan adaptation. Compared with other existing ATP
methods’®, our solution demonstrates inherent superiority in general-
ization capacity and flexibility, which are of practical implication for
clinical implementation in complex prospective scenarios. In the fol-
lowing discussion, we will further expound on this topic in detail.

As highlighted in previous works®* and confirmed by our find-
ings, ATP has the potential to enhance efficiency, consistency, and
standardization in radiotherapy planning while reducing reliance on
operator expertise. However, achieving fully automated integration
into prospective clinical environments remains challenging?™*. This
brings us back to the fundamental question posed at the beginning of
this article: how can ATP best serve clinical practice? The answer
extends beyond plan performance (acceptability) and workflow inte-
gration (applicability); it ultimately hinges on the end user®**>,

Drawing insights from automation in aviation®, the radiation
therapy community recognizes the necessity of human oversight in
automated systems to navigate subjective clinical judgments and
complex trade-offs, including patient-specific factors and quality-of-
life considerations®. Physician review remains the standard for final
decision-making in patient care. ATP’s success rate without human
involvement may not significantly improve due to the personalized
understanding of “clinical optimality””. In head-to-head comparison
with manual planning, the perception and trust of treating physicians
towards ATP may influence their final decisions for prospective treat-
ment more than the plan performance itself®.
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Fig. 6 | Representative examples of different strategies for further adjustments
of unfavorable ATP plans. a Example presentations necessary for institutional-

level adjustments at Institution B: al shows the difference of dosimetric parameters
between ATP and MNL plans before and after targeted adjustment of goal list for
the inferior breast cases at Institution B (n = 6), with data characterized by minima,
maxima, median (central line), interquartile range (IQR, box bounds), and whiskers;
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a2 shows the dose difference levels before and after adjustments on a repre-
sentative axial CT image. b Example presentations necessary for patient-specific
adjustments at Institution C: bl displays inferior isodose profiles of the ATP plans
(vs. MNL plans) at certain slices for a breast case and a lung case, and b2 shows the
comparable dosimetric metrics of ATP and MNL plans for the two cases. Source
data of al are provided as a Source data file.

From the perspective of medical physicists or dosimetrists®,
reverting to manual planning is impractical when ATP output fails to
meet clinical needs but is challenging to modify. Rather than a “one-
size-fits-all” approach, a flexible and user-friendly manual interface
should be integrated into the ATP framework to facilitate seamless
plan adjustments®.

Moreover, ATP’s end users face technical and resource-related
barriers?. Developing models requires extensive training data and
testing efforts, which can strain even large institutions and limit

accessibility for smaller facilities”. Collaborative efforts are essential
to adapt models to diverse clinical contexts and ensure broad
applicability®.

The current study offers an effective solution to address these
challenges. We further propose a practical integration of single-
institutional DL models into a multi-institutional ATP framework, as
shown in Fig. 9. This framework involves: (1) Model development:
developing DL models and validating recommended goal lists with
single-institutional datasets; (2) Retrospective evaluation: assessing
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Fig. 7 | Step-by-step comparison between ATP and MNL planning from plan preparation to final plan production. a describes the detailed planning procedures and
b shows the elapsed time to each step. n=75 (5 cases per site at each institution). Source data are provided as a Source data file.

ATP performance at external institutions retrospectively to tailor goal
lists to local guidelines and enhance approval rates; (3) Parallel
deployment: implementing ATP and manual planning in parallel for
blinded physician evaluations to incorporate subjective preferences;
and (4) Prospective application: treating patients prospectively with

refined auto-plans, incorporating ongoing adjustments as needed.
Prior to prospective use, it is essential to establish a threshold for ATP
acceptability or preference (e.g.,>80%) in order to proceed to the next
phase. For smaller institutions with limited resources of training
datasets and computing power, the present ATP framework provides a
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Source data are provided as a Source data file.

feasible approach to leverage the commissioned DL models developed
by large centers, namely adopting customized goal lists to incorporate
local protocols by following the above steps (2) to (4) in Fig. 9. Besides,
local validations with different resource settings will further broaden
its clinical contexts and feed back into the development of the ATP
solution in a larger scale.

Despite its strengths, our study does face several limitations.
The primary challenge is the potential bias introduced by limited
patient populations. This bias lies in the knowledge-based nature of
the models, which are inherently constrained by the data they were
trained on. This limitation is particularly concerning in our study,
where models trained on single-institutional data were applied in a
multi-institutional context. The key to generalizing the models in the
ATP approach is the input of customized clinical goals. Although it
provides flexibility in diverse settings, the clinical goal list is intended
to establish a template for localized, standardized modifications to
accommodate known preferences, e.g., applying fixed prediction
tolerance to address differences in target delineation style and eva-
luation protocol, as elaborated earlier. However, because of their
black-box nature, the prediction models also suffer from ambiguous
biases that cannot easily be resolved by constant tolerances, neces-
sitating case-specific adjustments and trial-and-error tuning (Fig. 6).
This fundamentally hinders improvements in efficiency and
consistency.

While generalization capacity has been preliminarily demon-
strated, the notably low acceptability of ATP in thoracic sites still
indicates substantial room for improvement. The challenge of balan-
cing target coverage with sparing of multiple parallel OARs renders the
approach highly sensitive to minor predicted dose fluctuations, even
in low-dose regions. Such fluctuations may stem from disparities in
tumor locations and beam configurations between training and testing
cohorts. Although tumor location diversity was considered during
model development, prediction performance remained less than
optimal in certain instances (e.g., over-sparing of contralateral breast
and ipsilateral humeral head in breast site, Fig. 4), likely attributable to
the limited number of training cases per data type. For complex lung
cases with highly flexible beam setups, variations in beam configura-
tion can substantially disrupt the delicate trade-offs, leading to sub-
optimal output.

To mitigate the impacts of population bias, iterative model
development utilizing larger, more finely-sorted datasets is essential
for adapting to evolving clinical demands. We plan to enhance the
thoracic models by incorporating beam configuration as an input
variable and developing sub-models labelled with tumor location.
Besides, the reliance on manual setting of beam angles impedes full
automation of the planning workflow. Future prospective applications
will consider integrating pre-configured beam templates or employing
DL-based beam orientation optimization to explore potentially
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Fig. 9 | Schematic flowchart for multi-institutional deployment of single-institutional DL models in the proposed ATP framework. It consists of model development,
retrospective evaluation, parallel deployment, and prospective application, where clinical goal list is refined step by step to accomodate local protocols.

superior beam arrangements. Furthermore, an upgraded goal list will
facilitate the fine-tuning of the conformality of specific isodose con-
tours by using a distance parameter to the target or organs, thereby
minimizing auxiliary contouring during plan adjustment.

Another limitation of this study is the absence of prospective
validation of the proposed ATP solution. While retrospective evalua-
tions have confirmed its multi-institutional feasibility, and substantial
efficiency improvements have been demonstrated in real-world sce-
narios, integrating ATP into prospective clinical environments will
inevitably encounter additional challenges that require further
exploration. Nonetheless, our work provides essential groundwork
and practical methodology for future prospective deployment by
systematically analyzing potential barriers and solutions during clin-
ical integration. Ongoing development of DL models for additional

tumor locations (esophagus, prostate, etc.) aims to expand application
scenarios in prospective use. More external validations will be incor-
porated to investigate robustness against changing circumstances
during continuous use, including novel dose optimization algorithms,
dose model migration, and hardware variations.

Future research will build on these findings through large-scale
prospective multi-disease validations in collaboration with multiple
clinical centers. Our goals are to bridge existing gaps and translate our
current research into tangible clinical benefits, particularly improved
patient outcomes from more consistent treatment plans. As a step
forward, the proposed ATP solution has been successfully imple-
mented in an All-in-One radiotherapy workflow for prospective online
initial treatment of rectal cancer patients with automated delineation®
at a single institution®®, and is currently being evaluated in broader

Nature Communications | (2026)17:867

12


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-67581-z

settings. Additionally, integrating an Al agent for ATP generation and
modification using large-language models (LLMs) within our frame-
work offers a promising avenue to enhance efficiency and consistency
in prospective implementation.

In conclusion, the current study has advanced the automation of
radiotherapy treatment planning into real-world clinical practice. The
multi-institutional retrospective assessments demonstrate that the
proposed ATP solution based on a single-institutional DL framework is
noninferior to human-driven planning across various disease sites. Our
findings highlight the potential of ATP to facilitate the widespread
integration of fully automated radiotherapy treatment planning while
addressing its current limitations through iterative improvements and
collaborative innovation. The clinically accessible and deliverable ATP
solution is expected to enhance efficiency and promote more homo-
genous treatment plans across regions with varying medical resources.
Beyond that, it provides a solid foundation for enabling online
replanning in personalized adaptive radiotherapy, paving the way for
more efficient and patient-centered treatment workflows.

Method

ATP framework in this study

This study was approved by the institutional review board of Institu-
tion A (SCCIRB NO. 2201250-16). For retrospective analysis, written
informed consents were obtained from all enrolled patients across
institutions. The proposed ATP method was jointly developed by our
department and the UIH (United Imaging Healthcare Shanghai, China),
and has been implemented in its treatment planning system (uTPS,
Version RO0L.3) for clinical use. The ATP workflow consists of two
phases, as shown in Supplementary Fig.1. First, in the dose-prediction
phase, a voxel-level dose distribution is predicted by a knowledge-
based DL model utilizing CT images and contours as input. The model
extracts the geometric features of regions of interest (ROI) contours of
a specific patient and outputs the dose distribution close to the Pareto
optimal plan of the patient, by learning from high-quality historical
planning cases. Second, in the auto-optimization phase, DVH indices
are extracted from the predicted dose distribution according to a
clinical goal list set beforehand, and employed as dose objectives in an
inverse optimization. A default site-specific dose control strategy is
also incorporated into the optimization process to generate an
executable plan. This two-phase workflow enables the ATP solution to
efficiently produce high-quality treatment plans. Further details of the
ATP solution are provided in subsequent subsections.

Dose prediction model architecture. A channel attention densely-
connected U-Net (CAD-UNet)" was employed in this study to predict
the three-dimensional dose distribution of a patient. In this model, the
critical ROIs, including PTVs and interested OARs, are treated as the
input “channels” for dose prediction. Each individual OAR is assigned
to a distinct channel, whereas all PTV regions are aggregated into a
single ROI and incorporated into one channel. Regarding the OARs
that overlap with PTV, only the doses of the voxels outside the PTV are
predicted by the model. The voxels within the PTV are set as the pre-
scribed dose. In cases where a voxel belongs to multiple PTVs with
different prescribed doses, the highest prescribed dose is selected as
the voxel value for dose prediction. The input contours are converted
into matrix-based Boolean masks with a voxel resolution of
3 x 3 x 3mm, and used as the input of the CAD-UNet with a patch size
of Nx128 x128 x128, where N represents the total number of ROI
channels considered for dose prediction.

The CAD-UNet model adopts a U-shape architecture consisting of
a contracting path and an expanding path, as illustrated in Supple-
mentary Fig.2. During the contracting process, the channel number of
the feature map is doubled by each CAD block. The corresponding
feature maps from the contracting path are concatenated with the
feature maps in the expanding path, and the number of channels of the

feature maps is reduced by CAD blocks. In addition, the shape of the
feature maps is doubled through nearest neighbor up-sampling. The
model utilizes 1x1x1 convolution to output the single-channel pre-
dicted dose distribution, and used ReLU as the activation function to
guarantee the prediction value greater than or equal to 0. To balance
the impacts of ROIs with different volumes, a weighted-mean square
error (WMSE) loss was applied by introducing volume normalization as
follows:

V ~
Lypse= % x Zwv <du - du>2 @
v=1

where d and d represent the predicted dose matrix and ground truth
dose matrix. V denotes the total voxel number of output data, and w
denotes the weight map of this function. The weight for each voxel in a
ROl is the reciprocal of the ROI volume as a percentage of the total
voxel number.

Inverse optimization strategies. Automatic inverse optimization is
performed based on a customized clinical goal list and default dose
control strategy for each treatment site. The site-specific goal list
comprises of a series of prioritized dosimetric requirements repre-
senting the clinical trade-offs between PTV coverage and sparing of
different OARs. Structures are differentiated by their planning roles
(GTV/CTV/PTV, Organ, Control, etc.). Priority equal to 1 (P1) means the
highest priority. Target-related goals are set in priority 2 as default.
Priority rules of organ-related goals are described in Supplementary
Table 2. For OARs with same or lower priorities than target, the
objective values of the DVH indices are extracted from the predicted
dose distribution, while hard constraints in P1 require a comprise of
PTV coverage and therefore their objective values are specified by
user. Control-related goals for dose shaping follow the same rule of
priority, with their objective values defined by user, rather than
extracted from prediction.

For each predicted goal, a prediction tolerance parameter can be
manually set to adjust the objective value in order to generalize to
different patient groups and different clinical preferences. For
instance, the parameter -t% indicates that the extracted predicted
value will be reduced by t% and used as objective. The final clinical
goals are mapped to optimization objectives F‘gz‘.’l”“, whose weights
are determined by the priorities. A robust goal {ist was obtained by
local institution validation on novel patient cohorts (approximately 10
patients per site) until all the auto-plans were comparable to or better
than the original clinical plans. Full versions of the recommended goal
lists across five sites in Institution A are available in Supplementary
Table 3.

Additional dose control strategy is automatically incorporated
into the iterative optimization process, including site-specific control
of conformality and dose falloff outside the target Fg,’,j, aswell as global
maximum dose control Fg",;;xdose (106% of prescribed dose in default).
After normalization and summation of the objectives, the total
objective function F%% is presented as follows:

obj
total _ -goallist Cl maxdose
Fon' =D _Fay o *Foy+Fop ™, )
JjeG

where G denotes the total number of goals in the goal list.

DL model development

The DL models were developed in Institution A for dose prediction of
five disease sites, including NPC, lung, breast, cervix, and rectum. In
total, historical datasets of 1030 patients were collected for training of
the five models. These patients received static/dynamic IMRT (sIMRT/
dIMRT) or VMAT treatments in Institution A between 2020 and 2023.
All the historical treatment plans were made or approved by senior
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physicists so deemed to be clinically optimal. For each site, the patient
datasets (ranging from 100 to 300 cases) were randomly divided into
training and validation sets, as listed in Supplementary Table 1. The
treatment technique of the collected training data was either pure
IMRT or pure VMAT, except for breast, with IMRT to VMAT ratio of
1:1.7. It is important to note that the datasets were not subdivided by
tumor locations during the model training. Consequently, the breast
datasets for both left- and right-sided groups, as well as those with and
without regional nodal irradiation, were fed into a single breast model.
Similarly, the lung model covered both borderline and central data-
sets. This measure aimed to generalize the models across a wide range
of clinical scenarios for each treatment site.

Model training was conducted using Pytorch on an NVIDIA
RTG3090 GPU, by employing Adam optimizer (81=0.9, 52=0.999)
with an initial learning rate of 3x10™. We implemented cosine
annealing scheduling where the learning rate decayed to a minimum of
1x107°. Weight decay (L2 regularization) of 1x10™* was applied to
prevent overfitting. Each epoch consisted of 500 iterations with a
batch size of 2. Early stopping (patience=50 epochs) monitored the
validation loss, with maximum training limited to 1000 epochs.
He_normal initialization method> was used to initialize the network
parameters. Data augmentation was implemented in real-time during
training to enhance model generalizability. The augmentation pipeline
incorporated three primary geometric transformations: axial transla-
tion with a displacement range of +64 voxels (corresponding to
+19.2 mm given the 3 mm?3 voxel resolution), axial scaling applied
uniformly across all axes within +10% of the original dimensions, and
three-dimensional rotation with angular variations of +10° around
each spatial axis. These transformations were dynamically generated
using fixed random seeds (seed =2020) to ensure reproducible aug-
mentation patterns across different training sessions, with transfor-
mation parameters sampled from uniform distributions at each
iteration. The computational efficiency of this approach enabled on-
the-fly processing without requiring pre-augmented data storage,
while maintaining batch diversity through probabilistic application of
combined transformations.

Patient cohorts

Retrospective comparison of ATP and manual planning was performed
in three cancer institutions of China, including the internal institution
(A), and two external institutions (B and C). A total of 250 patients were
enrolled in this study, with 50 patients per site. Patients with artificial
femoral head or hip replacement implant were excluded for cervical
and rectal studies, and no patients were excluded for the other studies.
Sex or gender was not considered in the study design because sex or
gender was not a relevant factor to the evaluation of dosimetric per-
formance and time saving of automated radiotherapy planning.
Detailed characteristics of the patient cohorts are summarized in
Table 1. PTVs and OARs necessary for dose prediction were contoured
according to the respective delineation guideline of local institution,
and the MNL plans were generated and clinically approved beforehand
in uTPS for all the enrolled patients.

ATP plan generation

For retrospective comparison, the ATP plans were generated in the
following steps by manual execution: create a new plan by copying the
beam configuration of the MNL plan, load the prediction model and
clinical goal list of the appropriate site, and start optimization using
the ATP module implemented in uTPS. To investigate the robustness
and generalizability of the ATP solution, different strategies of clinical
goals were adopted in three institutions. The Institution A and B shared
the same goal lists, while Institution C modified the goal lists to align
with its local clinical standards, as detailed in Supplementary
Tables 3 and 4. No per-patient goal adjustments were applied during
the plan generation.

In a prospective scenario, manual operations on localization,
couch replacement, density table selection, and beam orientation
setup are currently needed before ATP plan generation, as shown in
Fig. 7. A fully automated scripted pipeline can be available by using

pre-configured plan templates®.

Plan evaluation and statistical analysis

The ATP and MNL plans were compared in subjective and objective
criteria, respectively. For subjective evaluation, three expert physi-
cians from each institution were invited to evaluate the plans of a
certain site. Source of the plans (ATP or MNL) was blinded to the
reviewing physicians. The physicians were required to fill a ques-
tionnaire of a 3-point Likert scale (agree, disagree, or cannot judge),
regarding the clinical acceptability, preferability, and generation
method of the plans. Selection of “cannot judge” indicates equivalence
or indistinguishability, so it scores as ATP preference if the plan is
deemed acceptable, and as misidentification of ATP generation. Phy-
sicians were also prompted to provide comments or reasons for their
selections. We summarized the keywords mentioned in the comments
of the reviewing physicians and plotted a snapshot of word cloud in
Supplementary Fig.3.

Dosimetric comparison between the ATP group and MNL group
was performed at the DVH endpoints defined by the RTOG protocols
of each site'*?°. Difference in dose fractionation was accounted for by
converting the evaluating isodoses to the corresponding equivalent
doses in 2 Gy/fraction (EQD2). The results were extracted in bulk using
a Python-based in-house tool (RadDOP Version 2.5.0), and statistically
analyzed with a two-tailed paired-sample ¢ test for significance
(p < 0.05) using Microsoft Office Excel (Version 16.93.1). According to
the results of blinded review collected from all the institutions, the
dosimetric parameters were also compared between the ATP-
preferred group and MNL-preferred group. The relative difference of
each DVH metric was found by (Dy;n; — Darp)/Dayni X 100% (V95% and
CI of PTV had opposite sign to show ATP improvement). The average
value of the differences and the 95% Cl were calculated for each metric
and shown in Fig. 4. To account for multiple comparisons across
numerous dosimetric endpoints, the initial computed p values (p;)
were adjusted by applying Bonferroni correction, namely for simulta-
neous testing with m dosimetric endpoints, the adjusted p value of
each comparison p; was written as,

pi=min{p;xm,1} 1<i<sm). 3)

ATP output versus dose prediction

The ATP outputs were also compared with the predicted dose dis-
tributions to investigate the robustness and effectiveness of the auto-
mated optimization algorithm in various clinical settings. Differences in
both voxel wise (within body structure) and DVH endpoints (for OARs
only) were extracted for the 250 testing cases, as shown in Supple-
mentary Fig. 4 and Fig. 5, respectively. The voxel-wise error shown was
calculated as the absolute dose difference relative to the prescription
dose, i.e., IDyrp — Dpregiel /Dprescripeion < 100%, while the comparison of
DVH endpoints was evaluated by (D,7p — Dpredice)/ Ppredice * 100%.

The observed discrepancies in DVH endpoints between the pre-
dicted and final plans can be attributed to the following factors. First of
all, these discrepancies primarily stemmed from the clinical-goal-
guided optimization with different prediction tolerances and prio-
rities. For example, the clinical goals of maximum dose limits
in priority 1 for serial OARs in NPC, as well as additional isodose con-
trols in priority 1 for cervical and rectal cases at Institution C (Sup-
plementary Table 3), led to significantly lower doses of OARs than
prediction. Particularly, compared to A and B, a different trend of DVH
deviations in Institution C was subject to the tolerance adjustments of
tailored goals, i.e., reduced lung sparing in breast and lung sites
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(Supplementary Table 4). Difference in delivery techniques across
institutions (pure IMRT in A versus pure VMAT in B and C for NPC,
lung, cervix) may contribute to deviations from prediction in low-dose
regions, but generally seems to have minimal effect on the DVH
parameters of final plans.

ATP plan improvement

The OARs sparing and isodose coverage of the unfavorable ATP plans
were improved within the current framework by editing the goal lists.
Specifically, inferior OARs sparing was addressed by adjusting the
tolerance of the predicted goal in both institution level and patient
level, as illustrated in Fig. 6a. Conformality of a specific isodose profile
was adjusted in patient level only, as shown in Fig. 6b. In the present
method, the isodose surface around the target was shaped by both
isotropic dose falloff in an intrinsic rate and dose constraints to
influencing organs. If there was a need to change the overall dose
gradient, additional ring structures had to be generated and incorpo-
rated into the goal list (Supplementary Table 3). As to locally modifying
the isodose contour at a certain slice, such as cold/hot spot inside the
target and dose extruding/notching outside the target, usually it can
be solved by redressing the conflicting constraints in the goal list. In
extreme cases, a handcrafted patch contour, similar to manual plan-
ning, can be delineated and included in the goal list for further
optimization.

A cold start of plan re-optimization was usually recommended
when predicted objectives were adjusted, in order to obtain a better
output by reoptimizing the fluence map. Although a warm start could
be used for faster re-optimization (<2 min), it was primarily reserved
for patch modifications. Besides, it is worth noting that the intended
prediction adjustment does not necessarily result in changes to the
final result, as the priority order of the goals has to be primarily
observed.

Timing analysis of end-to-end planning
Herein, we analyzed the timing of the end-to-end planning process to
evaluate the efficiency improvement of the current ATP method in
contrast to manual approach. Due to the retrospective nature of this
study, the exact time spent on the historically manual plans used in the
paper was not available. To measure the actual time savings achieved
by ATP, we conducted a small-scale supplementary study about real-
world planning time comparison by recreating new MNL and ATP plans
across the three institutions. The study design is detailed as follows.

A total of 75 patients were included in this supplementary study,
with five patients allocated to each tumor site at each institution. The
enrolled patients were selected from new patients waiting for clinical
treatment between August and September 2025, so that the real-world
timelines were recorded. In each institution, the MNL plans were cre-
ated by five senior physicists (5-year experience or more) to include
inter-planner variability (each physicist developed five plans, one for
each tumor site). The corresponding ATP plans were generated (with
delivery techniques remaining unchanged) by another senior physicist
who was familiar with the automated system. The participants were
required to follow their own routines of planning (either pure-manual
or template/script-based executions) and record the actual time
expended in each step described in Fig. 7. All the physicists were
blinded to each other’s outputs. For a fair comparison, both MNL and
ATP plans were fine-tuned, if necessary, until the plans were con-
sidered acceptable and ready for physician evaluation, the timepoint
of which depended on physicist’s judgement. The number of fine-
tuning rounds of ATP plans was also recorded (both cold- and warm-
start re-optimization were included).

The calculated median and interquartile range of the elapsed time
to each step, as well as the cumulative time range of the entire cohort,
are presented in Fig. 7. Figure 8 displays the results of ATP

optimization rounds and total time savings on a case-by-case basis
across various institutions and disease sites.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Due to privacy concerns and regulation requirements, raw patient data
for model development and plan evaluation in this study cannot be
shared and are not publicly available. The processed data are provided
within the Article, Supplementary Information or Source Data file. Also
because of policy considerations, requests for DL dose prediction
models should be directed to the corresponding author W.H. and
made available after specific REB approvals and bespoke data sharing
agreement established between the institution and the requesting
party. Source data are provided with this paper.

Code availability

The ATP algorithm is available with the licensed automated treatment
planning module in uTPS (United Imaging Healthcare, Shanghai,
China). The installation package of RadDOP software used for batch
extraction of dosimetric metrics of radiotherapy plans is available on
GitHub at https://github.com/HuangShiXiong9146/Radiotherapy-
Dosimetry-Omics-Platform-RadDOP-*.. The version used in this study
can be found at Zenodo repertory through https://doi.org/10.5281/
zenodo.17490334%,
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