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We study lipid translocation (“flip-flop”) between the leaflets of planar lipid
bilayers with artificial intelligence (Al) guided transition path sampling (TPS).
Rare flip-flops compete with biological machineries that actively establish
asymmetric lipid compositions. By initializing molecular dynamics simulations
near transition states, Al for molecular mechanism discovery (AIMMD) cap-
tures lipid flip-flop without biasing the dynamics. Four distinct mechanisms of
flip-flop emerge, as encoded in neural networks trained on the fly to predict
the commitment probability (or “committor”) for a lipid to proceed to one or
the other leaflet. Whereas coarse-grained DMPC lipids “tunnel” through the
hydrophobic bilayer, unaided by water, atomistic DMPC lipids cross the
membrane through spontaneously formed water nanopores. In an atomistic
plasma membrane mimetic, cholesterol tunnels unaided by water, whereas
PLPC lipids exploit both transient water threads and nanodroplets to cross a
locally thinned membrane, as seen also in an atomistic bilayer of DSPC lipids.
Remarkably, in the high (-660) dimensional feature space of the deep neural
networks in AIMMD, the reaction coordinate becomes effectively linear, in line
with Cover’s theorem and consistent with the idea of dominant reaction tubes.

With advances in experimental techniques, the asymmetry of biolo-
gical membranes has been receiving increasing attention'?. The plasma
membrane in particular is highly asymmetric in terms of the lipid
composition of its two lipid leaflets*. While phosphatidylserine (PS) is
abundant in the cytosolic inner leaf, its appearance in the outer leaflet
indicates a compromised cell membrane, e.g., by a viral infection, and
triggers apoptotic cell destruction®”. To establish this asymmetry
against an entropic driving force, elaborate ATP-driven machineries
have evolved to actively translocate lipids between the leaflets®'° or to
trap lipids on one side by covalent modifications such as glycosylation
in the Golgi apparatus”. Without scramblases'>*—a class of proteins
that passively redistribute lipids between leaflets—an established
leaflet asymmetry tends to persist on biologically relevant timescales.

One major reason for this persistence is that spontaneous “flip-
flop™ of lipids between the two leaflets is rare™'. For flip-flop to occur,
the polar or charged lipid headgroup has to pass across the apolar
membrane, which is thermodynamically highly unfavorable”. A
headgroup-dependent enthalpic cost and a tail-length-dependent

entropic cost’® result in small rates of lipid flip-flop that decrease
exponentially with bilayer thickness®.

Lipid flip-flop rates have been measured primarily by labeling lipid
headgroups, e.g., with fluorophores and spin-labels®. Label-free
measurements have been limited mostly to challenging neutron-
based experiments and sum-frequency vibrational spectroscopy®.
Despite some differences between label-based and label-free
measurements'®, the kinetics of flip-flop is consistently slow. Even for
a zwitterionic short-chain lipid such as 1,2-dimyristoyl-sn-glycero-3-
phosphocholine (DMPC), spontaneous flip-flops occur only on a min-
ute timescale per lipid* .

Molecular dynamics (MD) simulations promise a label-free view of
the lipid flip-flop mechanism**~°, In MD, the passage of lipids flipping
their membrane orientation can be studied in full microscopic spatio-
temporal detail. For instance, previous numerical studies noticed a
connection of flip-flop to the formation of transient water pores®.
Artificially forcing single lipids to move into the bilayer results in water
defects, which then may span the whole bilayer”’. Conversely, creating
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pores in a membrane (e.g., in case of ionic charge imbalance? ™, via

electroporation®, or lateral/osmotic stress®) allows lipids to cross
between leaflets by diffusing along the membrane edge lining the pore.
The free energy cost for pore formation is known to increase with
membrane thickness,***” with a trade-off between enthalpy and
entropy.”*

Spontaneous lipid flip-flop has thus at least two conceivable,
distinct reaction channels—even if one ignores the assistance by
membrane protein scramblases or other membrane insertions. In the
“tunneling” pathway (denoted /7; in Fig. 1a), the phospholipid flips in
isolation, with its headgroup passing through the bilayer and its acyl
chains reorienting in the membrane. In the pore pathway (denoted
I1p), a water-filled pore transiently opens in the membrane and one or
several lipids then traverse across the pore-lining membrane edge
before the pore closes again. The vertical position z of the headgroup
is a natural “reaction coordinate” for transversal displacement. As
coordinate for the presence and size of a possibly associated pore, we
use & by Hub® which accounts for the occupancy of polar atoms
within the midplane®**° and their mean (lateral/axial) distance to the
nucleation center*.

To resolve the dominant mechanism among multiple pre-
identified choices—here direct versus pore-mediated flip-flop—one
could try to calculate and compare the respective transition rates.
However, this often proves challenging, in particular for a process
occurring on the minute timescale. Two common strategies to over-
come this difficulty are coarse-grained models**, i.e., representing
the lipids and solvent by larger beads, and including a steering bias,
e.g., by umbrella sampling®. Coarse-graining tends to result in much
faster kinetics and also in less stable water pores due to the simplistic
interaction potential and entropy loss*. Conversely, steering may
result in inadequate estimates, in particular if degrees of freedom
orthogonal to the chosen bias are relevant for the process.

Here, we use the recently developed “Artificial Intelligence for
Molecular Mechanism Discovery” (AIMMD)*. In AIMMD, we apply
transition path sampling (TPS)* to harvest reactive trajectories without

Fig. 1| Schematic of lipid flip-flop simulations. a Sketch of the simulation set up
and the two initial transition pathways. (Left) The “probe” lipid (red) is pulled from
the lower leaflet (state %) to the upper leaflet (state %) to produce a “dry” initial
pathway /1y “tunneling” through the bilayer. (Right) Alternatively, the probe lipid
(red) moves along the edge of a pre-established water nanopore in the “wet” pore
pathway /7,. Lipids are shown as sticks, phosphorus as orange ball, and water as
surface. b Individual atom distances Ar®" to neighboring lipids as the most pre-
dictive input features of the neural networks describing the reaction mechanism in
terms of the committor (yellow), together with vertical displacements of lipid
phosphate groups (Az"%%).

the application of bias forces or the choice of predefined collective
variables or reaction coordinates. From TPS, we learn the commitment
probability (or, in short, committor)***” on-the-fly, encoded in a deep
neural network. As the probability to proceed to the product state for a
given starting configuration, the committor pinpoints important
microscopic features describing the reaction mechanism. The features
used as inputs for the neural net include in particular the positions of
neighboring lipids in a symmetry invariant form (i.e., their transversal
distance between heads, Az"%*, and the distances between individual
pairs of atoms, Ar?, as depicted in Fig. 1b). In addition, we include
reporters on the nearby hydration, with the water-pore coordinate &,
of Hub* as a primary input. From the influence of the features on
network accuracy we then deduce the importance of factors ranging
from lipid orientation to water nanoporation. For the latter, we benefit
from extensive earlier studies®®***4°,

While very early pioneering work studying lipid flip-flop via TPS
only used coarse-grained models®*”, Al-guidance in AIMMD allows us
to study the molecular mechanism in full detail by sampling hundreds
of lipid flip-flop events in atomistic MD simulations. We apply this
general framework to neat DMPC lipid bilayers, as a single-species
model used extensively in systematic studies of various membrane
properties*****, including lipid flip-flop. We compare results for ato-
mistic MD simulations with those obtained using Martini coarse-
graining.

By seeding the AIMMD simulations with initial paths in the two
extreme pathways /1 and /7,, we establish the relaxation of the TPS to
the dominant mechanism. In this way, we show that DMPC lipids prefer
tunneling in the Martini model and pore-formation in the all-atom MD
model. Beyond the mechanism of lipid flip-flop, AIMMD also discovers
the mechanism for the spontaneous formation of a membrane pore in
a DMPC lipid bilayer, as a combination of pore size (§,) and vertical
lipid displacement (z;). For thicker bilayers formed by long-tailed 1,2-
distearoyl-sn-glycero-3-phosphocholine (DSPC) lipids, lipid transloca-
tion is catalyzed by narrow and transient water threads across a locally
thinned, hour-glass-shaped membrane. We confirm that “dry” tunnel-
ing predominates for cholesterol flip-flop in MD simulations of a
plasma membrane mimetic* with leaflet asymmetry, whereas PC lipids
cross between leaflets both along transient water nanowires and sol-
vated by small water nanodroplets.

Results

Martini DMPC lipids prefer tunneling mechanism

We start our investigation with a coarse-grained DMPC lipid model,
referring to Methods for detailed descriptions of the MD simulations
and TPS setup. The flip-flop transition of an individual lipid (the “probe
lipid”) between the lower leaflet (state .#) and the upper leaflet (state
) is tracked by monitoring its transversal displacement z from the
center of the lipid bilayer. We also measure how the hydration state of
the lipid bilayer around the probe lipid changes over the course of the
Monte Carlo (MC) chain of transition paths. A TPS MC step here cor-
responds to one two-way trajectory shooting attempt. Figure 2a shows
the (time) averaged pore reaction coordinate, rE p, as a function of the
MC step n in TPS, where values E‘le indicate the presence of a
membrane-spanning water pore. We track each of the samplers start-
ing from /1; (red) and /7, (blue) individually (faint) as well as their
mean (solid).

In /11, we initiate the TPS MC chains with an intact flat DMPC
double-layer without pore, E"P ~ 0.1. Over the course of the MC chain,
E‘ p continues to fluctuate around that value. Thus, the transition
mechanism remains in /7y, i.e., without the utilization of water pores.
By contrast, when starting from /7,, the initial, artificially large pore
rapidly shrinks from &, >1towards ~ 0.5. For the first few hundred MC
steps, & p does not further drop, i.e., the water pore is not fully closed.
In this intermediate phase of TPS, the probe lipid is still connected to
neighboring water beads, e.g., via a connecting water thread
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Fig. 2 | Coarse-grained DMPC lipids tunnel through membrane. a Time-average
of pore reaction coordinate, {p, evolving during the TPS MC chain. We compare

samplers starting from an intact membrane (dry path /7;, red) and from a formed
pore (wet path [T, blue). Dark colors show a sample average, smoothed over 10 TPS
MC steps. b Accuracy of committor models comparing different input features to
random committor assignments (“rand”). Boxes show median and 25/75 th per-

centile of 1000 bootstraps drawn from a total of 10000 MC steps; whiskers show

2.5/97.5 th percentile. ¢, d Distribution of committor estimates for a given feature,
comparing transversal displacement z (c) with a linear combination of bead-to-
bead distances to neighboring lipids, Ar™" . v, (d). e Projection of the TPE onto z
and Ar?" . v,. Gray iso-lines show the committor averaged over 5000 nearest-
neighbors (0.6% of all data). Representative configurations (dots) are shown in the
seven side-panels I-VII. Nearest neighbors are colored in white with increasing
intensity, and distances in yellow.

(see Supplementary Fig. 1a for an exemplary transition). The connec-
tion breaks, though, as the probe lipid reaches the other side, flushing
out all water beads of the membrane (see also Supplementary Fig. 1b).
Notably, in this intermediate, unstable period, the transition times to
move from £ to % (or vice versa) are the smallest, even compared to
I1; (see Supplementary Fig. 1c). After about n~ 500 MC steps on
average, we have a behavior similar to /7y, and thus, all water beads are
flushed out and the pore is closed completely during the remaining
transitions. There are only rare occasions of single water beads pene-
trating the membrane, even while the probe lipid is situated in the mid-
plane (see also Supplementary Fig. 1b).

By initializing the MC samplers from the two competing
mechanisms /11 and /7, and observing that all TP samplers converged
to I1;, we clearly see that Martini DMPC lipids prefer to flip-flop
without utilizing transient water pores. To further explain how they
instead tunnel through the bilayer, we study the importance of indi-
vidual microscopic features x describing the committor ¢(x). To that
end, we train on the /1; data, evaluate a variety of neural network
models of ¢ and measure their respective TP prediction accuracy.

Figure 2b compares how the use of different input features affects
the accuracy a of the model; see “Methods” for its definition. While its

transversal displacement z (blue) already does a reasonable job pre-
dicting TPs, we find that a full description of the tunnel transition
mechanism requires adding direct information about the neighboring
lipids, like the vertical position Az"°* of their PO4 beads, or better via
the relative distances, Ar™" (red), of beads of the lipid neighbor net-
work, then giving close-to-optimal prediction accuracy. We refer to
Methods and Supplementary Table 1 for details on the network
architectures.

When we now train a network model on all these features, and try
to understand how they are encoded into ¢(x), we find that the
direction v(¢)=(V¢) " /‘<V¢> »| of the reactive flux averaged on iso-
surfaces of ¢ hardly changes with ¢ (see Supplementary Fig. 2a). This
implies a simple shape of the committor, ¢ ~ @(x - v), i.e., a quasi-
linear model of the input features. The flux direction v in feature space
emphasizes the tilt angle®**° of the probe lipid even more than its
vertical position z. Yet, most of the weight is found in the distances of
its head to neighboring lipids (denoted as a weight vector v,; see also
Supplementary Fig. 2b). A simple model using the linear projection
X -v as input resolves and reproduces the committor (Fig. 2b and
Supplementary Fig. 2c, d). A possible interpretation of this weighted
average of neighbor distances as reaction coordinate may be that the
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Fig. 3 | Atomistic DMPC lipids flip bilayers through water-filled nanopores.

a Time-average of , during the MC chains, comparing sampler starting from the
tunnel mechanism, (dry, /T, red), with those starting with a pore (wet, /T;, blue).
b Efficiency n measured by difference of expected and generated

TPs, An =gy, — Ngey, and by the simulation time 7+p of new transition events
compared to the total simulation time 7. ¢ Accuracy of committor models cor-
relating the vertical lipid displacement z to bead-to-bead distances Ar", training on
all data (bright), compared to only /7, (dark). Boxes show median and 25/75™

percentile of 800 bootstraps drawn from a total of 3500 (1418 in /7,) MC steps;
whiskers show 2.5/97.5" percentile. Random committor assignments:

rand. d-h Distribution of committor estimates for a given feature, comparing z
(d, e) and a linear combination of distances (f, g), Ar'. v,, stratified to the /7, (d, f)
and /1y (e, g) data, and the pore coordinate & (h). i Projection of the TPE onto z and
&p. Black iso-lines show the committor averaged over 5000 nearest-neighbors
(0.6% of all data). Representative configurations are shown in the four side-
panels I-IV.

network learned how to better identify the geometry and center of the
membrane. But the linearity of this model also implies that there is no
particular sequence of events (no specific conformational change of
the lipid and its neighbors) resulting in flip-flop.

It is instructive to compare the now identified important pro-
jected neighbor distance, Ar®" -v;, with the probe lipid’s vertical dis-
placement z based on their committor estimates (Fig. 2c, d) and the
transition path ensemble (TPE) projected onto these features (Fig. 2e).
The flip-flop starts by inserting the lipid tail-first from one leaflet (state
< in panel 1) into the bilayer. It then tilts into the cavity inside the
midplane, where a variety of distinct conformations with the same
insertion depth z have the same commitment probability (Fig. 2¢): e.g.,
conformations with joined tails (panel Il) and with split tails either
parallel (panel Ill) or perpendicular (panel IV) are projected to roughly
the same spot, balancing the distances to the two leaflets. The pro-
jection Ar'l. v, of distances onto v, resolves the configurations x
according to their committor values ¢ (Fig. 2d, and the (gray) iso-lines
of (p((x) al -v) in Fig. 2e). Note, though, that close to the state

z,Ar" v,
boundaries, defining the ¢p=0 and 1 iso-surfaces, this simple linear

model has to fail. For a given configuration, the linear projection Ar" .

v, identifies the features that commit it to one or the other leaflet as the
probe head and leaflet phosphates approaching each other (Panel V
and panel VI). At the end, the lipid is pushed out straight (state # in
panel VII). See also Supplementary Fig. 3 for time-traces of exemp-
lary TPs.

Charmm36 DMPC lipids utilize transient water pores

We repeat the same procedure with an all-atom representation of the
DMPC lipids; see “Methods”. We again classify the overall mechanism
of transition by means of the pore defect &y, as shown in Fig. 3a (top).
The samplers prepared initially in /7, (blue) all stay in the pore state,
E‘P>2. By contrast, the samplers initiated in /1y, i.e., with an intact
membrane (red), all start with é"p well below 1. Still, each individual
sampler eventually switches to E‘P ~ 2 as the TPS MC chain progresses.
As TPS progressed, lipid flipping thus triggered the formation of water
nanopores across the bilayer, which were then kept intact throughout
the remaining MC chain. While the probe is able to drag a few water
molecules from the get-go (see, e.g., the average neighboring water in
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Supplementary Fig. 4a, b for exemplary trajectories), a switch to a fully
connected water chain ( p ~ 1) isrelatively abrupt, meaning the pore is
quickly filled during only a few MC steps. The pore then finally relaxes
to about twice its initial size, in accordance with ref. 36 (see also
Supplementary Fig. 5 for exemplary TPs). The open nanopores persist
for about 0.4 ps on average, far beyond the ~ 25 ns long flip-flop
events (Supplementary Fig. 6a, b). AIMMD thus shows that in the
atomistic model, DMPC lipid flip-flop is associated with the formation
of water nanopores across which the lipids then traverse between the
leaflets.

We can quantify the efficiency of the Al-guided path sampling in
AIMMD by comparing the number of actually generated reactive tra-
jectories (ng,) to those expected for the estimated commitment
probabilities (11, given by the cumulative sum over the estimated TP
probability P(TP, |, X) =2¢(X)[1 — ¢(x)] 7). Figure 3b (solid lines) shows
Nan=1— An/n as a measure of efficiency, with An=n.,, — ns., and n
the number of MC steps. Convergence to 17,,, ~ 0.88 indicates a good
network model of the committor ¢ also for the atomistic MD
simulations.

We alternatively measure the efficiency by n; = Typ /T, compar-
ing the aggregate time T, of newly accepted transition paths entering
the TPS Markov chain to the total simulation time T (Fig. 3b, dashed
lines). With ~ 18% of MC steps resulting in accepted TPs (16% of 1,
23% of IT,) of a combined time Tp ~ 12 ps, we achieve an efficiency of
ny ~ 0.25, i.e., a quarter of the time goes to simulating new, accepted
transition paths.

The analyses of the TPS data and the committor model trained on
the shooting results now depend on whether or not we include the
large portion of initial /7 transitions. If we do, see Fig. 3c, we see that
the committor prediction using all neighbor distances Ar™" (yellow)
again outperforms a simple model using z alone (light blue). With the
smaller sample size, the model accuracy is worse than in the coarse-
grained case (see Supplementary Fig. 7a for an error analysis), but we
again see the importance of the precise relative position to the probe’s
neighbors for a successful transition.

If we, however, consider only the data from the dominant path-
type /7, to which all TPS walkers relax eventually, the transversal dis-
placement z (dark blue) suffices to describe the transition mechanism.
There is no improvement by using more features, like the distances to
neighbors, Ar" (red). While we expect that the AIMMD efficiency
would slightly improve when continued sampling, our collected data
(1419 17, paths for in total 3500 shooting points (SPs)) is convincing
enough to confirm the diffusion along z via IT,. We also refer to Sup-
plementary Fig. 7b, c for cross-validation of these models.

We again find that the training process resulted in learning a linear
combination of the input features and a uni-directional reactive flux (see
Supplementary Fig. 8). In Fig. 3d-i we break down its main contributors:
the displacement z (d,e; with more weight compared to Martini), and
the distance average Ar? . v, (fg; with very similar weight); and com-
pare it to the pore-defining reaction coordinate & p (h). To no surprise,
we see differences in prediction accuracy of these features depending if
we limit the analysis to either the /7; or [7, data. That is, in case of z, we
see a relatively sharp distribution of ¢ when traversing along /7,
(Fig. 3d), again indicating that z is capable to describe the diffusion. For
the 77; mechanism, however, ¢(z) broadens (Fig. 3g), which means zisa
poor descriptor of the pore-less flip-flop, in line with our Martini result.
Conversely, if we look at the weighted average of distance between
atoms of probe and neighboring lipids, Ar® -v,, we see a broad dis-
tribution corresponding now to /7, (Fig. 3f), and a sharp distribution in
Iy (Fig. 3g). This tells us that Ar . v, takes a similar role as in the
Martini case, describing the pore-less tunneling via /7; and becoming
obsolete after TPS has converged to /7,, where z alone suffices.
Including Ar™ again improves the localization of the effective
membrane center of an intact membrane, but not when situated
in a pore.

The state &, of the water pore, in contrast, is always a poor
predictor and is thus not deemed important by the model. Figure 3e
shows the TPS data projected onto the displacement z and pore
shape §p. The bottom region, {p <1, represents early trajectories
traversing from # to % via [1; (see also panel I). Conversely, the
upper §p >1 region shows the trajectories starting and ending with a
formed open pore, with fluctuations around §p ~2 due to pore
expansion and contraction (panel Il and Ill). The transition from /7; to
T, paths in the TPS MC chain itself appears to be a rare event,
associated with the nucleation of a water nanopore in a single tra-
jectory, as reflected in a step in {p (panel IV). Here, the probe’s head
within the membrane attracts the surrounding water to seed and
eventually form a percolating water thread. The iso-lines of ¢ pro-
jected onto z and §p expand from the narrow /7; to a broader and less
committed behavior along /7,, but stay roughly parallel to &, other-
wise (see also Supplementary Fig. 7d for a study of the midplane-
symmetry).

Without imposing a sealed membrane in the initial and final state,
the network model thus did not need to learn the actual transition
mechanism of flip-flop, but only the intermediate, diffusive step (along
z), before and after the formation and closing of the water pore (p).
This is because we defined the states # and .# only via the displace-
ment z such that we observe pore nucleation only during the initial
equilibration phase of TPS.

Pore nucleation precedes flip-flops

Therefore, we now aim to capture the nanopore nucleation step prior
to the lipid traversal for a full description of the flip-flop process. So far,
nucleation of water pores was achieved by merely shooting close to the
transition state, hinting at the importance of flip-flopping lipids as
seeds for the formation of transient water pores. These nucleation
events are now used as TPS starting points, and evaluated via the pore
reaction coordinate £, to define the flat and porous membrane. We
refer to Methods for simulation details.

We see in Fig. 4a that AIMMD is capable of efficiently sampling
also pore nucleation. With efficiencies of ,,, ~ 0.95and n; ~ 0.24, we
have a total of 256 distinct TPs to analyze the mechanism of pore
nucleation. Since &, is treating all lipids as a group, instead of having
one tagged lipid probe, we look at the behavior of each lipid, sorted,
e.g., by their distance z; from the midplane.

To elucidate the mechanism of pore nucleation, we again com-
pare different features as inputs for the committor network model,
Fig. 4b. With further details in Methods, we compare using only £, with
using z; as inputs. Inspired by the work of ref. 40, we also use the
largest depletion of four P and N atoms from the nucleation center,
Az . While there is a hint of better accuracies a using the latter,
both &, and Azyi) , do a decent job in predicting TPs. There is no
major improvement in & by using more input features, which confirms
their suitability as reaction coordinates. The somewhat lower accuracy
of the committor models for the atomistic DMPC model (a between
0.8 and 0.9 in Fig. 3c) compared to the Martini DMPC model (a ~ 0.9
in Fig. 2b) is likely due to a combination of fewer training data and thus
some not fully resolved atomistic details (with pore and tunnel
mechanism).

To study the connection of pore nucleation to lipid flip-flop, we
start by simply counting all observed translocation events. During
most nucleation transitions, no lipids flip. We only observe 10 distinct
flip flop events, in ~ 3% of the TPs. See Supplementary Fig. 9a, b for an
example of these transitions. In all of these cases, the flip-flop is pre-
ceded with bulging of the membrane and then water forming a per-
colating thread between the leaflets (see Supplementary Fig. 9¢ for
evaluation of z; compared to the pore in these cases). So, while our SP
selection in the previous sampling of lipid flip-flop inevitably resulted
in the nucleation of water-pores, we can rule out lipid flip-flop as a
main, native trigger of pore nucleation. Instead, the flip-flop happens
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Fig. 4 | TPS of water nanopore nucleation in membranes of Charmm36 DMPC
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depletion of P and N atoms AzJaY . Boxes show median and 25/75™ percentile of

800 bootstraps drawn from a total of 1000 MC steps; whiskers show 2.5/97.5™
percentile. ¢ Pore nucleation mechanism. The center plot shows the TPE for
nucleation of a pore (state #) starting from a flat membrane (state %), projected
onto the plane spanned by &, and z;. Side panels show representative structures.

at a later stage, with the spontaneously formed nanopores staying
open for about 0.4 ps on average, with typically about 15 flip-flop
events (Supplementary Fig. 6a).

By sampling the nucleation process, still, some lipids have to
migrate towards the bilayer midplane. The TPE in terms of &, and z;,
see Fig. 4c, shows how (at least) the lipid closest to the nucleation
center migrates into the pore. We see that starting from a flat surface,
state #, the membrane starts to bulge and thin locally, thus also
bringing z; closer to zero. As &, reaches 0.5, a water connection to the
other side forms. The insertion of water molecules is then followed by
the polar lipid heads, see Supplementary Fig. 9d, in accordance with
refs. 35,40,58. A pore is formed for , > 1, which then has to stretch toa
slightly expanded shape to reach state 2.

Transient water threads and local membrane thinning as third
mechanism for flip-flop through thick membranes

For thick membranes formed by long-tailed DSPC lipids, yet another
mechanism emerges: flip-flop mediated by transient and narrow water
threads associated with local membrane thinning. We initiate AIMMD
simulations of atomistic DSPC lipid bilayers from /11 and /7, initial
pathways (Supplementary Fig. 10). In the /7, sampler, the water pores
quickly become narrow, and collapse almost immediately after com-
pleted flip-flop. This collapse is consistent with water nanopores being
disfavored in thick bilayers***’*, By contrast, the initial “dry” flip-flop
in the /1y samplers quickly changes to incorporate water, where the
probe head drags individual water molecules as a single shell to the
other side. In one case, the flip-flop mechanism transitions to a narrow
pore that then persists. Visual inspection shows that the process is
initialized by bulging, resulting in local thinning of the membrane,
after which a transient water thread*® forms (see the examples in

Supplementary Fig. 11). The flipping lipid then connects the two DSPC
leaflets, which adopt a shape resembling a conic intersection. How-
ever, more extensive TPS would be needed for a full quantification of
the reactive flux carried by this third reaction channel, intermediate
between the “wet” and the “dry” pathways with and without fully
formed water nanopores.

Dry and wet flip-flop in plasma membrane

To study lipid flip-flop in a biologically more realistic system, we per-
formed AIMMD simulations of a mammalian plasma membrane (PM)
mimetic***°, We focused on the two most abundant lipid species:
cholesterol and 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine
(PLPC). For the comparably apolar cholesterol, with a single hydroxyl
group at its polar end, the AIMMD samplers quickly converge to a dry,
pore-less tunnel mechanism (Fig. 5a and Supplementary Fig. 12). By
contrast, the samplers for PLPC lipid with its zwitterionic phosphati-
dylcholine headgroup switch to a flip-flop mechanism closely
mimicking that of the pure DSPC bilayer. In this pathway, the pores
first destabilize so that PLPC translocates along narrow, transient water
nanowires (Fig. 5b and Supplementary Fig. 13). Eventually, though, in
most of the samplers, these nanopores collapse so that instead, only
the lipid headgroup is solvated in a water nanodroplet, passing
through the otherwise intact lipid bilayer.

Discussion

With the recently developed AIMMD methodology**, we conducted an
extensive numerical study of unassisted flip-flop of lipids in fully ato-
mistic representations of two model membranes and a plasma mem-
brane mimetic, and for reference in a model membrane at coarse-
grained resolution.
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Fig. 5 | Transition states states (¢ ~ 0.5) of lipid flip-flop in plasma membrane
mimetic at atomistic resolution. a Halfway across the membrane, cholesterol
tends to lie flat at the membrane center. b The polar head of PLPC lipid tends to
retain a small hydration shell. Lipids and water are shown as sticks, phosphorus and
cholesterol oxygen as spheres.

For a bilayer of DMPC lipids in atomistic representation, flip-flop
occurs predominantly by passage across spontaneously formed
water nanopores. Once formed, the water nanopores typically stayed
open long enough for multiple flip-flop events. As strong evidence
for the dominance of the pore pathway /7, here, we firstimproved the
statistics by running multiple TPS MC chains starting from different
seed paths that jointly cover the two extreme mechanisms of a pre-
existing pore and of dry lipid tunneling. Importantly, already the first
paths in each chain were unbiased transition trajectories, albeit from
a transition state (here, with a lipid at the bilayer center or with a
pore) created by gently applying restraints. As new transition paths
were discovered, memory of the seed paths was quickly lost (Sup-
plementary Fig. 6¢c). We even observed that the character of the
transition state changed: in all runs starting with dry tunneling /7,
water pores formed eventually, leading to a /7, mechanism (Fig. 3a).
This pathway via nanopores then persisted for all TPS walkers,
ensuring the convergence to the unbiased, equilibrium TPE of our
atomistic DMPC membrane.

AIMMD was also able to effectively sample water nanopore
nucleation in an unbiased way. It confirmed that, first, the pore is
established by a percolating water thread*®, which then allowed lipid
headgroups to enter into the bilayer, with or without flip-flop. Pore
formation thus appears to precede flip-flop, which occurs by chance in
pores that live long enough, about 0.4 ps before pore collapse in our
system (Supplementary Fig. 6).

We observed the other extreme case of pore-less flip-flop via the
I1; pathway with the coarse grained DMPC Martini lipids and at the
start of the all-atom TPS MC chains. Despite the involvement of an
entire lipid patch in the flip-flop process, the committor network
model was able to encode all relevant microscopic details. We found
that to best predict the outcome of a (/7;) transition, the model needed
to take into account the surrounding network of lipids, most impor-
tantly their headgroups.

The dry lipid flip-flop mechanism observed for Martini DMPC
lipids (Fig. 2) could be recapitulated for cholesterol in atomistic
simulations of a plasma membrane mimetic (Supplementary Fig. 12).
The committor for dry lipid passage is described well by a quasi-linear
expression both for Martini and atomistic simulations (Supplementary
Fig. 2 and Supplementary Fig. 8), with a linear projection of a large
feature space entering a one-dimensional nonlinear function.

Most strikingly, we found that, after extensive training, our deep
neural network with a ~ 660-dimensional feature space encoded the
committor in a nearly linear fashion. While neural networks are in
general considered to be quasi black boxes able to approximate highly
non-linear and hard-to-interpret functions, our network instead con-
verged to a weighted average of distances to the neighboring lipids as
an optimal reaction coordinate, associated with a simple uni-

directional reactive flux. This thought-provoking result connects to
early linear models for ¢*, as well as the idea of transition tubes® as
approximately straight pathways through the transition region. The
unanticipated tendency to linear models in sufficiently high dimen-
sions is consistent with Cover’s theorem® as a statement on the
effectiveness of linear classifiers in high-dimensional spaces. By
increasing the dimension of the feature space, linear models become
more effective in discriminating configurations, here according to
their committor values. However, the need to regularize the network
representation of ¢ to prevent overfitting may play a role as well. How
linear the transition funnel is close to the transition state emerges as an
interesting future research direction well suited for the AIMMD
method.

So, which transition mechanism of flip-flop is the correct one?
Both atomistic and coarse-grained force fields are known to suffer
from inaccuracies, which here may lead to the observed qualitatively
different behavior of tunneling, with or without passenger water
molecules, and pore mediated flip-flop. For DMPC lipids, the Martini
case showed us how a lipid may flip without water (at least in part due
to the well-known instability of Martini water pores*>*®) but the all-
atom representation instead leads to fully grown water pores to diffuse
through. A middle-ground between a completely dry tunneling and
nanopore formation might thus be what we observed for atomistic
DSPC lipids and for PLPC lipids in the plasma membrane, where the
rare local membrane thinning combined with narrow water threads
and nanodroplets to establish a passageway for an even rarer lipid
flip-flop.

From here having captured tunnel, pore, water-thread, and water-
droplet mechanisms of flip-flop in closely related systems, we deduce
that the relevant free energy barriers have comparable heights. The
dominance of one or the other mechanism will then depend on system
and condition, in line with earlier MD studies (see, e.g., refs. 24,31,37).
For instance, lipids with large polar or highly charged headgroups may
favor water nanopores even in a thick bilayer, where tunneling or water
threads may dominate for a zwitterionic lipid. Also, a higher membrane
bending rigidity (e.g., due to cholesterol) should suppress both pore
formation and lipid flip-flop®* ¢, as suggested here by the pronounced
local bulging and thinning of the DSPC and plasma membrane, com-
pared to the pore-forming DMPC bilayer. In biological membranes,
scramblases relax bilayer asymmetries by providing comparably polar
passageways for lipid headgroups for comparably fast lipid flip-
flop™"**’. Here, in neat membranes, functionally similar but highly
transient polar passageways are provided by the fleeting appearance
of water nanopores, nanowires, and nanodroplets. For cell mem-
branes, we expect spontaneous phospholipid flip-flop unaided by
proteins to occur via the mechanism we observed for neat DSPC
bilayers and for PLPC lipids in the plasma membrane mimetic, i.e., with
local membrane thinning and a transient water wire, without forming a
metastable water nanopore. This mechanism can be considered
intermediate between the extremes of dry lipid tunneling and wet
water nanopore formation.

The connection between water pores and flip-flop is also
coming into focus in experimental studies (see, e.g., refs. 16,68,69),
having clear ramifications on the mechanistic interpretation of
observations of lipid flip-flop-associated relaxation processes”. We
expect that flip-flop mediated by water nanopores is essentially
independent of headgroup size and charge of the flipping lipid. By
contrast, flip-flop through dry tunnels should depend strongly on
the size and charge of the headgroup, which partially loses its sol-
vation shell during passage through the bilayer. By varying head-
groups of the probe lipid and acyl-chain lengths of lipids in the
background membrane, it should thus be possible to probe the
transitions between different mechanisms of flip-flop, e.g., by esti-
mating the entropy and enthalpy associated with defect density
changing with temperature’.
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Methods

Molecular dynamics simulation

For MD simulations of the coarse-grained DMPC bilayer, we used
gromacs version 20227° and the Martini 3**”* model (see Supplemen-
tary Fig. 14b, c for a sketch). A bilayer of 2 x 225 lipids was solvated in
water with 0.15 mol/L NaCl in a ~12x12x12 nm? box using the
insane.py** script. After energy minimization via gradient descent, the
system was shortly equilibrated for 0.1 ns with 2 fs timestep, after
which we performed a longer equilibration run with 20 fs time step for
1 ps, both in the semi-isotropic NP,,P,T ensemble, using v-rescale
thermostat’ at 310.15 K with 7=1 ps (membrane and solvent coupled
separately), and pressure couplings via Parrinello-Rahman” at 1 bar
with T=12 ps and k=3x10~* bar™. Van der Waals interactions were
handled with cutoff at 1.1 nm with potential-shift, Coulomb interac-
tions via reaction field”* with r =1.1 nm with a dielectric constant of 15
and an infinite relative reaction-field dielectric. To test whether the
reaction field electrostatics in our Martini simulations underestimated
the headgroup desolvation penalty in the apolar center of the bilayer,
we performed additional simulations with particle-mesh Ewald”® (PME)
electrostatics. Apart from setting the dielectric constant to 15, we left
the TPS protocol unchanged. We found that the use of PME had no
discernible effect on the observed flip-flop mechanism (Supplemen-
tary Fig. 15).

We also built a solvated all-atom DMPC bilayer (and similarly for
DSPC lipids) using CHARMM-GUI®*’®, maintaining the initial a
12 x12 x12 nm? box and using TIP3P water with 0.15 mol/L NaCl ions
(Supplementary Fig. 14a). The double layer was modeled by the
Charmm36 force field”. We also performed MD simulations of a
mammalian plasma membrane mimetic. We downloaded the mem-
brane model**® from the CHARM-GUI archive and doubled the
membrane area, resulting in a box of size 10.6 x10.6 x12 nm’>. The
resulting lipid numbers and mole fractions are listed in Supplementary
Table 2. The MD simulations were performed with the same aqueous
solvent composition, force field, equilibration sequence, and para-
meters as for the other systems.

The CHARMM-GUI schedule was set to a gradient descent mini-
mization with position restraints of the lipids (k=1000 k] mol"nm)
and their joint dihedral (k =1000 k) mol”rad™), which was followed by
an NVT equilibration with the same restraints for 125 ps with 1 fs time
step, with Berendsen thermostat’® at T=310.15 K (340.15K in case of
DSPC) with 7=1.0 ps (membrane and solvent coupled separately) and
constrained hydrogen bonds (LINCS™). Van der Waals interactions
were handled with cutoff at 1.2 nm, with force-switching from 1nm,
Coulomb interactions via PME” with r=1.2 nm. Then followed 125 ps
with k=400 kJmol™nm™ and 400 k] mol™rad, respectively, after
that a 125 ps NP,,P, T run at 1 bar with 7=5 ps and k =4.5x 1073 bar?,
with k=400 k) mol™nm™ and 200 k) mol™rad?, then 125 ps with 2 fs
time step and k=200 k] mol™nm™ and 200 kJ mol™rad?, then 125 ps
with k =40 k) mol"'nm™ and 100 k] mol™rad?, and then 125 ps without
restraints. We then performed a 100 ns long simulation with 2 fs time
step, v-rescale temperature coupling and Parrinello-Rahman pressure
coupling.

Transition path sampling

To test whether lipids prefer a spontaneous tunneling through the
bilayer (/1;), or the diffusion through formed water pores (/7,), we set
up initial transition pathways for these two cases (Fig. 1). Pathway /7,
required the preparation of a water pore by introduction of a flat-
bottomed position restraint on the lipids in the center of the simula-
tion box (for the PM, we shift the center to have 8 different staring
pores). To this end, we performed 1 ns (10 ns in case of Martini and the
PM) of simulations with k =500 k] mol™'nm™ and distance to the center
r ranging from 0.5 (head) to 1.6 nm (tail) to open the pore (for details
see the Zenodo repository ref. 80). With fixed pore, we performed 10

ns (100 ns in Martini MD) of simulations, in which we also fixed one of
the lipids chosen as probe lipid in the middle of the bilayer using an
additional cylindrical harmonic restraint of the PO4 group (ROH of the
PM cholesterol) with r =2 nm, k =1000 k) mol™nm™. We used the last 1
ns (10 ns for Martini) as an initial trajectory to pool SPs for parallel TPS
using AIMMD (see below). Using 8 samplers (6 for Martini), we ran a
total of 100 MC TPS steps, i.e., 100 TPS simulations with fixed pore but
unbiased probe lipid, of which we used for each sampler the last
accepted one as seed for the following unbiased TPS. See Supple-
mentary Fig. 14d for snapshots of one of these initial /7, paths. Pre-
paration of initial /1y trajectories was achieved by a harmonic
constraint pulling the probe lipid headgroup with v=0.001 nm/ps,
k=1000 k] mol™ nm, by simultaneously preventing water to enter the
double-layer by use of a flat-bottomed position restraint of k=500
kJ mol™nm and r =1 nm from the mid-plane, resulting in a pore-free
transition (Fig. 1, /1;). We repeated this procedure to pull both upwards
and downwards to have 4 +4 (3 +3 for Martini) seed paths (for the PM,
we use a different lipid each time.). These rough transition pathways
were then used for sequential TPS shooting. We ran a total of N =1000
MC steps with water restraint and unbiased probe lipid. We used the
last accepted one as seed for the following unbiased TPS. See Sup-
plementary Fig. 14e for snapshots of one of these initial /7; paths. In
both cases of initial starting transition pathways, we then performed
unbiased (i.e., without flat-bottomed restraints) simulations to sample
the transition state ensemble. We performed sequential two-way
shooting TPS simulations via the AIMMD framework*".

AIMMD aims for a high success rate of sampling flip-flop transi-
tions by simultaneously estimating the corresponding committor
¢(x|w) via a neural network with weights w. We predict from a set of
microscopic input features x in what state the trajectory will end and
from what state it came by minimizing the negative log-likelihood of
shooting outcomes,

- n SP 1w Ki SPiw) ) ki
L(w)—ZInKk_>¢(x,. W)™ (1 - @(xi"w)) ,
i1 i

in terms of the weights w of the network, using as training the data of
the so-far sampled N MC steps in terms of their SP features x5 and
number of times k the propagated trajectory hits the final (e.g., state
) state (where for two-way shooting we have n=2 and k; € {0, 1,2}).
To accelerate the learning of the committor, we include the SPs of the
initial restraint runs in the training set, see Supplementary Fig. 16 for
convergence of the loss for the Marini case. We produce N =1000 MC
steps for /T, (12000 MC steps in case of Martini) and 2500 for /7
(10000 Martini). The estimate of ¢ is then used in the sequential TPS to
efficiently sample SPs from the previous transition path. We allow for
some deviations of shooting from the optimal ¢=0.5 iso-surface by
sampling from a Cauchy distribution of the logit g of ¢
(g=In % ~ Cauchy(u =0, y=1)). To this end, we estimate the actual
distribution P(q|TP) of the TPS data (by a histogram of g), to reweigh
each frame to a Cauchy sample. We choose SPs uniformly first, create
the histogram after 100 MC steps, and update every 250 steps.

TPS of pore nucleation was seeded by extracting TPs from the /7
samplers transitioning to the /7, mechanism. We first sampled
1000 snapshots uniformly from all trajectory frames with pore reac-
tion coordinate 0.5< ¢, <1.0. We then used AIMMD to uniformly pick
one of these frames until a first trajectory was accepted. After that, we
again performed sequential shooting, using 8 samplers with a total of
1000 MC steps, with the same shooting point selection criterion as
before.

Input features and network architecture
Using MDAnalysis®, we define the two final states of the transition by
the transversal displacement z from the midplane (defined by the lipid
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P atoms (PO4 bead for Martini) with respect to the vertical center
(z=0) of all P’s). Based on the distribution of heads in the initial
equilibrium simulations, we set the state ¥ when z< — 1.3 nm, and
state % when z>1.3 nm (1.7 nm for DSPC, 1.65 nm for cholesterol and
1.9 nm and PLPC of the plasma membrane), respectively.

To monitor the internal conformations, in addition to z, we also
tracked the probe lipids radius of gyration and its tilt angle 6 defined
by the average distance vector to the P (PO4) atom and the z-axis.

For interactions with the other lipids, we also recorded the
indentation of the upper and lower leaflet by the standard deviations
from their respective centers.

We then tracked the displacement of each P (PO4) bead with
respect to the probe sorted by distance, tracking the first 20 neighbors
(3 x 20 coordinates) to reduce noise. We also included the number of
water molecules in the first and second shell around the probe P (PO4
in Martini), using the indicator function of ref. 82. As for the total
number of water molecules inside the bilayer, we counted the number
of water oxygens (W beads) within Az=0.5 of the mid-plane. See a
detailed list of input features in Supplementary Table 3.

During the AIMMD runs, the neural network estimates the com-
mittor to the % state via a latent space representation ¢(x), where we
first selected 68 input features x to be encoded through 5 hidden
layers. More specifically, the data is processed via a linear compression
(with a small dropout probability during training), after which followed
a ResNet® unit (with ELU activation) of depth 4. We do this to
sequentially go from 68 — 46 — 31 — 21 — 14 — 10 — 1, where at
the last step we only use a linear unit. The output g(x) is then trans-
formed by a softmax to the probability ¢p. See Supplementary Fig. 17a
for a sketch and Supplementary Table 1. Note that the networks with
~ 660 features discussed in Results were used later in postprocessing,
as described below.

The pore nucleation transitions were defined by the pore reac-
tion coordinate §p from ref. 36, which combines the process of pore
nucleation with that of pore expansion. The former is evaluated in
terms of what fraction of the membrane (in terms of slabs along z at
the nucleus) is already occupied by polar atoms, the “pore-chain”
€. The latter counts the number of water molecules inside a
formed (assumed cylindrical) pore to estimate its radius R, and is
added to &, when close to 1, in units of the radius R, of a just fully
nucleated pore. Here, we set the state boundary of the flat mem-
brane, 7, to £, <0.05, and that of an expanded pore, 2, to &, >2.0.
To study which features best describe the committor, we chose as
input features of its neural network model all of §, and its con-
stituents ., and R.

The reported parameters for DMPC lipids induced an artificial
meta-stable state in the transition region we accounted for; see Sup-
plementary Fig. 18 and its caption. In case of Martini, we also changed
the parameters of &, by decreasing the number of subdivisions to 4,
with a cylinder size of Z .., =1.8 nm, R.; =1.0 nm, counting the polar
atoms for calculating the pore radius within D=1.2 nm, as well as
changing the switch towards pore expansion at £, =0.9 with a radius
Ry =0.38 nm. In this way, we aim to balance the noise around &, ~ 0O
with being able to detect water threads, as well as a smooth transition
for large &p.

We also feed in coordinates suggested by Bubnis and
Grubmiiller*®, who consider the distances of different atom types to
the pore center. In our case, we use the pore center definition of ref. 39,
a weighted circular mean of the headgroups. For the isotropic, lateral
and axial distance to the center we measured the 1st, 2nd, and 3rd NN,
as well as an average over the first 2, 3, 4, 5 and 10. For the axial
distance, as detailed in ref. 40, we took the maximal average over
neighboring pairs. We chose the same atom types, water O, P, N+P,
N+ P+ Oy,0, carbon tails, and all carbons. In total, we end up with a
network shape 147 — 85 — 50 — 29 — 14 — 17 — 1. See also Sup-
plementary Table 4.

Accuracy of committor models

After the TPS production run, we tested if network architectures
other than the initial one used in AIMMD resulted in a better com-
mittor estimate. To this end, we define the accuracy a of the com-
mittor model by the excess variance of committor estimates not
explained by a binomial distribution. The probability py,;, of k hits of
the final state with n shots from a starting configuration with exact
committor P is

Poin(kIn, P)= <’,Z )Pk(l — Pyt

We assume that P is beta distributed around our estimate ¢ of the
committor,

1

a—1 b—1
B(a, b)P (1 - P) ’

Prera(Pla, b)=
which defines the Bayesian conjugate prior normalized by the beta
function B(a, b). We enforce the means to match, (P) = ¢, by setting

a a
a=m¢r b= m(l—(P)r

with a constant a in the range O <a <1. The variance of P in the beta
distribution is then

Var[P]=(1 - o)p(1 - @),

with its maximum and minimum at « =0 and 1, respectively. Convol-
ving the binomial and beta distributions gives the probability to see k
hits,

Bwp+k,wl — @)+n —k)
B(weg, w1 — ¢)) ’

1
pikin, &, 0= | dPpya(kin, PIprePla b)= ;)
0

which is a beta-binomial distribution of k, where w=a/(1 — a)

We now treat p(alk, n, ¢) « p(k|n, p, a) as a Bayes posterior for
the accuracy a, having treated P as a nuisance parameter.

Given a sample of shooting data, (¢;, k,-,ni)iNzl, where ¢; is the
committor predicted by the model, we accordingly estimate the
accuracy a of the committor model by maximizing the log-posterior,

N
L(a) = Z In [D(kilni, (8 0‘)} ’
i=1

with respect to a. For a=1, the committor model fully explains the
data, ¢; =P; for all i; for a =0, the data are best explained by a com-
bination of fully committed states, P=0 and P=1, indicating a com-
plete lack of predictive power.

We make a bootstrap estimate of a by repeating 10 times: split the
data into training (all but one MC chain) and validation set (that chain),
train the model for some number of epochs, and then pick 100 times
bootstrap samples (with replacement) from the validation set to esti-
mate the validation loss and accuracy. We used the validation loss to
set the number of epochs to prevent over-fitting. We tested the influ-
ence of the number of hidden layers, number of nodes, as well as
dropout. See Supplementary Table 1 and Supplementary Fig. 17b for all
tested networks.

As a final test of systematic error of the network’s predictions ¢;,
we performed additional committor shots now with n; =20 (instead of
the n;=2 during TPS) for an estimate of the actual committor, P ~
k;/n; (Supplementary Fig. 7a, b). To assess bias and variance, we try to
avoid the binning used previously**, and instead fit a line to the actual
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logit (Ink/(n — k)) vs. the logit predicted by the model (Ing/(1 — ¢)),

. lin . H - 2
¢ =In-2w =cln;®; +d, cg, dg = arg min SN (q!‘“ —In-k ) )
c,

1-¢™ n—k;
Together with the estimate for a, we can visualize the spread
of  the data by the standard error of  the

mean, Ap'" = /1 —a(1-1), /@™ (1 - (])"") .

We also tested additional input features of the network not used
in the initial network models (which had used only 68 features). While
in the initial model we simply averaged all P (PO4) atoms to define the
midplane, we got better predictions by using the lipid tail atoms
weighted (using the sigmoid of ref. 84) by their distance to the probe in
the xy-plane, see Supplementary Fig. 17b. We also refined the definition
of the tilt angle 8 by calculating the normal to the membrane via the P
(PO4) atoms of the two leaflets, weighted by distance to the probe.

We also track the neighboring lipids for upper and lower leaflet
separately and use the 10 nearest neighbors, respectively. For the
trajectories, to prevent the switching of rankings of the lipids, we
calculate the time-averaged distance to the probe to define the identity
and rank of the 10 most important lipids on the upper and lower leaflet,
respectively. Lastly, we also track the 10 x 10 distance matrix between
10 central atoms equivalent to the 10 beads of Martini (and the 10
beads in case of Martini) of the 3+3 closest lipids and the beads of
the probe.

The internal state of the lipid probe seemed of minor importance.
In Martini, we only considered the distances d(Cs,, C55) and
d(C,,, Cyp), as well as the angles £C,;,GL;C55, £P,,GL,C,4 and
/P,GL,C,5, which together are able to describe a split of the two lipid
tails. A detailed description of these features can be found in Supple-
mentary Table 5. We proceeded to use these improved features, which
are the ones discussed in Results.

While training a neural network model with a total of 663 (667
Martini) input features, we added L2 regularization to prevent over-
fitting, allowing for a larger number of training epochs. Since this may
inevitably suppress strong nonlinearities in the model, we then took
the learned reactive flux vector v=Vg¢/|V¢|, projected the data onto
X - v, and then again trained a 3-dimensional committor model using
only z, §, for atomistic MD and 6 for Martini MD, and x - v as inputs to
test the consistency of the linear model. In Results, we discuss and
contrast the resulting high and low-dimensional committor models.

Water pore lifetime

Starting from shooting point structures of the last MC step of the
DMPC pore-mediated flip-flop, we started free, unbiased simulation
runs, using the same parameters as before, for either a maximum of
200 ns or until collapse of the pore was observed. We then calculated
the mean pore lifetime using a maximum-likelihood estimate for ran-
domly censored data with exponential kinetics, 7= Zf.v:lt,- /n, where t;
is the duration the pore stayed open in simulation run i, either before
closing spontaneously in n of the N runs or before the run was ter-
minated with still intact pore in the remaining N —n runs. One
recognizes in the estimator the ratio of the aggregate time of being
uninterrupted in the open state divided by the number of
closing transitions. This estimator maximizes the likelihood
L(k):]'[,f':lp(t,-|k)]'[f-v:n+15(t,-|k) written as a product of the survival
probability S(¢|k)=e* (for terminated runs) and the corresponding
probability density p(t|k) = — dS/dt =ke*¢ (for runs in which the pore
closed).

Estimation of projected densities

All TPE densities were estimated by projecting the MC chain data to the
respective observables and evaluating the histogram. In case of the
Martini DMPC flip-flop, those data did not include the initial relaxation
of T, samplers to the /7y mechanism. Those data are shown in Sup-
plementary Fig. 1b, using a k-neigherst neighbor estimate: for each

pointin z, ,, we measure the radius r of the smallest circle including k
data and estimate the density as ~ r—2.

To visualize the committor isosurfaces in 2D projections onto
coordinates s, t € {z, zl,fp,Ara" -v,}, we estimated the local average
input features to the committor network, (X), ., from the k-nearest
neighbors. We then projected the average onto v and evaluated the
quasi-linear committor model, g((X); , - V).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Source data including features and network models are made available
in the Zenodo repository [https://doi.org/10.5281/zenodo.14836411]
ref. 80.
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