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Predicting changes in protein thermostability caused by amino acid substitu-
tions is essential for understanding human diseases and engineering proteins
for practical applications. While recent protein generative models demon-
strate impressive zero-shot performance in predicting various protein prop-
erties without task-specific training, their strong unsupervised prediction
ability remains underexploited to improve protein stability prediction. We
present SPURS, a deep learning framework that rewires and integrates two
complementary protein generative models-a protein language model and an
inverse folding model-and reprograms this unified framework for stability
prediction through supervised fine-tuning on mega-scale thermostability data.
SPURS delivers accurate, efficient, and scalable stability predictions and gen-
eralizes to unseen proteins and mutations. Beyond stability prediction, SPURS
enables broad applications in protein informatics, including zero-shot identi-
fication of functional residues, improved low-N protein fitness prediction, and
systematic dissection of stability-pathogenicity for human diseases. Together,

these capabilities establish SPURS as a versatile tool for advancing protein
stability prediction and protein engineering at scale.

Thermodynamic stability, often quantified by changes in Gibbs free
energy (4G), is a fundamental property of proteins. Understanding
protein stability is crucial for engineering robust proteins for industrial
and therapeutic applications'. Although experimental techniques
such as directed evolution have been successful in identifying stabi-
lizing mutations, they require extensive experimental effort to screen
numerous mutants, as stabilizing mutations are rare and the mutation
exploration is often unguided. These constraints have driven the
development of computational methods, particularly biophysical
models and machine learning (ML) approaches*, to predict stability
changes (44G) resulting from amino acid substitutions, offering cost-
effective alternatives for engineering stabilized proteins.

While deep learning has revolutionized protein structure predic-
tion through models like AlphaFold’, no comparable transformative
methods have emerged for protein stability prediction yet. This dis-
parity stems primarily from data scarcity and the limitations of current
computational models. Most current ML methods for stability

prediction®™ are trained on relatively modest datasets®***%, typically

containing only hundreds to thousands of mutants across tens to
hundreds of proteins. The mismatch between the limited data and the
large demands of training data by modern ML models results in poor
prediction generalization, particularly to unseen proteins or rare
mutations. Although database consolidation efforts'®***° have expan-
ded data coverage, their inherent biases toward destabilizing variants,
specific protein families, and experimental conditions continue to
hinder progress in stability prediction, even as ML model complexity
continues to grow.

Recent advances in mutagenesis experiments, such as com-
plementary DNA (cDNA) proteolysis assays, offer opportunities for
ML-based protein stability prediction. A notable example is the mega-
scale dataset (hereafter “Megascale” dataset) by Tsuboyama et al.”,
which provides over 770,000 AAG measurements spanning all single
and selected double amino acid variants across 479 diverse protein
domains. This dataset, derived consistently from the same assay,
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represents a resource for developing high-capacity ML models for
protein stability prediction. However, fully realizing its potential
requires ML models capable of capturing the underlying thermo-
dynamic constraints driving protein folding and stability.

In parallel, protein generative models, including protein language
models (pLMs)?** and inverse-folding models (IFMs)***, have
recently emerged as “foundation models" for various ML tasks in
protein informatics. Pre-trained to predict masked residue amino acids
using context from unmasked residues (Fig. 1a), these models capture
evolutionary patterns and biophysical constraints from vast natural
protein sequence or 3D structure data. Studies have shown that these
models can predict mutation effects in a zero-shot manner by calcu-
lating the log-likelihood ratios between mutants and wild-type
proteins®~°, correlating well with diverse protein fitness measures,
including pathogenicity”, binding affinity’’, and thermostability**>,
even without task-specific supervised training.

These findings raise the natural expectation that combining pre-
trained generative models with large-scale stability data through
supervised training could yield improved stability prediction perfor-
mance. However, recent studies reported that fine-tuning pLMs on the
Megascale dataset often results in limited or even degraded perfor-
mance compared to conventional ML models trained from scratch®***,
One explanation of this underperformance lies in the sheer size of
pLMs with ~10° parameters, making them prone to overfitting® despite
the availability of mega-scale training data. Moreover, pLMs operate
solely on linear amino acid sequences, lacking structural context of 3D

Addressing this limitation, recent efforts have explored structure-
aware generative models like ProteinMPNN?® and ESM-IF* for stability
prediction via fine-tuning®*., These models incorporated 3D struc-
tural information and have demonstrated improved generalization to
unseen proteins, with some now recognized as state-of-the-art among
ML-based stability predictors®*°. However, IFMs like ProteinMPNN are
intrinsically constrained by the quantity and diversity in their training
data, which includes only experimentally determined structures (-20k
curated structures from the CATH database)-orders of magnitude
fewer than the over 400M protein sequences in UniRef 41. While other
IFMs like ESM-IF incorporate AlphaFold2-predicted structures to
expand training coverage, this approach remains constrained by the
number of structures that can be predicted and the accuracy of the
predictions, failing to capture full sequence diversity. Consequently,
IFMs underutilize rich evolutionary information from large-scale
sequence data, while pLMs lack explicit structural grounding. We
hypothesize that integrating pre-trained pLMs and IFMs—trained on
complementary modalities—could synergistically improve stability
prediction by combining sequence-derived evolutionary priors with
structure-based geometric features. However, fusing these models
presents substantial challenges due to differences in their data mod-
ality, architectural design, and training scale.

In this work, we introduce SPURS (stability prediction using a
rewired strategy), a deep learning framework that integrates sequence-
and structure-based protein generative models for generalizable sta-
bility prediction (Fig. 1b). At the core of SPURS is a model rewiring
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Fig. 1| SPURS architecture. SPURS is a deep learning framework that rewires two
pre-trained protein generative models (a)—a protein language model (ESM2) and
an inverse folding model (ProteinMPNN)—to predict changes in protein thermo-
stability (44G) upon sequence mutations (b). ¢ The model takes as input a protein’s
wild-type sequence and structure (predicted by AlphaFold2 if the experimental
structure is unavailable). Through neural network rewiring, SPURS integrates
evolutionary priors from ESM2 and structural features from ProteinMPNN to learn
structure-enhanced evolutionary features. These representations are passed to a
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prediction module that efficiently decodes A4G predictions for all single mutations.
The same features are reused by another decoder to predict epistatic effects of
multiple mutations, enabling 44G prediction for higher-order mutants. d SPURS's
performance is demonstrated in stability prediction and diverse applications in
protein biology, including functional site identification, protein fitness prediction,
and pathogenicity analysis. Abbreviations: Struct=Structure; Evo=Evolution. Icons
used in this figure were created by Max.icons, Bahu Icons, Freepik, and Lalaka, and
sourced from Flaticon [https://www.flaticon.com].
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by an IFM (ProteinMPNN?®) while preserving the pLM’s evolutionary
priors learned from large-scale sequence training (Fig. 1c). This design
captures both IFM’s features specific to structural stability alongside
pLM’s features supporting broad generalization. It also allows
parameter-efficient fine-tuning, requiring updates to only a small
fraction of trainable parameters to jointly model sequence and struc-
ture for A4G prediction. Importantly, SPURS is highly scalable by
design: it predicts 44G values for all possible point mutations of a
protein in a single forward pass of the neural network, in contrast to
many prior methods that require separate evaluations per mutant. This
scalability enabled us to perform large-scale stability predictions
across the human proteome.

SPURS demonstrates strong generalization in protein stability
prediction. We trained SPURS on the Megascale dataset and system-
atically benchmarked performance across 12 diverse datasets mea-
suring thermostability (44G) and melting temperature changes (47,,).
SPURS consistently outperformed state-of-the-art methods, achieving
robust generalization to unseen mutations and proteins across data-
sets. In particular, SPURS excels at identifying stabilizing mutations, a
persistent challenge for most existing methods due to the pronounced
imbalance toward destabilizing variants in current stability datasets**.

Beyond stability prediction, SPURS enables a range of compelling
applications in protein biology (Fig. 1d). We show that, when paired
with a pLM, SPURS can accurately identify functionally important
residues involved in protein binding using only sequence input, with-
out relying on binding structure information. We also demonstrate
that SPURS’s 44G predictions serve as informative priors for guiding
the prediction of protein variant fitness, enabling a simple yet effective
regression model that enhances low-N fitness prediction. Finally,
leveraging its scalability, we applied SPURS to the human proteome to
dissect the role of stability loss in variant pathogenicity and uncover
the distinct molecular mechanisms of different pathogenic mutations.
Together, these capabilities position SPURS as a versatile method for
protein stability modeling, with broad applications in structural biol-
ogy, protein engineering, and functional genomics.

Results

SPURS: thermostability prediction leveraging protein
generative models

SPURS is a deep learning framework designed to predict changes in
protein thermostability (AAG) resulting from amino acid substitutions
(Fig. 1). Given a wild-type protein sequence, SPURS predicts 44G for all
possible point mutations or specified higher-order mutations. To
inform these predictions, SPURS explicitly incorporates the 3D struc-
ture of the wild-type protein as additional input. Structure information
is represented as atomic coordinates and abstracted into a graph with
atoms as nodes and edges defined by spatial proximity (Methods).
When an experimental structure is unavailable, SPURS employs
AlphaFold’® to predict the structure, ensuring broad applicability.

At the core of SPURS is an effective integration of two pre-trained
protein generative models (Fig. 1a): ESM2*, a Transformer-based protein
language model (pLM) trained on protein sequences, and
ProteinMPNN?, a graph neural network-based inverse-folding model
(IFM) trained on protein structures. SPURS utilizes ProteinMPNN as a
structure encoder to extract geometric features important for protein
stability while leveraging sequence evolutionary priors learned by ESM
to dissect mutation effects on stability (“Methods”). Rather than treating
these two models separately or integrating their outputs heuristically,
SPURS employs Adapter*>**, a lightweight neural network module, to
rewire ProteinMPNN’s structure-derived embeddings into ESM’s
sequence embeddings, learning structure-enhanced sequence repre-
sentations in a parameter-efficient fashion (Fig. 1b, ¢; “Methods”). During
training, only Adapter and ProteinMPNN parameters are updated, while
ESM'’s parameters remain fixed. This integration strategy introduces only
minimal architecture alterations to ESM and ProteinMPNN, preserving

their rich evolutionary priors learned from pre-training while avoiding
overfitting. This approach also makes SPURS highly data-efficient for
fine-tuning, as it dramatically reduces trainable parameters by 98.5%
compared to full ESM fine-tuning used in previous studies®?. Although
this work specifically uses ESM and ProteinMPNN, SPURS is a model-
agnostic framework and can integrate other sequence- and structure-
based generative models®* for stability prediction.

SPURS offers significant scalability advantages through its algo-
rithmic design. At the output layer, SPURS predicts AAG for all possible
point mutations for the input protein in a single forward pass of the
neural network (Fig. 1c). This represents a major advancement over
existing stability prediction methods'®***>*¢, which typically require
separate forward passes for each mutant sequence, resulting in com-
putational cost of O(L x 20) forward passes for a protein of length L. In
contrast, SPURS transforms this one-mutant-per-pass approach to an
all-mutants-per-pass paradigm. Rather than processing mutant
sequences as input, SPURS conditions on wild-type sequence and
structure to predict stability changes for all possible point substitu-
tions simultaneously. This is achieved by learning per-residue latent
representations and using a decoder shared across all residues to
predict effects of substituting each residue with any of the 20 amino
acids (“Methods”). This all-at-once inference paradigm reduces the
required number of forward passes from O(L x20) to O(1), enabling
efficient large-scale protein stability profiling. In our experiments,
SPURS predicted 44G for all single mutants across 118 full-length
proteins from the ProteinGym benchmark® (mean length: 492 resi-
dues) in under 20 seconds on a single NVIDIA A40 GPU.

SPURS was trained on the Megascale dataset, comprising over
200,000 44G measurements for single amino acid substitutions
across over 200 proteins. This data size enables SPURS to learn gen-
eralizable representations for unseen proteins and mutations. Addi-
tionally, Megascale’s dense mutational coverage—with each wild-type
protein exhaustively mutagenized for all possible point mutations—
enables SPURS to learn fine-grained, generalizable patterns across
protein space and effectively capture the full A4G landscape of L x 20
possible substitutions.

We further extended SPURS to predict stability for higher-order
mutants by modeling AAG of a multi-mutation variant as the sum of
individual mutation effects plus an epistatic term capturing non-
additive interactions. SPURS reuses point-mutation predictions,
inferred from a single forward pass, and employs an additional light-
weight decoder network to predict epistatic effects (“Methods”). This
extended SPURS framework was trained on all single- and double-
mutation 44G measurements from Megascale. This design captures
complex combinatorial effects while maintaining efficiency. Together,
SPURS provides a scalable, generalizable framework for stability pre-
diction across both single and combinatorial mutation regimes.

SPURS enables accurate and generalizable protein stability
prediction
To evaluate SPURS’s performance in predicting protein stability
changes upon mutations, we curated 12 datasets of stability mea-
surements from published studies (“Methods”). These datasets vary in
protein diversity and mutant coverage (Fig. 2a), collectively forming a
comprehensive benchmark for assessing model accuracy and gen-
eralization. We first focused on the Megascale dataset”, using the
training, validation, and test splits (8:1:1 ratio) established in the
ThermoMPNN study®®, comprising 44G measurements for 272,721
single-substitution mutants across 298 proteins. To prevent informa-
tion leakage, we removed from the training and validation splits any
sequences with >25% sequence identity to those in the test split or
other independent datasets (Methods). Throughout our experiments,
SPURS was trained on this filtered Megascale training set.

We first compared SPURS to ThermoMPNN, the state-of-the-art
ML model for stability prediction, on the Megascale test set covering
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Fig. 2 | SPURS achieves accurate prediction for protein stability. a The numbers
of proteins and mutants across the datasets used for training and evaluation.

b Performance comparison of SPURS and ThermoMPNN (a state-of-the-art deep
learning-based stability model) on the Megascale test set. Each dot represents the
Spearman correlation of SPURS and ThermoMPNN on a single protein test set.

c Performance comparison between SPURS and additional baseline methods on the
Megascale test set (n = 28). ESM and ProteinMPNN are evaluated in a zero-shot
setting using sequence likelihood differences between mutant and wild-type; FT-
ESM and FT-ProteinMPNN denote fine-tuned (FT) versions of ESM and Pro-
teinMPNN trained on the same Megascale training split as SPURS and Ther-
moMPNN. *: two-side Mann-Whitney U test P=0.003. d Effectiveness of SPURS's
rewiring strategy for integrating sequence- and structure-based protein generative
models. SPURS was compared to a straightforward integration approach that
directly concatenates the final-layer embeddings of ProteinMPNN and ESM
(“Concatenation”). e Performance of SPURS versus baseline methods across the

Megascale test set and ten independent benchmarks. f Performance for predicting
AAG of double-mutation mutants in the Megascale test set. Bar plots represent
mean = s.d. of the performances on ten 80% bootstrapped subsets (n =10) from all
double mutants in the Megascale test split. DDGun-3D and DDGun-seq use struc-
ture and sequence features to predict AAG, respectively. FT-ESM, FT-ProteinMPNN,
and ThermoMPNN are single-mutant predictors extended to predict for double
mutants by simply adding the predicted AAG of constituent individual mutations
("additive methods"); other methods directly support combinatorial predictions.
g Precision-recall comparison between SPURS and ThermoMPNN for identifying
stabilizing mutations in the Megascale test set. h Performance comparison on the
Domainome dataset (n = 522). ESM1v (full) takes the full-length protein sequence as
input, whereas ESM1v (domain) uses domain subsequences. Abbreviations: VEP
Variant effect predictors, rSASA Relative solvent-accessible surface area. Box plots
in ¢ and h indicate the median (center line), 25th-75th percentiles (box), and
whiskers represent data within 1.5 x the interquartile range from the box.

28,312 mutants across 28 proteins. SPURS outperformed Ther-
moMPNN in Spearman correlation (median 0.83 vs. 0.77,
Mann-Whitney U test P < 0.05) in 24 out of 28 proteins (Fig. 2b) and
remained comparable for the remaining four proteins. This improve-
ment can be attributed to SPURS’s effective integration of both
sequence and structural priors from ESM and ProteinMPNN, in con-
trast to ThermoMPNN, which fine-tuned structure-based

ProteinMPNN. Further, SPURS’s rewiring strategy outperformed a
straightforward integration approach that simply concatenates final-
layer embeddings from ESM and ProteinMPNN across all test datasets
(Fig. 2d), suggesting the consistent effectiveness of its integration.
Another ablation study, where we fine-tuned ESM and Pro-
teinMPNN individually using multi-layer perceptrons (MLPs) on top of
frozen ESM or ProteinMPNN layers, confirmed that fine-tuning either
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model alone led to performance drops compared to their integration
in SPURS (Fig. 2c). Interestingly, even sequence likelihoods predicted
by unsupervised ESM and ProteinMPNN exhibited a non-trivial
Spearman correlation with 44G measurements in Megascale (0.46
and 0.61, respectively). This observation is consistent with previous
studies®, suggesting that protein generative models, even without
explicit training on stability data, capture evolutionary features pre-
dictive of stability. This forms the basis of our hypothesis and other
works®?® that supervised fine-tuning of protein generative models
improves stability prediction.

Next, we evaluated SPURS’s generalizability using eight indepen-
dent test sets from other studies®*>13*447 We excluded sequences in
the Megascale training and validation sets that had more than 25%
sequence identity with these test sets. We additionally included six
leading baselines (Supplementary Note B.1), including biophysical
models (FoldX*, Rosetta*’) and ML methods (PROSTATA'’, RASP*,
Stability Oracle’®, ThermoNet’, ThermoMPNN?*®). SPURS showed sig-
nificantly higher (for 7/8 test sets) or comparable Spearman and
Pearson correlations across all datasets compared to these baselines
(Fig. 2e and Supplementary Tables 1, 2, and 3).

We also explored SPURS’s ability to generalize to melting tem-
perature (4T,,) prediction, another measure of protein stability. Even
though SPURS was only trained on 44G data, it demonstrated
improved Spearman correlations on two AT, datasets®, S4346 and
S571 (Fig. 2e), which highlights SPURS’s broad capability to capture
stability-related features beyond its training data.

To assess SPURS’s ability to predict AAG for higher-order mutants,
we evaluated its performance on double-mutation data from the
Megascale test set. SPURS outperformed DDGun** and
MutateEverything®, two competitive existing methods that support
stability prediction for combinatorial mutations (Fig. 2f), even though
advantages were given to MutateEverything, as 13 of 20 proteins in our
test set were included in its training set. In the comparison, we also
included methods that only predict stability change for point muta-
tions, including the fine-tuned ESM, ProteinMPNN, and ThermoMPNN,
to predict for high-order mutants through additive effects of con-
stituent individual mutations. Results showed that SPURS substantially
outperformed these additive approaches (Fig. 2f), suggesting that
multiple mutation effects on stability are not simply additive and that
SPURS’s modeling of epistatic effects is critical to achieving the
performance gain.

Stabilizing mutations are of particular interest for protein engi-
neering, but are often rare and underrepresented in most datasets. As a
result, many models tend to optimize prediction accuracy for over-
represented destabilizing variants, inflating apparent accuracy***. To
assess robustness in this regime, we evaluated SPURS’s ability to
prioritize stabilizing mutations (defined as 44G < -0.5 kcal/mol*;
N=1178) from a much larger pool of destabilizing ones (N=27,139) in
the Megascale test set. Across various prediction thresholds, SPURS
consistently outperformed ThermoMPNN in both precision and recall
(Fig. 2g), indicating its effectiveness in identifying stabilizing mutations.

Finally, we applied SPURS to the recently released Human
Domainome dataset*’, which quantifies the impact of human missense
variants on protein stability using protein abundance in cells. This
dataset contains 563,534 variants across 522 proteins, offering the
largest diversity and coverage among our benchmarks (Fig. 2a). The
original Domainome study reported that ThermoMPNN outperformed
several other models for stability prediction, including general variant
effect predictors (e.g., AlphaMissense™ and EVE™), structural features
(relative solvent accessibility), and dedicated stability predictors. We
thus re-examined this evaluation and additionally compared SPURS
with these reported methods. The result showed that SPURS sig-
nificantly improved upon the best baseline, ThermoMPNN (correlation
0.54 vs. 0.49), further demonstrating SPURS’s generalizability across
large-scale variant effect landscapes of stability (Fig. 2h).

Taken together, our benchmark results demonstrate that SPURS
achieved state-of-the-art performance for protein stability prediction,
with superior generalizability and reduced bias compared to existing
models.

SPURS identifies functionally important sites in proteins
Proteins perform diverse cellular functions, largely through interac-
tions with other molecules. Identifying the residues responsible for
these interactions is key to understanding molecular mechanisms and
developing biomedical applications. Stability is just one biophysical
property that contributes to protein function, while others, such as
binding specificity and enzymatic activity, often trade off with stability
during evolution®. Thus, the loss of function due to mutations can be
attributed to either direct disruption of molecular interactions or
structure destabilization that leads to reduced protein abundance.
Mutations at protein binding interfaces, active sites, and allosteric sites
frequently have larger effects on function than what stability changes
alone can explain®°*, making it complicated to deconvolve the
effects of substitutions on intrinsic function from those on stability*”*%,
Recent experimental studies attempted to resolve this biophysical
ambiguity by quantifying mutation effects on both protein binding
and abundance, allowing comprehensive mapping of functional
sites®*’. Inspired by this, we hypothesized that a similar strategy,
combining SPURS’s stability predictions with evolutionary fitness
scores from pLMs, could help disentangle mutation effects on function
and identify functional sites.

Specifically, we used SPURS to predict 44G and ESM1v*® to esti-
mate the evolutionary fitness of a protein variant (Methods). Here,
“fitness” broadly refers to protein functions like binding affinity, cat-
alytic activity, and more. ESM1v has been shown to be effective for
zero-shot predictions of mutation effects on protein fitness®. We fit a
sigmoid function to model the non-linear relationship between stabi-
lity and fitness (Fig. 3a; “Methods”), following prior work that
employed non-linear Boltzmann distribution to model the relationship
between free energy changes caused by mutations in protein folding
and those in protein binding®***2, A recent study showed that the
residuals (fitting deviation) from the fitted sigmoid curve indicate
whether mutations have larger or smaller effects on protein fitness
than can be explained by changes in stability’’. Our approach gen-
eralized their study by extending functional site identification beyond
the restricted set of 500 protein domains with experimental stability
data*’, scaling up to diverse, full-length proteins using SPURS’s accu-
rate stability predictions. We computed the fit residuals for all single
mutations in a given protein (Fig. 3b) and defined a per-site function
score by averaging residuals across all mutations at each site (“Meth-
ods”). Residues with high function scores are likely to be functionally
important® (Fig. 3b, ¢).

We evaluated this approach for identifying function sites using
239 proteins from the Domainome dataset*® with residue-level func-
tional site annotations in the Conserved Domain Database (CDD).
Among 14,434 residues across these proteins, 3516 were labeled as
functional in CDD, while the rest were considered non-functional.
SPURS’s function score significantly distinguished functional from
non-functional sites (Fig. 3d; t-test P < 1 x 10™°). At the individual
protein level, SPURS achieved an average AUROC of 0.69 (Fig. 3e).
Given that SPURS was not trained on functional site labels in contrast
to previous supervised methods®, these results demonstrated its
strong unsupervised capability for identifying functional sites and
scaling beyond with experimental stability data.

We further explored SPURS’s predicted functional sites across
seven protein domains that ranked high or mid in AUROC (Fig. 3e).
These proteins were chosen to cover human domains that represent
various sizes (56-97 residues), diverse structural folds, and different
functions, including protein-protein interaction, DNA binding, ion
interaction, and enzymatic activity. By mapping SPURS’s function

Nature Communications | (2026)17:891


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-67609-4

a SOX11 HMG-box Domain b 60 70 80 0 Cc
2 10 § 2 = m

= "

o Q o E

29 St o L
2 - ez s | 3
© g0s Es E = 05
=< Iz 2
gg 59 B g "= S
o 50

(e} 0.0 s =

=z O § - 0w | |

-25-20-15-10 -5 0 1

ESM1v Fitness Score

KRPMNAFMVWSK | ERRKIMEQSPDMHNAE | SKRLGKRWKMLK
Domain Sequence

5
A77 K81 ggsa K88

d —CDD functional sites f
22 —Unannotated sites
‘@
&
ol
0
-04 -0.2 00 02 04 06 0.8
Mean Function Score
e 1.0 —f: LIM (1.0) |: PDZ + Peptide (.83)
//m: PDZ + Small molecule (.80) o % Functional Site o
o o
80.8 E‘% 1 Lo %y o, IE%
=© X =T
Zo6 j: SAM (.78) MeanAURQC 22 o 082
< Rand AUROC = ST 4| %o e e e 00, st
0.4 andom guess ( =5 %, Z 100 110 120 130 140 150 160 1 2
Residue Position
0 50 100 150 200
h H Chain A
J \
Chain B ‘(;
é,\D?1E68 | o
\ ¢ D24 (-
_L65
-E62
)
Q63 E53 160
1 ’x ‘l
o x X ><x><><x
_1] @9 e®t, @ %% o
10 20 30 40 50 60 70

Y R

100 120 140 160 240

Fig. 3 | SPURS accurately guides functional site annotation. a ESM1v-predicted
fitness scores and min-max normalized stability changes (-44G) predicted by
SPURS for the HMG-box domain (UniProt ID: P35716). A sigmoid function is fitted to
model the relationship between fitness and normalized stability change. Color
gradient represents SPURS's predicted function score. b Heatmap depicting func-
tion scores of the HMG-box domain, with red letters indicating CDD-annotated
DNA-binding sites. ¢ Structure of the HMG-box domain (PDB ID: 6T7C), where
residues are colored based on SPURS's predicted function scores and DNA-binding
sites are annotated. d Distribution of SPURS's predicted function scores for func-
tional sites annotated in CDD versus other sites across 239 human domains.
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e SPURS's AUROC performance for functional site prediction across 239 human
domains. f-m The structures colored by SPURS's function scores for the six
domains highlighted in (e). Below each structure, a scatter plot shows the predicted
function score for each residue, with CDD-annotated functional sites marked as x.
f LIM domain in FHL1 (UniProt ID: Q13642; PDB ID: 1X63). g SH3 domain in GRB2
(P62993, 1106). h Alcohol dehydrogenase (P00327, 1QLH). i Zoom-in view of the
zinc ion around the catalytic center. j SAM domain in CNKSR2 (Q8WXI2, 3BS5).

k MBD domain in MECP2 (P51608, 5BT2), | PDZ domain in DLG3 (Q92796, 2FES),
m PDZ domain in SCRIB (Q14160, 6XA7).

score onto their 3D structure, we found high-score regions sig-
nificantly enriched for functional sites (Fig. 3f-m).

In the LIM domain, which contains two four-residue zinc fingers,
SPURS assigned high scores exclusively to the zinc-coordinating

residues (Fig.3f). Similarly, in the SH3 domain, SPURS accurately cap-
tured its critical peptide-binding sites (Fig. 3g). We extended this
analysis to proteins not presented in Domainome, such as alcohol
dehydrogenase (EC 1.1.1.1), a zinc-dependent enzyme. SPURS
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successfully identified its key zinc-binding residues (C46, H62, and
C174) and a stabilizing residue (S48), which forms hydrogen bonds
critical for the enzyme’s structure (Fig. 3h, i)

Notably, despite being trained only on single-chain inputs, SPURS
identified interaction interfaces and binding sites. For example, it
highlighted SAM domain residues near the heterodimer interaction
interface (Fig. 3j), even though its interacting partner’s sequence or
structure was not provided as input to SPURS. A similar observation
was made for the MBD domain, where SPURS not only recovered DNA
binding sites but also identified a S-turn located between two S-strands
and close to the DNA helix (Fig. 3k). While this S-turn was not anno-
tated by CDD as functional site, it appeared to coordinate the protein-
DNA binding, suggesting the potential of SPURS for discovering
functional sites.

SPURS also demonstrated consistency across different proteins
harboring the same domain. For example, in two proteins with PDZ
domains (Figs. 31, m), SPURS assigned high function scores to several
residues that occupy structurally corresponding positions in both
proteins. A serine residue (S239 in Fig. 3l and S875 in Fig. 3m) con-
sistently received the highest function score in both structures despite
their different structural contexts. While SPURS prioritized consistent
functional sites for both proteins, it also captured the context-
dependent nature of binding and gave higher scores to residues
involved in specific ligand interactions unique to each protein. In one
case, where the domain binds to a small glycerol molecule (Fig. 3), a
lysine (K299) interacting with the molecule received a higher score
than its counterpart in the other protein, while in the second case
where the same domain binds to a peptide (Fig. 3m), SPURS prioritized
peptide-proximal residues (L872, H928). Importantly, the ligands were
only shown for visualization and were not provided as input to SPURS.
Nonetheless, SPURS was able to identify both conserved functional
sites for the same domain across proteins and context-dependent sites
specific to each protein’s binding function.

These case studies illustrate SPURS’s strong agreement with CDD
annotations and its ability to identify both conserved and context-
specific functional sites. Unlike previous methods that rely on docking
structures® or supervised training®*, our approach is unsupervised,
requiring only sequence input, with structural predictions generated
by AlphaFold when needed. This approach alleviates data bottlenecks
in functional site annotation, making it a powerful tool for applications
like hotspot identification in protein engineering.

SPURS improves low-N protein fitness prediction
Having established SPURS’s accuracy in predicting protein stability
changes, we explored whether it could extend to enhancing the pre-
diction of mutation effects on broader protein properties beyond
stability. Many laboratory assays have been developed to measure
various protein properties like binding affinity, expression, and solu-
bility, often generally referred to as fitness. However, experimental
techniques can only probe a tiny fraction of the exponentially large
sequence space and screen their fitness, making it critical in protein
engineering to develop ML models that generalize well from small-
sized (low-N) fitness data to predict for unseen sequences>>*,
Here, we aim to improve low-N fitness prediction models with
SPURS. Proteins need to be structurally stable to perform functions. We
thus hypothesized that SPURS’s stability predictions could serve as
informative priors for fitness prediction. We propose a simple yet
effective approach that incorporates SPURS’s 44G prediction to
improve protein fitness prediction. Our approach was inspired by a
leading supervised low-N fitness prediction model called ‘Augmented
model”. To predict the fitness of a protein variant, the Augmented
model uses as input features the one-hot-encoded sequence and an
evolutionary density score, which is the likelihood ratio between the
mutant and the wild-type sequences predicted by pLMs like ESM or
other sequence density models (e.g., DeepSequence®” or EVE™), to train

aRidge regressor on fitness data (Fig. 4a). We extended the Augmented
model by incorporating SPURS’s AAG predictions as an additional
feature in the regressor (Fig. 4a; “Methods”), yielding an enhanced
model denoted as ‘SPURS-augmented ESM’ when ESM is used as the
sequence density model, or similarly if other models are used.

We compared SPURS-augmented models against a series of
Augmented models, including Augmented-{ESM1b*’, EVMutation®®,
Evotuned UniRep®’, DeepSequence®’}, on the fitness data of 12 proteins
from the original study”. Using 240 randomly sampled mutants for
training and the rest for testing, SPURS-augmented models out-
performed their counterparts for most proteins, with a 7% improve-
ment in Spearman correlation (Fig. 4b). To further assess performance,
we extended evaluation to the ProteinGym benchmark®, which
includes over 200 deep mutational scanning (DMS) datasets spanning
various protein fitness metrics such as catalytic activity, binding affi-
nity, stability, and organismal fitness. We excluded DMS datasets
measuring stability, so as to test generalization beyond the property
SPURS was trained on. Across the resulting 141 DMS datasets, SPURS-
augmented DeepSequence model outperformed the original Aug-
mented DeepSequence—the most competitive method reported”—in
115 (82%) cases, with an overall 15% improvement in Spearman corre-
lation (Fig. 4c). Performance improvements were especially pro-
nounced in datasets measuring expression (24.1%) and organismal
fitness (16.5%) compared to activity (8.0%) and binding (12.6%)
(Fig. 4d). These improvements were consistent across varying training
set size N from as few as 48 to 240 variants, and up to 80% of the total
sequences in a DMS dataset (Fig. 4e).

In summary, these results showed that the SPURS’s 44G predictions
provide informative priors for protein fitness prediction, consistently
enhancing leading low-N models across diverse DMS datasets and
training data sizes. We note that our SPURS-augmented model itself is
not intended to be a stand-alone, state-of-the-art predictor that out-
performs a large volume of existing low-N models leveraging sophisti-
cated deep learning models (e.g., pLMs)”>%%, Instead, it serves as a
simple yet effective enhancement that yields consistent performance
gains when added to already-competitive models, highlighting SPURS’s
utility as a general-purpose stability prior for protein engineering tasks.

SPURS reveals contribution of stability to pathogenicity

The human proteome harbors millions of missense variants, where
single amino acid substitutions may alter protein structure and func-
tion, contributing to genetic diseases’®’%. While pathogenic variants
may disrupt function through various molecular mechanisms, such as
perturbing interactions, the loss of function due to mutation effect on
stability has been recognized as a major cause of disease’>”’. Given
SPURS’s ability to predict protein stability changes (44G) upon muta-
tions, we sought to apply SPURS to examine the role of protein stability
in pathogenicity.

We used SPURS to predict AAG for all possible single amino acid
substitutions in the human proteome (178,987,201 variants across
19,652 proteins). Among these, 696,736 variants spanning 16,997
proteins have clinical annotations from ClinvVar’® as either (likely)
“benign”, (likely) “pathogenic”, or variants of uncertain significance
(VUS). Additionally, we included 15,820 missense variants from gno-
mAD (allele frequency >0.05) as putative benign variants*®”**°, Our
analysis revealed that pathogenic variants are more destabilizing,
whereas most benign variants exhibit minimal stability changes
(Fig. 5a). For example, 68% pathogenic variants (7,761/26,090) were
destabilizing (44G > +0.5 kcal/mol’**®), compared to only 19% of
benign variants (9,497/50,763). These findings align with previous
studies showing loss of stability as a key driver for loss of function for
many disease variants”**7*5,

To examine how structural context modulates the relationship
between stability changes and pathogenicity, we stratified ClinVar
variants by spatial locations and solvent exposure using AlphaFold2
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Fig. 4 | SPURS-augmented models enhance low-N protein fitness prediction.
a Architecture of the SPURS-augmented model. Compared to the original Aug-
mented models?, our approach adds SPURS's predicted stability change as an
additional feature. b Performance comparison between SPURS-augmented models
(squares) and their corresponding Augmented models (dots) on 12 proteins
benchmarked in Hsu et al.”’. Aug=Augmented. ¢ Performances of SPURS-
augmented DeepSequence and Augmented DeepSequence across 141 DMS data-
sets in ProteinGym, excluding stability-related sets and those with fewer than 96
variants. DMS dataset names on x-axis were abbreviated, with a mapping to their
full names defined by ProteinGym provided in Supplementary Table 5. Results in

b, ¢ show the mean Spearman correlation over 20 repetitions of randomly sampled
training sets. d Relative Spearman correlation improvement of SPURS-augmented
DeepSequence over Augmented DeepSequence, grouped by fitness categories
from c (Activity, n =42; Binding, n = 11; Expression, n = 18; OrganismalFitness,
n=70). e Low-N prediction performance comparison between SPURS-augmented
DeepSequence and Augmented DeepSequence across varying training set size N,
from 48 variants up to 80% of each dataset. In d, e, plots show the mean + s.d. of the
test performances of 20 repetitions of model training, with different random seeds
used to randomly sample training data.

predicted structures. First, we compared SPURS’s A4G predictions for
mutations in folded regions versus intrinsically disordered regions
(IDRs). In both groups, pathogenic variants were more destabilizing
than benign ones (mean A44G difference +0.86 kcal/mol and
+0.40 kcal/mol for folded regions and IDRs, respectively), but the
effect was stronger in folded regions (Fig. 5b), consistent with pre-
viously reported tolerance of IDRs to mutations®’. While we recognize
that AlphaFold2-predicted structures used in this analysis may not
model IDRs accurately®, recent studies on IDR conformation modeling
may facilitate a better understanding of stability’s role in pathogenicity
in IDRs*",

Within folded regions, we compared 44G distributions for
buried versus exposed residues (Fig. 5c). Again, pathogenic var-
iants were more destabilizing than benign variants in both
groups, but the difference was notably greater in buried positions
than in exposed regions (mean 44G =1.47 kcal/mol vs. =0.67 kcal/
mol). This observation, consistent with previous studies®*¢,
suggests that pathogenic variants in buried residues primarily
drive loss of function by reducing stability, whereas those at
exposed sites likely disrupt function through alternative
mechanisms, such as directly perturbing functional sites or
intermolecular interactions®®.
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Fig. 5| SPURS reveals the role of protein destabilization in variant patho-
genicity. a Distribution of SPURS-predicted stability change for ClinVar variants
labeled as benign (including “Benign” and “Likely benign”), pathogenic (including
“Pathogenic” and “Likely pathogenic”), and variants of uncertain significance (VUS).
Common gnomAD variants (allele frequency >0.05) are included as putative benign
variants for comparison. Distribution of SPURS-predicted stability change for
benign and pathogenic ClinVar missense mutations, categorized by (b) spatial
locations—folded regions (n = 31,463 benign, n=24,085 pathogenic) vs. intrinsi-
cally disordered regions (IDRs; n=19,207 benign, n =1,478 pathogenic)—and (c)
solvent exposure—exposed residues (n = 42,158 benign, n = 10,419 pathogenic) vs.
buried residues (n = 8,512 benign, n=15,144 pathogenic). d Joint distribution of
SPURS-predicted 44G and relative solvent-accessible surface area (rSASA) for
ClinVar benign and pathogenic missense variants. Contour maps indicate the
density of variants in the rSASA-44G space. e AUROC for classifying ClinVar benign
and pathogenic variants using a score that linearly interpolates SPURS-predicted

AAG Difference

AAG and rSASA, defined as a - 44G + (1 - a) - rSASA, with a as the interpolation
coefficient. f Comparison of SPURS-predicted AAG values for gnomAD variants
(n=15,820) and pathogenic ClinVar mutations in autosomal dominant (AD,
n=6722) and autosomal recessive (AR, n=5603) genes. g Gene-level enrichment of
destabilizing or stabilizing cancer-associated missense mutations. 44G difference
for agene is defined as the mean SPURS-predicted A4G of observed COSMIC cancer
mutations minus that of unobserved mutations in the same gene. A positive 44G
difference indicates selection for destabilizing mutations in the gene, whereas a
negative difference suggests selection against destabilization. The horizontal
dashed line represents the Bonferroni-corrected significance threshold

(P=2.8 x107°, two-side Mann-Whitney U test), corresponding to a pre-correction
significance cutoff of 0.05. Box plots in b, ¢, and findicate the median (center line),
25th-75th percentiles (box), and whiskers represent data within 1.5x the inter-
quartile range from the box.

Recognizing that the impact of stability on pathogenicity varies
with residue exposure, we hypothesize that combining AAG prediction
with structural context could enhance the identification of pathogenic
mutations. Using relative solvent-accessible surface area (rSASA) to
quantify residue exposure (“Methods”), we found that pathogenic
variants were enriched in regions with both high 44G values and low
ISASA scores (Fig. 5d), indicating that most pathogenic variants are
located in buried residues and destabilize protein structure. Motivated
by this, we developed an unsupervised predictor by linearly inter-
polating SPURS’s predicted 44G with rSASA with a weighting coeffi-
cient a to classify pathogenic and benign variants. Despite lacking
supervised training on clinical variant annotations, this simple score
achieved a maximum AUROC of 0.84 at a = 0.7, outperforming models
based on either feature alone (Fig. 5e). This result highlights the
potential synergy between stability and structural context in explain-
ing pathogenicity. Note that our goal here is not to outperform state-
of-the-art variant effect predictors with an optimal value of a***”*%, but
rather to demonstrate that integrating stability prediction and struc-
tural context yields a synergistic and effective classifier. Together,
these results (Figs. 5a-e) reinforce prior studies®*** and highlight the
importance of structural contexts in understanding variant
pathogenicity.

Next, we investigated the mutation effects on stability in different
modes of inheritance and disease mechanisms. Autosomal recessive

(AR) diseases are strongly associated with loss-of-function mutations,
whereas autosomal dominant (AD) diseases can arise from alternate
molecular mechanisms, including gain-of-function mutations,
dominant-negative effect, or protein aggregation’”*°, which may not
always involve substantial stability loss. We collected 6,722 AR-
associated genes and 5603 AD-associated genes annotated in the
OMIM databases” and applied SPURS to predict 44G for the 12,325
pathogenic ClinVar variants covered by these genes. Consistent with
previous findings*®”®, we found that pathogenic variants in AR genes
were more destabilizing than those in AD genes or gnomAD variants
(Fig. 5f; one-sided Mann-Whitney U test both P <107°). This difference
is partly explained by the spatial distribution of mutations: as shown in
prior studies’* and our analysis (Fig. 5c), pathogenic mutations are
more frequent in buried residues, where they have stronger destabi-
lizing effects. Interestingly, it has been observed that AR mutations are
particularly enriched in buried regions compared to AD and gnomAD
variants”’. These findings highlighted the utility of SPURS with respect
to disease mutations in understanding molecular mechanisms,
implying that while stability loss is a major contributor to pathogeni-
city, a modest 44G effect does not necessarily indicate benignity, as
certain pathogenic mutations may act through alternative
mechanisms.

Finally, we analyzed stability effects in cancer-associated muta-
tions. Genes that harbor cancer-driving mutations are broadly
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categorized into oncogenes, which promote cell proliferation, and
tumor suppressor genes (TSGs), which inhibit uncontrolled cell
growth. Given that tumorigenesis is often driven by gain-of-function
mutations in oncogenes and loss-of-function mutations in TSGs’*”’, we
leveraged SPURS’s A44G predictions to examine the molecular
mechanisms of cancer-associated mutations. We obtained 5,225,814
somatic missense mutations observed across various cancer types
from the COSMIC Cancer Mutation Census (CMC) database®®’
(“Methods”). Within each gene, we compared SPURS’s predicted 44G
for cancer mutations cataloged in COSMIC with that for all other
possible missense mutations in the same gene (Fig.5g), following prior
work?”. A gene with a positive 44G difference indicates that there has
been selection for structurally damaging mutations in that gene (right
side of Fig. 5g). Notably, this category was enriched for well-known
TSGs, including TP53, PTEN, and VHL, suggesting that mutations in
these genes likely drive tumorigenesis through stability loss. Con-
versely, genes with negative 44G difference (left side of Fig. 5g) were
enriched for known oncogenes, such as TERT, ACKR3, PIK3CA, and
BCL2. Several genes in this category, while not explicitly annotated in
COSMIC, have literature support for tumorigenic roles, including
DSPP° and CLK2'". These results suggested that oncogenic mutations
tend to avoid destabilization, likely favoring gain-of-function effects or
disrupting intermolecular interactions rather than affecting structure
stability. Overall, our analysis recapitulated previous findings’®”,
highlighting that TSGs mutations often lead to destabilization and loss
of function, while oncogene mutations tend to exhibit selection for
gain-of-function effects, with modest perturbation on stability.

Taken together, these findings illustrate SPURS’s capacity to dis-
cern the nuanced role of stability and structural context in variant
pathogenicity, offering insights into the molecular mechanisms
underlying human diseases.

Discussion

We presented SPURS, a deep learning framework for protein stability
prediction. One notable advantage of SPURS is its strong general-
izability across proteins, stability measures (44G or AT,,), and datasets
from different studies. This generalizability stems from two key design
choices. First, SPURS is trained on Megascale, a high-coverage dataset
encompassing all single and selected double mutants across hundreds
of diverse proteins. Equally important is the algorithmic design in
SPURS’s neural network architecture to fully harness the comprehen-
sive stability measurements in Megascale. SPURS effectively integrates
pre-trained sequence- and structure-based protein generative models
(ESM2 and ProteinMPNN) through a neural network rewiring strategy,
enabling them to be fine-tuned jointly for stability prediction in a data-
efficient and scalable manner.

Our approach was motivated by previous findings that pre-trained
protein generative models, when used in an unsupervised setting,
already correlate well with experimentally measured 44G*7%*. We
thus reasoned that adapting these pre-trained models using stability-
specific fine-tuning would lead to stronger stability models. SPURS’s
core innovation lies in the explicit integration of ESM2 and Pro-
teinMPNN using a lightweight neural rewiring strategy. It integrates
protein representations obtained from two different data modalities,
fusing the structure embeddings that encode the geometric features
important to protein stability with sequence embeddings that capture
the evolutionary constraints in protein sequences. In addition, the
resulting architecture is both expressive and parameter-efficient for
fine-tuning while avoiding overfitting. While multimodal fusion has
been well explored in fields such as vision-language modeling'®?, and
has recently inspired inverse folding studies*>'>'°*, SPURS successfully
integrates multimodal protein generative models for stability
prediction.

This study also addresses several limitations in prior stability
prediction evaluations. First, in contrast to many previous studies that

predominantly assessed models on random or in-distribution test
splits, we systematically benchmarked SPURS on over ten independent
datasets representing diverse proteins and various mutant coverage,
where SPURS consistently outperformed state-of-the-art methods,
highlighting its superior accuracy and generalizability. Furthermore,
while most existing methods focus on single-mutation variants'®, we
specifically evaluated SPURS’s ability to predict stability effects of
higher-order variants, which suggested that SPURS effectively models
non-additive mutational effects, outperforming additive baselines and
models explicitly trained to capture epistasis. Importantly, we also
addressed a common pitfall in model evaluation: the overreliance on
correlation-based metrics, which are biased toward destabilizing
mutations due to their overrepresentation®. Instead, we reported
classification-based  performance in identifying stabilizing
mutations—critical for protein engineering and design-where SPURS
demonstrated higher precision and recall than leading methods such
as ThermoMPNN.

Another practical advantage of SPURS is its computational effi-
ciency. By leveraging representation-sharing, it predicts 44G for all
single mutations of a protein in only one forward pass. For high-order
mutations, only a lightweight epistasis decoder is used, incurring
minimal additional cost. This enables proteome-scale stability analysis:
for instance, SPURS can perform site-saturation mutagenesis for the
human proteome (19,652 proteins) in just 30 minutes on a single GPU.

Beyond stability prediction, we demonstrated the versatility of
SPURS in various analyses in structural biology, protein engineering,
and functional genomics. We showcased broad applications in which
SPURS’s 44G predictions were used to identify functional residues in
proteins, enhance protein fitness prediction, and investigate the con-
tribution of stability change to pathogenicity in human genetic dis-
eases. These applications demonstrate that SPURS’s superior accuracy,
generalizability, and computational efficiency can serve as founda-
tional capabilities to support diverse tasks in protein informatics.

Looking forward, we envision SPURS as a generalizable pre-
trained model to predict stability changes for unseen proteins and
mutations. With its state-of-the-art prediction accuracy, SPURS is a
robust alternative to computationally expensive biophysical models
for protein stability analysis. Since SPURS is trained on 44G data, its
predictions for other stability measures, such as melting temperature
(AT,,), capture relative rankings rather than absolute values. A pro-
mising future direction is to exploit SPURS’s transferability to predict
absolute magnitudes of other thermodynamic stability metrics,
including AT, or AG, through dataset-specific fine-tuning. SPURS’s
stability change predictions can also be combined with existing gen-
eral variant effect predictors®**'°¢'° and competitive models'®™ in
the Critical Assessment of Genome Interpretation (CAGI)' challenges
to improve variant interpretation. SPURS also opens up exciting
directions for protein engineering, either as a surrogate model for
directed evolution or a reward model to guide generative Al models
for designing stability-enhanced proteins. These broad applications
establish SPURS as a versatile tool to enable faster and scalable ana-
lyses for characterizing protein stability and accelerating protein
engineering for important applications in therapeutic design and
synthetic biology.

Methods

Representations of input sequence and structure

SPURS takes as input a protein’s wild-type sequence X = (x, ..., X1),
where L is the sequence length, x; € A denotes the amino acid at
position i from the set A of 20 canonical amino acids, and predicts
thermostability change (44G) for all possible single-mutation variants
and specified higher-order variants (Fig. 1). When available, SPURS also
incorporates the wild-type protein’s 3D structure. If no experimentally
determined structure is accessible, SPURS uses AlphaFold2’ to predict
the structure. In our experiments, experimental structures were used
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when the original benchmark datasets (see “Datasets”) provided a
Protein Data Bank (PDB) ID for the protein; otherwise, AlphaFold-
predicted structures were used, following the practice of previous
studies on stability prediction’**, The structure source for each
benchmark dataset is detailed in Supplementary Table 6.

SPURS integrates ProteinMPNN*® as a structure encoder and
ESM2** as both a sequence encoder and mutation effect predictor.
ProteinMPNN is a message-passing neural network (MPNN)>'™ a type
of graph neural network, which learns representations from a 3D
protein structure. Structure information is described as atomic coor-
dinates S={c; € RNb“}le, where ¢; contains the coordinates of N,
backbone atoms (e.g., C, C,, O, and N atoms) for residue i. This struc-
ture is abstracted into a graph with atoms as nodes and edges formed
by connecting each atom to its 48 nearest neighbors. This structure
graph is passed through three encoder and three decoder layers in the
MPNN to yield per-residue embeddings in R:*128, To improve repre-
sentation learning, we replaced the autoregressive decoding in the
original ProteinMPNN model with a masked decoding scheme
(described below). We concatenated MPNN’s output embedding with
its internal residue embeddings (R:*1?%) learned based on the amino
acid identity, resulting in combined embeddings z,, € Rt*%¢, which
were then up-sized by a linear layer to z, ¢ RE*12%0, referred to as
structure features. In parallel, ESM2, a 33-layer Transformer', encodes
the protein sequence as a per-residue embedding z, ¢ RE*120_ Since
ESM2 is pre-trained on massive natural sequence data, the output
embeddings z. capture evolutionary patterns of protein language,
referred to as evolutionary features.

Model rewiring to learn structure-enhanced evolutionary
features

To integrate the structure features z, € captured by Pro-
teinMPNN into the evolutionary features z, € RL*12%0 learned by
ESM2, SPURS introduces a parameter-efficient rewiring mechanism
based on Adapter layers*, which has proven effective in fine-tuning
large language models and for protein sequence design*>'°. Injecting
structure-derived context into the sequence-based representation, the
Adapter creates structure-enhanced evolutionary features z, e
RE*1280 by cross-attention followed by residual learning and nonlinear
transformation:

RL %1280

z,=W, - GELU(W, - (MultiHead(z,, z,,2,) +z,) + b)) +b,, (1)

where MultiHead(Q, K, V) is the multi-head attention layer'”, with
query Q, key K, and value V matrices. Here, we used z, as the query and
z; as both key and value, allowing evolutionary features to attend to
and create interactions with structural contexts. The attention output
is added back to 2, through a residual connection'”, followed by a two-
layer MLP parameterized by Wy 5 and by, 5, with a GELU activation
function™®, to produce the structure-enhanced evolutionary features
2,. By learning to extract and integrate features from both structural
and evolutionary contexts, SPURS is expected to provide more
informed stability prediction with the enhanced feature z,. The
Adapter is inserted after the 31st layer (out of 33 layers) of ESM2,
with the position selected via hyperparameter search on the validation
set. After the Adapter, z,, is passed through the final layers of ESM2 and
projected from RI*1280 to RI*128 via a linear layer. Finally, we
concatenate this projected output with the earlier ProteinMPNN
embeddings z, € R:*?® to obtain the final protein embedding
z, € RE*38  reinforcing the structure prior while preserving the
evolutionary context.

Building on prior work showing that Adapter-only fine-tuning can
achieve comparable performance to fine-tuning the full Transformer
model*>*, we froze the ESM2 parameters (650 million parameters) and
optimized only the Adapter and ProteinMPNN parameters (9.9 million
parameters). This strategy (Fig. 1) reduced the number of trainable

parameters by 98.5% compared to updating the full SPURS model,
without compromising prediction accuracy.

Efficient stability prediction module
To predict the stability changes, the embedding z, is passed to a multi-
layer perceptron (MLP) g : R3%* — R2%, with each output dimension
corresponds to one of the 20 amino acids (AAs). This MLP, shared
across all L positions in the sequence, projects z, € R*38* to a matrix
P=g(z,) € RE*?°, The element of this L x 20 matrix ¢ is indexed by
the sequence position and AA type, in which (i, a) represents a
trainable weight that approximates the thermostability (AG) when the
amino acid at residue i is of type a.

This matrix ¢p can be used to derive the change in AG (i.e., 44G) for
a single mutation. Denote x"" and X" as the wild-type sequence and its
single-mutation variant resulting from the substitution x}'T — xMT at
position i. The stability change of x™" with respect to x"" is defined as

AAGEMTIXWT) = AG(x; =xMT VT — AG( =x VT |xWT). )

In analogy, SPURS (denoted as f, parameterized by 6) predicts the AAG
for the variant x™" with a substitution at residue i, conditioned on the
protein’s wild-type sequence x*" and structure SV', as following:

FoMTaWT, SWT: i) = (i, xMT) — p(i, xT). ©)

This formulation enables efficient and scalable 44G prediction: the
matrix ¢ only needs to be computed once in a single forward pass of the
neural network, and then can be reused efficiently to derive the 44G for
all single mutations using Eq. (3). In contrast, many existing methods
use mutant sequences as input, which requires O(L x 20) forward passes
to predict AAG for all L x 20 single-mutation variants. By conditioning on
the wild-type sequence and structure, SPURS predicts all single-
mutation variants altogether in O(1) pass, significantly improving
prediction efficiency. This approach, also adopted in recent studies®*”,
is well-suited for large-scale protein stability analysis.

SPURS was trained using a mean squared error (MSE) loss to
minimize the difference between predicted and experimentally mea-
sured AAG values. Each training data batch includes all mutants
derived from a single wild-type sequence. Training was performed on
an NVIDIA A40 GPU for a maximum of 200 epochs using the AdamW
optimizer™ with a learning rate of 0.0001. A plateau scheduler was
used for adaptive learning rate adjustment, and early stopping was
employed to prevent overfitting by terminating training once the
validation performance was not improved for 30 epochs. Hyperpara-
meters such as batch size, learning rate, and optimizer settings were
selected using the Megascale validation set.

Extension to higher-order mutations

The prediction scheme described above for single mutations can be
extended to higher-order variants. Given a mutant sequence x"" of
length L that differ from the wild-type sequence x*" at multiple posi-
tions, we define the set of mutated positions as
M={ixMT#xWT:1<i<l}. The stability change induced by multiple
mutations is often not simply the additive effects of individual point
mutations due to epistatic interactions between residues. SPURS thus
predicts the 44G for xM" as

FoMT YT, SYT A =S "1 X' — (i, x ] + e, M)
N —

ieM epistatic effects )

individual effects

where the first term aggregates individual mutation effects derived
from previously computed matrix ¢, and the epistatic effect e among
mutated residues is added to predict the overall AAG. The epistatic
term e is predicted by a dedicated MLP: e(x™T, M) =g,(2;"), where g is
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a four-layer MLP network with hidden dimensions 768, and z," is a
latent mutation representation that encodes features of all mutations
in M. We factorized the representation z;}" into the representations of
its compositional point mutations: 2} =", 2. The representation
of a point mutation z,(,” is decomposed as the concatenation of a
context-dependent feature and a context-independent feature:
2 =129 || €,,(xMT)] € R®2, where || is the vector concatenation, z{ e
R3* is a context-dependent feature extracted from the i-th row of the
aforementioned per-residue embedding matrix z, € R *3*, whereas
e,4(a) : A — R is an embedding layer that maps an amino acid a €
Ato a context-independent feature in R'?%. Intuitively, 2\ captures the
contextualized features of position i in the wild-type sequence, and
e,,(xM") informs the mutated amino acid type.

The formulation in Eq. (4) allows efficient and scalable 4A4G pre-
diction for high-order mutations. Similar to the prediction of single-
mutation variants, SPURS only requires one forward pass of the
rewired ESM and ProteinMPNN networks to compute the per-residue
embeddings z, and matrix ¢, which can be reused to infer 44G for all
possible single or higher-order variants. For each specific combination
of mutations, SPURS only needs to run one additional forward pass on
Z., adding only minimal computational overhead (less than 0.1% of the
total parameters of ESM2 and ProteinMPNN).

To train this extended architecture of SPURS, we randomly initi-
alized the parameters of g. and retained the weights of all other layers
optimized from the training on Megascale single-mutation data. We
then fine-tuned the entire model using 122,278 double-mutation var-
iants from Megascale training set. Double-mutation variants from the
Megascale validation set were used for hyperparameter tuning, and
those in the test split were used to evaluate SPURS’s predictive per-
formance on higher-order mutations (Fig. 2f).

Improved ProteinMPNN decoding for structural feature
learning

ProteinMPNN was originally designed as an inverse folding model to
generate sequences compatible with a given backbone structure. It
uses an autoregressive (sequential) decoding scheme to generate each
amino acid one at a time, conditioning on the input structure and
already decoded residues: p(x;|x _;; S) where x.; = xy...X;—;. While this
design aligns with ProteinMPNN’s initial purpose, it inherently limits its
ability to fully learn structural features for stability prediction in our
work, as the model cannot access information from the entire
sequence during decoding.

To overcome this limitation, we adopted a one-shot decoding
strategy, allowing each residue in the sequence to access information
from all other positions simultaneously: p(x;|x_;; S) where x_; denotes
the full sequence excluding residue i, thereby providing richer
sequence context and improving structure representation learning. To
fully leverage the advantages of this strategy, we fine-tuned the Pro-
teinMPNN parameters jointly with the Adapter and prediction modules
during SPURS'’s training, rather than keeping them fixed, allowing the
model to better adapt to the refined decoding scheme and contribute
more informative structure features for stability prediction.

Functional sites identification

For a given wild-type protein sequence, we used SPURS to predict AAG
and ESM1v* to predict the sequence likelihood change for all possible
single-residue substitutions. The ESM-predicted sequence likelihood
change, or delta log-likelihood (4LL), is defined as the difference in log-
probability between a mutant and wild type residue at position i:

WT) -

Wty _ WT |y WT

Sesm( =x;" X 10g Pesm(X; =X} |x log ppsm(x; =x;
)

where pgsv(x; = alx) is the ESM-predicted probability of amino acid a
occurring at position i, given the wild-type sequence x as context®.

The score sggy(x;=xMT|x"T) can be interpreted as the relative
evolutionary fitness of mutant ™', which has been shown to be an
effective zero-shot predictor of experimentally measured fitness
data®™?,

Inspired by prior studies modeling the relationship between the
free energy changes due to mutations in protein folding and binding
using a non-linear Boltzmann distribution®***"*, we applied a sigmoid
function to fit the non-linear relationship between a mutant’s stability
change and evolutionary fitness. Specifically, we defined a stability
change score s, (x; =xMT|x"T) as the negative SPURS-predicted 44G
(i.e., —fo(-)) and min-max normalized this score across all single-
mutation variants, with the minimum set to the 0.1% percentile and the
maximum to the 99.9% percentile. In this way, stabilizing mutations are
assigned Sqap Scores close to 1, while destabilizing ones approach O.

Next, we fit a sigmoid function on the ss., and sgsy scores of all
single-mutation variants for each protein:

N Spam (06 =XMT|xWT) —
sstab(x,-=x?“|xWT)=a<“M(' ) ”). ©)

where o(z) = 1/(1 + €7) is the standard sigmoid function, ¢ and 7 are
learnable parameters controlling the sigmoid curve’s shape (location
and steepness), and S, is the sigmoid-fit values of sgp. To prioritize
fitting the low-stability variants, we weighted a variant by SPURS’s 44G
prediction, following the Domainome study*’:

wi'VIT = max(sstab) - min(sstab) - Sstab(xi :x}\/ITleT) (7)
The residue of the fit is defined as:

€06 =X 1) = 55000 = X IXT) — Sy 0 =TT, (®)
which reflects how much the predicted stability deviates from what
would be expected based on the predicted fitness alone. The Domai-
nome study showed that these residuals may indicate mutations with
larger or smaller effects on fitness than can be accounted for by
changes in stability*’, suggesting stronger functional constraints at site
i. We thus define a per-site importance score as the average residuals
across the 20 AA mutations at a site, referred to as function score:

. 1
Stunc() = m Z €x;= aleT)- 9)
acA

As shown in the Domainome study*® and confirmed by our results
(Fig. 3), a larger sgnc(i) value suggests that site i is more likely a
functional site.

Enhanced protein fitness prediction with SPURS
To demonstrate that SPURS can enhance supervised prediction of
general protein fitness, we used the “Augmented models" developed
by Hsu et al.”, a leading low-N fitness prediction method, as our base
model. To predict the quantitative fitness value of a variant, Aug-
mented models represent the input sequence as a concatenation of
one-hot encoding of the amino acids in its sequence, resulting in a
flattened vector of dimension L x | 4|, where A is the set of 20 canonical
amino acids. This vector is augmented to a (L x|.A|+1)-dimension
feature vector by incorporating a scalar representing the input
sequence’s evolutionary plausibility (the delta log-likelihood score)
predicted by a protein sequence generative model, such as a pLM (e.g.,
sesm in Eq. (5)) or other sequence likelihood models (e.g., EVmutation®’,
Evotuned UniRep®’, DeepSequence®’). A Ridge regression model is
then trained on these augmented features to predict experimental
fitness measurements.

We extended this approach by incorporating the AAG value pre-
dicted by SPURS as an additional input feature, resulting in a
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(L x| Al +2)-dimensional feature vector. We refer to this enhanced
model as the SPURS-augmented model. To benchmark performance,
we followed the experimental design of Hsu et al.”’. For each deep
mutational scanning (DMS) dataset, we first set aside 20% randomly
sampled variants as the test set. From the remaining variants, we
sampled N mutants as the training set, where N was set to 48, 96, 144,
192, 240, or N = 80% of total sequences in a DMS dataset, following the
setup from Hsu et al.”. For each value of N, we repeated the sampling
and model training 20 times with different random seeds and reported
the mean performance across repetitions as the final evaluation
metric.

Analysis of stability effects on pathogenicity

We obtained the missense variants and their clinical annotations from
the Clinvar database’®, following the processing protocol in Cagiada
et al%. In our analysis, we only included variants annotated as
“benign”, “likely benign”, “pathogenic”, “likely pathogenic”, or “var-
iants of uncertain significance” (VUS). In our analysis, variants with
“benign” or “likely benign” annotations were grouped as benign, and
those with “pathogenic” or ‘likely pathogenic’ annotations were
grouped as pathogenic. We applied SPURS to predict 44G for all
possible missense mutations across the human proteome (19,652
proteins), and 696,736 variants from 16,997 proteins were successfully
mapped to ClinVar annotations.

AlphaFold2 (AF2)-predicted structures of the mapped human
proteins and their associated residue-level predicted Local Distance
Difference Test (pLDDT) scores were retrieved from the AlphaFold
Protein Structure Database'”. Residues were categorized as folded if
pLDDT > 50. Solvent exposure was estimated using relative solvent-
accessible surface area (rSASA), defined as the SASA of a residue
divided by its maximum SASA in a Gly-X-Gly tripeptide configuration.
rSASA values were computed using the Biotite package' with nor-
malization constants from Tien et al.'”; residues with rSASA > 0.2 were
considered exposed.

To jointly model the impact of structure and stability on patho-
genicity, we interpolated AAG and rSASA scores after clipping them to
the 0.1st-99.9th percentile range to reduce the influence of outliers.
These values were then min-max normalized to the [0,1] interval,
preserving relative differences while ensuring scale compatibility
across the dataset.

The disease inheritance annotations (autosomal dominant [AD] or
autosomal recessive [AR]) for genes were obtained from the OMIM
database”, following the approach of Gerasimavicius et al.”’. We
additionally included 15,820 gnomAD (v4.1) missense variants with
allele frequency >0.05 as a reference set of putative benign variants.
Cancer-associated mutations were collected from the Cancer Mutation
Census dataset” (v99, GRCh38) in the COSMIC database’®. For each
gene, a 4AG difference score was computed as the mean predicted 44G
of observed cancer-associated mutations minus that of all remaining
possible missense mutations in that gene. The significance of pairwise
comparison was assessed using the Mann-Whitney U test, with Bon-
ferroni correction for multiple testing. The threshold of the corrected
P-value was defined as a/N, where a = 0.05 is the commonly used
significance level, and N = 18,073 is the number of genes considered.

Datasets

We used the training, validation, and test splits of the Megascale
dataset created by Dieckhaus et al.*®, which ensured no sequences
sharing >25% identity across splits. For benchmarking, we additionally
collected ten independent test sets, including Fireprot (HF)'**%, Ssym-
direct', Ssym-inverse, S669°, S783% S2648", S461'7, S8754%,
S4346%, S571*. Among these, four datasets (Fireprot, Ssym-direct,
Ssym-inverse, and S669) were pre-filtered and provided by Dieckhaus
et al.*®, while the remaining six datasets were obtained from Xu et al.*’.
Fireprot (HF) is a homology-free subset of the Fireprot dataset, curated

to ensure that sequences share less than 25% identity with those in
Megascale. We used experimentally solved structures from the PDB
database to run SPURS and structure-based baseline methods if the
representative structures of the wild-type proteins were provided by
the original studies of these test sets; otherwise, AlphaFold2-predicted
structures were used.

We first trained SPURS using single-mutation data in Megascale
training and validation splits and evaluated it using the Megascale test
split and the ten independent test sets (statistics provided in Supple-
mentary Table 6). To prevent data leakage across evaluation sets, any
training sequences with >25% sequence identity to sequences in the
independent test sets were removed using MMseqs2'*. To enable
predictions for higher-order mutations, double-mutant variants from
the Megascale training and validation splits (statistics provided in
Supplementary Table 7) were incorporated into training for the
extended model with the epistasis module g.. Double mutants in the
Megascale test split were used to assess the performance of this
extended model.

Functional site annotations for Domainome sequences were
retrieved from the Conserved Domain Database (CDD) by parsing the
National Center for Biotechnology Information (NCBI) protein entry
page [https://www.ncbi.nlm.nih.gov/protein/UNIPROT_ID/], replacing
“UNIPROT_ID" with the corresponding UniProt identifier. For the
enzyme in Fig.3 (Alcohol dehydrogenase, Uniprot ID: P0O0327, PDB ID:
1QLH), functional site annotations were obtained from the Mechanism
and Catalytic Site Atlas (M-CSA), [https://www.ebi.ac.uk/thornton-srv/
m-csa/]. Experimental fitness measurements and baseline predictions
for proteins in Fig.4 were taken from the ProteinGym benchmark?®
[https://proteingym.org/].

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Unless otherwise stated, all data supporting the results of this study
can be found in the article, supplementary, and source data files. We
used esm2 t33 650M_URS0D checkpoint of ESM2, v 48 020 checkpoint
of ProteinMPNN [https://github.com/dauparas/ProteinMPNN/blob/
main/vanilla_model_weights_48 020.pt], and esmlv t33 650-
M_UR90S_1 checkpoint of ESM1v [https://dl.fbaipublicfiles.com/fair-
esm/models/esmlv_t33_650M_UR90S 1.pt]. The Megascale dataset
was downloaded from [https://zenodo.org/records/7844779]. Mega-
scale split, Fireprot(HF), S669, Ssym-direct, and Ssym-inverse were
downloaded from [https://github.com/Kuhlman-Lab/ThermoMPNN].
S783, S2648, S461, S8754, S4346 and S571 were downloaded from
[https://github.com/Gonglab-THU/GeoStab]. Domainome data and
the performance of baseline models were downloaded from [https://
zenodo.org/records/11260616]. Clinvar annotations were collected
from [https://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/]*.
Cancer-associated mutations were obtained from the Cancer Mutation
Census v99 (GRCh38) dataset, specifically the file CancerMuta-
tionCensus_AllData Tsv_v99 GRCh38, available at [https:/
cancer.sanger.ac.uk/cosmic/download/cancer-mutation-census/v99/
alldata-cmc]. Source data are provided with this paper.

Code availability

SPURS was implemented in Python using the PyTorch (v1.12.0) library.
The source code is available at [https://github.com/luo-group/
SPURS]™.
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